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Abstract

We present the results of a case study where we investigated asemantic mapping of UML2
activity diagrams to the�-calculus. Our study was initiated by recent discussions onthe role of
the�-calculus for future business-process management systemsas well as our interest in developing
formal analysis techniques for activity diagrams.

The study revealed interesting insights into the semantic expressivity of activity diagrams and the
semantic nature of the different modeling elements, in particular of object nodes and activity final
nodes. We show that for certain types of diagrams, a semanticmapping of object nodes, in particular
of pins, to message reading and receiving operations is insufficient and propose an encoding of pins
as�-processes. Our results motivated us to present a novel classification of activity diagrams based
on their semantic expressivity.

1 Introduction

The release of Version 2 of the Unified Modeling Language (UML2) [17] has seen a considerable ex-
tension to model functional behavior. In particular, activity diagrams have significantly changed and
many new interesting features have been added. The semantics of UML2 activity diagrams is informally
described and many examples are given throughout the specification to illustrate their behavior. Further-
more, the series of articles by C. Bock in the Journal of Object Technology [3, 4, 5, 6] contributed to a
better understanding of UML2 activity diagrams and their difference to activity diagrams as defined in
UML 1.5 [24].

With the increasing interest in service and business process modeling, the role of UML2 and in
particular of activity diagrams also seems to grow. Many approaches to business process modeling
use modeling constructs which are very close to those introduced for UML2 activity diagrams or rely
directly on variants of them. Examples are a proposal for a Business Process Definition Metamodel
as described in [1], the Business Process Modeling Notation[23], or the language used in the IBM
WebSphere Business Modeler [34]. Using UML2 activity diagrams for modeling functional behavior is
also appealing because of their integration with UML2 statemachines and class diagrams. Besides this,
UML2 has been found to support many of the well-known workflowpatterns [41, 25].

In this paper, we take a closer look at some of the semantic subtleties of activity diagrams that
provide significant challenges when used in a practical environment. The challenges come from two
sides. First, the user has to fully understand the semanticsin order to correctly capture the intended
behavior. In our own work, we found that users very often produce erroneous models as soon as the
behavior requires to capture a combination of cyclic with sequential or parallel data/control flows, or
if sequential and parallel flows must be mixed. In these examples, we often see deadlocks, livelocks
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and incorrect multiple instantiations of activities. Secondly, the semantics has to be precisely built into
simulation and analysis tools to enable automatic analysisand verification. We are therefore interested
in formalizing the semantic expressivity of various classes of activity diagrams and investigate how
analytical methods can be tailored to these classes.

So far, formalizations of activity diagrams based on abstract state machines, Petri nets, finite-state
processes, stream-processing functions, the software specification formalism B, and finally the�-calculus
have been proposed.1 For our case study, we decided to use the�-calculus by Milner, Parrow, and
Walker [14, 16] as the formalism of choice. Our motivation came from a controversial discussion on the
suitability of the�-calculus as the formal foundation for future business-process software over the last
few years. Our choice does not imply that other formalisms (notably Petri nets) would not be suitable for
a formalization. The goal of our formalization is to gain a better understanding of the semantic subtleties
of the diagrams. Relevant results have been published for statecharts [40] based on a comparison of
semantic formalizations.

Our insights into the formalization of the various modelingelements allows us to come up with a
classification of the diagrams based on their semantic expressivity. We believe that the identification of
semantic challenges, their formal discussion and the resulting classification help in further strengthen-
ing the role of activity diagrams in any modeling scenario. Asemantic classification also provides an
interesting foundation for further theoretical investigations of activity diagrams. From a practical point
of view, a restricted class of activity diagrams, which can be adequately captured in a less fine-grained
formalization is of great interest for reasons of early quality assessment and assurance, based on models
at a high abstraction level. Our insights also provide the basis for optimization techniques that can be
applied to a semantic encoding in order to reduce the size of the resulting transition system. Such op-
timizations are very important to scale analytical algorithms to the size of models occurring in practice
and to reduce their runtime to practically acceptable answering times.

The paper is organized as follows: We briefly recapture the essentials of UML2 activity diagrams in
the next section, set the scope of our formalization and present an example, which we will use throughout
this paper. In Section 3, we give a short introduction into the �-calculus. Section 4 takes a sang-froid
approach and presents an initial formalization by mapping each activity to a�-calculus process. In
Section 5, we encode the example according to this formalization. In Section 6, we review this initial
formalization and identify its shortcomings, which we locate in particular in the semantic mapping of
object nodes. We identify semantic challenges that the initial formalization does not correctly capture
and show how to extend the formalization. Section 7 presentsa more adequate semantic formalization
of object nodes. In Section 8, we summarize our findings and derive the desired classification of activity
diagrams, but also formulate a set of open questions for future research. After a discussion of related
work in Section 9, we conclude with an outlook on future work in Section 10.

2 UML Activity Diagrams with Parameter Sets

This section briefly recaptures the main features of UML2 activity diagrams as described in [17] with a
specific focus on parameter sets, which were newly introduced in UML2. UML2 activity diagrams follow
traditional control and data flow modeling approaches and use the token-flow semantics from Petri nets
to informally describe the semantics. Anactivity describes the functional behavior under consideration.
Depending on the degree of abstraction, an activity can be refined by an activity model showing (sub)-
activities at a more fine grained level, possibly combined with three types of (not further refinable) nodes:
action nodes, control nodes, and object nodes.Actionnodes operate on control and data values that they
receive, and provide control and data to other actions [3].Control nodes route control and data values

1See the Related Work section for a detailed discussion.
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through the graph. Among the control nodes, UML2 definesdecisionandmergefor sequential branching
and joining, andfork andjoin for parallel branching and joining [5]. Furthermore, the start node and two
kind of end nodes belong to the control nodes.

Figure 1 shows an example of an activity diagram that we will use throughout this paper. Action
nodes are depicted with round-cornered rectangles. In our example, we have actions namedA;B;C;D;E; F . As for control nodes, we have theinitial nodeS, which is depicted with a black dot, theflow
final nodeX, which is depicted with a circle containing a cross, and theactivity finalnodeT , which is
depicted with a circle containing a black dot. Other controlnodes, such as fork, join, decision, or merge
do not occur in our example, but will be formalized.
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Figure 1: Example activity diagram with named pins, edges, action and control nodes.

The third type of nodes areobjectnodes, which hold data tokens temporarily as they wait to move
through the graph [6]. Our example containspins, which hold the input and output of actions, and which
we simply enumerated in Figure 1. UML2 further definesactivity parameter nodes, which we do not
consider separately in our formalization due to their apparently strong semantic alignment with pins.
Unfortunately, the UML2 metamodel does not completely define the precise relationship between the
pins of an action node and the parameter nodes of the associated activity. Parameters can be grouped
into so-calledparameter sets, such that exactly one of the groups can accept or provide values for the
action [4]. No association is defined between parameters andpins and there is also no notion of a pin
set, however, Figure 12.117 in [17, page 387] shows a grouping of pins using parameter set notation.
Thus, in our formalization, we assume that parameter sets lead to a corresponding grouping of pins and
we will speak of the pins belonging to a specific parameter set— the same view is also adopted in [32].
In Figure 1, Parameter sets are graphically depicted by rectangles that group pins. We do not name them
explicitly in the diagram. Parameter sets must have at leastone pin in them, but the same pin can be
part of more than one parameter set, i.e., we will speak of so-called overlapping parameter sets. Let us
consider actionF in the example. It contains two overlapping input parametersets, which share the input
pin 2. F only has a single output parameter set containing the singleoutput pin 4. Furthermore, UML2
definescentralbuffersanddatastores, which we exclude from our formalization.

Control and data flow is modeled by edges, usually beginning in output pins and ending in input
pins. UML2 takes a unified approach to control and data. A pin is a control pin having a control type
if its isControl attribute is set totrue, otherwise it is a data pin having a data type. In our example,we
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named edges by combining the action and pin names that participate in the connection, e.g.,a4d1 is the
edge that connects the ouput pin 4 of actionA with the input pin 1 of action D. In UML2, only action
nodes have pins, while control nodes do not have pins, but route the control and data flow directly. In
our formalization of control nodes, we deviate from this difference and also define pins for control nodes
(except for initial, flow final and activity final nodes). Thisallows us to simplify the syntax definition of
activity diagrams and to treat all activity nodes uniformlyin the semantics. For example, we will define
edges as connections betweens pins, while otherwise, we hadto define edges between pins for action
nodes, but for the nodes without pins the edge would begin or end directly in the node. We summarize
our short review of UML2 activity diagrams in the following syntax definition, in which we focus on
the main modeling elements as described above. Compared to the original metamodel definition, this
definition is a strong simplification. Note that we also do notconsider hierarchical activity diagrams.

Definition 1 (Syntax) An activity diagramM = (N;P; I;O; E) consists of� a finite setN of nodes partitioned into subsets i.e.,N = NA [ NC whereNA denotes the set of
action nodes, while the set of control nodesNC is further partitioned into subsets:

– ND of decision nodes,NM of merge nodes,NF of fork nodes andNJ of join nodes,

– NI of initial nodes,NFF of flow final nodes, andNAF of activity final nodes.� a finite setP of pins partitioned into input and output pins, i.e.,P = Pin [ Pout,� a finite set of input parameter setsI where each setI 2 I is a subset of the set of input pins,
i.e.,I � Pin,� a finite set of output parameter setsO where each setO 2 O is a subset of the set of output pins,
i.e.,O � Pout,� a finite setE of edges each connecting either two pins with each other or a pin with a control node,
i.e.,E � (Pout [NI)� (Pin [NFF [NAF ).

UML2 formulates several syntactic constraints such as:

- each action node has at least one input and one output parameter set, and

- there are no empty parameter sets, i.e., each set contains at least one pin and a set is associated
with exactly one action node,

- no two parameter sets have exactly the same pins.

Furthermore, the specification states that nodes with unconnected pins cannot execute. Thus, from
a practical point of view, one could require that all pins andcontrol nodes are connected by edges—
however, this is not relevant for our formalization. UML2 allows that pins may be arbitrarily connected
to even more than one other pin, i.e., they cannot only be usedto model the routing behavior of control
nodes, but additional nondeterminism occurs when, e.g., one output pin is connected to more than one
input pin. However, we believe that it would be a better modeling practice to have only 1-1 edges between
pins and control nodes and thus base our formalization on this assumption. A discussion of the semantic
problems caused by 1-m edges between pins can be found in [33]and we will also come back to this
issue later in the paper.
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3 A short �-calculus Glossary

The �-calculus is a process algebra developed by Milner, Parrow and Walker [14, 16], which reuses
concepts from the Calculus of Communicating Systems (CCS) [14]. It introduces the action prefixes of
receiving any messagey along a channelx (denoted asx(y)), sending a messagez along a channelx
(denoted asxhzi), or making a silent transition (denoted as� ). If the message is not relevant, the short-
hand notationsx for sending over channelx andx for receiving over channelx can be used.2 Action
prefixes of a process are composed by the: operator. A simple example illustrating these concepts is the
processA = xhyi:A0, which sends a messagey over the channelx and then continues to behave like
processA0.
Given a set of action prefixes�i, the basic syntax of process expressions is defined byP ::= Pni=1 �i:Pi j alternative compositionQni=1 Pi j parallel composition

new aP j restriction of name scope!P infinite replication

A process
Pni=1 �i:Pi = �1:P1+ � � �+�n:Pn is a process that performs one of the actions prefixes�i

and then behaves like processPi. The empty sum results in the null process, 0, which is often omitted.
For example, we writexhyi instead ofxhyi:0. A process

Qni=1 Pi = P1 j � � � j Pn is the concurrent
composition of processesP1 to Pn. The restrictionnew aP restricts the scope of the namea to processP . The replication operator ! allows a processP to be replicated an infinite number of times.

Note thatx(z):P andnew zP has the effect of binding the namez to scopeP . The binding ofz in x(z):P will lead to a substitution of the free occurrences ofz in P by a when receivinga via x.
For example,(x(z):zhai:0 j xhwi:0) evolves to(whai:0j0) by an interaction over the channelx. The�-calculus offers the ability to transform processes according to a set of structural congruences. For
example,P j 0 � P states that every processP composed in parallel with the null process is structurally
congruent to itself.P + 0 � P shows that adding a null process to a processP does not increase its
capabilities.

We introduce a notational shorthand to capture the possiblepermutations of action prefixes, i.e., in-
stead of writinga:b:A+ b:a:A, we write(a j b):A and define:

Definition 2 (Notational convention for prefix permutations) Given action prefixesa1; : : : ; an and a
processA, we write� nYi=1 ai �:A = (a1 j � � � j an):A= a1:a2: : : : an:A+ a2:a1: : : : an:A+ � � � + a1: : : : :an:an�1:A

A second notational shorthand is used to capture the alternative composition of prefixes with the
same process in a more compact way:

Definition 3 (Notational convention for alternative prefix composition) Given action prefixesa1; : : : ; an
and a processA, we write � nXi=1 ai �:A = (a1 + � � �+ an):A= a1:A+ � � �+ an:A

2Note that one often speaks of names being sent or received viasome other name, however, we will continue to speak of
channels and messages, because we hope that this makes the formalization more intuitive.
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The semantics of the�-calculus is defined usingreaction rules, cf. [15, page 91]. These reaction
rules (also called reduction rules in [26]) describe how a processP can evolve to a processP 0 owing to
some action withinP . In addition, the�-calculus providestransition rules, which define how a system
may interact with its environment. As we will focus on processes without any environmental interaction,
we restrict ourselves to reduction rules as shown in Table 1.

TAU �:P +M ! P
INTER (x(y):P +M)j(xhzi:Q+N) ! fz=ygP jQ
PAR

P ! P 0P jQ! P 0jQ
RES

P ! P 0
new zP ! new zP 0

STRUCT
P ! P 0Q! Q0 if P � Q andP 0 � Q0

Table 1: The�-calculus reduction rules.

The TAU-rule defines that a process�:P +M evolves to the processP when performing an internal� -transition. The rule INTER describes the interaction of two concurrently running processes, which
synchronize on the exchange of a message over a channelx. The processx(y):P expects any messagey, and the processxhzi:Q sends a messagez overx. The rule describes that the result of this interaction
will be P jQ, where inP all free occurrences ofy have been replaced byz. The alternative behaviorsM
andN are not preserved, i.e., if a “sum exercises one of its capabilities, the others are rendered void”,
cf. [26, page 39]. The rule PAR states that if a processP evolves toP 0 then processP j Q evolves toP 0 j Q. The rule RES shows that “restriction of a name does not inhibit a reduction” [26]. The last rule,
STRUCT, establishes a link between reduction and structural congruence: IfP reduces toP 0 andP is
structurally congruent toQ andP 0 is structurally congruent toQ0, then alsoQ reduces toQ0. This link
is important because it allows one to exploit structural congruence and then apply the reduction rules.

4 An Initial Formalization of Activity Diagrams

Parameter sets in UML2 introduce an enormous expressivity for modeling communication behavior be-
tween actions. The UML2 specification gives the following informal characterization:

“A behavior with input parameter sets can only accept inputsfrom parameters in one of
the sets per execution. A behavior with output parameter sets can only post outputs to
the parameters in one of the sets per execution. Multiple object flows entering or leaving
a behavior invocation are typically treated as ‘and’ conditions. However, sometimes one
group of flows are permitted to the exclusion of another. . . . The notation . . . expresses a
disjunctive normal form where one group of ‘and’ flows are separated by ‘or’ groupings.
For input, when one group or another has a complete set of input flows, the activity may
begin. For output, based on the internal processing of the behavior, one group or other of
output flows may occur.”[17, page 386]

Similar to Dong and ShenSheng [9] and Puhlman and Weske [20],our semantic mapping maps
each activity and action node to a separate�-calculusprocess. Edges between pins and control nodes
are mapped tochannels, allowing the token flow in activity diagrams be mapped to themessage-based
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communication of�-calculus processes. The semantics of parameter sets is captured by defining the
composition and communication of the�-processes accordingly. The following definitions introduce a
function � : M ! P, which maps the diagramM to a process definitionP in the �-calculus. LetM = (N;P; I;O; E) be an activity diagram. We define the function� as follows:

Definition 4 (Mapping of an Edge) An edgee 2 E is mapped to a channel namee in the�-calculus,
i.e., we define�(e) = e .

The semantics of input and output pins is captured by a message sending or receiving action prefix:

Definition 5 (Mapping of an Input/Output Pin) Let p be an output pin,q be an input pin, ande =(p; q) be the edge that connects both pins. Lett be some, not further specified message in the�-calculus.
We define�(p) = �(e)hti and�(q) = �(e)(t).
Definition 6 (Mapping of a Parameter set) The semantics of a parameter setS = fp1; : : : ; pkg con-
taining pinsp1 to pk is the parallel composition of the mapping of the pins:�(S) = kYi=1 �(pi) = �(p1) j � � � j �(pk) :
Note that this definition makes use of our notational shorthand as defined in Definition 2. The alternative
behaviors of an action, which are encoded in several input and output parameter sets, can now be captured
as follows:

Definition 7 (Mapping of an Action Node) LetA be an action node with input parameter setsI1; : : : ; Ik
and output parameter setsO1; : : : ; On:�(A) = A def= � kXi=1 �(Ii)�:performA:� nXj=1 �(Oj)�:0 :
This means, a processA executes message-reading operations corresponding to oneof its input parameter
sets, then executes aperformA-transition denoting the execution of the process followedby the message-
sending operations corresponding to one of the output parameter sets. Note that this definition makes use
of our second notational shorthand as defined in Definition 3.

Definition 8 (Mapping of Control Nodes) Let D be a decision node with input parameter setI and
output parameter setsO1; : : : On and letM be a merge node with input parameter setsI1; : : : ; In and
output parameter setO: �(D) = D def= �(I):� nXj=1 �(Oj)�:0�(M) = M def= � kXi=1 �(Ii)�:�(O):0
Let F be a fork node with input parameter setI and output parameter setO and letJ be a join node
with input parameter setI and output parameter setO:�(F ) = F def= �(I):�(O):0�(J) = J def= �(I):�(O):0
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A decision only activates one of its output parameter sets whereas a merge only requires input from
one of its input parameter sets. A fork produces output on allpins in its single output parameter set and a
join requires input from all pins in its single input parameter set. Note that all outgoing branches in a fork
occur in a single output parameter set because they need to beactivated concurrently. Similarly, in a join
all incoming branches occur in a single input parameter set.As already mentioned, we deviate here from
the UML2 specification, which makes a very subtle distinction between the semantic behavior of pins of
an action node and the behavior of a control node. In our semantics, we do not make this distinction and
treat action and control nodes uniformly.

Initial and flow final nodes are mapped in a similar way:

Definition 9 (Mapping of Initial and Flow Final nodes)�(n 2 NI) = ehti:0 if e is the edge starting in start node n�(n 2 NFF ) = e(t):0 if e is the edge ending in the flow final node n .

We immediately encounter a problem when trying to adequately map the activity final node, which
has a very complex semantics:

“A token reaching an activity final node terminates the activity. In particular, it stops all
executing actions in the activity, and destroys all tokens in object nodes, except in the out-
put activity parameter nodes. Terminating the execution ofsynchronous invocation actions
also terminates whatever behaviors they are waiting on for return. Any behaviors invoked
asynchronously by the activity are not affected. All tokensoffered on the incoming edges are
accepted. Any object nodes declared as outputs are passed out of the containing activity,
using the null token for object nodes that have nothing in them. If there is more than one fi-
nal node in an activity, the first one reached terminates the activity, including the flow going
towards the other activity final.”[17, page 320]

We notice that it is impossible to adequately capture the semantics of the activity final node in the
initial semantics. We address this problem in more detail inSection 6. As a temporary “solution”, we
treat activity final nodes in the same way as flow final nodes.

So far, we have encoded the various modeling elements that can occur in an activity diagramM .
However, this is not sufficient. The semantics of the diagramcan only be captured by defining how the
individual �-processes are composed:

Definition 10 (Mapping of an activity diagram) LetM = (N;P; I;O; E) be an activity diagram withE = fe1; : : : ; eng. Let�(ni) be the�-calculus mapping of nodeni 2 N = fn1; : : : ; nkg. The mapping
ofM is defined as �(M) =M def= newe1; : : : ; en kYi=1 �(ni) :
The definition restricts the scope of channel names to the process that encodes the diagramM .

5 Encoding of the Example

In this section, we discuss the behavior of the example activity diagram based on the initial formaliza-
tion and discuss where the semantic mapping is not adequately capturing the behavior formulated in the
UML2 specification. We begin by deriving the semantic mapping for our example from Figure 1. As we
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mentioned before, we do not have a semantic mapping for the activity final node in the initial formaliza-
tion and therefore temporarily encode it as a flow final node. The encoding makes use of our shorthand
notations, which are used in the definition of processesA;B;E; F .S def= sa1hti:0A def= sa1:(t):performA:��a2b2hti j a31hti�+ a4d1hti + a5e1hti�:0B def= �a2b2(t) + b3b1(t)�:performB:b3b1hti:0C def= a31(t):performC:2f1hti:0D def= a4d1(t):performD:d2f2hti:0E def= a5e1(t):performE:�e2f3hti + e3thti�:0F def= �2f1(t) j d2f2(t)�+ �d2f2(t) j e2f3(t)�:performF:f4xhti:0T def= e3t(t):0X def= f4x(t):0M def= newsa1; : : : ; f4x�S j A j B j C j D j E j F j T j X�

The reduction rules can now be used to validate whether the processM exhibits the desired behavior
following the informal UML2 semantics. We do not show any reductions here in detail, but informally
summarize selected behavioral aspects of the process. The initial node,S, sends some messaget via
channel sa1. ProcessA reads a message from channel sa1, performs the processA and sends messages
either over channelsa2b2 anda31, or a4d1 or a5e1 depending on whether a process is available with
which it can engage in a conversation. In this semantic mapping, we cannot say which of the channels
will be chosen, because we leave this choice nondeterministic. This represents one abstraction that we
encoded in the semantics and that can also be found in the UML2specification [17, page 386]. ProcessesB, C, D, E behave similarly: they read from one of their input channels, perform their internal action,
and then send a message on one of their output channels. ProcessF can read messages from three
possible input channels where one of them is shared between the two possible behaviors (d2f2). As
soon as a message can be read, one of the behaviors is enabled while the other is no longer possible. For
example, if a message can be received via2f1, the process transits to

�0 j d2f2(t)�:performF:f4xhti:0,
because only one of the behaviors composed by “+” is exercised, while the other is rendered void, cf. [26,
page 39] and the reduction rule INTER. If afterwards a process tries to send a message viae2f3,F cannot
read this message anymore because the required behavior is no longer available. After reading a message
via d2f2, the process transits toperformF:f4xhti:0 and is not able to read any further messages.

The messages are not further specified, i.e., thets are in fact completely unrelated to each other
and could also be left off in the formalization above. We decided to leave them in only for reasons of
readability.

Summarizing, we notice several other problems in addition to the incorrectly mapped activity final
nodeT . Each�-process terminates after execution and is not ready to receive further inputs. In particular,B does not loop as expected from the informal semantics and only executes once. Besides this, processes
such asF are loosing tokens. The following sections discuss these problems in more detail and provide
possible solutions. As we will see, the main reason for the inadequateness of this semantics can be
identified in the semantic mapping of object nodes.

6 Restrictions of the Initial Semantics and Semantic Challenges

In this section, we summarize the semantic features of UML2 activity diagrams and discuss to which
extent they are addressed by the initial semantics. For eachmajor semantic feature, a challenge is for-
mulated that has to be addressed by any complete formalization.
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Semantic Challenge 1 (Multiple Action Instances)Each action has the potential of being instantiated
multiple times within the same process instance depending on the actual token flow at execution time.

In the example from Figure 1,B contains a “self-loop”, i.e., an edge that leads from one of B’s
output pins back to one of its input pins. In order to execute the prefixb3b1hti, a new instance ofB
must be ready to receivet. As already observed, the semantic mapping as defined in Definition 7 does
not conform to the informal semantics of UML2, in particularfor models with cycles. The mappingB0
below shows a possible correction by adding the replicationoperator to produce an infinite number of
instances ofB in parallel before tokens have even been received byB:B0 def= !B

Although this correction allows instances ofB to communicate with each other, one may argue
whether it correctly captures the semantics of activity instantiation in UML2, which assumes action
instantiation to be triggered by token arrival. The replication operator, however, leads to infinitely many
instances of an action executing in parallel based on the structural law!P � P j!P .

“If a behavior is not reentrant, then no more than one execution of it will exist at any
given time. An invocation of a nonreentrant behavior does not start the behavior when the
behavior is already executing. In this case, control tokensare discarded, and data tokens
collect at the input pins of the invocation action, if their upper bound is greater than one, or
upstream otherwise. An invocation of a reentrant behavior will start a new execution of the
behavior with newly arrived tokens, even if the behavior is already executing from tokens
arriving at the invocation earlier.”[17, page 302]

The semantic mappingB00 captures reentrant behavior. The currently running instance ofB00 instan-
tiates in parallel another instance of actionB00 while performing the actionB00. This enables to instantiate
a new action instance as soon as tokens arrive, even if another instance of this action is still executing.
This means, in a reentrant behavior, we see multiple instances of one action executing simultaneously.B00 def= �a2b2(t) + b3b1(t)�:�performB00:b3b1hti j B00�

The above encoding is sufficient to capture the behavior of the processB in our example. For
a general mapping based on this idea, one needs to know in advance how many instances of a pro-
cess need to run in parallel. Unfortunately, this is not at all obvious in case of an arbitrary activity
diagram. One may therefore return to the previous solution based on the replication operator, which
works for an unknown number of instances. We implemented a simple example process of the formA def= (x(t):performA:0) jA causing infinite replication by exploiting the above mentioned structural law
in the Mobility Workbench [38] as well as the Concurrency Workbench [8]. Both tools cannot simulate
such a process and seem to generate an infinite transition system. However, if the number of required
parallel instances is known, i.e., for example a process of the formA def= x(t):(performA:0 jA jA) is
encoded, the process can be simulated, but the tools run out of resources when an analysis of the process
is tried.

In case ofnon-reentrantbehavior, only a single instance of an action is executing. For non-reentrant
behavior, the following semantic mapping would be sufficient. In this mapping, a new instance ofB000
can only be instantiated after a currently running instanceof B000 has sent its output token and terminated.B000 def= �a2b2(t) + b3b1(t)�:performB000:b3b1hti:B000

However, in this specific example,B wants to communicate with itself, which is not possible in
this encoding because of the synchronous communication. See later in this section for a more detailed
discussion and Section 7 for an object-node semantics enabling asynchronous communication.
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Semantic Challenge 2 (Multiple Activity Instances) An activity model has the potential of being in-
stantiated multiple times in parallel, once for each arriving set of input tokens. Each instance defines its
own scope containing new instances of actions.

The mapping of the activity diagram enables only a single instantiation of the activityM . This does
not fully conform to the UML2 specification, which states that each activity diagram has the potential
of being instantiated multiple times in parallel, one for each control token introduced to the system [17,
page 259]. For our example, this requires that a new instanceof processM is created when it receives
the triggering control token from the environment. One potential solution to this problem is to define a
wrapping process,Wrap, which creates a single instance of processM for each control token received
from the outside source: Wrap def= input(start):(M jWrap)

For each control token received on the channelinput, processWrap creates an instance of pro-
cessM in parallel with another instance of the wrapping process. Therefore,Wrap is able to generate
an unknown number of parallel instantiations of processM . As we pointed out earlier, using the replica-
tion operator ! may not be a possible alternative as it does not reflect the semantics of activity instantiation
correctly and seems to prohibit any analysis in existing tools.

The two challenges that we discussed so far could be easily addressed by minor modifications of
the initial semantic mappings for action nodes and activitydiagrams. The following challenges will
require significant changes of the semantic encoding of object nodes. The UML2 semantics assumes that
tokens are offered on an output pin to the receiving action and consumedall-at-oncewhen this action is
ready. Our formalization leads to a simplified semantics where tokens immediately flow to the end of
an edge and wait there until all other tokens of the same parameter set have arrived. Since we assume
that edges connect pins 1-1, this simplification does not affect the execution of the activity diagram as
there is no nondeterminism in the flow of a single token, whichcan only flow to one designated pin. In
case of multiple edges leaving an output pin, there would be adifference as the action that is first ready
to receive, determines where the tokens flow. We argue that the original UML2 semantics may lead to
many unexpected behaviors that are hard to detect, in particular because parts of the diagram may not be
executable as actions always ‘come too late’.

Semantic Challenge 3 (Token Preservation)Control and object tokens not consumed by an action
must remain in the input channel for further instantiationsof this action.

a) b) c
1
)

c
2
)

F F

F

F

Figure 2: Token flow behavior of actionF .

Figure 2 illustrates the anticipated semantics of actionF in the case that one token has been received
by each of the input parameter sets and only the shared pin still waits for a token as shown in Situation
a). When this token arrives as shown in Situation b), each of the parameter sets is enabled and exactly
one of them can trigger the execution of actionF . After finishing the execution,F emits a token on its
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output pin, but preserves the token in the non-triggering input parameter set, i.e., either Situation c1 or
c2 should occur.

However, this behavior is not possible in the�-processF . The capability ofF to read again fromd2f2(t) is no longer available once a token on the shared pinf2 has been received as we have already
pointed out in the previous section. The semantics we have discussed so far provides no solution to the
Token Preservation challenge. UML2 defines even more advanced features of object nodes that we want
to briefly discuss in the next challenges.

Semantic Challenge 4 (Streaming, buffering, upper bounds,and multiplicities) Pins can exhibit the
buffering behavior of queues and stacks of limited and unlimited capacity. In particular, when they are
streaming, they can receive and send tokens combined as bundles of defined multiplicity while the action
is executing.

Streaming allows an action to take inputs and provide outputs while it is executing. During one
execution, the action may consume multiple tokens on each streaming input and produce multiple tokens
on each streaming output [17, page 302]. Upper bounds on pinsdefine the maximum number of tokens
it can hold. Multiplicities on the pins are used to define the number of tokens that are necessary for an
action to execute. For example, an actionA may require three tokens before it can start executing. If an
output pin of an actionC sends three tokens, thenA would execute once, however, an actionB requiring
only a single token would execute three times. Similarly to the token preservation behavior, this behavior
requires a more precise semantics for object nodes. We immediately see that encoding pins with message
reading and sending operations is not enough, but they have to be encoded as�-processes themselves.
This is the basic idea for the semantics in the next section. Milner has shown how buffers are encoded
with �-processes in [15].

Semantic Challenge 5 (Global Termination and Exceptions)Execution of an activity final node ter-
minates all actions and nested activities in the scope of thestructured activity node containing the activity
final node. All tokens within this scope have to be discarded.

Global termination behavior also occurs through exceptionactions and in interruptible activity re-
gions.

“Interruptible activity regions are groups of nodes withinwhich all execution can be termi-
nated if an interruptible activity edge is traversed leaving the region. Raising the exception
terminates the immediately containing structured node or activity and begins a search of en-
closing nested scopes for an exception handler that matchesthe type of the exception object.
. . . If an exception occurs during the execution of an action,the execution of the action is
abandoned and no regular output is generated by this action.If the action has an exception
handler, it receives the exception object as a token. If the action has no exception handler,
the exception propagates to the enclosing node and so on until it is caught by one of them. If
an exception propagates out of a nested node (action, structured activity node, or activity),
all tokens in the nested node are terminated.”[17, pages 259, 310]

In order to capture the semantics of activity final nodes, exceptions and interruptible regions, the se-
mantic mapping has to be further extended. We can immediately see that these behaviors require not only
to encode pins as processes, but in addition also to encode anadditional “communication infrastructure”
between the actions requiring additional processes and thus further increasing the size of the resulting
semantic mapping. We found two examples in the literature, where such a communication infrastructure
has been formalized recently. A solution for services basedon the�-calculus is presented in [18], which
allows a service to react to an intermediate abort event. A formalization of so-called cancellation regions
in workflows based on Reset Workflow nets is presented in [42].
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Finally, we want to discuss the underlying scheme of communication in activity diagrams, which can
be a very flexible mix of asynchronous and synchronous behavior.

Semantic Challenge 6 (Asynchronous vs. Synchronous Communication) Any form of asynchronous
and synchronous communication between actions is encodable in activity diagrams.

Communication in the�-calculus is synchronous, i.e., a message can only be sent from the sender
when the receiver is ready to receive it. The simplified semantics reflects such a synchronous behavior.
In order to encode asynchronous communication, pins must beagain encoded a�-calculus processes,
which can buffer tokens.

The UML2 specification talks about the assumed communication behavior in different places and
somehow leaves “all options open”. The semantics of edges isinformally defined with the following
token flow rules:

“Edges have rules about when a token may be taken from the source node and moved to
the target node. A token traverses an edge when it satisfies the rules for target node, edge,
and source node all at once. This means a source node can only offer tokens to the outgoing
edges, rather than force them along the edge, because the tokens may be rejected by the edge
or the target node on the other side. Multiple tokens offeredto an edge at once is the same as
if they were offered one at a time. Since multiple edges can leave the same node, token flow
semantics is highly distributed and subject to timing issues and race conditions, as is any
distributed system. There is no specification of the order inwhich rules are applied on the
various nodes and edges in an activity. It is the responsibility of the modeler to ensure that
timing issues do not affect system goals, or that they are eliminated from the model.”[17,
page 309]

The specification also mentions two further features of the communication within activity diagrams,
which are referred to astraverse-to-completionand consumption of tokensall-at-once, which we already
briefly mentioned when discussing the token-preservation challenge.

“Traverse-to-completion means that tokens move along the path of least resistance by go-
ing to the first available object node. . . . Another behavior that falls under traverse-to-
completion is the transformation of tokens as they move across an object flow edge. . . . Another
aspect of traverse-to-completion is that an input pin of an action cannot accept tokens un-
til all the input pins of the action can accept them. This is toprevent deadlock, where the
input pins of two actions each have some of the tokens required for the other to start.” [6,
pages 35-37].

“The flow prerequisite is satisfied when all of the input pins are offered tokens and accept
them all at once, precluding them from being consumed by any other actions. This ensures
that multiple action executions competing for tokens do notaccept only some of the tokens
they need to begin, causing deadlock as each execution waitsfor tokens that are already
taken by others.”[17, page 302].

Obviously, these features add further complexity to any semantics and one is wondering to which
extent they should or can be captured, see also the discussion in [33]. Given our insights so far, one may
even advocate for a revision of the UML2 specification. We also argue that objects should not change
type while flowing along edges, in particular for reasons of clarity and readability of diagrams in practi-
cal applications. Consumption of tokensall-at-onceseems to be encodable by adopting a synchronous
communication behavior that ensures that the hand-shake takes place not only between single pins, but
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for entire parameter sets. We have no proposal for how the notion of “least resistance” should be ade-
quately encoded in order to achieve a traverse-to-completion behavior that rules out many interleavings
of process executions that would occur in the corresponding�-process. When implementing our encoded
model in the Mobility Workbench we obtained a trace showing that processA interacted with processC
and subsequently processC interacted with processF before any interaction between processesA andB happened. This differs from the expected UML2 behavior whereA streams out both tokens toB andC simultaneously, i.e.,A interacts withB andC before these can start any other interactions. The role
of these semantic subtleties in the context of model verification needs to be further investigated.

7 A Semantics of Object Nodes

The semantic challenges from the preceding section demonstrated that a mapping of pins and parameter
sets to simple action prefixes is not sufficient. Instead, they must be mapped to rather complex processes
that can buffer messages and participate in a complex communication structure to correctly reflect the
activation of UML2 activities. Figure 3 illustrates the communication structure that must be represented
in the�-calculus.

InParSet2

InParSet1

ActionA

InParSetn

set1_notify_actionA

actionA_ack_set1

iset1_ack_pin1InPin1

actionA_ack_set2

actionA_ack_setn

InPin2

pin1_notify_set1

pin 2
_notify

_set 1

...

iset 1
_ack_pin 2

iset2_ack_pin2
pin2_notify_set2

set2_notify_actionA

setn_notify_actionA

...

actionA_nack_set1

actionA_nack_set2

actionA_nack_setn

Figure 3: Communication structure of processes in the object-node semantics.

The main idea is as follows: Each pin is mapped to a pin process, which buffers the token messages in
a queue. An input parameter set is itself a process that communicates with all of its pin processes and with
the action. We introduce a separate communication channel for each direction of communication, which
allows us to abstract from the messages that are exchanged. This means, in the following definitions
we use the short-hand notations for the sending and receiving over a channel, i.e., do not show message
names. The input parameter set process records the status ofall its pins. If all pins have received at
least one token, it is completely notified. Each “completely-notified” input parameter set process then
notifies the action process. The action process selects one of the parameter sets to complete. The selected
parameter set causes all its pin processes to remove one token. Now, the action process can execute and
communicate with one of the output parameter set processes.

In the following, we provide formal definitions for all required processes encoding the pins, param-
eter sets and the action, and then extend our example.

Definition 11 (Mapping of an Input Pin) Letp be an input pin contained in input parameter setsI(p).
Lete be the incoming edge ofp. The mapping�(p) is defined by the following processes:
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InP inp(0) def= e:� YIk 2I(p) pinp notify setk �:InP inp(1)InP inp(n) def= � XIk 2I(p) isetk ak pinp�:InP inp(n� 1)+ e:InP inp(n+ 1) + � XIk 2I(p) pinp notify setk�:InP inp(n) for n � 1 :
The process for an input pin behaves as follows: A token is received, all owning parameter sets are

notified via thepinp notify setk channel, and theInP inp process transitions to the state where one token
is stored. The process is then ready for an acknowledgment byany owning parameter set, expressed byisetk ak pinp or for receiving another token. In the latter case, the process stores another token, in the
former case, the process transitions to a lower state (meaning that one token is removed). Alternatively,
it can also send further notifications to the owning parameter sets, expressed bypinp notify setk, for
renotification purposes.

The pin process for an output pin waits for a notification by one of its parameter sets (modeled byosetl notify pinq) and then sends out the token:

Definition 12 (Mapping of an Output Pin) Let q be an output pin contained in output parameter setsO(q). Lete be the outgoing edge ofq. The mapping�(q) is defined by the following process:OutP inq def= � XOl 2O(q) osetl notify pinq�:e:OutP inq
The next definitions capture the communication between the parameter sets and their pins and the

action. An input parameter set can be in different states:initialized if it has not yet received a notification
from any pin in the parameter set,partially notifiedif some of its pins have already notified, but not all, or
completely notifiedwhen all pins have received at least one token and notified theparamater set. In state
initialized, modeled by the processInParSetk(0), it is ready to receive a notification from one of its pins
and transitions to thepartially notifiedstate where this pin has sent a notification, modeled by the pro-
cessInParSetk;Notified=fpg. In statepartially notified, modeled by processesInParSetk;Notified 6=Ik ,
the parameter set waits for a notification from one of those pins that are not included in the set of pins
that have already notified. If it is notified by a pinp via pinp notify setk, it transitions to a processInParSetk;Notified+fpg, meaning that also pinp has received a token and therefore, has sent a noti-
fication. If all pins have notified, the parameter set transitions tocompletely notified, modeled by theInParSetk;Notified=Ik process. In this state, the parameter set notifies the actionthat it is ready to
complete and then calls itself. After the notification of theaction, the parameter set process can receive
anationA ak setk, denoting that this parameter set has been selected to complete. Then it notifies its
pins viaisetk ak pinp.

In all states, the parameter set process can receive some message overationA nak setk meaning
that the action has chosen another parameter set to complete. In such a case, the parameter set needs new
notifications from all its pins because some of them could have been notified and removed tokens by the
alternative parameter set completion. Remember that a pin can belong to more than one parameter set.

Definition 13 (Mapping of an Input Parameter Set) Let Ik be an input parameter set belonging to
some actionA. The mapping�(Ik) is defined as
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InParSetk(0) def= � Xp2 Ik pinp notify setk:InParSetk;Notified=fpg�+ ationA nak setk:InParSetk(0)InParSetk;Notified 6=Ik def= � Xp2 Ik;p62Notified pinp notify setk:InParSetk;Notified+fpg�+ ationA nak setk:InParSetk(0)InParSetk;Notified=Ik def= setk notify ationA:InParSetk;Notified=Ik+ ationA ak setk:� Yp2 Ik isetk ak pinp �:InParSetk(0)+ ationA nak setk:InParSetk(0)
The process for an output parameter set waits for a notification by the action and then notifies all its

pins.

Definition 14 (Mapping of an Output Parameter Set) LetOk be an output parameter set of an actionA. The mapping�(Ok) is defined asOutParSetk def= ationA notify setk:� Yq2Ok osetk notify pinq �:OutParSetk
The mapping�(A) of an actionA introduces parallel processes for each of its input and output

parameter sets as well as its input pins and output pins and initiates anInternalActionprocess, which
waits for a notification from one of its input parameter sets and then notifies this set of having been
selected. It also notifies all other parameter sets that theyhave not been chosen. Afterwards it performs
the performA-transition and sends a notification to the output parameterset that is correlated to the
input parameter set that was activated. Note that we use a correlation mechanism in order to be able to
model that a certain input parameter set always gives rise tothe activation of a specific output parameter
set. Alternatively, we could nondeterministically choosethe output parameter set.

Waiting for a notification by an input parameter set is modeled as a nondeterministic choice over all
input parameter sets. It is possible that more than one inputparameter set can complete. If this is the
case, one of them is selected nondeterministically. Alternatively, aleader election[2] algorithm can be
encoded in the semantic mapping to ensure fairness of the parameter set selection.

Definition 15 (Mapping of an Action) LetA be an action. LetI(A) be the input parameter sets ofA,
letO(A) be the output parameter sets ofA, let ipins(A) be all the input pins ofA and letopins(A) be
all the output pins ofA. Letorr(Ik) be a function that returns the index of the output parameter set that
is correlated to input parameter setIk. The mapping�(A) is defined asAtionA def= � Yp2 ipins(A) InP inp(0)� j � YIk 2I(A) InParSetk(0)� j InternalAtionA j� YOl 2O(A)OutParSetl � j � Yq2 opins(A)OutP inq�
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withInternalAtionA def= XIk 2I(A)�setk notify ationA:ationA ak setk:� YIi 2I(A);i 6=k ationA nak seti�:performA:ationA notify setorr(Ik):InternalAtionA�
We partially sketch the encoding of actionF below, using again the short-hand notations of Section 3:InP in1(0) def= 2f1:pin1 notify set1:InP in1(1)InP in2(0) def= d2f2:�pin2 notify set1 j pin2 notify set2�:InP in2(1)InP in3(0) def= e2f3:pin3 notify set2:InP in3(1)InP in1(n) def= iset1 ak pin1:InP in1(n� 1) + 2f1:InP in1(n + 1)+ pin1 notify set1:InP in1(n)

...InParSet1(0) def= pin1 notify set1:InParSet1;fp1g + pin2 notify set1:InParSet1;fp2g+ationF nak set1:InParSet1(0)InParSet1;fp1g def= pin2 notify set1:InParSet1;fp1;p2g + ationF nak set1:InParSet1(0)InParSet1;fp2g def= pin1 notify set1:InParSet1;fp1;p2g + ationF nak set1:InParSet1(0)InParSet1;fp1;p2g def= set1 notify ationF :InParSet1;fp1;p2g + ationF nak set1:InParSet1(0)+ ationF ak set1:(iset1 ak pin1 j iset1 ak pin2):InParSet1(0)

...F def= InP in1(0) j InP in2(0) j InP in3(0) j InParSet1(0) jInParSet2(0) j InternalAtion j OutParSet1 j OutP in4
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Figure 4: Communication of processes related to actionF in the object-node semantics.

Figure 4 shows one possible exchange of messages between theactionF , its three input pin pro-
cesses, and their parameter set processes. Upon receiving over 2f1, the processInP in1 sends a notifi-
cation to its parameter setInParSet1. InP in2 andInP in3 also send such a notification toInParSet1
set once they receive overe2f3 andd2f2, respectively. InP in2 also notifies its other parameter set
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InParSet2. As InParSet1 is the first to notifyAtionF , it receives anationF ak set1 to denote
that it has been chosen to complete.InParSet2 receives anationF nak set2 to denote that it has not
been chosen.InParSet1 sends acknowledgements to its contained pins. Afterwards,bothInParSet1
as well asInParSet2 are in the initialized state again and are ready to receive notifications from their
pins. InP in3 still has a token and therefore notifies its parameter set again. Upon receiving overd2f2,InP in2 will again notify both its parameter sets. This time,InParSet2 is completely notified and noti-
fiesAtionF , which will send an acknowledgement toInParSet2 and a negative acknowledgement toInParSet1.

The previous definitions have shown that the semantics of object nodes can be captured in the�-
calculus, but at the price of adding many additional processes to the semantic encoding, which need to
engage in a quite complex communication. So far, we have not addressed advanced features such as
multiplicities and streaming. Multiplicities could be encoded by changing anInP in process in such
a way that it only sends the notification if it has received enough tokens. Streaming probably requires
a different communication infrastructure because tokens must be released immediately. We used the
Concurrency Workbench [8] to validate the semantic encoding of object nodes and applied it to the actionF in our example. This enabled us to study the resulting transitions and validate whether the intended
communication between pins, parameter sets and the action indeed occurs. The validation also confirmed
that a communication between the action and the parameter sets that havenot been selected to complete
is indeed necessary. For the case of two overlapping parameter sets, the completion of one parameter
set also affects the number of tokens available to the other parameter set through their shared pins. This
means, all pins that still have a token after one of the parameter sets has completed, need to renotify
all their owning sets in order to allow the set to update its status of notifications. The results of our
practical experiments are briefly summarized at the end of the next section where we show encouraging
evidence that the theoretically possible explosion on the number of transitions does not necessarily occur
in practice.

Given the obvious complexity of the presented encoding, thequestion remains whether other seman-
tic encodings would lead to smaller transition systems. Answering this question would go significantly
beyond the scope of this paper, which focuses on clarifying the semantic nature of the various modeling
elements. We believe that searching for more compact encodings is an interesting question for future
research and that contrasting�-calculus encodings of object nodes with Petri net encodings could yield
further interesting insights. An initial treatment of object nodes in Petri nets has been presented in [31],
which requires to use Colored Petri nets, i.e., a higher-order Petri net formalism, although properties
such as overlapping parameter sets sharing a pin are not yet discussed.

8 A Classification of Activity Diagrams

The discussion in Section 6 identified three dimensions of semantic complexity in the activity diagrams
distinguishing the communication behavior, the concurrency of actions, and the number of possible
action instances. In the following, we will define semantic classes of activity diagrams based on these
three dimensions, then give an initial syntactic characterization, and finally discuss practical aspects of
their underlying transition system.

8.1 Semantic Classes of Activity Diagrams

We observed that several modeling elements may lead to multiple instantiations of actions. Secondly,
action instances can execute sequentially or concurrently. By sequential execution we understand that
only one single action instance is active at any point in time. Thirdly, we observed different communi-
cation schemes between action instances. In the simplest case, communication is synchronous and pins
can be mapped to message sending and receiving actions. A more complex semantics is required when
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actions communicate asynchronously, because this requires to buffer tokens in object nodes (in partic-
ular, pins), which led to the semantic mapping of pins to�-processes. Besides this, modeling elements
like the activity final node require to encode additional processes that enable a controlled broadcasting
between nodes in the activity diagram, which can occur in a synchronous or asynchronous form. These
three dimensions are summarized in Figure 5 where they provide the basis for a semantic classification
of activity diagrams.
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Figure 5: A semantic classification of activity diagrams.

Overall, twelve different semantic classes can be built based on the three dimensions. The figure
shows five explicit classes. We consider the last four of themas being of particular interest for future
research:� SYNC-SEQ-SINGLE(=EMPTY): This class combinessynchronouscommunication between the

actions with sequential execution of action instances suchthat only a single instance of each action
is created over the lifetime of the process.� ASYNC-SEQ-SINGLE: This class combinesasynchronouscommunication between the actions
with sequential execution of action instances such that only a single instance of each action is
created over the lifetime of the process.� SYNC-CONC: This class covers synchronous communication between action instances executing
concurrently.� ASYNC-CONC: This class permits asynchronous communication between concurrently executing
action instances.� BROADCAST-CONC: This class combines broadcasting with theconcurrent execution of action
instances. This class includes asynchronous or synchronous edge-based communication, which
can be combined with asynchronous or synchronous broadcasting communication, i.e., it could
also be refined into further subclasses.
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The class EMPTY contains all activity diagrams with single instances, sequential communication
and synchronous communication. We have chosen this name as this class seems to contain no executable
diagrams. A single action instance, which wants to engage ina synchronous (hand-shaking) communi-
cation, but has no communication partner, cannot execute. From a syntactical point of view, however,
this class could contain non-executable, rather pathological diagrams, e.g., those containing only discon-
nected nodes.

Our initial semantic mapping is sufficient for the class SYNC-CONC, because the�-calculus is in-
herently concurrent. In case that we only support single instantiation of actions, the initial semantic map-
ping falls into the class SYNC-CONC-SINGLE, in case that we support multiple instantiations it falls
into the class SYNC-CONC-MULT. For the class ASYNC-SEQ-SINGLE, a different process-algebraic
formalization can be defined where—different than in our initial semantic mapping—actions are not
executed concurrently but sequentially, see [33] for a draft formalization. Our semantics supporting
object nodes falls into the class ASYNC-CONC: the bufferingallows for asynchronous communication
between the actions and we have chosen concurrent executionof all actions. As we also support multiple
instantiations, the semantics actually falls into the class ASYNC-CONC-MULT.

Our own practical experience in the area of business processmodeling in the insurance and bank-
ing domain showed that approximately 50 % of all activity diagrams fall into the class ASYNC-SEQ-
SINGLE. The majority of the remaining diagrams contains cycles and can therefore lead to multiple
instantiations of certain actions. Broadcasting occurs rather seldomly in our domains. Furthermore, en-
coding global termination is not necessary for many models.Often, an activity final node can be replaced
by a flow final node and still captures the intention of the designer. We argue that activity final nodes
only need to be encoded explicitly if concurrent executionscan occur in a model.

The example in Figure 1 falls into the class BROADCAST-CONC because it contains a termination
node which requires a broadcasting mechanism. If the termination node is replaced by a flow final
node, it falls into class ASYNC-CONC. A closer look at the execution traces of this model reveals that
asynchronous communication is not required because no execution trace contains the actionF (there is
actually a deadlock here). As a consequence, in this particular case, the model can even be correctly
analysed in class SYNC-CONC. Below, we elaborate on this idea and formulate several hypotheses
stating when an activity diagram can be correctly encoded inone or the other dimension.

8.2 Syntactic Characterizations

According to the UML2 semantics, concurrency of actions, asynchronous and synchronous communi-
cation, as well as multiple instances of actions can all occur within a single diagram. In principle, any
formalization that can capture these properties will be suitable. Nevertheless, it is desirable to identify
those models where not all semantic features are needed, because the execution of the activity diagram
does not lead to multiple instantiations or does not requireasynchronous communication. This means
that these activity diagrams could also be adequately encodedwithout the possibility of multiple instan-
tiations and asynchronous communication which (in our case) has led to smaller sizes of the underlying
transition systems as we will show at the end of this section.In the following, we formulate several hy-
potheses that help to decide which type of semantic encodingis necessary given the absence or presence
of syntactic constructs.

Hypothesis 1 (Single instances/Multiple Instances)An activity diagram can be encoded semantically
correct usingsingle instancesof an action if it does notcontain
- more than one start node and
- incomplete3 implicit or explicit forks and

3A fork is incomplete if it is not followed by a join of all its outgoing branches. This requires a form of wellformedness,
which remains to be defined precisely. A fork is implicit if itis modeled with pins and parameter sets, but not using a fork
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- cycles and
- multiplicities defined for pins and
- joins of object flow.4

In the presence of any of the above constructs, it usually requires a semantic encoding supporting
multiple instances of the same action.

We argue that the previous hypothesis formulates a sufficient condition for the possibility to encode
an activity diagram correctly using single instances. We want to point out that the condition is not a
necessary one, i.e., there are activity diagrams that do contain multiplicities and that can still be correctly
encoded using single instances. The syntactic constructs for cycles, incomplete forks, multiplicities and
joins of object flow all give rise to the possibility that morethan one instance of an action is created
during the execution of the activity diagram. If not every fork is followed by a corresponding join, then
this leads to multiple instantiations. For example, in Figure 6 a), actionD is instantiated twice according
to the UML2 semantics because the implicit fork atA is not followed by a join. In Figure 6 b), actionB is instantiated twice. A similar example can be constructedusing explicit forks. In the presence of
cycles, several instances of the same action are created during execution of the activity diagram. An
example is given in Figure 6 c) where actionsA andB are instantiated several times.
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1

2

3
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4

B1 3

Figure 6: Pins acting as implicit forks causing multiple action instantiations.

Hypothesis 2 (Synchronous/Asynchronous communication)An activity diagram can be encoded se-
mantically correct usingsynchronouscommunication along the edges if
- each parameter set contains at most one pin and
- it does not contain a global termination node and
- it does not contain a broadcasting action.

An activity diagram can be encoded semantically correct using asynchronouscommunication along
the edges if it does not contain
- a global termination node and
- a broadcasting action.

We argue that the previous hypothesis formulates sufficientconditions when an encoding using syn-
chronous and asynchronous communication is appropriate. Again, these conditions are not necessary
conditions. For example, there may be activity diagrams that can be encoded semantically correctusing

control node.
4A join offers all data tokens on its outgoing edge, see [17, page 369].
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asynchronous communication if there are broadcasting actions within the diagram, e.g., if these broad-
casting actions are never executed. Given these two hypotheses, we can deduce hypotheses for each of
the twelve classes. However, for each class the hypotheses need to be carefully checked if they are not
too restrictive and to which extent they can be relaxed. We have to leave this question to future research
as well as the formal proofs of the previous two hypotheses orany improved versions thereof.

For our second dimension, the concurrency of actions along the y-axis, we do not have a hypothesis.
The distinction between sequential and concurrent execution leads to the question whether or not an ac-
tivity diagram needs to be semantically encoded using concurrency or not. If no mutual communication
dependencies between two concurrently executing action instances exist, then concurrent execution can
be replaced by sequential execution. We have the impressionthat the distinction along the concurrency
dimension leads to a different problem: How to calculate correct sequentializations of concurrent execu-
tions? Future research also needs to clarify if a purely syntactic characterization is possible, i.e., to which
extent a class can be defined through the simple absence or presence of certain modeling elements or ad-
ditional model constraints. Furthermore, the theoreticalproperties of the classes are of great interest.
Questions such as the decidability of the reachability problem, the size of the resulting transition system
and the effect of various semantic encodings on the size of the transition system are of high practical im-
portance. It would also be of interest to define precise containment relationships between the classes or
to prove the absence of those relationships, i.e., to work towards a class hierarchy for activity diagrams.

8.3 Practical Findings

We have already briefly mentioned that our semantic encodingof object nodes in the�-calculus leads
large transition systems and a more compact encoding—in the�-calculus or another semantic domain—
could be desirable. A possible approach to avoid uncontrolled explosion of the size of the resulting transi-
tion system is to apply the initial semantic mapping whenever possible and to use the more sophisticated
semantic mapping only for those actions and object nodes, for which it is required. In the following, we
want to summarize some of our practical findings. As our semantic encodings do not use the concept
of mobility, we implemented the example process in CCS and used the Concurrency Workbench [8] to
validate the semantics and to determine the size of the resulting transition systems.

We encoded several versions of our example: Version 1 is the mapping as described in Section 4.
Version 2 is the same mapping except that we encoded action F using the semantics of object nodes,
as described in Section 7. Version 1 gives rise to 23 states and 28 transitions and can be minimized to
10 states with 13 transitions. Version 2 gives rise to 105 states and 202 transitions, after minimization
according to bisimulation 10 states and 12 transitions remained. By having a closer look at the exam-
ple it becomes obvious that in this particular case the overlapping parameter sets at action F are never
completing because only one token will arrive at action F.

In order to study the size of the transition system underlying action F, we encoded action F without
any other actions. This encoding of action F gives rise to 20441 states and 82361 transitions. After mini-
mization according to bisimulation still 2298 states and 9005 transitions remained. We also simulated the
full behavior of action F in another example, shown in Figure7. This example gives rise to 16609 states
and 59244 transitions and after minimization to 65 states and 144 transitions. Note that in this example
action F can execute twice: It first receives one token on pin 1and pin 3 and then it continuously receives
tokens on pin 2.

Our encodings show that the semantic encoding of object nodes, which might appear complex, does
not necessarily lead to an explosion of the size of the underlying transition system. Techniques such
as minimization show a dramatic reduction effect. Furthermore, there is a huge difference betweenF
behaving in isolation andF being wired within some activity diagram. As already discussed in Section 6,
any infinite loop will lead to aninfinite transition system that can currently not be handled by the tools.
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Figure 7: Example showing full behavior of action F.

9 Related Work

In the literature, a number of papers address the problem of formalizing UML activity diagrams. Early
work deals with formalizing UML1.x activity diagrams: Boerger et al [7] propose a semantics of UML
activity diagrams in Abstract State Machines, which is influenced by the original joint metamodel of state
machines and activity diagrams in UML. Dong and ShenSheng [9] present a�-calculus semantics for
UML 1.4 activity diagrams. Their processes are composed in parallel, which enables them to communi-
cate with each other. In this way, more complex behaviors canbe captured where more than one activity
in a business process can be active. However, many other features remain unaddressed. Similarly, the
profound work by Eshuis and Wieringa [11], is not directly applicable, because it focuses on UML 1.4,
which does not have parameter sets and the rather subtle token-flow semantics. A formal semantics for
UML2 is the main goal of the UML2.0 Semantics project [35], however, no results addressing behavioral
models have been published so far.

Interesting discussions have been published on the�-calculus as an appropriate foundation for busi-
ness process models. While some enthusiastically praise the advantages of using the�-calculus as the
foundation of the Business Process Modeling Language (BPML) [28, 27], but do not give any pre-
cise mapping from BPML to the�-calculus, others [37, 36, 22] are much more critical regarding this
“�-hype”. The argumentation in [37, 36, 22] is based on a semantic mapping, which constructs one�-process for the entire business process model. As this is not sufficient and much better semantic map-
pings exist as we have shown, the arguments are no longer valid. A very profound argumentation has
recently been published in [19]. The authors of [22] point out that “the�-calculus is an analytical tool
for understanding” languages, but do not demonstrate how such an analytical tool can be exploited in a
real-world context. In this report, we tried to use the�-calculus as such an analytical tool that helped us
to develop a possible classification of activity diagrams, which we consider as being orthogonal to the
mapping of activity diagrams to the workflow patterns as presented in [41, 25].

Puhlmann and Weske [20] use the�-calculus for formalizing workflow patterns. In their recent
work [21], a lazy soundness for workflows is proposed and it isdiscussed how this can be checked in
a �-calculus formalization. Their formalization, see in particular [18], is very similar to ours, which
is not surprising given the semantic foundations of workflows and UML activity diagrams. Our work
is complementary as it focuses on the clarification of the semantic subtleties in activity diagrams and
contributes a classification of activity diagrams based on semantic expressivity. In our formalization
of object nodes, we go beyond the formalization in [20, 18], who only consider action prefixes for
the communication between the considered workflows, while we introduced separate processes in the
object-node semantics.

As [20, 18] we also use the replication operator to capture multiple instances of a process, but we
discuss the theoretical and practical problems such a formalization can cause and present possible al-
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ternatives. We do not yet address specific verification problems as those discussed in [21]. Lucchi and
Mazzara [13] provide a�–calculus semantics for BPEL. As BPEL desribes the orchestration of Web
services, where each Web service can only receive and send a single message, their semantics does not
cover most of the semantic challenges of UML2 activity diagrams. Another formalization of BPEL based
on the�-calculus is presented in [43] and model checking scenariosare investigated.

An almost complete formalization of UML2 activity diagramsusing Petri nets is described by Störrle.
He applies procedural Petri nets to formalize control flow [29], data flow [31], exceptions and structured
nodes [30]. Recently, Störrle and Hausmann [33] have identified several problems when formalizing
UML2 activity diagrams with Petri nets. They have shown thatin principal, a Petri net formalization
suffers from several problems such as inadequate support for streaming and traverse-to-completion. This
corresponds to our results, where we also identified these properties as especially difficult to formalize
and even argued whether the UML2 semantics should be revised. Hausmann [12] contains a compre-
hensive discussion of the semantics of UML2 activity diagrams, which he uses as a case study for the
Dynamic Meta Modeling [10] approach. This approach can be used to define an operational semantics
by defining the transition rules for visual modeling languages. The main focus in [12] is on the traverse-
to-completion semantics of activity diagrams, while we argue that restricting edges between pins to 1-1
edges and assuming a cleanly specified communication behavior may be a more promising direction
for a formalization. While Hausmann investigates arbitrary edges between pins, parameter sets are not
addressed in the same detail as we have discussed them. His approach is well-suited for a simulation,
but does not provide very strong analytical capabilities. This work can be seen as complementary to our
work which aims at a denotational semantics of UML2 activitydiagrams and a better understanding of
the modeling concepts that add semantic complexity.

Another operational semantics of UML2 activity diagrams isdescribed by Vitolins and Kalnins [39].
They focus on the token game and introduce push and pull pathsfor tokens in the diagram. The op-
erational semantics is described in pseudo code and a semiformal proof of equivalence between their
semantics and the original UML semantics is discussed. Problems such as analytical capabilities and
different classes of activity diagrams are not addressed.

10 Conclusion

The formalization of UML2 activity diagrams is a challenge because of the subtleties of the informally
formulated semantics. In this paper, we begin with an initial semantic mapping, which we subsequently
analyze for its shortcomings. This leads us to a systematic classification and analysis of the semantic
challenges of activity diagrams. Based on their semantic expressivity, we propose a classification of
activity diagrams as a basis for future study. As a formalismof choice, we are using the�-calculus.
The most restricted class of activity diagrams in our classification can be semantically mapped to the�-calculus by mapping each action to a�-process and each pin to an action prefix receiving or sending
a message. Less restricted classes require to map pins and, in general, object nodes to�-processes
themselves in order to correctly encode their token storingbehavior. The least restricted classes require
to add a global communication scheme by adding additional�-processes to the semantic encoding, for
example to adequately capture the semantics of the activityfinal node.

We believe that a classification of activity diagrams is of high interest for theoretical and practical
purposes. On the theoretical side, it is very beneficial to achieve a complete characterization of the max-
imal possible subclasses and to further study their theoretical properties such as the size of the resulting
transition system. On the practical side, it is very interesting to add profound analytical capabilities to
a modeling tool, which are optimized to analyze specific classes of diagrams. As activity diagrams gain
increasing interest in particular in the area of business process modeling, being able to help a designer to
analyze and verify models has significant value. Finally, such a classification can also provide valuable
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input for future revisions of the UML2 specification.
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