
RZ 3661 (# 99681) 09/11/06
Computer Science 18 pages

Research Report

Cryptographic Security for a High-Performance
Distributed File System

Roman Pletka and Christian Cachin

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

{rap, cca}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Cryptographic Security for a High-Performance Distributed File System

Roman Pletka Christian Cachin

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland
{rap,cca}@zurich.ibm.com

10 September 2006

Abstract

Storage systems are increasingly subject to attacks. Cryptographic file systems mitigate the danger
of exposing data by using encryption and integrity protection methods and guarantee end-to-end
security for their clients. This paper describes a generic design for cryptographic file systems and its
realization in a distributed storage-area network (SAN) file system. Key management is integrated
with the meta-data service of the SAN file system. The implementation supports file encryption
and integrity protection through hash trees. Both techniques have been implemented in the client
file system driver. Benchmarks demonstrate that the overhead is noticeable for some artificially
constructed use cases, but that it is very small for typical file system applications.

1 Introduction

Security is quickly becoming a mandatory feature of data storage systems. Today, storage space is typi-
cally provided by complex networked systems. These networks have traditionally been confined to data
centers in physically secured locations. But with the availability of high-speed LANs and storage net-
working protocols such as FCIP [27] and iSCSI [29], these networks are becoming virtualized and open
to access from user machines. Hence, clients may access the storage devices directly, and the existing
static security methods no longer make sense. New security mechanisms are required for protecting
stored data in virtualized and networked storage systems.

In distributed storage systems, data exists in two different forms, leading also to different exposures
to unauthorized access:

Data in flight: Data that is in transit on a network, between clients, servers, and storage devices. Unau-
thorized access may occur from other nodes on the network. These attacks and their counter-
measures are similar to the situation for other communication channels, for which cryptographic
protection is widely available.

Data at rest: Data that resides on a storage device. An attacker may physically access the storage
device or send appropriate commands over the network. If thenetwork is not secure, these com-
mands may also be initiated by clients that are authorized toaccess other parts of the storage
system. Data at rest differs from data in flight on a communication channel because it must be ac-
cessible in arbitrary order, and not only read in the order itwas written. Hence, new cryptographic
methods are needed for protecting it.

Data at rest is generally considered to be at higher risk thandata in flight, because an attacker has more
time and flexibility to access it. Moreover, new regulationssuch as Sarbanes-Oxley, HIPAA, and Basel
II also dictate the use of encryption for data at rest.

A secure storage system should guarantee the following security properties:

Confidentiality: Protection against unauthorized disclosure of data, for example, through eavesdrop-
ping on the network.

Integrity: Protection against unauthorized modification of data, for example, by making subtle changes
to stored data.

Storage systems use a layered architecture, and cryptographic protection can be applied on any
layer. For example, one popular approach used today is to encrypt data at the level of the block-storage
device, either in the storage device itself, by an applianceon the storage network [14], or by a virtual
device driver in the operating system (e.g., Loopback encryption in Linux [16]). The advantage is that
file systems can use the encrypted devices without modifications, but the drawback is that such file
systems cannot extend the cryptographic security to the users. The reason is that any file-system client
can access the storage space in its unprotected form, and that access control and key administration take
place below the file system.

In this paper, we address encryption at the file-system level. We describe the design and imple-
mentation of cryptographic protection methods in a high-performance distributed file system. After
introducing a generic model for secure file systems, we show how it can be implemented using SAN.FS,
a SAN file system from IBM [25]. Our design addresses confidentiality protection by data encryption
and integrity protection by means of hash trees. A key part ofthis paper is the discussion of the im-
plementation and an evaluation of its performance. The model itself as well as our design choices are
generic and can be applied to other distributed file systems.

Encryption in the file system maintains the end-to-end principle in the sense that stored data is
protected at the level of the file-system users, and not at theinfrastructure level, as is the case with
block-level encryption for data at rest and storage-network encryption for data in flight. Moreover, an
optimally secure distributed storage architecture shouldminimize the use of cryptographic operations
and avoid unnecessary decryption and re-encryption of dataas long as the data does not leave the file
system. This can be achieved by performing encryption and integrity protection of data directly on the
clients in the file system, thereby eliminating the need to separately encrypt the data in flight between
clients and storage devices. Given the processing capacityof typical workstations today, encryption and
integrity verification add only a small overhead to the cost of file-system operations, as our benchmarks
demonstrate.

Distributed file systems like SAN.FS and cluster file systemsare usually optimized for performance,
capacity, and reliability. For example, in SAN.FS and in therecent pNFS effort [15], meta-data oper-
ations are separated from the data path for increasing scalability. From a security perspective, such an
approach might sometimes be suboptimal or even make it impossible to provide end-to-end security.
This work shows that cryptographic security can be added to high-performance distributed file systems
at minimal additional cost.

The remainder of this paper is organized as follows. Section2 introduces a general model for secure
file systems and discusses related work. Then, Section 3 describes the design of SAN.FS and how
cryptographic extensions can be added to it. Section 4 provides more details about our implementation
of cryptographic extensions to SAN.FS, which are also applicable to other distributed file systems.
Finally, Section 5 shows our performance results. A discussion of our approach with respect to related
work concludes the paper.

2

Storage
Block

Provider

Security
Provider

Meta−Data
Service

Client
Driver

Inode Provider
(Object Service)

Figure 1: Components of a distributed file system.

2 Model and Related Work

This section first presents an abstract model of a distributed file system, introduces cryptographic dis-
tributed file systems, and reviews previous work in the area.

2.1 File System Components

File systems are complex programs designed for storing dataon persistent storage devices such as disks.
A file system manages the space available on the storage devices, provides the abstraction of files, which
are data containers that can grow or shrink and have a name andother meta-data associated to them, and
manages the files by organizing them into a hierarchical directory structure.

Internally, most file systems distinguish at least the following five components as shown in Figure 1:
(1) a block-storage provider that serves as a bulk data store and operates only on fixed-size blocks;
(2) an inode provider (or object-storage service), which provides a flat space of storage containers of
variable size; (3) ameta-data service, handling abstractions such as directories and file attributes and
coordinating concurrent data access; (4) asecurity provider responsible for security and access-control
features; and (5) aclient driver that uses all other components to realize the file system abstraction to
the operating system on the client machine.

The first three components correspond to the layered design of typical file systems, i.e., data written
to disk in a file system traverses the file-system layer, the object layer, and the block layer in that order.
The security provider is usually needed by all three layers.In most modern operating systems, the
block-storage provider is implemented as a block device in the operating system, and therefore not part
of the file system.

In traditional file systems, all components reside on the same host in one module. With the advent of
high-speed networks, it has become feasible to integrate file system components across several machines
into distributed file systems, which allow concurrent access to the data. A network can be inserted
between any or all of the components, in principle, and the networks themselves can be shared. For
example, in storage-area networks only the storage provider is accessed over a network; in distributed
file systems such as NFS and AFS, the client uses a network to access a file server, which contains
storage, inode, and meta-data providers. The security provider can be an independent entity in AFS and
in NFSv4.

3

The NASD architecture [9] and its successor Object Store [2]propose network access to the object-
storage service. Compared with accessing a block-storage provider over the network, this design simpli-
fies the security architecture. The security model for object storage [1] assumes that the device is trusted
to enforce access control on a per-object basis. The security provider is realized as an independent entity,
accessed over a network. Object storage is an emerging technology, and, to our knowledge, distributed
file systems in which clients directly access object-storage devices are not yet widely available.

In SAN.FS, on which we focus in the remainder of this paper, clients access the storage devices
directly over a SAN (i.e., using Fibre Channel or iSCSI). Allmeta-data operations are delegated to a
dedicated server, which is accessed using TCP/IP over a local-area network (LAN).

2.2 Cryptographic File Systems

Cryptographic file systems encrypt and/or protect the integrity of the stored data using encryption and
data authentication. Cryptography is used because the underlying storage provider is not trusted to
prevent unauthorized access to the data. For example, the storage provider may use removable media
or must be accessed over a network, and therefore proper access control cannot be enforced; another
common example of side-channels to the data are broken disksthat are being replaced.

In a system using encryption, access to the keys gives accessto the data. Therefore, it is important
that thesecurity provider manages the encryption keys for the file system. Introducinga separate key
management service, which has to be synchronized with the security provider providing access control
information, only complicates matters. Analogously, the security provider should be responsible for
managing integrity reference values.

Cryptographic file systems exist in two forms: either as an enhancement within an existing physi-
cal file system that uses an underlying block-storage provider, or as a virtual file system that must be
mounted over another (virtual or physical) file system. The first approach results inmonolithic crypto-
graphic file systems that can be optimized for performance. The second approach results instackable or
layered file systems [33], whose advantage lies in the isolation of the encryption functionality from the
details of a physical file system. In this way, the encryptionlayer can be reused for many physical file
systems. But because multiple copies of the data must be maintained by the operating system, stackable
file systems are generally slower than monolithic ones.

2.3 Previous Work on Cryptographic File Systems

A considerable number of prototype and production cryptographic file systems have been developed in
the past 15 years. We refer to the excellent surveys by Wrightet al. [32] and by Kher and Kim [20] for
more details, and mention only the most important systems here.

Most early cryptographic file systems are layered and use theNFS protocol for accessing a lower-
layer file system: CFS [3] uses an NFS loopback server in user space and provides per-directory keys
that are derived from passphrases; TCFS [5] uses a modified NFS client in the kernel and utilizes a hier-
archical key management scheme, in which per-user master keys to protect per-file keys are maintained.
SFS [22, 23, 24] is a distributed cryptographic file system also using the NFS interfaces, which is avail-
able for several Unix variants. These systems do not containan explicit security provider responsible
for key management, and delegate most of that work to the user.

SUNDR [21] is a distributed file system that works with a completely untrusted storage server. It
uses a content-addressable block store and provides a fork-consistent view of the file system to the
clients, which guarantees that clients can detect any violation of integrity and consistency, as long as
they see file updates of each other. SUNDR provides file encryption and integrity protection using hash
trees, but makes heavy use of digital signatures.

4

LUNs

Storage Device

LUNs

Storage Device

MDS

MDS Networking Infrastructure

Client

Client

Client

Figure 2: The architecture of SAN.FS.

Microsoft Windows 2000 and later editions contain an extension of NTFS called EFS [28], which
provides file encryption with shared and group access. It relies on the security provider in the Windows
operating system for user authentication and key management. As it is built into NTFS, it represents a
monolithic solution.

Some more recent cryptographic file systems follow the layered approach: NCryptfs [31] and
eCryptFS [12, 13] are two native Linux file systems, which areimplemented in the kernel and use
stacking at the VFS layer based on the FiST framework [34]. EncFS [11] for Linux is implemented in
user-space relying on Linux’s file system in user space module (FUSE). FUSE intercepts system calls at
the VFS layer and redirects them to the daemon in user space. NCryptfs, eCryptFS, and EncFS currently
provide only manual key management on a per-filesystem basis, but the eCryptFS design includes sup-
port for a sophisticated key management scheme with per-fileencryption keys and shared access using
public-key cryptography.

Except for Windows EFS and apart from using a stackable file system on top of a networked file
system such as NFS or AFS, there are currently no distributedcryptographic file systems that allow file
sharing and concurrent access to encrypted files.

All file systems mentioned support encryption, but only few of them also provide data integrity
through hash functions or digital signatures.

3 Design

This section presents the SAN File System (SAN.FS) and our design for turning SAN.FS into a crypto-
graphic file system supporting confidentiality and integrity.

3.1 SAN.FS

SAN File System (SAN.FS) from IBM, also known asStorage Tank, implements a distributed file system
on a SAN, providing shared access to virtualized storage devices for a large heterogeneous set of clients,
combined with policy-based file allocation [25]. It is scalable because the clients access the storage
devices directly over the SAN. This is achieved by separating meta-data operations from the data path
and by breaking up the traditional client-server architecture into three components, as shown in Figure 2.

5

The three components of SAN.FS are the following: First, a client driver, which comes in several
variations, as a VFS provider for Unix-style operating systems such as Linux and AIX, or as an instal-
lable file system for Microsoft Windows. The client driver also implements an object service (according
to Section 2.1) as an intermediate layer. Second, the meta-data server (MDS), which runs on a dedicated
cluster of nodes, implements all meta-data service abstractions such as directories and file meta-data,
and performs lock administration for file sharing. Third, the storage devices, which are standard SAN-
attached storage servers that implement a block-storage service. Note that SAN.FS does not contain a
security provider, but delegates this function to the clients.

In SAN.FS, all bulk data traffic flows directly between a client and the storage devices over the SAN.
The client communicates with the MDS over a LAN using TCP/IP for allocating storage space, locating
data on the SAN, performing meta-data operations, and coordinating concurrent file access. The proto-
col between the client and the MDS is known as theSAN.FS protocol and publicly available [17]. The
MDS is responsible for data layout on the storage devices. Italso implements a distributed locking pro-
tocol in which leases are given to clients for performing operations on the data [4]. As the clients heavily
rely on local data caching to boost performance, the MDS essentially implements a cache controller for
all clients in SAN.FS.

SAN.FS maintains access control information such as file access permissions for Unix and the se-
curity descriptor for Windows in the meta-data, but leaves its interpretation up to the client operating
system [17]. In order to implement proper access control forall users of a SAN.FS installation, one must
therefore ensure that only trusted client machines connectto the MDS and to the SAN. It is possible to
share files between Windows and Unix.

3.2 Cryptographic SAN.FS

The goal of our cryptographic SAN.FS design is to provide end-to-end confidentiality and integrity
protection for the data stored by the users on the SAN.FS clients where all cryptographic operations
occur only once in the data path. We assume that the MDS is trusted to maintain cryptographic keys
for encryption and reference values for integrity protection, and neither discloses them to, nor accepts
modifications to them, from unauthorized clients. We also assume that the clients properly enforce
file access control. Storage devices and other entities withaccess to the SAN are untrusted entities
that potentially attempt to violate the security policy. Hence, using the terminology of Section 2.1, the
meta-data provider also implements the security provider.

Corresponding with the design goals of SAN.FS, the client also performs the cryptographic opera-
tions and sends the protected data over the SAN to the storagedevices. Encryption keys and integrity
reference values are stored by the MDS as extensions of the file meta-data. The links between clients and
the MDS are protected using, e.g., IPsec or Kerberos. The encryption and integrity protection methods
are described later in this section.

A guideline for our design was to leave the storage devices unmodified. This considerably simplifies
deployment with the existing, standardized storage devices without incurring additional performance
degradation. But a malicious device with access to the SAN can destroy stored data by overwriting it,
because the storage devices are not capable of checking access permissions. Cryptographic integrity
protection in the file system can detect such modifications, but not prevent them. Therefore, integrity
failure events need to be reported to the administrator, whocan initiate an adequate recovery process,
e.g., restore data from backup.

We remark that an alternative model for implementing strongaccess control in storage devices is
available with object storage [1, 2]. It prevents any unauthorized modification to the data by other nodes
on the SAN. Our design is orthogonal to the security design ofobject storage, and could easily be
integrated in a SAN file system using object-storage devices.

6

3.2.1 Confidentiality Protection

The confidentiality protection mechanism encrypts the datato be stored on the clients with a symmetric
cryptosystem, using a per-file encryption key. Each disk-level data block is encrypted with the AES
block cipher in CBC mode, with an initialization vector derived from the file object identifier and from
the offset of the block in the file and the per-file key. These choices ensure that all initialization vectors
are distinct.

Instead of CBC mode, it would also be possible to use a tweakable encryption mode, such as those
being considered for standardization in the IEEE P1619 effort [18]. These modes offer somewhat better
protection against active attacks on the stored data, because even a small change to an encrypted block
will cause the recovered plaintext to look random and completely independent of the original plaintext.
With CBC mode, an attacker can have some influence on the recovered plaintext, when no additional
integrity protection method is used. Despite this deficiency, we chose CBC mode because it offers
better performance (essentially twice the speed, because it is implemented in software) and because our
integrity protection scheme provides complete defense against modifications to the stored data.

The file encryption key is unique to every file and stored as part of a file’s meta-data. As such a key
is short (typically 16–32 bytes), the MDS can easily be changed to accommodate it. The key can be
chosen by either the MDS or the client.

3.2.2 Integrity Protection

The integrity protection mechanism detects unauthorized modification of data at rest or data in flight by
keeping a cryptographic hash or “digest” of every file. The hash value is short, typically 20–64 bytes
with the SHA family of hash function [6], and is stored together with the file meta-data by the MDS.
All clients writing to the file also update the hash value at the MDS, and clients reading file data verify
that any data read from storage matches the hash value obtained from the MDS. An error is reported if
the data does not match the hash value.

The hash function is not applied to the complete file at once, because the hash value would have to
be recomputed from scratch whenever only a part of the file changes, and data could only be verified
after reading the entire file. This would incur a prohibitiveoverhead for large files. It is important to use
a data structure that allows verification and manipulation of hash values with an effort that is roughly
proportional to the amount of data affected.

The well-known solution to this problem is to create ahash tree, also known asMerkle tree [26],
and to store it together with the file. A hash tree is computed from the file data by applying the hash
function to every data block in the file independently and storing the resulting hash values in the leaves
of the tree. The value of every interior node in the hash tree is computed by applying the hash function
to the values of its children. The value at the root of the tree, which is called theroot hash value, then
represents a unique cryptographic digest of the data in the file. Therefore, only the root hash value must
be protected, and the tree data itself may be stored on untrusted storage.

A single file-data block can be verified by computing the hash value of the block in the leaf node
and by recomputing all tree nodes on the path from the leaf to the root. To recompute an interior node,
all sibling nodes must be read from storage. The analogous procedure works for updates. Using hash
trees, the cost of a read or a write operation of integrity-protected files is logarithmic in the length of the
file (in the worst case), instead of proportional to the entire file length.

The question where to store the hash-tree data must be addressed. Conceptually, the hash tree is part
of the meta-data, as it contains informationabout the file data. But as the hash tree must be updated
along with every data operation, its size is proportional tothe size of the file, and it does not have to be
protected since it resembles file data. This suggests that itshould be stored together with the file data.

7

In SAN.FS, for example, where a file-data block is 4 kB, and using the SHA-256 hash function, a hash
tree takes about 1% of the size of the corresponding file, for all but the smallest files.

Moreover, the SAN.FS protocol between the clients and the MDS is optimized for small messages
that typically are of constant size. The protocol would require major modifications to handle the data
traffic and the storage space needed by hash trees.

Therefore, we store hash-tree data on the untrusted storagespace and only save the root hash value
on the MDS together with the meta-data. We allocate a separate file object per file for storing hash-tree
data. The existing functions for acquiring and accessing storage space can therefore be exploited for
storing the hash tree. The file is visible at the object layer,but filtered out from the normal file system
view of the clients.

4 Implementation

We have implemented a prototype of the cryptographic SAN filesystem design in Linux. This section
describes the extensions of the SAN.FS protocol, the modifications to the MDS, and the implementation
of encryption and integrity protection in the client file system driver. The storage devices have not been
modified.

4.1 SAN.FS Protocol

The clients communicate with the MDS using the SAN.FS protocol version 2.1 [17]. The SAN.FS pro-
tocol implements reliable message delivery and defines requests and transactions. Either participant can
send request messages to the other participant with commands that can be executed quickly. Transac-
tions consisting of four messages are only initiated by the client and only for executing operations that
result in state changes on the server.

The SAN.FS protocol defines multiple types of locks that can be acquired by clients on file and
directory objects. Thedata locks on files are relevant for the cryptographic operations. A data lock
protects meta-data and file data cached locally by a client from concurrent access by other clients.

A data lock on a file object is typically held in eithershared read or exclusive mode. It applies to
the entire file and allows the client to read or to modify file data, respectively. When the server grants
a data lock on a file object to a client, it sends along the object attributes, such as file size and access
permissions.

A set ofcryptographic attributes has been added to the object attributes. The cryptographic attributes
contain the type of cryptographic protection applied (encryption, integrity, or both), the encryption
method, the encryption key, the hash method, the root hash value, and the identifier of the hash-tree file
object. As the object attributes are always passed to the client with a granted data lock, the client knows
all necessary information to perform the cryptographic operations.

The most important extensions in the protocol occur for creating a file and for accessing the object
attributes.

Creating a file object: When the client sends a request to create a file object, it can also specify the
desired cryptographic attributes. These flags take effect for the newly created file unless the
server is configured to override them. The root hash value is left empty at this time.

Accessing file object attributes: When a client requests the acquisition of a data lock to access a file, it
also receives the cryptographic attributes as part of the response from the MDS. A client holding
an exclusive data lock on a file object is also allowed to modify the cryptographic attributes, for
example to turn on encryption. Usually the client modifies only the root hash value in accordance

8

with the data that it writes. When the client returns an exclusive data lock to the MDS, the root
hash value has to be consistent with the hash tree and the datain the file.

Apart from extending the SAN.FS protocol to handle the cryptographic data, the protocol traffic
must be cryptographically protected on the network. This can either be achieved by establishing an
IPsec tunnel between the client and the MDS or by using Kerberos to encrypt the messages between
the client and the MDS. Both forms have been implemented. Using IPsec is easy because it can be
configured at the operating system level. To use Kerberos, a small number of changes to the client
driver and the MDS implementation have been necessary.

4.2 Meta-Data Server

Only minimal changes to the MDS are required. The cryptographic attributes are stored together with
existing attributes of every file object. In contrast to mostoperations, where the MDS merely responds to
client requests, the MDS takes an active role in setting the cryptographic attributes: It can be configured
to enforce that the encryption and integrity protection flags be turned on or off, and to mandate the
choice of particular encryption and hash methods. This allows the administrator to specify a uniform
policy for the cryptographic protection applied to the file system.

The MDS can also generate an encryption key upon creation of anew file. It contains a cryptograph-
ically strong pseudorandom generator for this purpose.

4.3 Client Driver

Most of the cryptographic extensions are located in the client driver, because it performs the crypto-
graphic operations on the bulk data. The SAN.FS client driver we used is implemented as a Linux
kernel module for the 2.6.6 kernel. Its structure is shown inFigure 3. It consists of two main parts:

StorageTank file system driver (STFS):The STFS module contains the platform-dependent layer of
the driver and implements the interface to the VFS layer of the Linux kernel. It handles reading
and writing of file data from and to the page cache and the blockdevices.

Client state manager (CSM): The CSM is the part of the driver that interacts with the MDS using the
SAN.FS protocol. It maintains the object attributes, including the cryptographic attributes. The
CSM code is platform-independent and portable across all SAN.FS client driver implementations.
It uses a generic interface for platform-dependent services of the operating system (not shown in
the figure). Note that the CSM is not involved in reading or writing file object data.

As for any other block-device-based file system, the cached file data is maintained by the Linux
page cache. All cryptographic operations operate on blocksof 4 kB at a time, which is the smallest unit
of data allocation in the SAN.FS protocol. Conveniently, the page size in Linux is also 4 kB, so that the
cryptographic operations do not have to span multiple paging operations.

Our cryptographic operations take place at the bottom of theclient driver on the data path, imme-
diately above the block-device layer. Read and write requests from the file system result in paging
requests that are processed asynchronously by a pager module implemented in the client driver. The
pager module consists of multiple threads for sending requests to read data from storage and for writing
dirty pages back to disk (SAN.FS does not use Linux’pdflush daemon).

More concretely, when a pageout thread writes out a page of anencrypted and integrity-protected
file, the thread first encrypts the page and hashes the resulting ciphertext to obtain the leaf value for
the hash tree. It stores the ciphertext in a buffer page that must be allocated for the request. Then it
dispatches a write request from the buffer page to the block device, according to the data layout.

9

Storage Devices

HT CA

H E

H E H E

Networking Infrastructure

Application

VFS

CSMSTFS

Page Cache Krb / IPSec

Kernel Space

User Space

Client

TCP/IP

iSCSI

Blk I/O

Krb / IPSec

MDS

TCP/IP TCP/IP

Figure 3: SAN.FS Client Implementation Overview. The encircled “E” and “H” denote encryption and
hashing operations.

For pagein requests, integrity verification and decryptiontake place analogously in a pagein kernel
thread (in kernel-thread context), after the block device has completed the I/O request and the page has
been brought in completely (in interrupt context).

The other modifications concern the CSM and its data structures, through which the link to the
MDS storing the hash information is established. The extension mainly deals with processing the cryp-
tographic attributes (CA).

The driver uses the cryptographic functions in the Linux kernel crypto API for encrypting and for
hashing data. This approach enables the use of a wide range ofcryptographic algorithms and dedicated
hardware accelerators supporting this interface.

Implementing encryption and decryption is straightforward, but the hash-tree operations require
some sophisticated algorithms. The hash-tree (HT) data is buffered in the page cache, and for every
node in the tree, two flags are maintained that denote whetherthe node has passed verification and
whether a node is dirty because a write operation to a page invalidated it. Using these flags, a pagein
operation only needs to verify some nodes along the path to the root until it encounters a node that has
already been verified. A pageout operation on a dirty page writes a new hash value into a leaf of the
tree. The internal nodes of the hash tree are only recomputedafter all dirty pages that it spans have been
written out. When a file is processed sequentially (for reading or writing), buffering the hash tree in this
way results in a constant processing overhead per page operation [8].

One complication that arises is that to verify the integrityof a page during a pagein operation, all
corresponding hash-tree data must be ready before the page arrives and its hash value can be compared
with the value in the leaf node. Because verification occurs in a kernel thread when the I/O operation

10

Figure 4: A ternary hash tree with four levels, numbered from0 to 3 according to their height. The small
squares represent the nodes of the tree and contain the node index in pre-order enumeration. The nodes
at level 0 are the leaf nodes and are computed by hashing a single data block (grey squares). Levels 1–3
contain internal nodes, and level 3 contains the root hash.

is completed, it is not possible to start additional I/O operations for reading hash-tree data or allocating
more memory in this context. Therefore, our implementationserializes the operations and ensures that
all necessary hash-tree data is available before the pageinrequest is dispatched to the block device.

The design is also illustrated in Figure 3, where an encircled “E” stands for encryption and an
encircled “H” stands for integrity protection operations.The arrows depict the flow of the protected
data.

4.4 Hash Tree Layout

This section completes the description of the cryptographic SAN.FS client driver by illustrating the
layout of the hash-tree data.

To compute the hash tree, a file is divided into 4 kB blocks, corresponding to the Linux page size.
We recall the construction of ak-ary Merkle tree using a hash functionH(): Every leaf node stores
the output ofH applied to a data page of lengthb bytes, and every internal node stores the hash value
computed on the concatenation of the hash values in its children.

Suppose the tree has deptht. A level of the tree consists of the set of nodes with the same distance
from the root. Levels are numbered according to theirheight in a drawing of the inverted tree as shown
in Figure 4. The height of the root node ist. Every other node has heighth − 1 if its parent has height
h. Hence, leaves have height0. Thej-th node (from the left) with heighth in the tree can be identified
by the tuple(h, j).

As the maximum file size in SAN.FS is fixed (264 bytes), the maximum depth of the hash tree can
be computed in advance, given the degreek. A high degreek results in a flat tree structure and has
therefore similar unfavorable properties as using a singlehash value for the whole file. Ifk is small, the
tree is deeper and therefore requires more space as well as more integrity operations during verification,
especially with random-access workloads. Therefore, we chosek = 16 and obtain a tree of depth 13 in
our implementation. The complete tree with maximum depth isconstructed implicitly, but every level

11

contains only as many allocated nodes as are needed to represent the allocated blocks of the file. This
choice simplifies the design of the hash-tree algorithms, inparticular with respect to padding and file
holes.

In particular, no leaf nodes are allocated for data blocks beyond the length of the file or for data
blocks in holes. As reading such blocks would return the all-zero string according to the file-system
semantics, we treat them as all-zero blocks for computing the hash tree. To prevent the allocation of
hash-tree nodes covering empty file areas, the same heuristic encoding scheme is used for hash-tree
nodes by the implementation: When a hash node is read from thehash-tree file object and returns the
all-zero string, it is interpreted as the hash value resulting at that particular height of the tree when file
data of only zeroes is hashed. This ensures that all leave nodes in the subtree rooted at this node contain
only the hash of a block of zeroes and need not be allocated either. The node values for all-zero file data
can be precomputed for all levels in the driver.

To serialize the hash tree, several choices are available: for example, level-by-level enumeration
with two-dimensional identifiers of the form(h, j) or enumeration according to a recursive tree-traversal
algorithm. Because of our choice to always implicitly maintain the hash tree for the maximum file size,
enumerating the nodes according to a pre-order tree traversal is advantageous.

Figure 4 shows the typical case of contiguous file data starting at offset 0 using a ternary hash three
with four levels. As can be verified easily, all hash-tree nodes that have to be allocated are also in a
contiguous region in pre-order enumeration, starting withthe root node at index 1. Using the heuristic
encoding above, no unnecessary tree nodes have to be allocated for such files; all nodes that are to the
left of the path from the highest leaf node to the root node correspond to the hash value of the all-zero
file data, which are not allocated.

The nodes of the hash tree are serialized by traversing the tree in pre-order and writing every node
to the file in that sequence. Some simple algorithms can be used to calculate the index of a node in
pre-order enumeration from their two-dimensional identifier.

5 Performance Analysis

In this section, we first analyze the performance of the encryption part and then extend our benchmarks
to the integrity-protection implementation. We employ twomacro-benchmarks, dbench [30] and Post-
mark [19], representing realistic workloads, and synthetic micro-benchmarks, which illustrate specific
aspects of our approach.

Our testbed consists of two storage servers (one for the metadata and one for the data to be stored),
an MDS, and a client. Table 1 shows their detailed hardware and software configurations.

The meta-data storage server contains a single drive. The data storage server contains 14 drives,
organized in two RAID 5EE arrays with seven drives each, in anIBM storage expansion EXP-400 using
the IBM ServeRAID 6m RAID controller. All disks are IBM Ultra320 SCSI disks with 73.4 GB capacity
and running at 10k RPM. The storage devices are connected with iSCSI to the MDS and the test client.
The iSCSI connections use the iSCSI Enterprise target 0.4.11 and the Linux iSCSI initiator 4.0.1.7. All

Function Machine Type CPUs Memory Linux kernel
Meta-data server IBM x335 2 hyper-threaded Intel Xeon 2.8 GHz 2 GB RAM 2.4.21-smp
Meta-data storage IBM x336 2 hyper-threaded Intel Xeon 3.6 GHz 1 GB RAM 2.6.11.11-smp
Storage server IBM x345 2 hyper-threaded Intel Xeon 3.2 GHz 4GB RAM 2.4.20-smp
Client IBM x346 2 hyper-threaded Intel Xeon 3.2 GHz 3 GB RAM 2.6.6-smp

Table 1: Software and hardware configurations of the test environment.

12

 300

 350

 400

 450

 500

 550

 600

 650

 700

 128 112 96 80 64 48 32 16 8

R
at

e
[M

bi
t/s

]

Number of Simulated Clients

No Encryption
AES-128
AES-256

Figure 5: Encryption performance of the client driver measured with dbench; no data is actually stored
on disk.

devices are connected by a single switched gigabit Ethernet, i.e., the network topology corresponds to
the one in Figure 2.

5.1 Confidentiality Protection

We report results of three different types of confidentiality-protection tests. First we present an analysis
of the client driver performance, then we quantify the benefits of parallel processing in the kernel by
using sequential reads and writes of a huge amount of data, and finally we examine a realistic file-system
workload using Postmark.

In the first test we use the dbench file system benchmark tool (v3.04), which simulates the file
system load of a Samba server and evaluates the throughput asa function of the number of clients
accessing the server. In dbench, about 90% of the I/O operations are writes. The goal of this test is to
evaluate the performance of the client driver, i.e., the overhead due to encryption. For this we utilize
the nullio-mode on the iSCSI storage device, which means that the device immediately answers any
request without actually reading from or writing to the disks. In the client, there are four pagein and
four pageout threads to take advantage of all processors in the system. Figure 5 shows the results for
no encryption, AES-128, and AES-256. Each curve representsthe average of 5 test runs with a 95%
confidence interval.

As long as the number of clients is low, most of the operationsare handled by the page cache, and
almost no difference between using encryption or not can be observed. With more than 48 clients, the
fact that data is written to the storage device and hence encryption as well as decryption are done during
this process becomes noticeable. The performance impact isfairly stable at roughly 13% for AES-128
and 17% for AES-256.

The next test consists of reading and writing large amount ofsequential data using the Unix convert
and copy commanddd. Eight files of size 1 GB each are written and read concurrently in blocks of
4 kB. The eight files are organized into two groups of four, andeach group is stored on one of the RAID
arrays, to avoid the disks being the performance bottleneck. The goal is to keep the file system overhead
minimal in order to measure the actual end-to-end read/write performance. We vary the number of
kernel threads for pageout and pagein operations, which allows us to quantify the benefits of parallel
processing.

13

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6

R
at

e
[M

bi
t/s

]

Kernel Threads

nocrypt
AES-128
AES-256

(a) Read performance.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6

R
at

e
[M

bi
t/s

]

Kernel Threads

nocrypt
AES-128
AES-256

(b) Write performance.

Figure 6: Encryption performance for reading and writing large amounts of sequential data, as a function
of the number of concurrent pager threads in the kernel.

The read and write rates displayed in Figure 6 are calculatedfrom the average execution time of the
eightdd commands, which was measured using the Unixtime command. Encryption benefits from
exploiting all four processors available in the system, butthe graph also shows that it does not make
sense to use more threads than physical processors. In general, when using three or more threads, the
measured overhead for encryption ranges from 28 to 44%. If there is no encryption, the storage devices
limit the performance to 400 Mbit/s write rate and 450 Mbit/sread rate, whereas with encryption, client
processing power is the main bottleneck. Additional tests revealed that the performance using iSCSI
nullio-mode achieves about 800 Mbit/s for reading and about720 Mbit/s for writing of unencrypted
data, thus saturating the gigabit Ethernet (including the TCP/IP and iSCSI overhead). For encrypted
data with nullio-mode, the results remain roughly the same.

A realistic benchmark for file-system applications is Postmark, which creates a file-system load sim-
ilar to an Internet mail, web, or news server. It creates a large number of small sequential transactions.

 50

 100

 150

 200

 250

 300

1075 1062 1061065 1052 1051055 1042 104104

C
um

ul
at

iv
e

R
ea

d
an

d
W

rit
e

R
at

e
[M

bi
t/s

]

Maximum File Size [Bytes]

No Encryption
AES-128
AES-256

Figure 7: Encryption performance using Postmark, with varying maximum file sizes.

14

No Integrity With Integrity Difference
[Mbit/s] [Mbit/s] [%]

Read 482 303 -36.19
Write 388 384 -3.66

Table 2: Integrity-protection performance for reading andwriting large amounts of sequential data.

No Integrity With Integrity Difference
[MBit/s] [%] [MBit/s] [%] [%]

No encryption 219 156 -28.7
AES-128 202 -8.0 147 -5.8 -27.1
AES-256 198 -9.6 141 -9.7 -28.8

Table 3: Integrity-protection performance using Postmark, showing the cumulative read and write rate.
The “no-integrity” column shows the throughput without integrity protection, for no encryption, for
AES-128 encryption, and for AES-256 encryption. The secondcolumn denotes the relative perfor-
mance loss due to using encryption. Analogously, the column“with integrity” shows the same data with
integrity protection applied. The “integrity loss” columndenotes the relative performance loss due to
applying integrity protection in each of the three cases (noencryption, AES-128, and AES-256).

Its single-threaded nature is not artificially limiting performance here as due to the networking and stor-
age device latency, read and write requests still can be parallelized in the kernel. The iSCSI target uses
the fileio-mode and writes the data to disk. Figure 7 shows thecumulative read and write rate reported
by Postmark v1.51, as a function of the maximal file size parameter. The minimum file size is being
fixed to 1 kB and the maximum file size varies from 10 kB to 10 MB. In this test, Postmark is config-
ured to create 2000 files with sizes equally distributed between the minimum and maximum configured
file size and executes 5000 transactions on them. All other parameters are set to their default values in
Postmark. Each curve represents the average of 11 differently seeded test runs. The 95% confidence
interval is also shown.

It is clear that the smaller the files are, the larger is the fraction of meta-data operations. Up to a max-
imum file size of 20 kB, the performance is limited by the largenumber of meta-data operations. Above
this size, we reach the limitations of the storage devices. In general we can see that the confidentiality
protection overhead is almost negligible and does not exceed 10% in this benchmark.

5.2 Integrity Protection

We measured our integrity-protection implementation withtwo of the benchmarks described in the pre-
vious section: usingdd for reading and writing large amounts of sequential data andwith the Postmark
benchmark.

For the first test, Table 2 compares read and write rates with no integrity protection and with SHA-
256 for integrity protection. The test uses the setup as described in Section 5.1, with four pageout kernel
threads for writing and and four pagein kernel threads for reading. Without integrity protection the
results correspond to the ones shown in Figure 6. Writing incurs no significant overhead as the hash tree
is calculated and written to disk only at the end, after all file data has been written. In contrast, the read
operations are slower, because the hash tree data has to be prefetched and the process may also result in
a pseudo-random access pattern on the hash-tree file.

We also ran the Postmark benchmark as described in Section 5.1 with integrity protection using

15

SHA-256 added. Table 3 shows the reported throughput in terms of a cumulative read and write rate for
a maximum file size of 20 MB and a total number of 1000 data files.The base case, with no integrity
protection, corresponds to the results reported in Figure 7.

The results show that encryption has a smaller impact on performance than integrity protection.
This is actually not surprising because integrity protection involves much more complexity. Recall that
our implementation ensures that all hash-tree nodes necessary to verify a data page must be available
before the read operation for the data page is issued. This ensures that the completion of the page-read
operation does not block because of missing data. Executingthese two steps sequentially simplifies
implementation but introduces a delay. Furthermore, managing the cached hash tree in memory takes
some time as well.

6 Conclusion

We have presented a security architecture for cryptographic distributed file systems and its implemen-
tation in IBM SAN.FS. By protecting data on the clients before storing it on a SAN, no additional
cryptography operations are necessary to secure the data in-flight on the SAN. Moreover, no additional
computations by storage devices and no changes to the storage devices are required. The architecture
can also be integrated with future storage devices that support access control, like object storage [2].

The implementation in SAN.FS as a monolithic cryptographicfile system shows that sustained high
performance can be achieved. By carefully integrating the cryptographic operations in the appropriate
places of the file system driver, the overhead is actually almost not noticeable in a typical file-server
environment. This is consistent with earlier benchmarks ofcryptographic file systems [32].

Our approach has three distinct advantages over previous systems. First, by centralizing the key
management on an on-line trusted server (the MDS in our case), we gain efficiency because key man-
agement can be done with symmetric cryptography. In contrast, key management schemes performed
entirely by the users, as in SFS [23] or in Windows EFS [28], requires the use of slower public-key
cryptography.

Secondly, we believe that cryptographic integrity protection is an important requirement, even
though many users of secure file systems first concentrate on encryption. Since integrity protection
is also considerably more complex than encryption alone, most cryptographic file systems available to-
day do not support it. Some systems, like SiRiUS [10], alwayshash entire files, and will not perform
well with large files.

And, last but not least, many past designs of cryptographic file systems have chosen to simplify
the implementation by using the layered approach. This limits their performance because they must
maintain several data buffers. Some, like Cepheus [7], process data in user space, which involves
copying the data in and out of the kernel multiple times. Although building the cryptographic operations
into the kernel requires more work, our results show that it performs well.

Still, there is room for improvement in our design and implementation. Our hash tree implemen-
tation should include more sophisticated locking mechanisms in order to be able to read hash-tree data
and file data in parallel instead of sequentially. Furthermore, the latest Linux kernel crypto API allows
operations to be performed without setting up scatter lists. This would accelerate computations in the
hash tree, where the use of scatter lists only adds overhead.Last but not least our choice of a 16-ary
hash tree was somewhat arbitrary. In ongoing work, we are exploring different hash tree topologies and
alternative ways to store the hash tree. Preliminary results show that these two factors impact the file
system performance.

16

References

[1] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis, D.Naor, N. Rinetzky, O. Rodeh, and
J. Satran, “A two layered approach for securing an object store network,” inProceedings of 1st
IEEE Security in Storage Workshop (SISW), pp. 10–23, 2002.

[2] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J. Satran, A. Tavory,
and L. Yerushalmi, “Towards an object store,” inProceedings of 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST), 2003.

[3] M. Blaze, “A cryptographic file system for Unix,” inProceedings of First ACM Conference on
Computer and Communications Security, Nov. 1993.

[4] R. C. Burns, R. M. Rees, L. J. Stockmeyer, and D. D. E. Long,“Scalable session locking for a
distributed file system,”Cluster Computing, vol. 4, pp. 295–306, Oct. 2001.

[5] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiono, “The design and implementation of
a transparent cryptographic filesystem for UNIX,” inProceedings of USENIX Annual Technical
Conference: FREENIX Track, pp. 199–212, June 2001.

[6] “Secure Hash Standard.” Federal Information Processing Standards (FIPS) Publication 180-2, Feb.
2004.

[7] K. E. Fu, “Group sharing and random access in cryptographic file systems,” master thesis, Mas-
sachusetts Institute of Technology, June 1998.

[8] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches and hash trees for effi-
cient memory integrity verification,” inProceedings of 9th Int. Symposium on High-Performance
Computer Architecture (HPCA), 2003.

[9] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. Gobioff, C. Lee, B. Ozceri,
E. Riedel, and D. Rochberg, “A case for network-attached secure disks,” Tech. Rep. CMU-CS-96-
142, School of Computer Science, Carnegie Mellon University, 1996.

[10] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted
storage,” inProceedings of 10th Network and Distributed System Security Symposium (NDSS),
pp. 131–145, Feb. 2003.

[11] V. Gough, “EncFS: Encrypted file system.”http://arg0.net/wiki/encfs, July 2003.

[12] M. A. Halcrow, “eCryptfs: An enterprise-class encrypted filesystem for Linux,” inProceedings of
the Linux Symposium, pp. 201–218, July 2005.

[13] M. A. Halcrow et al., “eCryptfs: An enterprise-class cryptographic filesystemfor Linux.” http:
//ecryptfs.sourceforge.net/, 2005.

[14] L. G. Harbaugh, “Encryption appliances reviewed,”Storage Magazine, Jan. 2006.

[15] D. Hildebrand and P. Honeyman, “Exporting storage systems in a scalable manner with pNFS,” in
Proceedings of 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Tech-
nologies (MSST), Apr. 2005.

[16] R. Hölzer, “Cryptoloop HOWTO.” http://www.tldp.org/HOWTO/
Cryptoloop-HOWTO/, Jan. 2004.

17

[17] “IBM TotalStorage SAN File System Draft Protocol Specification 2.1.” Available fromhttp://
www.ibm.com/servers/storage/software/virtualization/sfs/, Sept. 2004.

[18] IEEE P1619, “Draft standard architecture for encrypted shared storage media.” available from
http://www.sisw.org, Mar. 2006.

[19] J. Katcher, “Postmark: A new file system benchmark,” Technical Report TR3022, Network Appli-
ance, 1997.

[20] V. Kher and Y. Kim, “Securing distributed storage: Challenges, techniques, and systems,” inPro-
ceedings of the Workshop on Storage Security and Survivability (StorageSS), 2005.

[21] J. Li, M. Krohn, D. Mazires, and D. Shasha, “Secure untrusted data repository (SUNDR),” inPro-
ceedings of 6th Symposium on Operating Systems Design and Implementation (OSDI), pp. 121–
136, 2004.

[22] D. Mazières, “A toolkit for user-level file systems,” in Proceedings of USENIX Annual Technical
Conference, June 2001.

[23] D. Mazièreset al., “Self-certifying file system.”http://www.fs.net/, 2003.

[24] D. Mazières, M. Kaminsky, F. Kaashoek, and E. Witchel,“Separating key management from file
system security,” inProceedings of the ACM Symposium on Operating System Principles (SOSP
’99), 1999.

[25] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B. Hillsberg, “IBM Storage Tank — a het-
erogeneous scalable SAN file system,”IBM Systems Journal, vol. 42, no. 2, pp. 250–267, 2003.

[26] R. C. Merkle, “A digital signature based on a conventional encryption function,” inAdvances in
Cryptology: CRYPTO ’87 (C. Pomerance, ed.), vol. 293 ofLecture Notes in Computer Science,
Springer, 1988.

[27] M. Rajagopal, E. G. Rodriguez, and R. Weber, “Fibre channel over TCP/IP (FCIP),” RFC 3821,
Internet Engineering Task Force, July 2004.

[28] M. Russinovich, “Inside encrypting file system,”Windows & .NET magazine, June–July 1999.

[29] J. Satran, K. Meth, C. Sapuntzakis, and M. C. E. Zeidner,“Internet small computer systems inter-
face (iSCSI),” RFC 3720, Internet Engineering Task Force, Apr. 2004.

[30] A. Tridgell, “dbench v3.04.”http://samba.org/ftp/tridge/dbench/, 2004.

[31] C. P. Wright, M. Martino, and E. Zadok, “NCryptfs: A secure and convenient cryptographic file
system,” inProceedings of the Annual USENIX Technical Conference, pp. 197–210, June 2003.

[32] C. P. Wright, J. Dave, and E. Zadok, “Cryptographic file systems performance: What you don’t
know can hurt you,” inProceedings of 2nd IEEE Security in Storage Workshop, pp. 47–61, Oct.
2003.

[33] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright, “On incremental file system devel-
opment,”ACM Transactions on Storage, vol. 2, pp. 161–196, May 2006.

[34] E. Zadok and J. Nieh, “FiST: A language for stackable filesystems,” inProceedings of USENIX
Annual Technical Conference, June 2000.

18

