RZ 3673 (#99683) 10/17/06
Computer Science 27 pages

Research Report

A Classification of UML2 Activity Diagrams

Jana Koehler, Jochen M. Kiister, John Novatnack and Ksenia Ryndina

IBM Research GmbH
Zurich Research Laboratory
8803 Riischlikon
Switzerland

{koe, jku, ryn} @zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available

at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

esearch

Imaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

A Classification of UML2 Activity Diagrams

Jana Koehler Jochen M. Kiister John Novatnack Ksenia Ryndina
IBM Zurich Research Laboratory
CH-8803 Rueschlikon
Switzerland
email: {koe,jku,ryr} @zurich.ibm.com

Technical Report RZ 3673

Abstract

We present the results of a case study where we investigasednantic mapping of UML2
activity diagrams to ther-calculus. Our study was initiated by recent discussionshenrole of
ther-calculus for future business-process management systemsll as our interest in developing
formal analysis techniques for activity diagrams.

The study revealed interesting insights into the semarpcassivity of activity diagrams and the
semantic nature of the different modeling elements, inigpaer of object nodes and activity final
nodes. We show that for certain types of diagrams, a semaafiping of object nodes, in particular
of pins, to message reading and receiving operations ifficisnt and propose an encoding of pins
asw-processes. Our results motivated us to present a novsifaasion of activity diagrams based
on their semantic expressivity.

1 Introduction

The release of Version 2 of the Unified Modeling Language (L2M[17] has seen a considerable ex-
tension to model functional behavior. In particular, atgidiagrams have significantly changed and
many new interesting features have been added. The semahtiML2 activity diagrams is informally
described and many examples are given throughout the sjaicifi to illustrate their behavior. Further-
more, the series of articles by C. Bock in the Journal of Qbjechnology [3, 4, 5, 6] contributed to a
better understanding of UML2 activity diagrams and theffedénce to activity diagrams as defined in
UML 1.5 [24].

With the increasing interest in service and business psonaxdeling, the role of UML2 and in
particular of activity diagrams also seems to grow. Manyrapphes to business process modeling
use modeling constructs which are very close to those inted for UML2 activity diagrams or rely
directly on variants of them. Examples are a proposal for sirtass Process Definition Metamodel
as described in [1], the Business Process Modeling Notd#8f or the language used in the IBM
WebSphere Business Modeler [34]. Using UML2 activity daags for modeling functional behavior is
also appealing because of their integration with UML2 staéehines and class diagrams. Besides this,
UML2 has been found to support many of the well-known workffmatterns [41, 25].

In this paper, we take a closer look at some of the semantitieiels of activity diagrams that
provide significant challenges when used in a practicalrenaient. The challenges come from two
sides. First, the user has to fully understand the semaintiosder to correctly capture the intended
behavior. In our own work, we found that users very often poederroneous models as soon as the
behavior requires to capture a combination of cyclic witqusmtial or parallel data/control flows, or
if sequential and parallel flows must be mixed. In these exasnpve often see deadlocks, livelocks

and incorrect multiple instantiations of activities. Sedly, the semantics has to be precisely built into
simulation and analysis tools to enable automatic anabsisverification. We are therefore interested
in formalizing the semantic expressivity of various classé activity diagrams and investigate how
analytical methods can be tailored to these classes.

So far, formalizations of activity diagrams based on abstséate machines, Petri nets, finite-state
processes, stream-processing functions, the softwacdispgon formalism B, and finally the-calculus
have been proposed.For our case study, we decided to use thealculus by Milner, Parrow, and
Walker [14, 16] as the formalism of choice. Our motivatiomeafrom a controversial discussion on the
suitability of ther-calculus as the formal foundation for future business@ss software over the last
few years. Our choice does not imply that other formalisnasalply Petri nets) would not be suitable for
a formalization. The goal of our formalization is to gain @éeunderstanding of the semantic subtleties
of the diagrams. Relevant results have been published dtecttarts [40] based on a comparison of
semantic formalizations.

Our insights into the formalization of the various modeliglgments allows us to come up with a
classification of the diagrams based on their semantic sgpity. We believe that the identification of
semantic challenges, their formal discussion and thetiegutlassification help in further strengthen-
ing the role of activity diagrams in any modeling scenarioseéknantic classification also provides an
interesting foundation for further theoretical investigas of activity diagrams. From a practical point
of view, a restricted class of activity diagrams, which canablequately captured in a less fine-grained
formalization is of great interest for reasons of early gualssessment and assurance, based on models
at a high abstraction level. Our insights also provide thgisbor optimization techniques that can be
applied to a semantic encoding in order to reduce the sizbeofdsulting transition system. Such op-
timizations are very important to scale analytical aldoris to the size of models occurring in practice
and to reduce their runtime to practically acceptable ariggédimes.

The paper is organized as follows: We briefly recapture teergfals of UML2 activity diagrams in
the next section, set the scope of our formalization andepitean example, which we will use throughout
this paper. In Section 3, we give a short introduction in®sthcalculus. Section 4 takes a sang-froid
approach and presents an initial formalization by mappiacheactivity to ar-calculus process. In
Section 5, we encode the example according to this forntadizaln Section 6, we review this initial
formalization and identify its shortcomings, which we ltecén particular in the semantic mapping of
object nodes. We identify semantic challenges that th&irfitrmalization does not correctly capture
and show how to extend the formalization. Section 7 presemi®re adequate semantic formalization
of object nodes. In Section 8, we summarize our findings andelthe desired classification of activity
diagrams, but also formulate a set of open questions fordutesearch. After a discussion of related
work in Section 9, we conclude with an outlook on future warlSiection 10.

2 UML Activity Diagrams with Parameter Sets

This section briefly recaptures the main features of UML®/#gtdiagrams as described in [17] with a
specific focus on parameter sets, which were newly intradiirc®ML2. UML2 activity diagrams follow
traditional control and data flow modeling approaches amdthis token-flow semantics from Petri nets
to informally describe the semantics. Anotivity describes the functional behavior under consideration.
Depending on the degree of abstraction, an activity can fireeeby an activity model showing (sub)-
activities at a more fine grained level, possibly combinetth wiree types of (not further refinable) nodes:
action nodes, control nodes, and object nodetionnodes operate on control and data values that they
receive, and provide control and data to other actions ¢2jntrol nodes route control and data values

1See the Related Work section for a detailed discussion.

through the graph. Among the control nodes, UML2 defatmssionandmergefor sequential branching
and joining, andork andjoin for parallel branching and joining [5]. Furthermore, tharshode and two
kind of end nodes belong to the control nodes.

Figure 1 shows an example of an activity diagram that we vadl throughout this paper. Action
nodes are depicted with round-cornered rectangles. Inxample, we have actions named B, C,
D, E, F. As for control nodes, we have tlwtial node S, which is depicted with a black dot, tHiew
final node X, which is depicted with a circle containing a cross, andat#vity finalnodeT’, which is
depicted with a circle containing a black dot. Other contradies, such as fork, join, decision, or merge
do not occur in our example, but will be formalized.

EJb3bll

c2f1
d2f2

e2f3]

abel El

Figure 1: Example activity diagram with named pins, edgetpa and control nodes.

The third type of nodes arebjectnodes, which hold data tokens temporarily as they wait toenov
through the graph [6]. Our example contapiss, which hold the input and output of actions, and which
we simply enumerated in Figure 1. UML2 further defirsesivity parameter nodeswvhich we do not
consider separately in our formalization due to their appy strong semantic alignment with pins.
Unfortunately, the UML2 metamodel does not completely aefime precise relationship between the
pins of an action node and the parameter nodes of the assbeiativity. Parameters can be grouped
into so-calledparameter setssuch that exactly one of the groups can accept or provideesdbr the
action [4]. No association is defined between parameterg#nsdand there is also no notion of a pin
set, however, Figure 12.117 in [17, page 387] shows a grgugirpins using parameter set notation.
Thus, in our formalization, we assume that parameter satbttea corresponding grouping of pins and
we will speak of the pins belonging to a specific parameterséte same view is also adopted in [32].
In Figure 1, Parameter sets are graphically depicted bamgts that group pins. We do not name them
explicitly in the diagram. Parameter sets must have at leastpin in them, but the same pin can be
part of more than one parameter set, i.e., we will speak afadled overlapping parameter sets. Let us
consider actior' in the example. It contains two overlapping input paramse¢s, which share the input
pin 2. F only has a single output parameter set containing the smgfgut pin 4. Furthermore, UML2
definescentralbuffersanddatastoreswhich we exclude from our formalization.

Control and data flow is modeled by edges, usually beginningutput pins and ending in input
pins. UML?2 takes a unified approach to control and data. A pia control pin having a control type
if its isControl attribute is set tdrue, otherwise it is a data pin having a data type. In our exanvpée,

3

named edges by combining the action and pin names thatipatddn the connection, e.@:4d1 is the
edge that connects the ouput pin 4 of actibnrvith the input pin 1 of action D. In UML2, only action
nodes have pins, while control nodes do not have pins, bue rthke control and data flow directly. In
our formalization of control nodes, we deviate from thidatiénce and also define pins for control nodes
(except for initial, flow final and activity final nodes). Thaows us to simplify the syntax definition of
activity diagrams and to treat all activity nodes unifornmythe semantics. For example, we will define
edges as connections betweens pins, while otherwise, wéohdefine edges between pins for action
nodes, but for the nodes without pins the edge would begimdréectly in the node. We summarize
our short review of UML2 activity diagrams in the followingrgax definition, in which we focus on
the main modeling elements as described above. Comparée triginal metamodel definition, this
definition is a strong simplification. Note that we also do canisider hierarchical activity diagrams.

Definition 1 (Syntax) An activity diagramM = (N, P,Z, O, E) consists of

¢ afinite setV of nodes partitioned into subsets i.8/,= N4 U N where N4 denotes the set of
action nodes, while the set of control nod¥g is further partitioned into subsets:

— Np of decision nodesy;, of merge nodesyV of fork nodes andV; of join nodes,
— Nj of initial nodes, Ny of flow final nodes, an&/ 4 of activity final nodes.

a finite setP of pins partitioned into input and output pins, i.€,= P;, U P,y4,

a finite set of input parameter sefswhere each sef € 7 is a subset of the set of input pins,
i.e.,I C P,

a finite set of output parameter s&fswhere each seb € O is a subset of the set of output pins,
Ie1O g Pout;

a finite setk of edges each connecting either two pins with each other am ith a control node,
i.e.,E C (Pout U N]) X (Rn UNpp U NAF)

UML2 formulates several syntactic constraints such as:

- each action node has at least one input and one output peraseg and

- there are no empty parameter sets, i.e., each set contdeestone pin and a set is associated
with exactly one action node,

- no two parameter sets have exactly the same pins.

Furthermore, the specification states that nodes with uregiad pins cannot execute. Thus, from
a practical point of view, one could require that all pins adtrol nodes are connected by edges—
however, this is not relevant for our formalization. UML2o&¥s that pins may be arbitrarily connected
to even more than one other pin, i.e., they cannot only be wsetbdel the routing behavior of control
nodes, but additional nondeterminism occurs when, e.@ ooiput pin is connected to more than one
input pin. However, we believe that it would be a better midgbractice to have only 1-1 edges between
pins and control nodes and thus base our formalization sraggumption. A discussion of the semantic
problems caused by 1-m edges between pins can be found imf8i3jve will also come back to this
issue later in the paper.

3 A short r-calculus Glossary

The w-calculus is a process algebra developed by Milner, Parmav\ialker [14, 16], which reuses
concepts from the Calculus of Communicating Systems (CC4) [It introduces the action prefixes of
receiving any messaggealong a channet (denoted as:(y)), sending a messagealong a channet
(denoted ag(z)), or making a silent transition (denotedgs If the message is not relevant, the short-
hand notationg for sending over channel andz for receiving over channet can be used. Action
prefixes of a process are composed by.thperator. A simple example illustrating these conceptkas t
processA = z(y).A’, which sends a messageover the channet and then continues to behave like
processA’.

Given a set of action prefixes, the basic syntax of process expressions is defined by

P = Y, m.P | alternative composition
I, P | parallel composition
new aP | restriction of name scope
P infinite replication

Aprocessy.! | m;.P; = m.Py +- - - +m,.P, is a process that performs one of the actions prefixes
and then behaves like proceBs The empty sum results in the null process, 0, which is oftaiited.
For example, we writ&(y) instead ofz(y).0. A process[[;_, P, = P, | --- | P, is the concurrent
composition of processdd to P,. The restrictiomew aP restricts the scope of the naméo process
P. The replication operator ! allows a procd34o be replicated an infinite number of times.

Note thatz(z).P andnew z P has the effect of binding the nameto scopeP. The binding of
z in z(z).P will lead to a substitution of the free occurrenceszah P by a when receiving: via z.
For example(z(z).z(a).0 | Z(w).0) evolves to(w(a).0|0) by an interaction over the channel The
m-calculus offers the ability to transform processes adogrdo a set of structural congruences. For
example,P | 0 = P states that every procegscomposed in parallel with the null process is structurally
congruent to itself.P + 0 = P shows that adding a null process to a procBsdoes not increase its
capabilities.

We introduce a notational shorthand to capture the pospéamutations of action prefixes, i.e., in-
stead of writinga.b. A + b.a. A, we write(a | b).A and define:

Definition 2 (Notational convention for prefix permutations) Given action prefixes,...,a, and a
processA, we write

(ai>.A:(a1|---|an).A
1

n

1

=ai.a9....apA+ava1....apA+--+aqg..... Gp . On—1.A

A second notational shorthand is used to capture the alieeneomposition of prefixes with the
same process in a more compact way:

Definition 3 (Notational convention for alternative prefix composition) Given action prefixesg,, ..., a,
and a processi, we write

n

(Zai).A:(al—i----—l-an).A

i=1
=a1. A+ +an.A

2Note that one often speaks of names being sent or receivesbria other name, however, we will continue to speak of
channels and messages, because we hope that this makesrtakzation more intuitive.

The semantics of the-calculus is defined usingeaction rules cf. [15, page 91]. These reaction
rules (also called reduction rules in [26]) describe howacpssP can evolve to a proces?d’ owing to
some action withinP. In addition, ther-calculus providesransition rules which define how a system
may interact with its environment. As we will focus on proses without any environmental interaction,
we restrict ourselves to reduction rules as shown in Table 1.

TAU _—
TP+ M — P
INTER
(z(y).P + M)|(T(2).Q + N) = {2/y}P|Q
PAR P— P
PlQ — P'|Q
RES P— P
new zP — new zP’/
STRUCT b= r if P=QandP' = Q'
050 if P=Q =Q

Table 1: Ther-calculus reduction rules.

The TAU-rule defines that a process” + M evolves to the proces8 when performing an internal
T-transition. The rule INTER describes the interaction ob teoncurrently running processes, which
synchronize on the exchange of a message over a chaniiéle process:(y).P expects any message
y, and the process(z).Q) sends a messageoverz. The rule describes that the result of this interaction
will be P|Q, where inP all free occurrences af have been replaced hy The alternative behaviors!
and N are not preserved, i.e., if a “sum exercises one of its clpahj the others are rendered void”,
cf. [26, page 39]. The rule PAR states that if a procBssvolves toP’ then process’ |) evolves to
P’ | Q. The rule RES shows that “restriction of a name does not inaileduction” [26]. The last rule,
STRUCT, establishes a link between reduction and strdotaregruence: IfP reduces taP’ and P is
structurally congruent t@) and P’ is structurally congruent t@’, then also@ reduces ta)’. This link
is important because it allows one to exploit structuralggaence and then apply the reduction rules.

4 An Initial Formalization of Activity Diagrams

Parameter sets in UML2 introduce an enormous expressimitynbdeling communication behavior be-
tween actions. The UML2 specification gives the followinfpimal characterization:

“A behavior with input parameter sets can only accept inpluten parameters in one of
the sets per execution. A behavior with output parametes sah only post outputs to
the parameters in one of the sets per execution. Multipleatldjows entering or leaving
a behavior invocation are typically treated as ‘and’ conalits. However, sometimes one
group of flows are permitted to the exclusion of another. he Totation ...expresses a
disjunctive normal form where one group of ‘and’ flows areasaped by ‘or’ groupings.
For input, when one group or another has a complete set oftifipws, the activity may
begin. For output, based on the internal processing of theali®r, one group or other of
output flows may occur[17, page 386]

Similar to Dong and ShenSheng [9] and Puhlman and Weske {&0]semantic mapping maps
each activity and action node to a separatealculusprocess Edges between pins and control nodes
are mapped tahannels allowing the token flow in activity diagrams be mapped to itiessage-based

6

communication ofr-calculus processes. The semantics of parameter setstigady defining the
composition and communication of theprocesses accordingly. The following definitions introglua
functionw : M — P, which maps the diagram/ to a process definitiof® in the w-calculus. Let
M = (N, P,Z,0, E) be an activity diagram. We define the functieras follows:

Definition 4 (Mapping of an Edge) An edgee € E is mapped to a channel nanaén the w-calculus,
i.e., we definer(e) = e .

The semantics of input and output pins is captured by a messagling or receiving action prefix:
Definition 5 (Mapping of an Input/Output Pin) Letp be an output ping be an input pin, ané =

(p, q) be the edge that connects both pins. Lle¢ some, not further specified message imtloalculus.
We definer(p) = w(e)(t) andn(q) = 7(e)(t).

Definition 6 (Mapping of a Parameter set) The semantics of a parameter set= {py,...,pr} con-
taining pinsp, to p;, is the parallel composition of the mapping of the pins:

k
n(S) =[] wpi) =w(p1) [- | m(pr) -
=1

Note that this definition makes use of our notational shoidires defined in Definition 2. The alternative
behaviors of an action, which are encoded in several inglibatput parameter sets, can now be captured
as follows:

Definition 7 (Mapping of an Action Node) Let A be an action node with input parameter séts. . ., I
and output parameter se€g;,...,0,:

n
r(A)=AZ (Zw([i)).performA< 7r(0j)>.0 :
i=1 j=1
This means, a procegkexecutes message-reading operations corresponding td isianput parameter
sets, then executegarformAtransition denoting the execution of the process follolwgthe message-
sending operations corresponding to one of the output petearsets. Note that this definition makes use
of our second notational shorthand as defined in Definition 3.

Definition 8 (Mapping of Control Nodes) Let D be a decision node with input parameter geand
output parameter set9+, ... O, and letM be a merge node with input parameter séts. . ., I, and
output parameter seb:

n

(D) :D":e‘w(f).(‘ w(oj)).o

j=1
(M) =M= (zk: W(Ii)) 7(0).0
i—=1

Let F be a fork node with input parameter seind output parameter s&€? and let.J be a join node
with input parameter sef and output parameter sé?:

A decision only activates one of its output parameter setsreds a merge only requires input from
one of its input parameter sets. A fork produces output opiad in its single output parameter set and a
join requires input from all pins in its single input paraeretet. Note that all outgoing branches in a fork
occur in a single output parameter set because they neechtdibated concurrently. Similarly, in a join
all incoming branches occur in a single input parameterAsalready mentioned, we deviate here from
the UML2 specification, which makes a very subtle distintti@tween the semantic behavior of pins of
an action node and the behavior of a control node. In our secsawe do not make this distinction and
treat action and control nodes uniformly.

Initial and flow final nodes are mapped in a similar way:

Definition 9 (Mapping of Initial and Flow Final nodes)

w(n € N;y) = €(t).0 if e is the edge starting in start node n
n(n € Nprp) = e(t).0 if e is the edge ending in the flow final node n .

We immediately encounter a problem when trying to adequaelp the activity final node, which
has a very complex semantics:

“A token reaching an activity final node terminates the agtivin particular, it stops all
executing actions in the activity, and destroys all tokenehiject nodes, except in the out-
put activity parameter nodes. Terminating the executiosyathronous invocation actions
also terminates whatever behaviors they are waiting on éunn. Any behaviors invoked
asynchronously by the activity are not affected. All tokeffered on the incoming edges are
accepted. Any object nodes declared as outputs are passef the containing activity,
using the null token for object nodes that have nothing imthk there is more than one fi-
nal node in an activity, the first one reached terminates tieiy, including the flow going
towards the other activity final[17, page 320]

We notice that it is impossible to adequately capture theasgios of the activity final node in the
initial semantics. We address this problem in more detaéation 6. As a temporary “solution”, we
treat activity final nodes in the same way as flow final nodes.

So far, we have encoded the various modeling elements thavaaur in an activity diagram/.
However, this is not sufficient. The semantics of the diagcam only be captured by defining how the
individual 7-processes are composed:

Definition 10 (Mapping of an activity diagram) LetM = (N, P,Z, O, E) be an activity diagram with
E ={ey,...,en}. Letm(n;) be ther-calculus mapping of node; € N = {n4,...,nx}. The mapping
of M is defined as

k
(M) = M £ newey, ..., e, Hﬂ(m) :
i=1

The definition restricts the scope of channel hames to theegeothat encodes the diagréih

5 Encoding of the Example

In this section, we discuss the behavior of the example igctivagram based on the initial formaliza-
tion and discuss where the semantic mapping is not adeywateturing the behavior formulated in the
UML2 specification. We begin by deriving the semantic maggor our example from Figure 1. As we

mentioned before, we do not have a semantic mapping for thétadinal node in the initial formaliza-
tion and therefore temporarily encode it as a flow final nodee &ncoding makes use of our shorthand
notations, which are used in the definition of proceséeB, E, F'.

def

sal(t).0

sal.(t).performA((aQbQ(t) | a3cl(t)) + addi(t) + a5el(t)) 0
(a2b2(t) + b3b1(t)).performBb3b1(t).0
a3cl(t).performCe2 f1(t).0

add1(t).performDd2 f2(t).0

ab5el(t).performE (e2f3(t) + e3t(t)).0

= (c2f1(t) | d2f2(t)) + (d2f2(t) | e2f3(t)).performF fdz(t).0
£ e36(4).0

£ fd42(¢).0

£ newsal,...,f4z(S|A|B|C|D|E|F|T|X)

def
def

def

def
def

def

=

R EEREEE R,

The reduction rules can now be used to validate whether theepsi/ exhibits the desired behavior
following the informal UML2 semantics. We do not show anyuetibns here in detail, but informally
summarize selected behavioral aspects of the process. nitta¢ mode, S, sends some messag@ia
channel sal. Processreads a message from channel sal, performs the prdcasd sends messages
either over channelg2b2 anda3cl, or a4dl or abel depending on whether a process is available with
which it can engage in a conversation. In this semantic nmgppie cannot say which of the channels
will be chosen, because we leave this choice nondetermginiBhis represents one abstraction that we
encoded in the semantics and that can also be found in the (Hgde@fication [17, page 386]. Processes
B, C, D, E behave similarly: they read from one of their input channgésform their internal action,
and then send a message on one of their output channels. sPfocmn read messages from three
possible input channels where one of them is shared betvieetwb possible behaviorglZf2). As
soon as a message can be read, one of the behaviors is enailethes other is no longer possible. For
example, if a message can be received:2jél, the process transits (0 | d2f 2(t)) .performF. f4z(t).0,
because only one of the behaviors composed by “+” is exafcighile the other is rendered void, cf. [26,
page 39] and the reduction rule INTER. If afterwards a pretéss to send a message ¥y 3, F' cannot
read this message anymore because the required behavidoisger available. After reading a message
via d2f2, the process transits ferformF. f4x(¢).0 and is not able to read any further messages.

The messages are not further specified, i.e.t¢thare in fact completely unrelated to each other
and could also be left off in the formalization above. We dedito leave them in only for reasons of
readability.

Summarizing, we notice several other problems in additithé incorrectly mapped activity final
nodeT'. Eachr-process terminates after execution and is not ready tiveefiether inputs. In particular,

B does not loop as expected from the informal semantics arydesplutes once. Besides this, processes
such asF' are loosing tokens. The following sections discuss theskl@ms in more detail and provide
possible solutions. As we will see, the main reason for tle@l@guateness of this semantics can be
identified in the semantic mapping of object nodes.

6 Restrictions of the Initial Semantics and Semantic Challeges

In this section, we summarize the semantic features of UMitity diagrams and discuss to which
extent they are addressed by the initial semantics. For majbr semantic feature, a challenge is for-
mulated that has to be addressed by any complete formalizati

Semantic Challenge 1 (Multiple Action Instances)Each action has the potential of being instantiated
multiple times within the same process instance dependirteactual token flow at execution time.

In the example from Figure 1B contains a “self-loop”, i.e., an edge that leads from one 'sf B
output pins back to one of its input pins. In order to execheerefixb3b1(t), a new instance oB
must be ready to receive As already observed, the semantic mapping as defined inifiw@ii7 does
not conform to the informal semantics of UML2, in particufar models with cycles. The mapping’
below shows a possible correction by adding the replicatiperator to produce an infinite number of
instances of3 in parallel before tokens have even been receive® by

B'" = B

Although this correction allows instances Bf to communicate with each other, one may argue
whether it correctly captures the semantics of activityansgation in UML2, which assumes action
instantiation to be triggered by token arrival. The replma operator, however, leads to infinitely many
instances of an action executing in parallel based on thetstal law! P = P|!P.

“If a behavior is not reentrant, then no more than one exemutof it will exist at any
given time. An invocation of a nonreentrant behavior dodsstert the behavior when the
behavior is already executing. In this case, control tokersdiscarded, and data tokens
collect at the input pins of the invocation action, if thepper bound is greater than one, or
upstream otherwise. An invocation of a reentrant behavidirstart a new execution of the
behavior with newly arrived tokens, even if the behaviorlisaly executing from tokens
arriving at the invocation earlier’J17, page 302]

The semantic mapping” captures reentrant behavior. The currently running irstani B” instan-
tiates in parallel another instance of actiBfi while performing the actio®”. This enables to instantiate
a new action instance as soon as tokens arrive, even if ariatance of this action is still executing.
This means, in a reentrant behavior, we see multiple inetaotone action executing simultaneously.

B" = (a2b2(t) + b3b1(t)). (performB'.b3b1(t) | B")

The above encoding is sufficient to capture the behavior efpttocessB in our example. For
a general mapping based on this idea, one needs to know im@eVveow many instances of a pro-
cess need to run in parallel. Unfortunately, this is not hbhVious in case of an arbitrary activity
diagram. One may therefore return to the previous solut@set on the replication operator, which
works for an unknown number of instances. We implementednalsi example process of the form
A £ (z(t).performA0) | A causing infinite replication by exploiting the above menéid structural law
in the Mobility Workbench [38] as well as the Concurrency Wmench [8]. Both tools cannot simulate
such a process and seem to generate an infinite transititensy$iowever, if the number of required
parallel instances is known, i.e., for example a proces$@fform A £ z(t).(performA0| A | A) is
encoded, the process can be simulated, but the tools rurf mgaurces when an analysis of the process
is tried.

In case ofnon-reentrantehavior, only a single instance of an action is executimg.nén-reentrant
behavior, the following semantic mapping would be suffitidn this mapping, a new instance 8"
can only be instantiated after a currently running instaxfd@”’ has sent its output token and terminated.

def

B" (a202(t) + b3b1(t)).performB”.b3b1(t). B"

However, in this specific exampld? wants to communicate with itself, which is not possible in
this encoding because of the synchronous communicatioa.la®er in this section for a more detailed
discussion and Section 7 for an object-node semanticsiagadynchronous communication.

10

Semantic Challenge 2 (Multiple Activity Instances) An activity model has the potential of being in-
stantiated multiple times in parallel, once for each amigiset of input tokens. Each instance defines its
own scope containing new instances of actions.

The mapping of the activity diagram enables only a singleaimation of the activitylM. This does
not fully conform to the UML2 specification, which statesttieach activity diagram has the potential
of being instantiated multiple times in parallel, one fockeaontrol token introduced to the system [17,
page 259]. For our example, this requires that a new instahpeocessM is created when it receives
the triggering control token from the environment. One pbo& solution to this problem is to define a
wrapping processdy¥ rap, which creates a single instance of procésdgor each control token received
from the outside source:

Wrap £ input(start).(M|Wrap)

For each control token received on the chanmghut, processiWrap creates an instance of pro-
cessM in parallel with another instance of the wrapping procedser&fore, W rap is able to generate
an unknown number of parallel instantiations of prock&sAs we pointed out earlier, using the replica-
tion operator ! may not be a possible alternative as it doeseflect the semantics of activity instantiation
correctly and seems to prohibit any analysis in existingstoo

The two challenges that we discussed so far could be easilsessbd by minor modifications of
the initial semantic mappings for action nodes and actidiggrams. The following challenges will
require significant changes of the semantic encoding otbbjgdes. The UML2 semantics assumes that
tokens are offered on an output pin to the receiving acti@hcmsumedll-at-oncewhen this action is
ready. Our formalization leads to a simplified semanticsreliekens immediately flow to the end of
an edge and wait there until all other tokens of the same perset have arrived. Since we assume
that edges connect pins 1-1, this simplification does netcathe execution of the activity diagram as
there is no nondeterminism in the flow of a single token, witiah only flow to one designated pin. In
case of multiple edges leaving an output pin, there would tiéference as the action that is first ready
to receive, determines where the tokens flow. We argue tkabriginal UML2 semantics may lead to
many unexpected behaviors that are hard to detect, in plarticecause parts of the diagram may not be
executable as actions always ‘come too late’.

Semantic Challenge 3 (Token Preservation)Control and object tokens not consumed by an action
must remain in the input channel for further instantiatiafghis action.

a) b) Q) |5 i
e i
0 F Bimy [/ F O
)]
2 o

Figure 2: Token flow behavior of actiaf.

Figure 2 illustrates the anticipated semantics of actidn the case that one token has been received
by each of the input parameter sets and only the shared piwaitis for a token as shown in Situation
a). When this token arrives as shown in Situation b), each@fparameter sets is enabled and exactly
one of them can trigger the execution of actiBn After finishing the executiont’ emits a token on its

11

output pin, but preserves the token in the non-triggerimmtrparameter set, i.e., either Situationor
C, should occur.

However, this behavior is not possible in theprocessF'. The capability ofF' to read again from
d2f2(t) is no longer available once a token on the sharedfpihas been received as we have already
pointed out in the previous section. The semantics we hamus$ed so far provides no solution to the
Token Preservation challenge. UML2 defines even more aéddfieatures of object nodes that we want
to briefly discuss in the next challenges.

Semantic Challenge 4 (Streaming, buffering, upper boundsand multiplicities) Pins can exhibit the
buffering behavior of queues and stacks of limited and utduincapacity. In particular, when they are
streaming, they can receive and send tokens combined atebwfdlefined multiplicity while the action
is executing.

Streaming allows an action to take inputs and provide ostputile it is executing. During one
execution, the action may consume multiple tokens on eaehraing input and produce multiple tokens
on each streaming output [17, page 302]. Upper bounds ordgiirse the maximum number of tokens
it can hold. Multiplicities on the pins are used to define thenber of tokens that are necessary for an
action to execute. For example, an actidbmay require three tokens before it can start executing. If an
output pin of an actiol’ sends three tokens, thelnwould execute once, however, an actiBmequiring
only a single token would execute three times. Similarhhetbken preservation behavior, this behavior
requires a more precise semantics for object nodes. We imataegdsee that encoding pins with message
reading and sending operations is not enough, but they loave €ncoded as-processes themselves.
This is the basic idea for the semantics in the next sectioinehas shown how buffers are encoded
with 7-processes in [15].

Semantic Challenge 5 (Global Termination and Exceptions)Execution of an activity final node ter-
minates all actions and nested activities in the scope dftifuetured activity node containing the activity
final node. All tokens within this scope have to be discarded.

Global termination behavior also occurs through excep#ctions and in interruptible activity re-
gions.

“Interruptible activity regions are groups of nodes withivhich all execution can be termi-
nated if an interruptible activity edge is traversed leaythe region. Raising the exception
terminates the immediately containing structured nodeativdy and begins a search of en-
closing nested scopes for an exception handler that matbleagpe of the exception object.
... If an exception occurs during the execution of an acttbe, execution of the action is
abandoned and no regular output is generated by this actidhe action has an exception
handler, it receives the exception object as a token. If g has no exception handler,
the exception propagates to the enclosing node and so dnrtusitaught by one of them. If
an exception propagates out of a nested node (action, smeattactivity node, or activity),
all tokens in the nested node are terminatdd?, pages 259, 310]

In order to capture the semantics of activity final nodeseptions and interruptible regions, the se-
mantic mapping has to be further extended. We can immeyiseel that these behaviors require not only
to encode pins as processes, but in addition also to encoaldditional “communication infrastructure”
between the actions requiring additional processes arslfthither increasing the size of the resulting
semantic mapping. We found two examples in the literatutesres such a communication infrastructure
has been formalized recently. A solution for services basether-calculus is presented in [18], which
allows a service to react to an intermediate abort eventridtization of so-called cancellation regions
in workflows based on Reset Workflow nets is presented in [42].

12

Finally, we want to discuss the underlying scheme of comugatitn in activity diagrams, which can
be a very flexible mix of asynchronous and synchronous behavi

Semantic Challenge 6 (Asynchronous vs. Synchronous Commigation) Any form of asynchronous
and synchronous communication between actions is enoadabltivity diagrams.

Communication in ther-calculus is synchronous, i.e., a message can only be santtfre sender
when the receiver is ready to receive it. The simplified sdiosuneflects such a synchronous behavior.
In order to encode asynchronous communication, pins muagh# encoded a-calculus processes,
which can buffer tokens.

The UML2 specification talks about the assumed communicdighavior in different places and
somehow leaves “all options open”. The semantics of edge¥damally defined with the following
token flow rules:

“Edges have rules about when a token may be taken from thesmade and moved to
the target node. A token traverses an edge when it satistedutbs for target node, edge,
and source node all at once. This means a source node can fiahtakens to the outgoing
edges, rather than force them along the edge, because thiesokay be rejected by the edge
or the target node on the other side. Multiple tokens offéoesth edge at once is the same as
if they were offered one at a time. Since multiple edges carelthe same node, token flow
semantics is highly distributed and subject to timing issaled race conditions, as is any
distributed system. There is no specification of the ordevhich rules are applied on the
various nodes and edges in an activity. It is the responsilof the modeler to ensure that
timing issues do not affect system goals, or that they amimdited from the model[17,
page 309]

The specification also mentions two further features of timaraunication within activity diagrams,
which are referred to asaverse-to-completioand consumption of tokeradl-at-once which we already
briefly mentioned when discussing the token-preservatiailenge.

“Traverse-to-completion means that tokens move along #ik pf least resistance by go-
ing to the first available object node. ...Another behavimattfalls under traverse-to-
completion is the transformation of tokens as they movesaan object flow edge. ... Another
aspect of traverse-to-completion is that an input pin of aticm cannot accept tokens un-
til all the input pins of the action can accept them. This iptevent deadlock, where the
input pins of two actions each have some of the tokens rafjtorethe other to start” [6,
pages 35-37].

“The flow prerequisite is satisfied when all of the input pims affered tokens and accept
them all at once, precluding them from being consumed by #mer actions. This ensures
that multiple action executions competing for tokens doagoept only some of the tokens
they need to begin, causing deadlock as each execution feaitekens that are already

taken by others.[17, page 302].

Obviously, these features add further complexity to anyasgios and one is wondering to which
extent they should or can be captured, see also the disouadi®3]. Given our insights so far, one may
even advocate for a revision of the UML2 specification. We a@gue that objects should not change
type while flowing along edges, in particular for reasonslafity and readability of diagrams in practi-
cal applications. Consumption of tokeak-at-onceseems to be encodable by adopting a synchronous
communication behavior that ensures that the hand-sh&ks fdace not only between single pins, but

13

for entire parameter sets. We have no proposal for how tHemof “least resistanceshould be ade-
guately encoded in order to achieve a traverse-to-coropldétehavior that rules out many interleavings
of process executions that would occur in the correspondipgocess. When implementing our encoded
model in the Mobility Workbench we obtained a trace showhmnaf processi interacted with process

and subsequently processinteracted with procesE' before any interaction between procesdeand

B happened. This differs from the expected UML2 behavior whestreams out both tokens 8 and

C simultaneously, i.e.4 interacts withB andC before these can start any other interactions. The role
of these semantic subtleties in the context of model vetifinaneeds to be further investigated.

7 A Semantics of Object Nodes

The semantic challenges from the preceding section denadedithat a mapping of pins and parameter
sets to simple action prefixes is not sufficient. Instead; thest be mapped to rather complex processes
that can buffer messages and participate in a complex comatiom structure to correctly reflect the

activation of UML2 activities. Figure 3 illustrates the comnication structure that must be represented

in the r-calc
pin,_notify_set, set,_notify_action,
InPin, iset,_ack_pin, InParSet,;
action,_ack_set,;

action,_nack_set,

'SR

set, notify_action,

InParSet .
2 action,_ack_set, Action,

action,_nack_set,

set,_notify_action,

InParSet,

action,_ack_set,
action,_nack_set,

Figure 3: Communication structure of processes in the tiniede semantics.

The main idea is as follows: Each pin is mapped to a pin proedsish buffers the token messages in
aqueue. Aninput parameter set is itself a process that caneates with all of its pin processes and with
the action. We introduce a separate communication chaanebth direction of communication, which
allows us to abstract from the messages that are exchandes.mgans, in the following definitions
we use the short-hand notations for the sending and regedier a channel, i.e., do not show message
names. The input parameter set process records the stadlisitefpins. If all pins have received at
least one token, it is completely notified. Each “completadyified” input parameter set process then
notifies the action process. The action process selectsfdine parameter sets to complete. The selected
parameter set causes all its pin processes to remove one tdkey, the action process can execute and
communicate with one of the output parameter set processes.

In the following, we provide formal definitions for all reqad processes encoding the pins, param-
eter sets and the action, and then extend our example.

Definition 11 (Mapping of an Input Pin) Letp be an input pin contained in input parameter s&fg).
Lete be the incoming edge of The mappingr(p) is defined by the following processes:

14

InPin,(0) = e.(H pinp_notify_setk).InPinp(l)

I €Z(p)
InPiny(n) & (Z isetk_ack_pinp>.InP7jnp(n - 1)
Iy € Z(p)
+ e.InPiny,(n +1) + (Z pinp_notify_setk> InPiny(n) forn>1.
Iy € Z(p)

The process for an input pin behaves as follows: A token isived, all owning parameter sets are
notified via thepin,,_notify_set; channel, and thén Pin, process transitions to the state where one token
is stored. The process is then ready for an acknowledgmeabyppwning parameter set, expressed by
isety_ack_pin, or for receiving another token. In the latter case, the @®atores another token, in the
former case, the process transitions to a lower state (mganat one token is removed). Alternatively,
it can also send further notifications to the owning paramsits, expressed yin,_notify_set;, for
renotification purposes.

The pin process for an output pin waits for a notification b @i its parameter sets (modeled by
oset;_notify_pin,) and then sends out the token:

Definition 12 (Mapping of an Output Pin) Let g be an output pin contained in output parameter sets
O(q). Lete be the outgoing edge gf The mappingr(q) is defined by the following process:

ef

OutPin, &« (Z osetl_notify_pinq>.E.OutPinq
0,€0(q)

The next definitions capture the communication between #narpeter sets and their pins and the
action. An input parameter set can be in different statesalized if it has not yet received a notification
from any pin in the parameter segrtially notifiedif some of its pins have already notified, but not all, or
completely notifiedvhen all pins have received at least one token and notifieddremater set. In state
initialized, modeled by the procegs ParSet(0), it is ready to receive a notification from one of its pins
and transitions to thpartially notifiedstate where this pin has sent a notification, modeled by the pr
cessInParSety, noified—{p}- IN Statepartially notified modeled by processds ParSety, notificd-1, »
the parameter set waits for a notification from one of thoss ghiat are not included in the set of pins
that have already notified. If it is notified by a pinvia pin,_notify_set,, it transitions to a process
InParSety, noiifiedt{p}, MeaNINg that also pip has received a token and therefore, has sent a noti-
fication. If all pins have notified, the parameter set tramsit to completely notifiedmodeled by the
InParSety notified=1, Process. In this state, the parameter set notifies the atttaint is ready to
complete and then calls itself. After the notification of #wion, the parameter set process can receive
anaction 4 _ack_sety, denoting that this parameter set has been selected to etanphen it notifies its
pins viaisety_ack_pin,.

In all states, the parameter set process can receive sonsageesvenction 4 _nack_sety meaning
that the action has chosen another parameter set to comiplsigch a case, the parameter set needs new
notifications from all its pins because some of them coulelzeen notified and removed tokens by the
alternative parameter set completion. Remember that agpitbelong to more than one parameter set.

Definition 13 (Mapping of an Input Parameter Set) Let I;, be an input parameter set belonging to
some actiord. The mappingr(I;) is defined as

15

InParSet,(0) = (Z pinp_notify_setk.InParSetk,Notified:{p})
pElL
+ action 4 _nack_set.InParSet(0)

InParSety notifiedtl, = (Z pinp_notify_setk.InParSetkyNotifiede})
p € I, ,p&Notified

+ action g nack_sety. InParSet;(0)

InParSety notifiea—1, = setp-notify_action s.InParSety notified—1,

+ action o _ack_sety,. (H isety_ack_pin) InParSet(0)
pE}
+ action g _nack_sety.InParSet(0)

The process for an output parameter set waits for a notificddy the action and then notifies all its
pins.

Definition 14 (Mapping of an Output Parameter Set) Let O, be an output parameter set of an action
A. The mappingr(Oy) is defined as

OutParSety, = actionA_nOtify_setk.< H osetk_notify_pinq).OutParSetk
q€ O

The mappingr(A) of an actionA introduces parallel processes for each of its input andubutp
parameter sets as well as its input pins and output pins atiatés aninternalActionprocess, which
waits for a notification from one of its input parameter said ghen notifies this set of having been
selected. It also notifies all other parameter sets thattibeg not been chosen. Afterwards it performs
the per form A-transition and sends a notification to the output paramsethat is correlated to the
input parameter set that was activated. Note that we user@laiion mechanism in order to be able to
model that a certain input parameter set always gives ritfeetactivation of a specific output parameter
set. Alternatively, we could nondeterministically chodise output parameter set.

Waiting for a notification by an input parameter set is models a nondeterministic choice over all
input parameter sets. It is possible that more than one ipgrameter set can complete. If this is the
case, one of them is selected nondeterministically. Adtivaly, aleader electior{2] algorithm can be
encoded in the semantic mapping to ensure fairness of thengder set selection.

Definition 15 (Mapping of an Action) Let A be an action. Lef (A) be the input parameter sets df
let O(A) be the output parameter sets.4f letipins(A) be all the input pins oA and letopins(A) be
all the output pins ofd. Letcorr(I}) be a function that returns the index of the output parametéttsat
is correlated to input parameter sé&t. The mappingr(A) is defined as

Actions, = (H InPinp(0)> \ (H InParSetk(O)) | Internal Action 4 |

p € ipins(A) I, €Z(A)
(H OutParSet,) \ (H OutPinq>
0; € O(A) q € opins(A)

16

with

Internal Action s = Z <setk_n0tify_actionA .action 5 _ack_sety. (H actionA_nack_seti) .
I € I(A) I, € T(A),i#k

per formA.action g notify_set .o, (r,) .InternalActionA>

We partially sketch the encoding of actidhbelow, using again the short-hand notations of Section 3:

InPin.(0) = ¢2f1.pins _notify_set1.InPin; (1)
InPin»(0) o d2f2. (piTlQ_nOtify_Setl |pin2_n0tify_set2) InPins(1)
InPins(0) ©' 2£3.pins notitysets.InPins (1)
InPini(n) & iseti_ack-pini.InPini(n — 1) + c2f1.InPini(n + 1)
+ pini_notify_set1.InPini (n)
InParSet1(0) gef pini_notify_set;.InParSet; ,,} + pina_notify_set; . InParSet {p,}
+actionr -nack_set1.InParSet1(0)
InParSety (p,} e pina_notify_set1.InParSety (p, o1 + actionr_nack_seti.InParSet:(0)
InParSety {p,} e pini _notify_set1.InParSety (p, o1 + actionr_nack_seti.InParSet:(0)
InParSety (p, ps} 4 seti_notify_actionr.InParSety {p, o1 + actionr _nack_set1.InParSet:(0)
+ actionp_ack_set:.(iseti_ack_pini | iseti_ack_pinz).InParSet:(0)
F & InPini(0) | InPina(0) | InPins(0) | InParSet, (0) |
InParSets(0) | Internal Action | Out ParSet, | OutPing
‘ InPin, ‘ ‘ InPin, ‘ ‘ InPin, ‘ ‘InParSe!]‘ ‘InParSetz‘ ‘ Actiong ‘
c2f1

pin,_notify_set,

e2f3

pin,_notify_set,

d2f2

pin,_notify_set,

pin,_notify_set,

set,_notify_action

action._ack_set,

action_nack_set,

performF

iset,_ack_pin,

iset,_ack_pin,

pin,_notify_set,

d2f2

pin,_notify_set,

pin,_notify_set,

set,_notify_action

action,_ack_set,

action_nack_set,

performF

Figure 4: Communication of processes related to ackian the object-node semantics.

Figure 4 shows one possible exchange of messages betweadttitheF', its three input pin pro-
cesses, and their parameter set processes. Upon recere@ng2¢1, the procesgn Pin, sends a notifi-
cation to its parameter séb ParSet,. InPins andInPings also send such a notification fa Par Set;
set once they receive ove2f3 andd2f2, respectively. InPins also notifies its other parameter set

17

InParSety. As InParSet; is the first to notify Actionp, it receives aructionp _ack_set; to denote
that it has been chosen to complefe.ParSets receives amctionp_nack_sets to denote that it has not
been chosenln ParSet; sends acknowledgements to its contained pins. Afterwaith,/n ParSet;

as well asInParSets are in the initialized state again and are ready to receitifigagions from their
pins. InPing still has a token and therefore notifies its parameter seéhafygon receiving oved2 f2,
InPins will again notify both its parameter sets. This tinde,Par Sets is completely notified and noti-
fies Action, which will send an acknowledgement fo ParSets and a negative acknowledgement to
InParSet;.

The previous definitions have shown that the semantics @colsjodes can be captured in the
calculus, but at the price of adding many additional proegss the semantic encoding, which need to
engage in a quite complex communication. So far, we have durteased advanced features such as
multiplicities and streaming. Multiplicities could be exted by changing afinPin process in such
a way that it only sends the notification if it has receiveduggiotokens. Streaming probably requires
a different communication infrastructure because tokenstrbe released immediately. We used the
Concurrency Workbench [8] to validate the semantic engpdfrobject nodes and applied it to the action
F in our example. This enabled us to study the resulting ttiansi and validate whether the intended
communication between pins, parameter sets and the antieed occurs. The validation also confirmed
that a communication between the action and the paramegethse havenot been selected to complete
is indeed necessary. For the case of two overlapping paearsets, the completion of one parameter
set also affects the number of tokens available to the otlw@mpeter set through their shared pins. This
means, all pins that still have a token after one of the patemnsets has completed, need to renotify
all their owning sets in order to allow the set to update iggust of notifications. The results of our
practical experiments are briefly summarized at the endeohéxt section where we show encouraging
evidence that the theoretically possible explosion on theber of transitions does not necessarily occur
in practice.

Given the obvious complexity of the presented encodinggtiestion remains whether other seman-
tic encodings would lead to smaller transition systems.warsg this question would go significantly
beyond the scope of this paper, which focuses on clarifyfiegsemantic nature of the various modeling
elements. We believe that searching for more compact emgeds an interesting question for future
research and that contrastingcalculus encodings of object nodes with Petri net encadawgld yield
further interesting insights. An initial treatment of otj@odes in Petri nets has been presented in [31],
which requires to use Colored Petri nets, i.e., a higheeoREtri net formalism, although properties
such as overlapping parameter sets sharing a pin are nosgesded.

8 A Classification of Activity Diagrams

The discussion in Section 6 identified three dimensions wiesgic complexity in the activity diagrams
distinguishing the communication behavior, the concuyeof actions, and the number of possible
action instances. In the following, we will define semantisses of activity diagrams based on these
three dimensions, then give an initial syntactic char&@aéon, and finally discuss practical aspects of
their underlying transition system.

8.1 Semantic Classes of Activity Diagrams

We observed that several modeling elements may lead topteultistantiations of actions. Secondly,
action instances can execute sequentially or concurreBifysequential execution we understand that
only one single action instance is active at any point in tiffileirdly, we observed different communi-
cation schemes between action instances. In the simplest canmunication is synchronous and pins
can be mapped to message sending and receiving actions. éamimplex semantics is required when

18

actions communicate asynchronously, because this raguairbuffer tokens in object nodes (in partic-
ular, pins), which led to the semantic mapping of pinsrtprocesses. Besides this, modeling elements
like the activity final node require to encode additionalgasses that enable a controlled broadcasting
between nodes in the activity diagram, which can occur innalssonous or asynchronous form. These
three dimensions are summarized in Figure 5 where theygedhie basis for a semantic classification
of activity diagrams.

y

1 V.

execution instances of
of actions an action
SYNC
.~ mutiple
concurrent X :
SYNC- / ASYNC-
CONC CONC
o ASYNC
single,~”
sequential e ASYNC-
EMPTY SEQ-
/s SINGLE
communication
- - b X
synchronous asynchronous broadcasting behavior
(edge-based) (edge-based) (edge-independent)

Figure 5: A semantic classification of activity diagrams.

Overall, twelve different semantic classes can be buileam the three dimensions. The figure
shows five explicit classes. We consider the last four of tlhsnbeing of particular interest for future
research:

e SYNC-SEQ-SINGLE(=EMPTY): This class combinggnchronousommunication between the
actions with sequential execution of action instances thatonly a single instance of each action
is created over the lifetime of the process.

e ASYNC-SEQ-SINGLE: This class combinesynchronousommunication between the actions
with sequential execution of action instances such that andingle instance of each action is
created over the lifetime of the process.

e SYNC-CONC: This class covers synchronous communicatitween action instances executing
concurrently.

e ASYNC-CONC: This class permits asynchronous communiodi&ween concurrently executing
action instances.

¢ BROADCAST-CONC: This class combines broadcasting withatiecurrent execution of action
instances. This class includes asynchronous or synchsoedge-based communication, which
can be combined with asynchronous or synchronous brodugagsimmunication, i.e., it could
also be refined into further subclasses.

19

The class EMPTY contains all activity diagrams with singistances, sequential communication
and synchronous communication. We have chosen this narhisatass seems to contain no executable
diagrams. A single action instance, which wants to engagesiynchronous (hand-shaking) communi-
cation, but has no communication partner, cannot executan R syntactical point of view, however,
this class could contain non-executable, rather pathcdbgiagrams, e.g., those containing only discon-
nected nodes.

Our initial semantic mapping is sufficient for the class SYRONC, because the-calculus is in-
herently concurrent. In case that we only support singlaintion of actions, the initial semantic map-
ping falls into the class SYNC-CONC-SINGLE, in case that wpmort multiple instantiations it falls
into the class SYNC-CONC-MULT. For the class ASYNC-SEQ-SINE, a different process-algebraic
formalization can be defined where—different than in outiahisemantic mapping—actions are not
executed concurrently but sequentially, see [33] for atdmmalization. Our semantics supporting
object nodes falls into the class ASYNC-CONC: the buffer@tigws for asynchronous communication
between the actions and we have chosen concurrent exeotfitiiractions. As we also support multiple
instantiations, the semantics actually falls into theclARSYNC-CONC-MULT.

Our own practical experience in the area of business pravesteling in the insurance and bank-
ing domain showed that approximately 50 % of all activitygileans fall into the class ASYNC-SEQ-
SINGLE. The majority of the remaining diagrams containsleyand can therefore lead to multiple
instantiations of certain actions. Broadcasting occuifseraseldomly in our domains. Furthermore, en-
coding global termination is not necessary for many modeften, an activity final node can be replaced
by a flow final node and still captures the intention of the giesi. We argue that activity final nodes
only need to be encoded explicitly if concurrent executicas occur in a model.

The example in Figure 1 falls into the class BROADCAST-COMN€dwuse it contains a termination
node which requires a broadcasting mechanism. If the tetinim node is replaced by a flow final
node, it falls into class ASYNC-CONC. A closer look at the ext®on traces of this model reveals that
asynchronous communication is not required because naixedrace contains the actidn (there is
actually a deadlock here). As a consequence, in this pkaticase, the model can even be correctly
analysed in class SYNC-CONC. Below, we elaborate on thia @led formulate several hypotheses
stating when an activity diagram can be correctly encodagh@nor the other dimension.

8.2 Syntactic Characterizations

According to the UML2 semantics, concurrency of actiongnakronous and synchronous communi-
cation, as well as multiple instances of actions can all oegthin a single diagram. In principle, any
formalization that can capture these properties will béable. Nevertheless, it is desirable to identify
those models where not all semantic features are needeal)dmethe execution of the activity diagram
does not lead to multiple instantiations or does not regasygchronous communication. This means
that these activity diagrams could also be adequately exbwsihoutthe possibility of multiple instan-
tiations and asynchronous communication which (in our)chas led to smaller sizes of the underlying
transition systems as we will show at the end of this secfiorthe following, we formulate several hy-
potheses that help to decide which type of semantic encaslingcessary given the absence or presence
of syntactic constructs.

Hypothesis 1 (Single instances/Multiple Instancesfn activity diagram can be encoded semantically
correct usingsingle instancesf an action if it does notontain

- more than one start node and

- incompleté implicit or explicit forks and

3A fork is incomplete if it is not followed by a join of all its dgoing branches. This requires a form of wellformedness,
which remains to be defined precisely. A fork is implicit ifist modeled with pins and parameter sets, but not using a fork

20

- cycles and
- multiplicities defined for pins and
- joins of object flow.

In the presence of any of the above constructs, it usuallyires| a semantic encoding supporting
multiple instances of the same action.

We argue that the previous hypothesis formulates a sufficmmdition for the possibility to encode
an activity diagram correctly using single instances. Watwa point out that the condition is not a
necessary one, i.e., there are activity diagrams that daicomultiplicities and that can still be correctly
encoded using single instances. The syntactic constroctyles, incomplete forks, multiplicities and
joins of object flow all give rise to the possibility that maitean one instance of an action is created
during the execution of the activity diagram. If not everykfcs followed by a corresponding join, then
this leads to multiple instantiations. For example, in g8 a), actionD is instantiated twice according
to the UML2 semantics because the implicit forkAis not followed by a join. In Figure 6 b), action
B is instantiated twice. A similar example can be constructeidg explicit forks. In the presence of
cycles, several instances of the same action are creatatydaxecution of the activity diagram. An
example is given in Figure 6 c) where actiohgind B are instantiated several times.

Figure 6: Pins acting as implicit forks causing multipleiactinstantiations.

Hypothesis 2 (Synchronous/Asynchronous communicationfAn activity diagram can be encoded se-
mantically correct usingynchronougommunication along the edges if
- each parameter set contains at most one pin and
- it does not contain a global termination node and
- it does not contain a broadcasting action.
An activity diagram can be encoded semantically correatgiasynchronousommunication along
the edges if it does not contain
- a global termination node and
- a broadcasting action.

We argue that the previous hypothesis formulates sufficientlitions when an encoding using syn-
chronous and asynchronous communication is appropriat@inAthese conditions are not necessary
conditions. For example, there may be activity diagramsdha be encoded semantically correctusing

control node.
“A join offers all data tokens on its outgoing edge, see [1@ep269].

21

asynchronous communication if there are broadcastingretivithin the diagram, e.q., if these broad-
casting actions are never executed. Given these two hygegheve can deduce hypotheses for each of
the twelve classes. However, for each class the hypothessstn be carefully checked if they are not
too restrictive and to which extent they can be relaxed. We lbaleave this question to future research
as well as the formal proofs of the previous two hypothesesgimproved versions thereof.

For our second dimension, the concurrency of actions aloag-axis, we do not have a hypothesis.
The distinction between sequential and concurrent exatlgads to the question whether or not an ac-
tivity diagram needs to be semantically encoded using aoecay or not. If no mutual communication
dependencies between two concurrently executing acti&tanoes exist, then concurrent execution can
be replaced by sequential execution. We have the imprefisadithe distinction along the concurrency
dimension leads to a different problem: How to calculateexirsequentializations of concurrent execu-
tions? Future research also needs to clarify if a purelyasyitt characterization is possible, i.e., to which
extent a class can be defined through the simple absencesenpeeof certain modeling elements or ad-
ditional model constraints. Furthermore, the theoretiraberties of the classes are of great interest.
Questions such as the decidability of the reachability lembthe size of the resulting transition system
and the effect of various semantic encodings on the sizeedféimsition system are of high practical im-
portance. It would also be of interest to define precise com@nt relationships between the classes or
to prove the absence of those relationships, i.e., to wavkrtds a class hierarchy for activity diagrams.

8.3 Practical Findings

We have already briefly mentioned that our semantic encodlirgbject nodes in the-calculus leads
large transition systems and a more compact encoding—in-ttadculus or another semantic domain—
could be desirable. A possible approach to avoid uncoettakplosion of the size of the resulting transi-
tion system is to apply the initial semantic mapping whengessible and to use the more sophisticated
semantic mapping only for those actions and object nodesyHih it is required. In the following, we
want to summarize some of our practical findings. As our séimamcodings do not use the concept
of mobility, we implemented the example process in CCS amd tise Concurrency Workbench [8] to
validate the semantics and to determine the size of thetirggtiansition systems.

We encoded several versions of our example: Version 1 is tggping as described in Section 4.
Version 2 is the same mapping except that we encoded acti@ing the semantics of object nodes,
as described in Section 7. Version 1 gives rise to 23 sta@28rransitions and can be minimized to
10 states with 13 transitions. Version 2 gives rise to 10festand 202 transitions, after minimization
according to bisimulation 10 states and 12 transitions meega By having a closer look at the exam-
ple it becomes obvious that in this particular case the apeihg parameter sets at action F are never
completing because only one token will arrive at action F.

In order to study the size of the transition system undeglgntion F, we encoded action F without
any other actions. This encoding of action F gives rise tal2(tates and 82361 transitions. After mini-
mization according to bisimulation still 2298 states an@®@ansitions remained. We also simulated the
full behavior of action F in another example, shown in Figtir@ his example gives rise to 16609 states
and 59244 transitions and after minimization to 65 stateklad transitions. Note that in this example
action F can execute twice: It first receives one token on gindLpin 3 and then it continuously receives
tokens on pin 2.

Our encodings show that the semantic encoding of object:yedsich might appear complex, does
not necessarily lead to an explosion of the size of the uyideritransition system. Techniques such
as minimization show a dramatic reduction effect. Furtteenthere is a huge difference betweén
behaving in isolation andl' being wired within some activity diagram. As already dis®gsin Section 6,
any infinite loop will lead to aninfinite transition systenatttan currently not be handled by the tools.

22

Figure 7: Example showing full behavior of action F.

9 Related Work

In the literature, a number of papers address the problermrofdlizing UML activity diagrams. Early
work deals with formalizing UML1.x activity diagrams: Bamr et al [7] propose a semantics of UML
activity diagrams in Abstract State Machines, which is iafloed by the original joint metamodel of state
machines and activity diagrams in UML. Dong and ShenShehgrsent ar-calculus semantics for
UML 1.4 activity diagrams. Their processes are composeaiallel, which enables them to communi-
cate with each other. In this way, more complex behaviorsbeacaptured where more than one activity
in a business process can be active. However, many otheirdsatemain unaddressed. Similarly, the
profound work by Eshuis and Wieringa [11], is not directlyphgable, because it focuses on UML 1.4,
which does not have parameter sets and the rather subtie-fioke semantics. A formal semantics for
UML2 is the main goal of the UML2.0 Semantics project [35]wawer, no results addressing behavioral
models have been published so far.

Interesting discussions have been published omrthalculus as an appropriate foundation for busi-
ness process models. While some enthusiastically praésadbantages of using thecalculus as the
foundation of the Business Process Modeling Language (BP[@®, 27], but do not give any pre-
cise mapping from BPML to the-calculus, others [37, 36, 22] are much more critical remaydhis
“m-hype”. The argumentation in [37, 36, 22] is based on a seémamapping, which constructs one
m-process for the entire business process model. As thig sufficient and much better semantic map-
pings exist as we have shown, the arguments are no longer Vvalvery profound argumentation has
recently been published in [19]. The authors of [22] point tiat “the w-calculus is an analytical tool
for understanding” languages, but do not demonstrate hatv an analytical tool can be exploited in a
real-world context. In this report, we tried to use thealculus as such an analytical tool that helped us
to develop a possible classification of activity diagrambijclv we consider as being orthogonal to the
mapping of activity diagrams to the workflow patterns as @né=d in [41, 25].

Puhlmann and Weske [20] use thecalculus for formalizing workflow patterns. In their reten
work [21], a lazy soundness for workflows is proposed and dissussed how this can be checked in
a w-calculus formalization. Their formalization, see in jpautar [18], is very similar to ours, which
is not surprising given the semantic foundations of workfiamd UML activity diagrams. Our work
is complementary as it focuses on the clarification of theasgim subtleties in activity diagrams and
contributes a classification of activity diagrams based emantic expressivity. In our formalization
of object nodes, we go beyond the formalization in [20, 18hovonly consider action prefixes for
the communication between the considered workflows, whédeintroduced separate processes in the
object-node semantics.

As [20, 18] we also use the replication operator to capturdijphel instances of a process, but we
discuss the theoretical and practical problems such a faatian can cause and present possible al-

23

ternatives. We do not yet address specific verification prablas those discussed in [21]. Lucchi and
Mazzara [13] provide a—calculus semantics for BPEL. As BPEL desribes the orchigsitr of Web
services, where each Web service can only receive and séndla siessage, their semantics does not
cover most of the semantic challenges of UML2 activity diexys. Another formalization of BPEL based
on ther-calculus is presented in [43] and model checking scenar@dnvestigated.

An almost complete formalization of UML2 activity diagramsing Petri nets is described by Storrle.
He applies procedural Petri nets to formalize control flo@j[2ata flow [31], exceptions and structured
nodes [30]. Recently, Storrle and Hausmann [33] have ifiettseveral problems when formalizing
UML2 activity diagrams with Petri nets. They have shown timaprincipal, a Petri net formalization
suffers from several problems such as inadequate suppatré@ming and traverse-to-completion. This
corresponds to our results, where we also identified thesmepiies as especially difficult to formalize
and even argued whether the UML2 semantics should be revidadsmann [12] contains a compre-
hensive discussion of the semantics of UML2 activity diaggawhich he uses as a case study for the
Dynamic Meta Modeling [10] approach. This approach can leel us define an operational semantics
by defining the transition rules for visual modeling langesgThe main focus in [12] is on the traverse-
to-completion semantics of activity diagrams, while weugrghat restricting edges between pins to 1-1
edges and assuming a cleanly specified communication lwehay be a more promising direction
for a formalization. While Hausmann investigates arbjtredges between pins, parameter sets are not
addressed in the same detail as we have discussed them. gtigelp is well-suited for a simulation,
but does not provide very strong analytical capabilitielsisTvork can be seen as complementary to our
work which aims at a denotational semantics of UML2 actidiggrams and a better understanding of
the modeling concepts that add semantic complexity.

Another operational semantics of UML2 activity diagramdéscribed by Vitolins and Kalnins [39].
They focus on the token game and introduce push and pull pathiekens in the diagram. The op-
erational semantics is described in pseudo code and a semalfproof of equivalence between their
semantics and the original UML semantics is discussed. |@rabsuch as analytical capabilities and
different classes of activity diagrams are not addressed.

10 Conclusion

The formalization of UML2 activity diagrams is a challengechuse of the subtleties of the informally
formulated semantics. In this paper, we begin with an insiemantic mapping, which we subsequently
analyze for its shortcomings. This leads us to a system&gsification and analysis of the semantic
challenges of activity diagrams. Based on their semaniiressivity, we propose a classification of
activity diagrams as a basis for future study. As a formalfhehoice, we are using the-calculus.
The most restricted class of activity diagrams in our cfasdion can be semantically mapped to the
w-calculus by mapping each action targprocess and each pin to an action prefix receiving or sending
a message. Less restricted classes require to map pinsragdnéral, object nodes to-processes
themselves in order to correctly encode their token stdsiglgavior. The least restricted classes require
to add a global communication scheme by adding additieRadocesses to the semantic encoding, for
example to adequately capture the semantics of the acfinaynode.

We believe that a classification of activity diagrams is afthinterest for theoretical and practical
purposes. On the theoretical side, it is very beneficial these a complete characterization of the max-
imal possible subclasses and to further study their thieatgiroperties such as the size of the resulting
transition system. On the practical side, it is very inténgsto add profound analytical capabilities to
a modeling tool, which are optimized to analyze specifics#af diagrams. As activity diagrams gain
increasing interest in particular in the area of businessgss modeling, being able to help a designer to
analyze and verify models has significant value. Finallghsa classification can also provide valuable

24

input for future revisions of the UML2 specification.

Acknowledgement

We thank Jan Hendrik Hausmann, Jeff Magee, and Jussi Vdoliataheir valuable comments on drafts
of this paper.

References

[1] J. Amsden et al. Business process definition metamodetvisBd Submission to the OMG,
BEI/RFP bei/2003-01-06, 2004.

[2] H. Attiya and J. Welch Distributed Computing: Fundamentals, Simulation and Acbeal Topics
Mc Graw-Hill, 1998.

[3] C.Bock. UML 2 activity and action modeldournal of Object Technolog@(4):43-53, 2003.

[4] C. Bock. UML 2 activity and action models part 2: Actionslournal of Object Technology
2(5):41-56, 2003.

[5] C. Bock. UML 2 activity and action models part 3: Contraldes.Journal of Object Technology
2(6):7—-23, 2003.

[6] C. Bock. UML 2 activity and action models part 4. Objectdes. Journal of Object Technology
3(1):27-41, 2004.

[7] E. Borger, A. Cavarra, and E. Riccobene. An ASM semanfiic UML activity diagrams. Ir8th
International Conference on Algebraic Methodology andi&afe Technologyvolume 1816 of
LNCS pages 293—-308. Springer, 2000.

[8] R. Cleaveland and S. Sims. The NCSU Concurrency WorkinehcComputer-Aided Verification
(CAV’96), volume 1102 of NCS pages 394-397. Springer, 1996.

[9] Y. Dong and Z. ShenSheng. Usingcalculus to formalize UML activity diagram for business
process modeling. IRroceedings of the 10th IEEE International Conference anddéhop on the
Engineering of Computer-Based Systepages 47-54. IEEE, 2003.

[10] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer. Dignan®ta modeling: A graphical ap-
proach to the operational semantics of behavioral diagiantdML. In Proceedings of the 3rd
International Conference on the Unified Modeling Languag#gume 1939 oLLNCS pages 323—-
337. Springer, 2000.

[11] R. Eshuis and R. Wieringa. Tool support for verifying UMctivity diagrams.IEEE Transactions
on Software Engineerin@®0(7):437-447, 2004.

[12] J. H. HausmannDynamic Meta ModelingPhD thesis, University of Paderborn, October 2005.

[13] R. Lucchi and M. Mazzara. A Pi-calculus based semariticsVS-BPEL. Journal of Logic and
Algebraic Programming2006. in press.

[14] R. Milner. Communication and Concurrencynternational Series in Computer Science. Prentice
Hall, 1989.

25

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

R. Milner. Communicating and Mobile Systems: The Pi-calcul@@mbridge University Press,
1999.

R. Milner, J. Parrow, and D. Walker. A calculus of mohpl@cessednformation and Computatign
100(1):1-77, 1992.

Object Management Group (OMGWnified Modeling Language: Superstructu2005. Version
2.0 formal/05-07-04.

H. Overdick, F. Puhimann, and Mathias Weske. Towardsmal model for agile service discovery
and integration. IProceedings of the ICSOC Workshop on Dynamic Web Procestss 2rd In-
ternational Conference on Service-Oriented Compuytpages 25-37. IBM TechReport RC 23822,
2005.

F. Puhlmann. Why do we actually need the Pi-Calculudbiminess process managementPiior
ceedings of the 9th International Conference on Busindssriration Systems (BIS 200&plume
P-85 ofLNI, pages 77—-89. gi-ev.de, 2006.

F. Puhimann and M. Weske. Using the Pi-Calculus for faliming workflow patterns. Ir8rd
International Conference on Business Process Managemehime 3649 ofLNCS 3649 pages
153-168. Springer, 2005.

F. Puhimann and M. Weske. Investigations on soundregarding lazy activities. Idth Inter-
national Conference on Business Process Managenweiime 4102 ofLNCS pages 145-160.
Springer, 2006.

J. Pyke and R. Whitehead. Do better maths lead to betisinbss processesBPTrends pages
1-7, February 2004.

J. Roj and M. Owen. BPMN and business process managenrgnbduction to the new business
process modeling standard. www.bpmi.org, 2003.

J. Rumbaugh, I. Jacobson, and G. BoocFhe Unified Modeling Language Reference Manual
Addison-Wesley, 1999.

N. Russell, W. van der Aalst, A. ter Hofstede, and P. WWbh@n the suitability of UML 2.0 activity
diagrams for business process modelling.Phoceedings of the 3rd Asia-Pacicfic Conference on
Conceptual modellingvolume 53 ofCRPI pages 95-104. ACS, 2006.

D. Sangiorgi and D. WalkefThe Pi-Calculus: A Theory of Mobile Process€ambridge Univer-
sity Press, 2001.

H. Smith and P. Fingar. Business process fusion is fablé. BPTrendspages 1-15, March 2004.
H. Smith and P. Fingar. Workflow is just a Pi proceB®Trendspages 1-36, January 2004.

H. Storrle. Semantics of control flow in UML 2.0 actiés. InProceedings of the IEEE Symposium
on Visual Languages and Human Centric Computjpaipges 235—-242. Springer, 2004.

H. Storrle. Structured nodes in UML 2.0 activitigdordic Journal of Computingl1(3):279-203,
2004.

H. Storrle. Semantics and verification of data flow in U.0 activities. ENTCS 127(4):35-52,
2005.

26

[32] H. Storrle. Towards a Petri-net semantics of data flolML 2.0 activities. Technical Report 04,
University of Munich, 2005.

[33] H. Storrle and J. Hausmann. Towards a formal semanfi¢sML 2.0 activities. InProceedings
German Software Engineering Confereneelume P-64 oLNI, pages 117-128. gi-ev.org, 2005.

[34] P. Swithinbank et al. Build a business process solutiging Rational and WebSphere tools. Red-
books SG24-6636-00, IBM, 2006.

[35] The UML2.0 semantics project. http://www.cs.queenalstl/internal/umli2/.

[36] W. van der Aalst. Pi calculus versus Petri nets: Let uhamble pie rather than further inflate the
Pi hype, 2004. Discussion paper http://tmitwww.tm.tueasliearch/patterns/download/pi-hype.pdf.

[37] W. van der Aalst. Why workflow is NOT just a Pi proce®&PTrends 2, 2004.

[38] B. Victor and F. Moller. The Mobility Workbench — a toobff the w-calculus. InProceedings
of the 6th International Conference on Computer Aided \etifbn volume 818 ofLNCS pages
428-440. Springer, 1994.

[39] V. Vitolins and A. Kalnins. Semantics of UML 2.0 actiyitdiagram for business modeling by
means of virtual machine. INinth IEEE International Enterprise Distributed Object @puting
Conference (EDOC 2005pages 181-194. IEEE Computer Society, 2005.

[40] M. von der Beeck. A comparison of Statecharts variaimsProceedings of the 3rd International
Symposium on Formal Techniques in Real-Time and Faultdinié&systemsvolume 863 0lLNCS
pages 128-148. Springer, 1994.

[41] P. Wohed, W. van der Aalst, M. Dumas, A. ter Hofstede, BhdRussell. Pattern-based analysis
of the control-flow perspective of UML activity diagrams. Rroceedings of 24th International
Conference on Conceptual Modelling (ER 2Q0&)lume 3716 ofLNCS pages 63—78. Springer,
2005.

[42] M. Wynn, W. van der Aalst, A. ter Hofstede, and D. Edmonderifying workflows with Can-
cellation Regions and OR-Joins: An approach based on Rextetadd reachability analysis. In
Proceedings of the 4th International Conference on Busifyscess Managementolume 4102
of LNCS pages 389-394. Springer, 2006. Long Version as bpmcemtd&eport 06-16.

[43] K. Xu, Y. Liu, and G. Pu. Formalization, verification amestructuring of BPEL models with Pi
calculus and model checking. Technical Report RC23962)64@4 2), IBM, 2006.

27

