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Abstract - The complexity and costs of conforming to regulatory objectives in large enterprises has drastically height-
ened the need for consistent and automated approaches to managing compliance. To uniformly describe and manage 
compliance policies in distributed and heterogeneous IT environments, we have proposed a compliance metamodel for 
formally capturing regulatory requirements and managing them in a systematic lifecycle. A key aspect in automating 
compliance involves the monitoring of application events to determine whether business processes and applications 
operate within the parameters set forth in formal compliance policies. We show how subsets of the regulations, indus-
try guidances or best practices that are expressed in terms of the metamodel can be (semi-)automatically transformed 
into event monitoring rules with the help of temporal rule patterns. Using examples of regulatory requirements, we 
demonstrate their formalization in compliance policies and their automated transformation into event correlation rules. 
 



1 Introduction

Meeting regulatory requirements poses a unique set of challenges for the management of IT
systems. Regulations can be complex and in part vague, requiring interpretation. Since cor-
porate compliance is linked to other important business concerns such as strategy, compliance
policies need to be integrated in the terms of the business. The technology scope for implement-
ing regulatory objectives may be quite broad, impacting a variety of systems such as storage
retention, business processes and applications. In addition, many regulations and compliance
standards call for independent review by auditors to assess the effectiveness of control proce-
dures. Regulations and their respective interpretation evolve over time, as do organizations,
business conditions, and IT systems. Finally, the complexity in implementing compliance ob-
jectives rapidly increases with the number of regulations and the size of an organization. In
responding to these requirements, enterprises are seeking to reduce costs through a systematic
and, as far as possible, automated approach to compliance.

Regulations Expressed As Logical Models (REALM) [9] is a metamodel for compliance that
addresses the above challenges by capturing a wide variety of regulations in a single language
and semantics. Using REALM, regulatory requirements can be formalized, in part, directly
from regulatory text and compliance guidelines in technology-independent, business terms. We
provide a succinct introduction to REALM in Section 2.

While regulatory requirements can be captured in technology-agnostic terms using our meta-
model, eventually compliance objectives still have to be implemented by concrete systems using
specific technology. In this context, event-monitoring technology allows for monitoring dis-
tributed and heterogeneous IT systems in a loosely-coupled manner without the need to inte-
grate disparate systems and components. Accordingly, event monitoring plays an important
role with respect to the effective implementation, monitoring, and enforcement of regulatory
requirements. Specifically this holds for event correlation, which is software technology designed
to observe, classify, and correlate message streams and to inform human or technology recipients
of system events so that the recipients can react in an appropriate way.

Bridging this gap, abstract policies expressed as high-level REALM models can, at least
partially, be automatically refined into low-level implementation technologies such as correlation
rules with the help of model transformation. This allows for efficiently addressing similar classes
of requirements and dealing with them in an automated manner.

In this paper, we demonstrate a model-driven approach to automated rules generation for
runtime monitoring of compliance objectives. In particular, low-level monitoring rules are de-
rived from certain abstract policy expressions using model transformation and parameterizable
temporal rule patterns. Event-oriented middleware capabilities such as event standards and
event correlation are exploited in developing components to monitor applications and business
processes.
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1.1 On Monitoring using Correlation

Compliance rules may be either enforceable or non-enforceable in a certain environment. En-
forceable compliance rules can typically also be monitored, whereas non-enforceable compliance
rules are partitioned into monitorable and non-monitorable ones. While violations of non-
enforceable but monitorable compliance rules cannot be prevented, they can at least be detected.
Thus, only the residual subset of non-enforceable and non-monitorable compliance rules require
additional measures to attain compliance, which are typically external to the system. A similar
classification scheme for usage control of access control obligations has been proposed by Basin
et al. [4]. In this paper, we focus on monitorable compliance rules.

In principle, all monitorable compliance rules can be implemented using event-based mon-
itors. Specifically the monitoring of loosely coupled, unstructured work flows, implemented
across distributed and heterogeneous IT systems, suggests implementations based on an event
architecture and correlation. In this context, a correlation engine is a software component that
detects, classifies, and correlates message streams and reacts on predefined patterns as specified
in correlation rules. In particular, the monitoring of temporal constraints as frequently occur-
ring in regulations can benefit from such technology. This is true even if such constraints can
also be enforced by other technology such as state-of-the-art business process execution engines
as suggested in [1]. Here, event-based monitoring can generate early warnings by observing
timeouts and thresholds or assure the proper functioning of the enforcement mechanism.

Event-based monitoring and correlation requires the instrumentation of relevant systems
(e.g., a business process execution engine) to publish events at predefined state transitions
during their execution (e.g., a certain activity is started or terminated, a data object changes
its state, a timeout occurs, etc.). The use of event monitoring is particularly adequate when
existing systems can be easily configured to emit events in standardized formats or when such
systems can be easily extended to incorporate such a capability.

In principle, monitoring only discovers the violation of a formula when it happens. While
this might be too late, one may still want to detect it or even be required to monitor by law (e.g.,
logging for audits). In such cases, one would usually raise an early warning, e.g., by transforming
original timeouts into shorter timeouts and thresholds into smaller thresholds.

While some compliance rules may be useful to monitor, a correlation engine may not always
be the best way to do so. For instance, where data are entered manually, once would typically
enforce their correctness directly at the user interface and reject non-compliant data. Also,
instead of monitoring events, a direct evaluation on a system or database state may sometimes
be more useful. This holds in cases where it is inefficient to transform all data included in the
compliance rules into events. Further, while one main benefit of event correlation with state over
pure state evaluation is to be triggered by an event, there are also other triggering mechanisms
that need to be considered, e.g., database triggers.

Furthermore, depending on the timing requirements and system parameters, event-basing
may not be useful, thereby also rendering the use of correlation impractical. Evaluation at
short regular intervals may be sufficient in many cases (i.e., ‘online’ vs. ‘offline’ processing for
audit purposes). Especially for audit purposes, real-time monitoring generates an unnecessary
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overhead. Here, for instance the use of standard SQL queries to evaluate system logs may lead
to more efficient results. What is more, even in an event-based system there is a delay between
the event in the source system and when the rules have been evaluated on it.

1.2 Content

The remainder of this paper is structured as follows. In the subsequent section, we provide a
summary of REALM, our compliance metamodel. We present a simple example to demonstrate
the basic idea behind REALM and then focus on temporal REALM rule patterns, which we
use as starting point for our model transformations. In Section 3, we briefly explain event-
based architectures and monitoring. We then introduce Active Correlation Technology (ACT),
a specific instantiation of an event-based correlation system. Next, in Section 4, we describe how
temporal REALM rule patterns are automatically transformed into such low-level correlation
rules and how such a transformation can be implemented. Finally, we summarize our work and
end with a conclusion.
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2 The REALM Metamodel for Compliance

Regulations Expressed As Logical Models (REALM) [9] is a metamodel and method being
developed by IBM Research, which encompasses requirements engineering of regulations and
builds on their rigorous formalization as formal compliance policies. Regulatory requirements
are formalized from regulation text as sets of compliance rules in a real-time temporal object
logic over concept models.

The REALM approach is based on three central pillars:

• Concept model. The domain of discourse of a regulation is captured by a concept model
expressed as UML class diagrams using a specific UML profile developed for REALM. The
concept model thus plays the role of a complex type system.

• Compliance rule set. Regulatory requirements are formalized as a set of logical formulae
expressed in a real-time temporal object logic. The logic is a combination of Alur and
Henzinger’s Timed Propositional Temporal Logic [3] and many-sorted first-order logic.
Each sort used in a formula corresponds to a type defined in the concept model.

• Metadata. Meta-information about the structure of the legal source (e.g., locator to regu-
lation source such as Act and Section numbers) as well as life-cycle data (e.g., enactment
and expiration dates) are captured as separate metadata. The metadata allow annotating
the models and individual model elements of both the concept model and the compliance
rule set to ensure traceability from regulatory requirements to model elements and vice
versa.

REALM provides the basis for subsequent model transformations, deployment, and monitor-
ing of compliance policies. A REALM-based compliance management lifecycle starts with the
determination of the scope of a given regulation including an evaluation of the respective im-
pact on the enterprise. Next, relevant regulatory requirements are formalized into an immediate
REALM model, which is then substantiated into a refined REALM model. After a thorough
as-is analysis of the enterprise has resulted in models of relevant parts in scope of the regulation,
the impact of the regulation is assessed by comparing the REALM model with the as-is situa-
tion. Informed by this gap analysis, the REALM model is transformed and deployed into the
identified target systems. Figure 1 depicts the transformation of high-level REALM models into
technologies supporting compliance such as storage, processes, and correlation. After a REALM
model has been deployed into a target system, compliance is sometimes ensured automatically.
However, due to the inherent possibility of human or system error, compliance must almost
always also be monitored and enforced in real time.

In this paper, we focus on the automatic transformation of high-level REALM compliance
rules into low-level event monitoring rules (i.e., correlation rules). Next, we present a simple
example to illustrate the basic idea behind REALM. We then present some temporal rule pat-
terns that we found in real regulations and which we utilize to select suitable formulae for the
automatic transformations described in Section 4.
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Figure 1: Transformation and Deployment of REALM Models.

2.1 REALM Example

To make the subsequent discussion more tangible, we present a simple example of how regulatory
requirements are captured in a REALM model. Later, in Section 4, we explain how parts of
such a model that are suitable for event monitoring can be automatically transformed into a
correlation rule.

In Figure 2, we present a simplified version of the regulation text in 31 CFR 103.121, which
clarifies Section 326 of the USA Patriot Act. We focus on the portion printed in boldface type.

Banks must implement procedures for verifying the identity of each customer; these
procedures must ensure that the bank knows the true identity of each customer.
The bank must further implement procedures that specify the identifying information
that will be obtained from each customer. At a minimum, the bank must obtain the
following information prior to opening an account: name; date of birth; residential
address; identification number.
The bank must verify the identity of each customer, using the information
obtained in accordance with the above requirements, within a reasonable
time after the account is opened.

Figure 2: Simplified regulation text inspired by 31 CFR 103.121.

Figure 3 shows the REALM concept model corresponding to this regulation passage. It
captures the high-level concepts that occur in the regulation such as Bank, Customer, Account,
Record, and the two Action types Open and Verify.

The requirement ‘The bank must verify the identify of each customer, using the information
obtained in accordance with the above requirements, within a reasonable time after the account
is opened’ is captured in Formula (1). As explained in [9], REALM formulae build upon the
Timed Propositional Temporal Logic from [3], which provides a good balance between expres-
siveness and complexity [2]. Instead of atomic propositions, however, we add an objectmodel,
the specialization to actions with lifetimes, and syntactic abbreviations such as the use of time
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Figure 3: Concept Model for 31 CFR 103.121.

with different units and the combination of state predicates.
In addition, REALM provides several predefined relations over predefined types. For ex-

ample, Do is a predefined abstract relation between a person or organization and an action.
We write it Do(a, b), where a is an instance (i.e., a bound variable) of a subtype of Person
or Organization and b an instance of a subtype of Action. This predicate evaluates to true
if a executes action b at the point in time where the predicate is evaluated. Other important
examples of predefined relations are On(a, b), Input(a, b), and Output(a, b) where a is an action
and b an artifact; they have the natural meanings. As many time constraints in laws refer to the
beginning or the end of an action, we use subscripts ‘S ’ and ‘F ’ and attach them to the relations,
e.g., DoS (a, b) and DoF (a, b) evaluate to true only at the point in time where the execution
of action b starts or finishes. If we talk about actions only, we allow attaching these subscripts
directly to the action variable. We may then write bS instead of DoS (b).

Temporal formulae are built with the usual non real-time temporal modalities such as ¤
(always), 3 (eventually), and ¨ (once), as well as freeze quantifiers and relations on times. A
freeze quantifier corresponds to the introduction of a variable for a point in time. For instance,
a formula term 3 t.φ means that eventually formula φ will hold, and we introduce the time
variable t for this point in time. Time relations within φ can refer to t, e.g., to express that t is
at most 2 days later than some other time t′, introduced similarly with a freeze quantifier.

∀open ∈ Open,∃verify ∈ Verify
¤ topen. (openF ⇒ 3 tverify . (verifyF ∧ open.account .customer .record = verify .record

∧ tverify − topen ≤ 2[day]))

(1)

Hence, Formula (1) states that whenever a bank has opened a new account, eventually it has to
finish the verification of the identity of the customer, based on the data collected in the process
of opening the account. The formula further states that the verification needs to be completed
within 2 days, which we used as the interpretation of “reasonable time” by our example bank.
The boolean state predicate open.account .customer .record = verify .record ensures that for every
newly opened account there is also a dedicated verification of the customer’s identity. Because
the formula is only used in the context of one bank, we may write openF and verifyF instead of
DoF (bank , open) and DoF (bank , verify).

Formula (1) represents an instance of a temporal REALM pattern. Such patterns predefine a
certain temporal structure that often occurs in regulatory settings, while allowing for dedicated
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parameterization of well-defined points. We now present a number of such patterns and explain
how they are used.

2.2 Temporal REALM Rule Patterns

The focus of this paper is the automated transformation of REALM models into correlation
rules and their subsequent monitoring. As a transformation into correlation rules is necessary
only when we consider such monitoring appropriate, we introduce temporal REALM patterns
as a selection tool for suitable REALM compliance rules.

2.2.1 y Within(c) After x

The first pattern we consider can be derived from the regulation text presented in Figure 2
and the corresponding formalization in Formula (1), respectively. The characteristic temporal
structure of this pattern is visualized in a time constraint diagram in the upper part of Figure 4.
An abstract representation of the pattern is given in Formula (2).

∀x ∈ X, ∃y ∈ Y ¤ t.(x{S,F} ⇒ 3 s.(y{S,F} ∧ pred(x, y) ∧ s − t ≤ c[unit])) (2)

Pattern ‘y Within(c) After x’ reads as follows: Whenever an instance of some action type X

starts or terminates execution, an instance of some action type Y must also start or finish
executing within an interval c of time unit unit. While the temporal structure is predefined,
the exact subtypes of the actions X and Y , as well as the size and unit of the time window can
be parameterized. Also the action predicates (i.e., the subscript ‘S ’ or ‘F ’) can be chosen. In
addition, the pattern requires the definition of an abstract boolean state predicate pred(x , y),
which is used for correlation.

The example from Formula (1) represents an instance of this pattern, where the first action
type X is set to Open and the second action type Y is set to Verify . The state predicate
pred(x , y) is instantiated as open.account .customer .record = verify .record , which formalizes the
constraint that every instance of Open needs a corresponding instance of Verify operating on
the same Record instance, i.e., belonging to the same customer. Finally, the time window c is
set to 2 and the time unit is defined as day .

We call such a temporal REALM formula “pattern” as it occurs in different variations in
real regulations. By defining patterns with a predefined temporal structure and “configurable”
action types X and Y , a predicate pred(x , y) and time window c and time unit unit, we can
define automated transformations from parameterized patterns to executable correlation rules.

When temporal REALM rule patterns are transformed into event correlation rules, the
correlating event monitor needs some information on which events to react upon and correlate.
This information comes from two sources: Predicates x{S,F} and y{S,F} are transformed into
so-called event selectors (e.g., XPath expressions that are evaluated by a correlation engine
upon receiving an event message) defining which events are of interest to the correlation engine.
Furthermore, events are correlated using information contained in the abstract state predicate
pred(x , y). We explain this transformation in more detail in Section 4.
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Figure 4: Some temporal REALM patterns.

2.2.2 x Within(c) Before y

The following passage from the Sarbanes-Oxley Act of 2002, Sec. 302, (a)(4)(C), represents
another temporal pattern that frequently occurs in regulations:

“[...] the signing officers [...] (C) have evaluated the effectiveness of the issuer’s
internal controls as of a date within 90 days prior to the report.”

The middle part of Figure 4 visualizes the temporal structure inherent in this requirement.
Formula (3) formally captures this.

∀y ∈ Y,∃x ∈ X ¤ t.(y{S,F} ⇒ ¨s.(x{S,F} ∧ pred(x, y) ∧ t − s ≤ c[unit])) (3)

Abstractly speaking, pattern ‘x Within(c) Before y’ reflects an obligation in the past, which
must have been completed within a specific time before the triggering action occurs. The same
parts as in the previous pattern can be parameterized, while the temporal structure is fixed.

In the above regulation text, the evaluation of the effectiveness of the issuer’s internal controls
must be completed within 90 days before they can finish the report. Hence, x{S ,F} and y{S ,F} are
replaced by some predicates evaluateF and reportF over instances of action types Evaluate and
Report , respectively. Assuming that reporting and controls effectiveness are only associated with
one issuer, the predicate pred(x , y) could be report .issuer = evaluate.controlsEffectivness.issuer .
Finally, the size and unit of the time window are set to 90 and day .

2.2.3 x AtLeast(c) Before y

Finally, we consider the requirements made in SEC17a-4 f.2.i:

“If employing any electronic storage media other than optical disk technology (includ-
ing CD-ROM), the member, broker, or dealer must notify its designated examining
authority at least 90 days prior to employing such storage media.”

This is an instance of pattern ‘x AtLeast(c) Before y’. A visual representation of its temporal
structure is again given by a time constraint diagram in Figure 4.
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∀y ∈ Y,∃x ∈ X ¤ t.(y{S,F} ⇒ ¨s.(x{S,F} ∧ pred(x, y) ∧ t − s ≥ c[unit])) (4)

In analogy to the previous case, this pattern focuses on the past as seen from the point in
time when it was triggered. Applied to the regulation text above, this pattern would be pa-
rameterized as follows: Contingent on the actual concept model for this regulation text, x{S ,F}

and y{S,F} would be substantiated as predicates employS and notifyF over instances of some
actions types Employ and NotifyAuthority , respectively. The predicate pred(x , y) would be
used to correlate action instances that relate to the same situations where electronic storage
media other than optical disc technology is employed. Assuming the existence of a relation
between Employ and a dedicated concept OtherMedia as well as between NotifyAuthority and
OtherMedia (both with multiplicity 1 in the direction towards OtherMedia), this could e.g. be
expressed as employ .otherMedia = notify .otherMedia.

Having introduced the basic idea behind temporal REALM patterns and their use, in the next
section, we briefly review event monitoring technology. In Section 4, we then present the trans-
formation of a REALM pattern into an event correlation rule in detail.
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3 Event Monitoring Technology

Informally, we regard an event as an occurrence of a phenomenon. An event message reports
on such an occurrence. Within the context of software systems, event messages are commonly
referred simply to as “events” for brevity, abridging the difference between the phenomenon and
the report of the phenomenon. Event-oriented programming models accommodate the creation,
emitting and reception of such event messages.

The Common Base Event (CBE) [8] is a specification describing a standard event model and
format for exchange of event messages between disparate systems. A CBE contains an event
type, which indicates what the event is about, and a time-stamp indicating when the event
occurred. Additionally, optional event attributes include contextual information such as the
component where the event originated, the component reporting the event, software versions
and application-specific information. CBEs are emitted by a number of IBM products such as
WebSphere Process Server (WPS) and Tivoli Access Manager while IBM development tools such
as Rational Software Architecture (RSA) and WebSphere Integration Developer (WID) support
programming with CBEs.

A common event model also facilitates the establishment of common infrastructure capabil-
ities for storing and distributing events. These capabilities, in turn, engender new applications
which receive, interpret and act on events from various sources. For example, the capability of
WPS to emit CBEs at each step of a workflow makes it possible to monitor business process
events relating to compliance objectives.

Further examples of IBM products and components providing targeted event-processing ca-
pabilities are:

• Common Event Infrastructure (CEI) implements a publish-subscribe event server for per-
sisting and distributing CBEs.

• Common Auditing and Reporting Service (CARS) supports the selection and storage of
CBEs for audit reporting.

• Active Correlation Technology (ACT) [6] is an internal component performing event-
correlation of CBEs and other types of events.

As ACT appears later in an example, the following section provides an overview of ACT corre-
lation rules.

3.1 Active Correlation Technology

ACT [6] is an IBM Tivoli internal component consisting of a Java-based correlation engine, a
rule language, and a rule compiler that translates rule files into a data-structure, the ruleset,
which the correlation engine directly evaluates during event-processing.

The ACT component supports several rule types which correspond to common correlation
patterns. The UML Class Diagram in Figure 5 illustrates the structure of the ACT ruleset, rule
blocks, and rules. As the diagram shows, rules are organized into rule blocks. Rule blocks can
be nested. A ruleset is composed of one or more rule blocks.
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Figure 5: UML diagram of ACT ruleset and rule types.

The ACT rule types are briefly summarized below:

Match/Filter identifies whether a single event matches a given characteristic and if so triggers
an action.

Collection identifies and collects a number of specific events over a given amount of time. This
rule is useful in summarizing events and triggering an action when a situation has occurred
n times.

Computation executes a user-defined function upon detection of each event. It is used, for
example, to compute running sums, mean values, or statistics.

Duplicate detects duplicate events and suppresses those duplicates during a specifiable time
window.

Threshold computes a user-definable function which checks whether a function exceeds or falls
below a given threshold.

Sequence looks for a series of events of a given characteristic. The rule allows specification of
whether events arrive in a given order and whether the events arrive within a given time
interval. If the sequence is detected, a detection action is triggered; if the events do not
arrive within the timeout period, a timeout action is triggered.

Timer triggers an action after a specified amount of time. This rule can be used to ensure a
certain action is triggered during a given time span after a specific event arrived.
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4 Transforming REALM Policies into Monitoring Rules

Model transformation is used to derive executable ACT rule sets from REALM policies. REALM
policies are the source model while two artifacts comprise the target models: an ACT rule set and
a Java stub. The temporal rule patterns described earlier play an important role in determining
the target ACT rule type (Sequential, Duplicate, etc.). The patterns determine the assignment
of rule attributes involving time-windows.

The generated Java stub provides a placeholder for execution code called by the ACT rule
actions. ACT rule actions are elements of a rule which are executed when the rule triggers.
Implemented in a specified language such as Java, action code often contains programmatic
considerations specific to a given IT environment. The generation of the stubs allows for custom
implementation and separates the maintenance of code from the rule. The transformation can
be configured to generate a default implementation, for example, which issues a specific event
in response to detecting a compliance violation. Because these stubs implement the actions of
a rule, we refer to the stubs hereafter as action handlers.

During authoring of a REALM policy, a reference to the regulatory passage(s) to which the
policy pertains is optionally included. The transformation looks for this metadata reference
and includes it in the target ACT rule set, making the reference available to ACT rule actions.
Artifacts created during runtime, such as event messages, can thus bear reference to the policies
to which they relate. Uniform Resource Identifier (URI) syntax [5] was chosen as the syntax
for these references. URIs lend themselves not only to constructing large namespaces, but also
to addressing online resources such as a policy repository.

4.1 Transformation Architecture

The transformation is implemented with the Rational Software Architect (RSA) version 6.0
Transformation Framework [10]. The framework supports Java-based, imperative transforma-
tions which can be deployed as RSA plugins. The framework consists of extensible classes
implementing the fundamental concepts of source model navigation and target transformation
rules. The transformation accepts optional parameters which are entered in an input form prior
to execution. An example of a transformation parameter is the name of the Java package for
action handler code.

A second framework, the Eclipse Modeling Framework (EMF) [7], is used as a metamodel for
the source and target models. EMF provides a Java code-generation facility as well as runtime
features which include resource serialization between Java objects and XML.

The transformation architecture, with source and target models, as well as a shared metadata
repository for policy, is depicted in Figure 6. The architecture diagram informally layers, from
top to bottom, the relationship of metamodel, model, and instance. EMF is seen describing
the REALM, Action Handler and ACT rule models. The transformation engine takes instances
of REALM policies, shown on the left hand side, and produces event handler and ACT rule
instances, on the right hand side. Instances are illustrated with sample content as in the case of
the generated sequence rule. The diagram demonstrates how a URI reference, which occurs in
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the source REALM policy, is mapped to the target ACT rule. The action handler is designed to
have access to the context of the rule and can therefore retrieve the regulatory reference URI for
use during action execution. In this example, the URIs, in addition to being unique identifiers,
point to an online policy repository.

Figure 6: Transformation Architecture.

4.2 Transformation Mappings

Mappings performed in transforming REALM compliance policies into ACT correlation rules
are divided into three categories for discussion: standard mappings, action-handler mappings,
and pattern-based mapping. All mappings are implemented with the RSA Transformation
Framework.

A pre-requisite to the transformation process is the mapping of REALM’s abstract objects,
defined in its Concept Model, to existing software versions of the same constructs. Using the
example of the U.S. Patriot Act earlier, references to Customer, Record and Account are con-
figured to refer to the corresponding equivalents in an application system such as a REALM
Customer being mapped to a given application’s Customer class.

The mappings assume the REALM policy has been authored and exists in form of an XMI
document, EMF’s default XML serialization. As both the REALM policy and ACT rule have
XML forms, XPath is used as a notation below for specifying model elements. The transforma-
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tions, however, operate on the EMF object instances, not XML document elements.
Standard mappings are straightforward copying of element values from source-to-target and

are performed for each transformation. Standard mappings are summarized in Table 1.

Source Target Comments

/realm:ComplianceRule /act:ruleSet/ruleBlock Root REALM element creates of ACT Rule-
Set and child RuleBlock element.

/realm:ComplianceRule/@name /act:ruleSet/ruleBlock/@name Compliance rule name mapped to ACT Rule-
Block name.

/realm:ComplianceRule/tracereference /act:ruleSet/ruleBlock/comment Adds policy URI to ACT rule block comment.

Table 1: Standard REALM-to-ACT mappings.

Action-handler mappings address the naming conventions required for the generated handler
code. By partially deriving package and class names from REALM elements, class names reflect
the name of the policy or law being implemented. The naming conventions used in generating
package and class names are outlined in Table 2. Internally, the action handler is created as an
EMF model (.ecore file) from which the handler code is generated using EMF’s code generation
facility.

Source Target Comments

Transformation parameter base Java package e.g., com.example

/realm:ComplianceRule/@name Java package suffix Append rule name to base package prefix, e.g.,
com.example.CIPRule

Transformation parameter Base handler class name with, ”RuleHan-
dler”, appended

Appended to full package name, e.g.,
com.example.CIPRule.CIPRule302 RuleHandler

Table 2: Action handler mappings.

Temporal rule patterns serve as parameterizable templates during transformation. Param-
eterizable objects are resolved through input parameters to the transformation, source model
objects and target model objects. Initially, the pattern identifies the target rule type. Table 3
shows how the temporal rule patterns described earlier map to the ACT rule types. Note that
given an event, the two patterns, x Within(c) Before y and x AtLeast(c) Before y, need to as-
sert another event having occurred in the past, implying the need to consult a persistent event
store. These patterns therefore implement the Computation rule in order to programmatically
invoke the event lookup, presumably to a database.

Pattern Target Comments

y Within(c) After x /act:ruleSet/ruleBlock/sequenceRule This pattern maps to an ACT Sequence.

x Within(c) Before y /act:ruleSet/ruleBlock/computationRule Look-up into past requires a custom imple-
mentation.

x AtLeast(c) Before y /act:ruleSet/ruleBlock/computationRule Look-up into past requires a custom imple-
mentation.

Table 3: Pattern to ACT rule type mappings.

Temporal patterns also determine the specification of events a rule triggers on. The transfor-
mation target for event selection is a combination of ACT’s event selector field and its optionally
contained filter predicate. The event selector itself is used to specify a primary event and the
filter predicate is used for additional logic in deciding whether an event will be processed. The
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primary event selection is derived, as described in Section 2, from the action predicates, starts
and finishes. The state predicate, indicating a relationship between objects, is mapped to the
event selector’s filter predicate, where fine-grained comparison logic can be applied.

In the case of the patterns, x Within(c) Before y and x AtLeast(c) Before y, the latter event
is taken as the event selector. The filter predicate implements the correlation relationship such
as whether two record IDs refer to the same object.

Time is specified as a value in a given unit. Assuming time value and units are specified
during policy definition, the mapping into ACT elements is straightforward and shown in Table 4.

Source Target Comments

/realm:ComplianceRule//TimeConstant/@units /act:ruleSet//timeInterval/@unit Note that REALM time units are specified
when the REALM policy is authored. Trans-
lation of REALM time unit names to ACT
required.

/realm:ComplianceRule//TimeConstant/@value /act:ruleSet//timeInterval/@duration

Table 4: Time unit and value mappings.

4.3 Example

This section describes the policy transformation using the excerpt from the U.S. Patriot Act
described in Section 2.1. This example assumes the WebSphere Process Server (WPS) executes
a business process which includes activities for applying for an account and verifying customer
identity. The REALM objects are mapped to business objects in the application system such as
CustomerApplication and Account. The transformation is further configured to map REALM
actions to process activities such as AccountOpen and IDVerification. The business process is
configured to emit CBEs at the beginning and end of these activities.

The output of the transformation is shown in Figure 7 and Figure 8. The generated ACT
Sequence rule in Figure 7 contains a URI reference to the regulation the rule applies to. The
event selectors contain XPath expressions identifying the start of account open activity and the
finishing of the identity verification activity, corresponding to the respective REALM action
predicates. The time window sets a timeout of 2 days. If the event sequence is detected within
the allowable time window, the action handler method, onDetection(), is invoked. Otherwise
the action handler method, onTimeout(), will be called. The action handler associated with this
rule is shown in Figure 8. The method handling the timeout emits another CBE indicating a
compliance violation event while the method for detection of the compliant sequence sends an
audit event.
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<ru l eBlock name=”CIP Period”>
<comment>{http :// po l i c y r ep . f i rm . com/PA/CFR/31/103.121/CIP}</comment>

<sequenceRule name=”CIPRule”>

<even tSe l e c t o r a l i a s=”AccountOpenActivity”>
<!−− CBE with extensionName ”BPE” ind i c a t e proce s s event −−>
<eventType type=”/CommonBaseEvent/@extensionName=”BPE” [ a c t i v ty=”AccountOpen” and s t a t e=”STARTED]”/>

</eventSe l e c to r >

<even tSe l e c t o r a l i a s=”I d e n t i t yV e r i f i c a t i o nAc t i v i t y”>
<eventType type=”/CommonBaseEvent/@extensionName=”BPE” [ a c t i v ty=”IDVer i f i c a t i on ” and s t a t e=”FINISHED]”/>

</eventSe l e c to r >

<timeWindow>
<t ime In t e rva l durat ion=”2” uni t=”days”/>

</timeWindow>

<onDetection>
<ac t i on express ionLanguage=”java ” name=”onDetect ion ”>

CIPRule RuleHandler . onDetect ion ( t h i s ) ;
</act ion>

</onDetection>

<onTimeOut>
<ac t i on express ionLanguage=”java ” name=”onTimeout ”>

CIPRule RuleHandler . onTimeout ( t h i s ) ;
</act ion>

</onTimeOut>

</sequenceRule>
</ruleBlock>

Figure 7: ACT rule file.

/∗
∗ I f events occur within the r equ i r ed time ,
∗ the proce s s i s with in compliance l im i t s .
∗ Send message to audit t r a i l .
∗/

pub l i c void onDetect ion ( Object context ) {
sendToAudit ( createAuditEvent ( context ) ;

}

/∗
∗ I f a timeout occurs , a compliance v i o l a t i o n has occurred .
∗ Create a corresponding CBE and forward to appropr ia te queue .
∗/

pub l i c void onTimeout ( Object context ) {

// c r ea t e compliance CBE:
EventFactory e f = EventUt i l s . getCachedEventFactory (” TestFactory ” ) ;
CommonBaseEvent event = e f . createCommonBaseEvent ( EventUt i l s .COMPLIANCE EXT NAME) ;

ComponentIdent i f i cat ion srcComp = createSrcComponent ( ) ;
event . setSourceComponentId ( srcComp ) ;
S i tua t i on s i t = e f . c r e a t eS i t u a t i on ( ) ;
s i t . setCategoryName ( S i tua t i on .REPORT SITUATION CATEGORY) ;
event . s e t S i t u a t i o n ( s i t ) ;

// opt i ona l :
event . setReporterComponentId ( srcComp ) ;
event . setMsg (” Compliance v i o l a t i o n ” ) ;
event . s e tP r i o r i t y (CommonBaseEvent .PRIORITY HIGH) ;
event . s e t S ev e r i t y (CommonBaseEvent . SEVERITY CRITICAL ) ;

// send
sendToViolationsQueue ( event ) ;

}

Figure 8: Java snippet from action handler, CIPRule RuleHandler.
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5 Conclusion

In this paper, we have shown how regulatory requirements, which are captured in high-level
policies with a compliance metamodel, can be automatically transformed into low-level event
correlation rules with the aid of temporal rule patterns. The REALM compliance metamodel
supports the expression of temporal logic modalities, thereby addressing a common theme in
compliance, namely temporal ordering and time periods.

We have presented three temporal rule patterns which occur in regulations. The rule pat-
terns are used in identifying those subsets of regulations which can be sensibly monitored using
event correlation. The patterns, defining a specific temporal structure over parameterizable
objects, also guide the transformation of policy expressions into correlation rules. The param-
eterizable objects can be resolved to input parameters and elements in the source or target
models. The pattern defines the target rule type, event selection and time windows generated
during transformation.

Two key aspects of the automating compliance-related activities have been addressed. First,
model transformation automates the generation of runtime artifacts from high-level policies. As
regulations, their interpretations, and technology all change over time, this automation path im-
pacts the development and deployment of policy-based systems. The second form of automation
presented points out the role event monitoring and correlation can play in automating compli-
ance control activities and assessment. Key enablers of automating compliance monitoring are
event standards, such as the Common Base Event, and event-oriented middleware capabilities
such as the Common Event Infrastructure. This common infrastructure for reliably storing and
distributing events places enterprises in a better position to integrate applications into to an
overall compliance monitoring architecture.
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4, 8803 Rüschlikon, Switzerland (bpf@zurich.ibm.com). Birgit Pfitzmann is a senior research
staff member at the IBM Zurich Research Lab. She joined IBM in 2001. Since then she was
responsible for research in risk and compliance, identity management, web services security,
key management, and formal verification of cryptographic protocols. She has served on various
taskforces on defining IBM’s technology and strategy in security and privacy. Before joining
IBM, she was a tenured professor and dean of the Department for Computer Science at the
University of Saarland in Saarbrcken. Birgit Pfitzmann is author of more than 100 research
papers in security, privacy and cryptography, and regularly serves on the program committees
and as program chair of international conferences on these topics. She received a Diploma in
Computer Science from the University of Karlsruhe, and a Doctorate from the University of
Hildesheim, both in Germany. She is Member of the IACR, where she served on the Board of
Directors, and of the ACM and GI, and Senior Member of the IEEE.

20




