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ABSTRACT
Switching fabrics using speculative scheduling are emerg-
ing as a promising way to tackle the latency problem in op-
tical computer interconnects. This paper presents an input
queueing architecture and hardware to process regular re-
quest/grant and speculative arbitration in an integrated fash-
ion. The OSMOSIS research demonstrator co-built by Corn-
ing and IBM is a 64 port optoelectronic switch with a Broad-
cast & Select optical switching fabric and central arbiter,
running at 40 Gbps per port. The demonstrator is built using
Xilinx Virtex II Pro and Altera Stratix FPGAs. A specu-
lative protocol bypasses the latency of the control channel
by transmitting a cell from input port adapters to the optical
switching fabric, ahead of the corresponding grant from the
central scheduler. This paper discusses various input queue-
ing architecture alternatives. FPGA sizing and speed results
from synthesis of the selected queueing architecture to Al-
tera Stratix are presented. A novel dual-tree round-robin
queue scheduler hardware structure is proposed and eval-
uated to overcome the poor mapping properties of priority-
arbiter schedulers to FPGAs. The dual-tree structure outper-
forms the conventional priority-arbiter structure by a factor
of two when integrated in a queueing architecture.

1. INTRODUCTION

Bandwidth gains have dominated latency improvements in
many domains of the computer system [1]. For processors,
memory, network and disk, in the time that bandwidth dou-
bles, latency improves only by a factor of 1.2 to 1.4 [1].

Latency is critical for computer interconnect networks.
This is particularly relevant for high-performance comput-
ers where cache misses to local memory must be served by
fetching cache blocks from remote memory. The OSMOSIS
(Optical Shared MemOry Supercomputer Inter-
connect System) effort is a joint research project between
Corning and IBM to leverage optics for construction of low-
latency computer interconnects [2, 3]. The program is sup-
ported by the US Department of Energy. Optics can be ben-
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eficial for high performance computers because of (i) lower
power and (ii) the ability to cover long distances. These
factors are particularly relevant for large supercomputer in-
stallations. The OSMOSIS interconnect fabric tackles the
latency problem using four novel provisions -
� Technology. The OSMOSIS switching fabric uses Corn-

ing SOAs (Semiconductor Optical Amplifiers) that can
now switch in the range of a few nanoseconds.
� Protocols. The OSMOSIS switching fabric uses spec-

ulative protocols. Under certain conditions, cells can
bypass the latency of a conventional request-grant cy-
cle and directly proceed for transfer across the switch
fabric [4]. More details are provided later in this pa-
per.
� Switch Scheduler. The OSMOSIS switch uses a cen-

tral scheduler FLPPR (Fast Low-latency Parallel Pipe
lined Arbitration) that can match input ports and out-
put ports with low-latency operation [2].
� Switch Architecture. The switching fabric supports

ports with dual receivers. If there is contention for
an output port in a given cell slot, cells can still pass
through to the output port, with cells directed sepa-
rately to each receiver.

The OSMOSIS prototype demonstrator is built using a com-
bination of Altera and Xilinx FPGAs. The reader is referred
to [3] for photographs of prototype chips and boards. The
Xilinx Virtex II Pro FPGAs form the core of the central
scheduler, while link queues and interfaces are built using
Altera Stratix FPGAs. This allows the demonstrator to be
used as a programmable research vehicle and limits ASIC
NRE costs.
Salient Features of the OSMOSIS Switching Fabric The
OSMOSIS switching fabric element is shown in Figure 1.
The switching element uses a bufferless optical core. Broad-
cast is an important capability of a parallel computer inter-
connect. The fabric has native support for broadcast, as
switching is supported through a broadcast-and-select op-
tical fabric. The OSMOSIS fabric supports 2048 nodes us-
ing a fat-tree in two-levels with 96 switch elements in each
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Fig. 1. OSMOSIS System Architecture

level. There are at most three hops between any two nodes.
Each switch element has 64 ports with each port operating at
40 Gbps, built using SONET/SDH PHY components. There
are 64 ingress port adapters and 64 egress port adapters.

The optical cell is 2048 bits long with a cell time of 51.2
ns. A central scheduler or arbiter matches input ports to
output ports using a novel switch scheduling scheme called
FLPPR [2, 5]. This allows a matching to be completed ev-
ery cell-time of 51.2 ns. Cell arrival is communicated to
the central scheduler using a control channel link shown
in Figure 1, built using 2.5 Gbps Infiniband PHY compo-
nents. This means that the input adapters must provide an
O/E conversion. Grants are returned by the central sched-
uler when matchings are computed and cell transfer is pos-
sible. Cells are then transmitted to the switching fabric by
ingress adapters, while the central scheduler activates SOAs
for timely switching action. The current FPGA switch pro-
totype latency is estimated at �������
	 s (with 280 ns for full-
custom ASIC).

Each switch element uses FEC (Forward Error Correc-
tion) in the port adapters along with acknowledgements to
provide a BER (Bit Error Rate) of less than ����
���� . The dual
receiver capability to bypass receiver contention means that
each OSMOSIS switching element is an asymmetric switch,
with 64 input and 128 output ports. The 128 output ports
are arranged in 64 egress adapters. Various optical and elec-
tronic sub-components are being rigorously tested and inte-
gration is underway.
Queueing and Speculation Consider an input port adapter
with backlogged queues. Upon cell arrival, a descriptor is
queued in VOQs (Virtual Output Queues) and a regular ar-
bitration scheduling request is made to the central sched-

uler using the control channel. If in a cell-slot, the control
channel is idle or a control channel cell does not contain
the result of a prior arbitration, the OSMOSIS port adapter
speculatively transmits an optical channel cell to the B&S
(Broadcast-and-Select) fabric. Simultaneously, it makes a
speculation request to the central arbiter. Note that this ac-
tion bypasses the control channel latency or request-grant
scheduling cycle. If the central arbiter can accommodate
the speculative request, it returns an ACK (acknowledge-
ment) or replies negatively with a NAK (negative acknowl-
edgement). The central arbiter correlates this request with
regular scheduling matchings, with priority given for reg-
ular arbitrated requests. An ACK means that the cell can
be dequeued from the input port adapter, as it has been al-
ready transferred. A NAK means that optical cell must wait
for a GRANT. OSMOSIS simulation studies have shown
that speculation is effective for light to medium loads [5,
4]. Specifically, with an OCF (Oldest-Cell-First) scheduling
policy at the input port adapters, the OSMOSIS speculative
protocol completely eliminates the control path latency for
loads upto 50%. The reader is referred to [4] for analytical
modeling and simulation details.

The focus of this paper is the OSMOSIS input adapter
queueing system. This paper considers various architectures
to process regular arbitration (with requests/grants) and spec-
ulation in an integrated fashion. This is described in Sec-
tion 3. Section 4 evaluates the scaling properties of the
selected architecture with area and clock-rate synthesis re-
sults. A critical aspect of speculation is the choice of queue
selection or queue scheduling algorithm. This paper devel-
ops scheduling hardware structures that map well to Altera
Stratix FPGAs. This is also described in Section 4. Section



5 concludes the paper.

2. RELATED WORK

A number of VOQ queueing architectures and reference im-
plementations have been developed by both Xilinx and Al-
tera for their chips. Speculative schemes for pipelined routers
were introduced in [6], but do not provide queueing struc-
tures or any evaluation with implementation technologies.
[7] describes a distributed bus arbiter and analyzes the short-
comings of the centralized programmable priority encoder
in [8] for round-robin arbitration. Both [7] and [8] describe
ASIC implementations only. Link scheduling is exhaus-
tively covered in [9]. The costs of implementing service-tag
based schedulers is evaluated with Xilinx Virtex II FPGAs in
[9]. The OCF (Oldest-Cell-First) queue scheduler described
in this paper is a service-tag based scheduler with 19-bit
service-tags (timestamps), but uses a comparator tree. The
architecture in [9] uses a single-stage recirculating shuffle-
exchange network for optimally mapping a range of schedul-
ing algorithms. The comparator blocks in [9] compute com-
plex decision rules and not simple comparisons as described
in this paper.
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3. QUEUEING ARCHITECTURE

Cells are queued in port-card adapters in transmitter (TX)
datapath memory as shown in Figure 2. Cell descriptors are
provided to the control channel chip also shown in Figure 2.
The control channel chip contains a queueing engine that
issues requests and receives responses from the central ar-
biter. The receiver (RX) datapath receives cells from other
port-cards in the switching fabric. This section describes the
architecture of the port-card, the control channel chip and
the queueing engine.

3.1. Port-card Architecture

An OSMOSIS port-card consists of a transmitter (TX) chip-
set, receiver (RX) chip-set and control channel chip. The TX
chip-set consists of multiple Altera Stratix chips with inter-
faces to a 40 Gbps optical link. We used Stratix GX chips
to allow use of the GX transceivers to interface with the 40
Gbps optical link through an ONIC (Optical Network Inter-
face). The control channel chip is an Altera Stratix EP1S80
chip with a physical interface to a 2.5 Gbps optical control
channel link. The RX chip-set consists of multiple Altera
Stratix chips to handle two receiver interfaces. This allows
upto two cells to be received at a port-card receiver from
other port-card adapters in the same cell-slot.

A cell is received in the TX chip-set and a 38 bit descrip-
tor (6 bit port id, 10 bit cell id, 1 bit virtual lane id and a 21
bit timestamp) is provided to the control channel chip for
queueing. Bits from the 10 bit cell id are used as sequence
numbers for reliability purposes. The control channel chip
provides a 43 bit (32 bit cell header, 10 bit cell id and 1
bit control signal) to the TX datapath for cell transmission.
This happens when a grant arrives from the central scheduler
or when the opportunity for speculative transmission exists.
This is explained in detail in Section 3.3. Cells from other
port-card adapters are received in the dual receiver datap-
ath. 35 bit received cell descriptor (32 bit header and 3 bit
control signals) are provided to the control channel chip for
constructing acknowledgement cells.
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3.2. Control Channel Chip Architecture

The control channel chip consists of a queueing engine, an
RX (receiver) interface and a control channel interface. This
is shown in Figure 3. All synchronization is distributed from
a high precision clock on the central arbiter using the control
channel. A phase-synchronized reference frequency (156.25



MHz, 8 clock cycles per cell) is distributed with a 51.2 ns
cell start signal. The control channel interface consists of
a transmit and receive FIFO that transmits and receives 96
bit control channel cells. Additionally, the control channel
interface is also responsible for timing functions using a syn-
thesizer PLL, a real time counter register (RT), a configura-
tion unit and an RT delay analysis unit. The configuration
unit presets the synthesizer PLL and the real-time counter
based on programmable settings or the results of RT analy-
sis. The RX interface processes received cell descriptors so
that acknowledgement cells can be constructed for received
optical data channel cells. The queueing engine receives op-
tical channel cell descriptors for queued cells in the transmit
datapath. The queueing engine also provides optical channel
cell descriptors to the TX datapath for cells that have been
granted passage through the optical fabric.
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3.3. Queueing Architecture

This section describes the design choices and tradeoffs in the
development of the OSMOSIS queueing architecture. The
control channel protocol is summarized first, followed by a
discussion of the design choices and tradeoffs.

3.3.1. Control Channel Protocol

The control channel supports regular request-grant arbitra-
tion and speculative requests in an integrated fashion. The
speculation actions in the control channel protocol are sum-
marized in Section 1 and shown graphically in Figure 4. The
OSMOSIS control channel cell format allows regular arbi-
tration requests and speculative requests to be issued in the

same cell slot from same or different queues. The reader is
referred to [4] for further details of the protocol.
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3.3.2. Architecture Alternatives

A Virtual Output Queue (VOQ) queues packets in FIFO or-
der according to packet destination ports. There is a VOQ
for every destination port. A VOQ for a port i can be realized
by a write pointer for queueing and a read pointer for de-
queueing. This maps well to Altera Stratix FPGAs that have
embedded RAM memory with dual ports. This means that
queueing and dequeueing can be performed concurrently in
the same clock cycle. In order to support regular arbitra-
tion and speculative transmission in an integrated fashion,
the following architectures are considered.
Integrated VOQ with three memory access ports. When
a cell arrives, a descriptor is queued using a write port. When
the opportunity for a speculative transmission exists, a sec-
ond write pointer is used to set a bit (stx bit) in the queue
entry and the corresponding cell is speculatively transmit-
ted. A read pointer is used to dequeue a cell. Figure 5 (a)
shows this queue architecture with two write pointers and
one read pointer. If one port is reserved for the read pointer,
then the second port available in Altera embedded RAMs
can be shared by the write pointers. If the read port clock
frequency is f, then each of the write pointers must operate
at 2f to share the remaining memory port. When the specu-
lative transmission is acknowledged, the stx bit is reset. We
chose not to use this architecture because of the complex-
ity in maintaining multiple clock domains for read ports and
write ports.
Integrated VOQ with separate RTX queue. A simpler ar-
chitecture to realize regular arbitration and speculative trans-
mission in an integrated fashion is to use an RTX (specula-
tive retransmission) queue along with each VOQ. The RTX



queue holds cell descriptors that have been speculatively
transmitted. Additionally, a cell that does not succeed in
speculative transmission is also held in the RTX queue. Un-
successful cells are transmitted again when a regular grant
for the cell eventually arrives. There is an RTX queue and
a VOQ for each port in the switch. When a cell arrives, a
descriptor is placed in the VOQ corresponding to the des-
tination output port. If the control channel does not carry
any result of a prior arbitration request, then the head-of-line
descriptor corresponding to a cell in a VOQ can be specu-
latively transmitted. When this happens, the head-of-line
cell descriptor is dequeued and placed in the RTX queue. A
copy of this descriptor is also provided to the TX datapath
for transmission. When a grant arrives, the port correspond-
ing to the grant is extracted along with a sequence number.
A check is first made in the RTX queue and then in the VOQ
corresponding to the extracted destination port. If there is a
match of the port id and sequence number in the RTX queue,
the head-of-line descriptor is dequeued and the cell is trans-
mitted. If the grant precedes a positive acknowledegement
(ACK) then a duplicate cell might be delivered to the desti-
nation output port. This is because a cell that waits for an
ACK or NAK has already been speculatively transmitted[4].
The OSMOSIS prototype provides suitable logic to elimi-
nate any duplicate cells in the output. If the extracted queue
id and sequence number does not exist in the RTX queue,
then the corresponding VOQ is checked. A match in the
VOQ leads to the cell descriptor being dequeued and the
cell transmitted by the TX datapath. The OSMOSIS queue-
ing system matches extracted port ids and sequence numbers
with the VOQ and RTX queue in the same cycle using a con-
current match unit (CMU) shown in Figure 5 (c). The RTX
queue is given precedence over the corresponding VOQ us-
ing a priority encoder.

Consider the RTX queue snapshot in Figure 5 (b). The
descriptor in the first position receives a NAK, the descriptor
in the second position receives an ACK and the descriptor
in the third position also receives an ACK. A FIFO is used
for the RTX queue, instead of a linked list to allow simple
hardware complexity. On receiving the NAK, the descrip-
tor in the first position cannot be dequeued as it still needs
to be transmitted upon receipt of a grant. When the next
ACK is received, it cannot be matched with the second de-
scriptor because of the first entry in the FIFO ahead of it.
To allow this situation, all ACK/NAK entries are stored in a
single-bit FIFO called Speculative Arbiter Response (SAR).
The NAK resets the first entry with bit 0 corresponding to
the head-of-line RTX cell descriptor. When the subsequent
ACKs arrive, the successive bits are set with 1. Each entry is
left in the RTX queue until the corresponding grants arrive.
Note that each cell arrival results in a regular scheduled ar-
bitration request and will be matched with a grant from the
central arbiter. When the first grant arrives, the first descrip-

tor is dequeued and provided to the TX datapath for trans-
mission as it was previously NAK-ed. When the next grant
arrives, a bit value of 1 in the corresponding SAR queue
means that the corresponding cell was transmitted success-
fully by speculation. This means that the descriptor can be
simply dequeued and any action for the grant is not needed.

We have used a simple 1-bit SAR queue instead of du-
plicating the RTX queue to hold any NAK-ed entries in a
separate NAK queue. The VOQ and RTX are dimensioned
to hold cell descriptors corresponding to the current switch
prototype. The current latency estimates for the switch are
about 1.224 	 s with a cell slot of 51.2 ns, yielding an RTT
of about 50 cell slots. We have dimensioned the queues for
64 cell descriptors.

The integrated VOQ structure with the RTX queue (Ar-
chitecture B) requires more memory bits than the three-port
VOQ structure (Architecture A). Architecture A requires mem-
ory port sharing domains with higher hardware complexity.
We chose to implement Architecture B as we store descrip-
tors in our queues and each queue is dimensioned to not ex-
ceed 64 entries. Additionally, each queue is realized using
simple FIFO structures that map well to Altera Stratix dual-
port RAMs.
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RTX Queue Scheduler When the opportunity for a spec-
ulative transmission exists, the RTX queue scheduler se-
lects an active queue for speculative transmission. A num-
ber of policies are possible, for example, round-robin, ran-
dom, youngest-cell-first (YCF) and oldest-cell-first (OCF).
We are currently experimenting with scheduling policies and
their correlation with traffic patterns. A round-robin sched-
uler is implemented as a priority encoder and is shown in
Figure 6 (a). The round-robin priority encoder is work-
conserving and arbitrates only between active queues. The
OCF and YCF scheduling policies require timestamps with
each descriptor entry and are implemented using comparator
trees and shown in Figure 6 (b).



4. PERFORMANCE EVALUATION

This section evaluates the hardware complexity of the queue-
ing architecture with various RTX queue scheduling poli-
cies.

4.1. Synthesis Methodology

We developed the designs in a mix of behavioral and struc-
tural VHDL. The designs were synthesized and placed &
routed using the Quartus 4.2 tool. All designs requested
speed based optimization from the Quartus tool. The de-
signs were mapped to Altera Stratix EP1S80 chips, in which
each LE (logic element) has a 4-input LUT, register and
carry chain, with support for dynamic single bit arithmetic.
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4.2. Discussion of Implementation Results

Figure 7 shows area and clock-rate results for the queue-
ing architecture with 64, 128 and 256 ports. The timing
macro, serdes interface and RX interface macros were not
included in the design for synthesis. The queue depth in
each case was held constant at 64 cells, equal to the RTT of
the switching system. The numerals in brackets over the
area columns are the percentage of memory bits used by
each design point. We see a linear increase in area used by
each point. The number of memory bits used also increases
linearly. There is an almost 50% drop in clock-rate from
64 ports to 256 ports. All designs were synthesized using a
work-conserving round-robin priority arbiter. These results
are consistent with expectation.

Figure 8 shows area-memory results for a 64 port queue-
ing architecture arrangement. The queue depth was varied
from 32 elements to 128 elements. The designs were syn-
thesized using a round-robin priority arbiter. As the queues
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were mapped to embedded RAM, increasing the queue depth
affects logic area marginally. The extra logic is in the form
of logic elements or wires needed to cover more memory el-
ements. The FIFO queues support a counter which counts
upto the size of the FIFO and can be read at every clock
cycle. This structure grows in size with queue depth. The
clock-rate is also largely unaffected. We see a linear increase
in the number of memory bits as queue depth increases. This
is because queue elements are mapped to embedded RAM
and do not take any logic element resources. This is consis-
tent with expectation. The synthesis tool reported that our
priority encoder muxes were not restructured during synthe-
sis.
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Figure 9 shows area-clock rate results from synthesis of
a 64 port queue architecture using an oldest-cell-first (OCF)



RTX queue scheduling policy. The queue depth is varied
from 64 elements to 256 elements. The OCF scheduling pol-
icy is implemented in structural VHDL using a comparator
tree. There are six levels in this tree. Each comparator com-
pares two 19 bit values. A six bit port id and a 13 bit times-
tamp are used for comparison. Priority encoders use FPGA
MUX structures that can span multiple logic elements and
do not map very efficiently. In the case of a comparator tree,
19 bit buses map easily to the rich interconnect wiring of the
FPGA. Additionally, comparators can be realized very eas-
ily in LUTs. Thus, comparator trees map well to the Altera
Stratix FPGA structure. By comparing corresponding data-
points in Figure 8 and Figure 9, we see that designs with
the OCF scheduler achieve twice the clock-rate of a round-
robin priority-arbiter based design. This is can be directly
attributed to the reduced hardware complexity of the OCF
scheduling policy. This is because other hardware elements
between the OCF and round-robin designs are the same.

4.3. Improving Round-Robin Scheduled Queue Archi-
tectures
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An insight from evaluation experience with OCF schedul-
ing policy designs is that realizing round-robin arbiters us-
ing comparator trees might result in better clock-rate perfor-
mance. Round-robin arbitration for a set of 64 queues can be
expressed as dual comparator trees in the following manner.�

is the current queue position of the RTX queue scheduler.
For a non-existent active queue set (no cells in any queues),
the � ��� function returns a zero.
��� � ����������� �"!$# %'&'�(���)�*���+�-,�!.�/�"!.� %'&'�(�0�)�

�1�324�5�)�

TOP−SET

BOTTOM−SET

Next Queue = 4

Bottom set is non−empty so select queue id for bottom−set

evaluated Concurrently
Top−set and Bottom−set

Current Queue = 3

COMPARATOR LOGIC

if (right.queue<left.queue)

1 32 41 32 4

1 32 4

empty = 1

Queue = 3 Queue = 4

empty = 1 empty = 1 empty = 1

Current Queue

Queue = 1 Queue = 2

empty = 1

Queue = 1

left right left right

out out

empty = 1 empty = 1 empty = 1

Queue = 1 Queue = 2 Queue = 3 Queue = 4

left right left right

empty = 0

Queue = 4
empty = 0

out out

if (left.queue < right.queue)
                out.queue = left.queue

if (left.empty=0) & (right.empty=0)

out.empty = 0

(if left.empty=0) and (right.empty <> 0)
        out.queue = left.queue
        out.empty = left.empty

           out.queue = right.queue
            out.empty = right.empty

if (right.empty = 0) and (left.empty <> 0)

out.empty = right.empty
        out.queue = right.queue

out.empty = left.empty

Masked Queues

Fig. 11. Dual Comparator Tree Round-Robin Arbiter
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The intuition for the above expression is that a priority
arbiter must determine the first active queue that succeeds
the current position. This is performed by examining the
queues succeeding the current queue position first. If there is
no active queue, the preceding queues are examined. Thus,
a priority arbitration operation can be expressed as two com-
parator trees - one for the preceding queues (top set) and the
other for the succeeding queues (bottom set). The hardware
implementation evaluates the �"!$# %'&'� and ,�!.�/�"!.� %�&'� con-
currently and chooses the appropriate result. The queueing
architecture comparators propagate 6 bit queue ids and 1 bit
empty flags forward. For a comparison between two inac-
tive queues, the comparator operation yields the numerically
lower queue id and an empty flag set to one (empty queue).
If this empty value appears at the root of the tree, the other



comparator tree root value is checked. If both trees yield
a root value with empty flag set, then the current queue id
is left unchanged. The top set and bottom set trees are both
dimensioned for 64 elements at the leaf nodes (queues). The
top set comparator tree simply loads leaf nodes (queues)
succeeding the current queue position with empty flag set
(inactive). This masks those queues from the comparator
tree action. Similarly, the bottom set tree loads values pre-
ceding and including the current position with empty flag
set to one, effectively masking those queues out. Queue ids
and empty flags succeeding the current scheduler position
are loaded without any change. This method allows a 64
queue tree structure that can be used by both the top set and
bottom set structures for comparison. This is shown in Fig-
ure 11 for the case of four queues.

Figure 10 shows area-clock rate results from synthesis of
a dual-tree implementation of a round-robin priority arbiter.
The queueing architecture has 64 ports and is 64 elements
deep. The dual-tree architecture shows dramatically higher
performance (over 2x) over the corresponding round-robin
design. An interesting observation is that the dual-tree de-
sign shows an equivalent area as that of the corresponding
OCF design. The clock rate is a little bit lower. The OCF
design uses one 19 bit input comparator tree, while the dual-
tree architecture uses two trees with 7 bit comparator inputs.
The hardware complexity is comparable.

Figure 10 also shows the final area results from incor-
porating the queueing architecture in the OSMOSIS control
channel chip. We did not include the RX interface for syn-
thesis. The OSMOSIS control channel chip uses a 19.53
MHz clock domain for the queueing architecture. The syn-
thesis tool compacts area as it is able to achieve the 19.53
MHz clock frequency with ease. This is observed for the
dual-tree queue scheduler and also for the round-robin pri-
ority arbiter. For the clock-domain of 19.53 MHz, a dual-
tree implementation for round-robin arbitration saves about
3% of chip area than the priority round-robin arbiter. The
dual-tree round-robin implementation outperforms the pri-
ority arbiter round robin implementation by over a factor of
2 when synthesized for speed.

Performance Comparison. Although the hardware archi-
tecture in [9] uses a different architecture than the dual-tree
scheduling algorithm in this paper, we compare our results
with the results in [9]. The scheduling algorithm in [9] for
service-tag based scheduling disciplines achieves a clock
rate of 72.97 MHz with Xilinx Virtex II and 32 queues. The
service-tag is 16 bits wide. The OCF architecture with 19-bit
service-tags for OCF arbitration in this paper achieves 74.91
MHz for 64 queues. Note that OCF arbitration and service-
tag arbitration are essentially the same operation. Each re-
quires a winner queue to be determined.

5. CONCLUSION

New queueing structures are needed to support the emerg-
ing class of speculative optical switching fabrics. This paper
considered various queueing architecture alternatives and their
implementation complexity. The queueing architecture de-
veloped in this paper integrates regular request/grant switch-
ing protocols and speculative protocols in the same queue-
ing structure. The integrated queue is mapped to Altera
Stratix embedded RAM and scales well. Speculative queue
scheduling with round-robin priority arbiters and OCF (Oldest-
Cell-First) scheduling is considered, and their impact on area
and speed is evaluated. Round-robin priority arbiters scale
poorly because of their use of multiplexer chains. A dual
comparator-tree scheduling architecture is proposed that pre-
serves the round-robin priority arbitration action. This queue
scheduling structure outperforms the multiplexer-chain based
priority arbiter by over a factor of two in speed. Finally,
FPGA sizing and speed results for the queueing engine in-
corporated in the OSMOSIS control channel chip are pre-
sented. The control channel chip and link are functional and
are being integrated into the OSMOSIS research prototype.
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