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Performance Evaluation of the Interleaved
Parity-Check Intra-Disk Redundancy Scheme

llias lliadis
IBM Research
Zurich Research Laboratory
8803 Ruschlikon, Switzerland

Abstract

This report considers the interleaved parity-check inisk redundancy scheme proposed in [1], [2] to enhance
the reliability of RAID systems. This scheme aims to protbet system against media-related unrecoverable errors.
A detailed performance analysis of this as well as of tradal redundancy schemes based on Reed—Solomon codes
and single-parity-check codes is conducted by analytims. A new model is developed to capture the effect of
correlated unrecoverable sector errors. The probabifignrounrecoverable failure associated with these schemes
is derived for the new correlated model as well as for the Bmipdependent error model. Furthermore, we derive
closed-form expressions for the mean time to data loss obR%dnd RAID 6 systems in the presence of unrecoverable
errors and disk failures. We then combine these resultséomgprehensive characterization of the reliability of RAID
systems that incorporate the proposed intradisk redulydstieeme. The impact on the mean time to data loss of a
RAID 5 and RAID 6 systems is demonstrated.



. INTRODUCTION

A current trend in the data storage industry is the increasidoption of low-cost components, most
notably SATA disk drives instead of FC and SCSI disk driveAT/A drives offer higher capacity per
drive, but have a comparatively lower reliability. As thesklicapacity grows, the total number of bytes
that are read during a rebuild operation becomes very larges. increases the probability of encountering
an unrecoverable error, i.e., an error that cannot be deddxy either the standard sector-associated error-
control coding (ECC) or the re-read mechanism of the HDD .edaverable media errors typically result
in one or more sectors becoming unreadable. This is paatigupbroblematic when combined with disk
failures. For example, if a disk fails in a RAID 5 array, théu#d process must read all the data on the
remaining disks to rebuild the lost data on a spare disk. fgutlis phase, a media error on any of the
good disks would be unrecoverable and lead to data loss bethaere is no way to reconstruct the lost data
sectors. A similar problem occurs when two disks fail in a RAl scheme. In this case, any unrecoverable
sectors encountered on the good disks during the rebuiltbpsoalso lead to data loss.

A new XOR-based intra-disk redundancy scheme, calledl@aeed parity check (IPC), was proposed
in [2] to enhance the reliability of RAID schemes. This scleeimroduces an additional “dimension” of
redundancy inside each disk that is orthogonal to the us@dDRlimension, which is based on redundancy
across multiple disks. The RAID redundancy provides ptaia@gainst disk failures, whereas the proposed
intra-disk redundancy aims to protect against mediagdlanrecoverable failures. A key advantage of this
new scheme, therefore, is that it can be applied to varioubR&stems, including RAID 5 and RAID 6.

A new model capturing the effect of correlated unrecoveragctor errors was developed and subse-
qguently used to analyze the proposed IPC scheme as well disainal redundancy schemes based on
Reed-Solomon (RS) codes and single-parity-check (SP@&scaoA first-order approximation of the prob-
ability of an unrecoverable failure associated with thedemes was derived for the new correlated model
as well as for the simpler independent error model. The teshiowed that in the practical case of cor-
related sector errors where the maximum burst length escéedinterleaving depth, the probability of an
unrecoverable failure for the IPC scheme is roughly the sasrfer the optimum, albeit more complex, RS
coding scheme. This, however, does not hold when the maxiburst length does not exceed the inter-
leaving depth. In this report we derive the correspondirapabilities of an unrecoverable failure based on
a second-order approximation.

Furthermore, suitable Markov models were developed ind2jdrive closed-form expressions for the
mean time to data loss (MTTDL) of RAID 5 and RAID 6 systems ia gresence of unrecoverable errors
and disk failures. In particular, in the case of RAID 6, themssion derived yielded a lower bound of the
actual MTTDL. In this report we show that the bound is tighttie range of interest, i.e. in the range of
small sector error probabilities.

The remainder of the report is organized as follows. Thechiasia-disk redundancy scheme is briefly
reviewed in Section Il. Section Il presents the parametffiecting the performance of the RAID systems
that use an intra-disk redundancy scheme. The IPC schemellbasihe traditional redundancy schemes
based on RS and SPC codes are presented in Section |V. Adsogittel that captures the effect of correlated
unrecoverable sector errors is presented for the analiiese schemes. The erasure correction capability
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Fig. 1. Basic intra-disk redundancy scheme.

in the presence of correlated as well as independent ureeadale sector errors, also in the case where the
maximum burst length does not exceed the interleaving depdivaluated. Section V assesses the reliability
of RAID 5 and RAID 6 storage systems that incorporate the mpdichemes considered. Closed-form
expressions are derived for the MTTDL of RAID 5 and RAID 6 gyss in the presence of unrecoverable
errors and disk failures. Section VI presents numericailteslemonstrating the efficiency of the IPC coding
scheme. Section VII concludes the report.

I[I. INTRA-DISK REDUNDANCY SCHEME

In this section we briefly review the basic intra-disk redamcly scheme, which works as follows: each
strip (stripe unit) is partitioned into segments, and witbach segment, a portion of the storage, usually
several sectors (called data sectors), is used for stodtsy whereas the remainder is reserved for redundant
sectors, which are computed based on an erasure code. A nahtierent schemes can be used to obtain
the redundant parity sectors, including the traditionalurelancy schemes based on RS and SPC codes.
Furthermore, the redundant sectors are optimally placdumthe segment to minimize the impact on the
throughput performance. The entire segment, compriéidgta and parity sectors, is stored contiguously
on the same disk, as shown in Fig. 1, whére n + m.

The size of a segment should be chosen such that a sufficigreedef storage efficiency, performance
and reliability are ensured. For practical reasons, thie size should be a multiple of the data segment size.
In addition, the numbem of parity sectors in a segment is a design parameter thateaptimized based
on the desired set of operating conditions. In general, metendancy (large:) provides more protection
against unrecoverable media errors. However, it also snmore overhead in terms of storage space and
computations required to obtain and update the parity secidnerefore, a judicious trade-off between these
competing requirements needs to be made. The oveé®¥®) of the intra-disk redundancy scheme is
given by

PR = T (1)
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whereas the storage efficienes/'°R) is given by

sellPR) — E—Tm (2)

I1l. SYSTEM ANALYSIS

The following notation is used for the purpose of our analy3ihe parameters are divided into two sets,
namely the set of independent and of dependent parameters.

N : number of disks per array group,

ng . number of array groups in the system,

Cy : disk drive capacity,

. sector size,

: number of sectors in a segment,

ng . number of segments in a disk drive,

m . number of parity sectors in a segment, number of interkigawe
interleaving depth,

1/X : mean time to failure for a disk,

Bt : probability of an unrecoverable bit error,

1/p : mean time to rebuild in the critical mode for a RAID 5 array,

1/u1 : mean time to rebuild in the degraded mode for a RAID 6 array,

1/uo = mean time to rebuild in the critical mode for a RAID 6 array,

S U

ov(IPR) : overhead of the intra-disk redundancy scheme,

sellDR) : storage efficiency of the intra-disk redundancy scheme,
ov(RAID) - gverhead of the RAID scheme,

se(RAID) - storage efficiency of the RAID scheme,

ov(RAID¥IDR) - gyerall overhead of the entire system,

se(RAIDHDR) - gyerall storage efficiency of the entire system,

P : probability of an unrecoverable sector error,

Prseqg . probability of a segment encountering an unrecoveraldtoserror,
Py . probability of an unrecoverable failure,

Assuming that errors are independently occurring overesgige bits, the unrecoverable sector error
probability P; is given by
Py=1-(1- Pw)?, (3)

with .S expressed in bits.
Similarly, when no coding within the segment is applied & 0), the unrecoverable segment error
probability Psegis given by

Psegno coding = 1 — (1 — P) =1 — (1 — Pyir)®* . (4)



As there areS bits per sector and sectors per segment, the number of segments in a disk dijyés
given by
Cq

ng

with S expressed in bits.
In the critical mode, an unrecoverable failure occurs whdeast one out of the; segments that need to
be read is in error. Consequently, the probability of an cowerable failure Py, is given by

Pule_(l_Pseg)ns- (6)

For a RAID 5 and a RAID 6 system in the critical mode, the cqroesling probabilities of an unrecoverable
failure Plffl) andPlffz) are obtained by setting; = (N — 1)ngy andng = (N — 2)ngy, as there ar&V — 1 and
N — 2 operational disks, respectively. From (5) it follows that

(N-1)C
Pl =1-(1- Py L )
and
(N-2)
PP =1 (1-Pyg 5 " (8)

The probability Pseg corresponding to the various coding schemes is evaluatBdation V.

A. Overhead and Storage Efficiency

The overhead and storage efficiency of the RAID scheme chargegiven by

op(RAD) p : (9)

and

so(RAID) _ N-p (10)
respectively, with

(11)

1 fora RAID 5 system
p =
2 for a RAID 6 system.

Note that the above expressions hold if no intra-disk redanyg scheme is used. If an intra-disk redun-
dancy scheme is used, the overall storage efficiency of ttke@mray (or system) is given by

R = (1 )1 4 on%) -1 = p)l(l oyl (12)
- N v
and
(RAID+IDR) __ _ (RAID) _(IDR) _ (1 _ P _m
se = se se = (1 N) (1 E) , (13)

respectively.



IV. INDEPENDENT AND CORRELATED ERRORS

The performance of the intra-disk redundancy scheme iyteelly assessed based on two models. Ac-
cording to the first model (independent model), each seamrunters an unrecoverable error, independently
of all other sectors, with probabiliti;. This implies that the lengths (in number of sectors) of refmee in-
tervals are independent and geometrically distributetl patrametei”;. In addition, we introduce a model
for capturing error correlation effects in which sectooesrare assumed to occur in bursts. We refer to this
model as the correlated model. LBtand I denote the lengths (in number of sectors) of bursts and of the
error-free intervals between successive bursts, respécti_et B andI denote the corresponding average
lengths. These lengths are assumed to be i.i.d., i.e. indepdly and identically distributed random vari-
ables. In particular, the error-free intervals are assutméd geometrically distributed, as in the independent
model, but with a parameter. Therefore, the probability density function (pd#);} of the length;j of a
typical error-free interval is given by; = P(I = j) = a(1 — a)/ ! for j = 1,2,..., such thatl = 1/a,
with 0 < a < 1. Let also{b;} denote the pdf of the lengthof a typical burst of consecutive errors, i.e.
P(B = j) =bjforj =1,2,.... The average burst length is then givenBy= Z;‘;ljbj and is assumed
to be bounded. Owing to ergodicity, the probabiliRy that an arbitrary sector has an unrecoverable error is

given by -
B
P,=——. (14)
B+1
From the above it follows that
P P Pf PS3 Py 9
_ =S4 Isyis 4. =51L0(P 15
““Ba-m B BB 5 TOWE) (15)
and that B
B
P, < = ; (16)
B+1

given thatoe < 1, or, equivalently,] > 1.
Let {G,} denote the complementary cumulative density functionficofithe burst sizeB. ThenG,
denotes the probability that the length of a burst is gretitan or equal to, i.e. G, £ Z;‘;n b;, for

n = 1,2,.... Consequently, the probability that a burst of more thanonsecutive errors occurs is equal
to Gt

Remark 1. Note that the independent model is a special case of thelamaenodel in which theb; }
distribution is geometric with parametér— P;, i.e.b; = (1 — P,)P!~' for j = 1,2,.... Therefore,

B =1/(1 - P,)andG; = P}"' forj = 1,2,.... Also, in this case it holds that = 1 — P;, with
0<Ps<1.

Let us consider the sectors divided into groupd ¢f > m) successive sectors, with each such group
constituting a segment. If no coding scheme is applird= 0), a segment is in error if there is an unrecov-
erable sector error. For the independent model, and acgptdi(4), the probabilityPseq that a segment is
in error is then given by

Pseg=1— (1 — Py)" = LP, + O(P?) . 17)

For the correlated model, the segment is correct if the festas is correct and the subsequént 1
sectors are also correct. The probability of the first sdotimg correct is equal tb— Ps, whereas from the



geometric assumption the probability of each subsequetrsieeing correct is equal tb— «. By making
use of (15) we obtain

&wz1—0—&m—@“=14r&m@—%—mﬁ0H=

_ Q+%;>g+mﬁy (18)

We now proceed with the evaluation Bfegfor various coding schemes. In particular, we consibigy
expressed as a series expansion in powerBsofi.e. Pseg = > o0, ¢; P!, with the coefficients; being
independent of’. It turns out that in the case of the correlated model, thiopmance difference between
the coding schemes considered can be demonstrated by edngithe power series taken to the second
order. That is, it suffices to make a power series expansidisgfin P of the form Pseg = Zle c; Pl +
O(P2). First we establish the following propositions which hadd the correlated model and independently
of the coding scheme used.

Proposition 1: The probabilityPs(écg, that a segment contairis(k < £/2) bursts of errors and is in error
is of orderO(PF).

Proof: See Appendix A. [ |

Proposition 2: It holds thatPseg = >, ¢; P, with the coefficiente; derived based only oﬁ’s(ég,, e
P,

Proof. By conditioning on the number of bursts of errors in a segmamd using Proposition 1 we
obtain

/2
Pseg = Z P(segment containsbursts of errors and is in errps=
k=1
/2 £/2
= ZP ZP + 3 Py ZPS +O(PHY). (19)

k=i+1 k=1

A. Reed-Solomon (RS) Coding

Reed-Solomon (RS) coding is the standard choice for erasurection when the implementation com-
plexity is not a constraint. This is because these codesdmdlve best possible erasure correction capability
for a given number of parity symbols, i.e. for a given storafficiency (code rate). Essentially, for a code
with m parity symbols in a codeword of symbols, anyn erasures in the block of symbols can be cor-
rected. RS codes are used in a wide variety of applicatiodsaemthe primary mechanism that allows the
stringent uncorrectable error probability specificatibRiDDs to be met. Note that the RS codes considered
here provide an additional level of redundancy to that ofaihié-in ECC scheme.

The performance of the RS scheme is the best that can be edhi@lith such a code, the probability of
a segment being in error is equal to the probability of ggttimore thanm unrecoverable sector errors per



segment and is given by

‘
L ; ; L
RS _ —j _ m+1 m+2
Peg = > (.)Pgu—Ps) J—(mH)PS +O(PI™2) . (20)
Jj=m-+1

In the case of the correlated model, an approximate expressi the probability of a segment being in
error is given by the following theorem.

Theorem 1: It holds that

PR = &8P+ KSpP2+ 0P, (21)
where ’ NG " o
—m=1DGer — S G
c?S:1+( JOme1 =2 i (22)
B
£—m £—m—1 1
&S = [( ) ) GGyt — ( ) ) GGm+2] o (23)
with
GG; 2 > GLG, . (24)
(I1,12)€(NXN)
li+la=j
Proof: See Appendix B. |

Corollary 1: The coefficient}®is equal to zero if and only if7,, 1 = 0, i.e. the maximum burst length
does not exceefh.
Proof: Note thatc® can also be written d¢¢ — m)Gr i1 + Y5, 1, G;]/B, which is equal to zero
if and only if G,,,.1 = 0. |
Corollary 2: Both coefficientscR® and c5° are equal to zero if and only ey = 0, i.ethe total
number of errors of any two bursts does not exceed
Proof: See Appendix B. |
Remark 2. According to Remark 1, the independent model is a specia ohthe correlated model in
which theb; distribution is geometric with parameter- P, i.e.b; = (1 - PS)P,?’1 forj =1,2,.... Thus,
B=1/1-P,),G; = P!, and alsaGG; = (j — 1)P! 2. Substituting these into (22) and (23) yields
S = ( —m)P™ + O(P™*1) andcRS = [m(£ — m)(£ —m — 1)/2] P! + O(P™), respectively. Thus,
it now follows from (21) thatPRg = [(£ — m)(ml — m? —m +2)/2]P/"*! + O(P;**?). This expression,
however, in general does not agree with (20) and therefaretisorrect. The reason for this inconsistency is
that although this expression is of orde(P™*!), it is derived by considering a series expansion in powers
of P, taken to second order only.

B. Single-Parity Check (SPC) Coding

The simplest coding scheme is one in which a single paritypséccomputed by using the XOR operation
on/ — 1 data sectors to form a segment witeectors in total. Such a scheme can tolerate a single erasure
anywhere in the segment. In fact, the parity in a RAID 5 sch@&rigased on such a single parity-check
(SPC) scheme, albeit with the redundancy along the RAID dgio®. The probability of a segment being
in error is equal to the probability of getting at least twoagoverable sector errors. The independent model
yields



AN -1
PR = jZQ <J) Pi(1 - Py = 5 P2+ 0O(P?). (25)
In the case of the correlated model, the probability of a ssgrheing in error is given by the following
theorem.

Theorem 2: It holds that
P =1-(1-P)1- o)t - % [2(1 — @) 4+ (£ — 2)by](1 — )3 . (26)

Proof. See Appendix C. [ |
An approximate expression f@ﬁfgcbased on a series expansion in powerBgat given by the following
theorem.

Theorem 3: It holds that
(£—-2)Gy —1 (L—=2)[f—1-2(£ —3)Gs]

2B2

PSC = |1+ P, + P2 +0(P). (27)
Proof: Note that the SPC coding scheme is a special case of the R&ycschieme in which only a single
sector error can be corrected in a segment. Expressiong2figiefore derived from (21)—(24) by setting
m = 1. |
Remark 3. Assuming a geometric distributiofb;} with parameterl — P;, Eq. (27) yieldsPRi© =

[(¢ — 1)£/2]P? + O(P2), which is in agreement with the expression derived in (25)tfie independent
model.

C. Interleaved Parity-Check (IPC) Coding

Here we review the interleaved parity-check (IPC) codingesae that has a simplicity akin to that of the
SPC scheme but considerably better performance. In thevseh (n = £—m) contiguous data sectors are
conceptually arranged in a matrix containimgcolumns. Data sectors in a column are XORed to obtain the
parity sector and together form @rterleave An IPC scheme withn (m < £/2) interleaves per segment,
i.e.Z/m sectors per interleave, has the capability of correctinm@les error per interleave. Consequently,
a segment is in error if there is at least one interleave ircvitiere are at least two unrecoverable sector
errors. Note that this scheme can correct a single burst ebnsecutive errors occurring in a segment.
However, unlike the RS scheme, it in general does not haveapbability of correcting anyn sector errors
in a segment, implying thatles > PRy,

According to the independent model, the probabilfyerieaveOf an interleave being in error is given by

L/m

14 4 .
Piterleave = Z ( /]m> Pl(1—- PS)Z/m—] —
=2
L (L _ _
MPEJFO(PE) = MP,?JrO(Pj’). (28)

2 2m?
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Consequently,
L6 —m)
2m
In the case of the correlated model, an approximate expressi the probability of a segment being in
error is given by the following theorem.
Theorem 4: It holds that

Ps',Zé: = 1 — (1 — Pinterleavd” = P24+ O(P?). (29)

PES = PP, + FCP2+ O(P?) (30)

where ’ G
—m —1)G,,
c|1pc — 14 ( ) B+1 Zg 1 (31)
JPC _ {E;_mm |:2€+22GG]-2( —1) GGy1 +2(£—2)) G —
j=2 j=1 (32)
—9 1
—2m -1l —m —2) Gpy1| — C m)éé m=2) GGm+2} B2

andGGj is given in (24).
Proof. See Appendix D. [ |

Remark 4. Assuming a geometric distributiofb;} with parameterl — P;, Eq. (30) yieldsP&§ =
[(£—m)£/(2m)] P2 +O(P2), which is in agreement with the expression derived in (28)He independent
model.

Remark 5. From (22) and (31) it follows that™® = ¢RS. Thus, from (21)—(23) and (30)—(32) it follows
that PG ~ PR given thatPlE§ — PR3 = O(P?). Therefore, when the unrecoverable sector errors are
known to occur in bursts whose length can exceedith a nonnegligible likelihood, using an IPC check
code is preferable because it is as efficient as the more esnR$ code. This is because the interleaved
coding scheme provides additional gain by recovering fromsecutive unrecoverable sector errors, which
can be as many as the interleaving depth. On the other hathe, mhaximum burst length does not exceed
m, Corollary 1 implies thaPRy and P-g are no longer of orde®(P;). In this case, the two probabilities
are of orderO(P?) and significantly different.

D. Summary

TABLE |
APPROXIMATE Pseq (FOR Ps <).

Coding Model for Errors

Scheme | Independent Correlated (for G,+1 > 0)
None (P, 1+ 5P,
RS (m+1) Pm+1 —1+ (l—m-1)G m;l Zm G Ps
spc | 4bpe 1+ 2l p
pc | dempz | [y B UG O] p




TABLE Il

APPROXIMATE Pseg

Cading Modd for Errors
Scheme | Independent | Correlated
None | 5.2x107? | 5.0 x107?
RS 6.2 x 1078 | 2.5 x 10712
SPC | 1.3x107'7 | 9.5 x 107!
IPC 1.6 x 10718 | 2.5 x 10712
TABLE llI

APPROXIMATE P!) FORRAID 5 WITH N = 8.

APPROXIMATE P.?) FORRAID 6 WITH N = 16.

Coding Modé for Errors
Scheme | Independent | Correlated
None | 1.5x107! | 1.5 x 107!
RS 20x107™ | 7.9 x 1075
SPC | 43x107'0 | 3.1x1073
IPC 5.1 x 107" | 7.9 x 1075
TABLE IV

Coding Model for Errors
Scheme | Independent | Correlated
None | 2.8 x10~! | 2.7 x 107!
RS 3.9%x107™ | 1.6 x 1074
SPC | 8.7x107'0 | 6.1 x1073
IPC 1.0x 10719 | 1.7 x 10~*

Table | summarizes the results obtained for the probabiity,that a segment is in error for the various
models and coding schemes, assuming that the sector eotzalplity is small.

E. Numerical Results

We consider SATA drives witl; = 300 GB andP,; = 10~'4. Assuming a sector size of 512 bytes
and according to (3), the equivalent unrecoverable sector probability isP; ~ Py x 4096, which is
4.096 x 10~'1. We also consider a segment comprised ef 128 sectors withn = 8 interleaves. We now

consider the following error-burst length distribution:

b =

0.0001 0.0001 0 0.0001 0.0001] .

[0.9812 0.016 0.0013 0.0003;0.0003 0.0002 0.0001 0.0001 0 0.0001 0
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Fig. 2. Reliability model for a RAID 5 array.

Then, we have bursts of at most 16 sectors idite: 1.0291, G, = 0.0188, andGy = 0.0005. These values
are based on actual data collected from the field for a pratiatis currently being shipped. The results for
Pseqare listed in Table 1. The corresponding unrecoverableifiprobabilities for a RAID 5 array with
N = 8 and a RAID 6 array withV = 16 are listed in Table 11l and Table IV, respectively. From tesults

it follows that in the case of correlated errors, the progds& scheme improves the unrecoverable failure
probability by two orders of magnitude compared with the Sefleme. This is also the improvement we
would get by using the more complex RS code.

V. CONTINUOUS-TIME MARKOV CHAIN (CTMC) MODELS

Here we derive the MTTDL for a RAID 5 and a RAID 6 disk array. Assng independent and expo-
nentially distributed disk failures and rebuild times, M@ TDLs for the two disk arrays are obtained using
CTMC models. The numbered states of the Markov models repteéke number of failed disks. The DF
and UF states represent a data loss due to a disk failure amtt@roverable sector failure, respectively.

Assuming that the MTTDL of a single array is exponentiallgtdbuted, the MTTDL of a RAID system,
MTTD Lsys, comprisingng arrays is subsequently obtained as follows:

MTTDL

MTTDLsyS -
nag

(34)

A. Intra-Disk Redundancy with RAID 5

The CTMC model for a RAID 5 disk array is shown in Fig. 2. Thenitgsimal generator matrig is
given by

~NA N 0 0

p1-PYy —p—(N-1x (N-1Ar pPY
0 0 0 0
0 0 0 0

In particular, the submatrix corresponding to the trartsi¢ates 0 and 1 is

—N) N
p(1 =P —p— (N =1)A

uf

Qr =
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The vectorr of the average time spent in the transient states befor&uegfaiccurs, i.e. before the Markov
chain enters either one of the absorbing states DF and UBtamed based on the following relation [3]

7Qr = —P7(0),

wherer = [ry 7] andP7(0) = [1 0]. Solving the above equation feryields

(N=DA+yp B N (35)
o= My T My
NA(N = 1A+ pPy’] NA(N = DA+ pBy’]
Finally, the mean time to data loss is given by
MTTDL = 1+ 7 = — N ZDA+p (36)

NAN = DA+ PP

wherePlffl) is given by (7).
Note that forP(fl) = 0 (which holds wherP; = 0) and A < u, Eg. (36) can be approximated as follows:

u

MTTDL =~ a

= NN DR 57)

which is the same result as derived in [4].

B. Intra-Disk Redundancy with RAID 6

A RAID 6 array can tolerate up to two disk failures; thus itrnghe critical mode when the disk array has
two disk failures. When the first disk fails, the disk arrayezs into the degraded mode, in which the rebuild
of the failing disk takes place while still serving 1/O regte The rebuild of a segment of the failed drive is
performed based on up 6 — 1 corresponding segments residing on the remaining disk&nile rebuild
fails, then two or more of these segments are in error. Noweeker, that the converse does not hold. It may
well be that two segments are in error and the correspondio®is in error are in such positions that the
RAID 6 reconstruction mechanism can correct all of them. <eguiently, the probability?ecs that a given
segment of the failed disk cannot be reconstructed is uppended by the probability that two or more of
the corresponding segments residing in the remaining disksn error. As segments residing in different
disks are independent, the upper bourl¢. of the probability Prect is given by

N-1

N -1 - s N -1
PfgCBf:Z< j )Pgeg(l—PSeg)Nljz< 9 >P52eg' (38)

Jj=2

Furthermore, the reconstruction of each of thesegments of the failed disk is independent of the recon-
struction of the other segments of this disk. Consequethté/upper bound’lffr) of the probability that an
unrecoverable failure occurs because the rebuild of thedfaiisk cannot be completed is given by

P =1 (1- PY) (39)

uf

wheren, is given by (5).
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Fig. 3. Reliability model for a RAID 6 array.

Assuming that the rebuild times in the degraded and thealithode are exponentially distributed with
parameterg:; andus, respectively, we obtain the CTMC model shown in Fig. 3. Nb#, in contrast to
the case of a RAID 5 array, the rate from state 1 to U,EliE’lffr) instead ofulPlffl).

The infinitesimal generator submati@, restricted to the transient states 0, 1 and 2, is given by

—NA N 0
m=PY) ~(N=DA—p (N1
na(1 = PY)) 0 —(N = 2)A = pa

Solving the equationQr = —P7(0) for 7 = [ry 71 7], with P7(0) = [1 0 0], we get

[(N = DA+ ] [((N = 2)A + po]

T0 = NV 3 (40)
(N =2)A + o (N =1
T = Vv 3 T2 = v ) (41)
where

V2 (N = DA+ PPN = 22X+ o P] + mps Py (1 - P (42)

andPlffr) andPéf) are given by (39) and (8), respectively.

Then, we have

MTTDL=1y+7 + 2. (43)

Note that forP) = P{?) = ¢ (which holds whenP, = 0) and A < iy = ps = p, Eq. (43) can be

u
approximated as follows:
2

W
MTTDL = 44
= NN 1)(N —2)A3° (44)

which is the same result as reported in [5].

VI. NUMERICAL EXAMPLES

Here we assess the reliability of various schemes considaveve through illustrative examples. We
consider different systems using SATA 300GB disk drives atuting a user data base of 10 PB. The
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TABLE V
NUMERICAL VALUES

Parameter Value
SATA SCS

Cy 300GB | 146 GB
Pt 10~ 1019
Al 500 000 h| 1 000 000 h
pt 17.8 h 9.3h
pyt 17.8 h 9.3h
gt 17.8 h 9.3h
N 8 for RAID 5

16 for RAID 6
S 512 bytes = 4096 bits
L 128 sectors
m 8 interleaves per segment

disk drive parameters are summarized in Table V. In pa#dicubr a sector size of 512 bytes, we have
P, = 4.096 x 10711,

From (10), (11) and (13) it follows that the storage efficient the entire system is independent of the
RAID configuration if the arrays in a RAID 6 system are twice 8ize of the arrays in a RAID 5 system.
For a RAID 5 system withV = 8, when there is no intra-disk redundancy, the required nurobarrays to
store the user data is equal to 4762 (i.e. 10 PBBU0 GB)), whereas for a RAID 6 system with = 16, it
is equal to 2381 (i.e. 10 PB/(3B00 GB)). The corresponding storage efficiency is equal&pi#. 0.875.
For the RS, SPC, and IPC redundancy schemes, the intratdisige efficiency is obtained from (2) by
settingm = 8,1, and8, respectively. Fo¥ = 128, the storage efficiency is equal to 0.94, 0.99, and 0.94,
respectively. Furthermore, the required number of arraya RAID 5 configuration is obtained as the ratio
of 4762 to the intra-disk storage efficiency and is equal ®805@800, and 5080, respectively. Similarly, for
a RAID 6 configuration, the required number of arrays is equ&540, 2400, and 2540, respectively. The
overall storage efficiency is obtained by (13) and is equél 8@, 0.87, and 0.82, respectively.

The combined effects of disk and unrecoverable failuresbeaseen in Fig. 4 as a function of the un-
recoverable sector error probability. The vertical lindhe figures indicates the SATA drive specification
for unrecoverable sector errors. Note that for small seetmr probabilities, the MTTDL remains unaf-
fected because data is lost owing to a disk rather than arcoveeable failure. In particular, the MTTDL
of a RAID 6 system is three orders of magnitude higher thahdha RAID 5 system. However, as the
sector error probability increases, the probability of anegoverable failure in the critical modé also
increases and therefore the MTTDL decreases. This deceaasavhen the sector error probability is such
that the correspondin@s is extremely high, i.e. close to one. In this case the rehuwititess in critical
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(c) RAID 6 with independent unrecoverable sector errors.  (d) RAID 6 with correlated unrecoverable sector errors.

Fig. 4. MTTDL for RAID 5 and RAID 6 systems with unrecoverabkctor errorsf{ = 128, m = 8).

mode cannot be successfully completed because of an ueratde failure. Consequently, the MTTDL is
the mean time until the system (i.e. any of the disk array®rerhe critical mode. In a RAID 5 system, this
occurs when the first disk fails after an expected time/¢h.; N ). In a RAID 6 system, this occurs when
a second disk fails while the system is in the degraded modée tHat this corresponds to the MTTDL of
a RAID 5 system without unrecoverable sector errors. Thie akplains why the RAID 6 curves become
flat at the height of a RAID 5 system, as can be seen in Fig. 5s fidrnige of sector error probabilities
is of primary interest because it includes the SATA drivec#fimtion. Note that in this range the upper
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Fig. 5. RAID 5 vs. RAID 6 systems with independent or corretatinrecoverable sector errofs 128, m = 8).

boundPlffr) of the probability (as well as the probability itself) of anracoverable failure in the degraded
mode is negligible, as shown in Fig. 6. Consequently, intthigye of sector error probabilities, called the
first range, the RAID 6 curves are tight lower bounds of the@ldTTDL. We subsequently consider the
second range of the remaining sector error probabilities.th& sector error probability further increases,
the upper bound?lffr) of the probability of an unrecoverable failure in the degidnode starts becoming
significant, as shown in Fig. 6, resulting in a further desecaf the MTTDL. This decrease ends when the
sector error probability is such that the correspondﬁﬁa is extremely high, i.e. close to one. In this case
the rebuild process in degraded mode cannot be successfutigleted because of an unrecoverable failure.
Consequently, the MTTDL is the mean time until the system ény of the disk arrays) enters the degraded
mode. In a RAID 6 system, this occurs when the first disk fdtlsraan expected time df/(ng N \), which

is the same as for a RAID 5 system.

In all cases, the intra-disk redundancy schemes consigeiraprove the reliability over a wide range
of sector error probabilities. In particular, in the casecofrelated errors, the IPC coding scheme offers
the maximum possible improvement that is also achieved byRB coding scheme. Furthermore, for
large sector error probabilities, the gain from the use efitttra-disk redundancy schemes is smaller for
correlated errors than for independent errors. Note thedrding to Remark 5, in the case of correlated
errors the MTTDL for the IPC scheme is roughly the same asheraptimum, albeit more complex, RS
coding scheme. This is because for both the IPC and RS schamk$or small sector error probabilities,
the probability of an unrecoverable failure is essentidiyermined by the event of encountering a single
burst of more than 8 consecutive errors.

Both the plain RAID 6 and the RAID 5 + IPC system improve théatality over the plain RAID 5 system,
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Fig. 6. Probabilities?? andPlffr) for a RAID 6 system{ = 128, m = 8).

with the respective gains shown in Fig. 5. Note that in the2 @dsSATA drives the resulting MTTDLs for

these two systems are of the same order (depicted by thegdlipr both independent and correlated errors.
Therefore, the RAID 5 + IPC system is an attractive alteweatd a RAID 6 system, in particular because

its I/O performance is better than that of a RAID 6 system [2].

Next we consider a system in which both the segment size anihtiérleaving length are twice as long,
i.e./ = 256 andm = 16, such that the number of sectors per interleave remainsathe.sAlso the storage
efficiency and the required number of arrays for the IPC andd@8ndancy schemes remain the same. The

results obtained are shown in Fig. 7. For the IPC scheme,ratitticase of independent sector errors, the
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(a) Independent unrecoverable sector errors. (b) Correlated unrecoverable sector errors.

Fig. 7. RAID 5 vs. RAID 6 systems with independent or corretatinrecoverable sector errofs=£ 256, m = 16).

MTTDL is not affected because (28) implies that the proligbiPerieave Of @n interleave being in error
remains unaffected. The MTTDL for the RS scheme, howeveprawes. In the case of correlated errors,
the MTTDLs for both the IPC and RS schemes are significanttiehebecause now all single bursts in a
segment can be corrected. Furthermore, the MTTDL for thed&@me is no longer the same as for the
RS coding scheme. It is worse because, unlike the RS scheend € scheme in general does not have the
capability of correcting any two bursts in a segment havitgial number of errors smaller than 16.

VIl. CONCLUSIONS

Owing to increasing disk capacities and the adoption of dmst disks in modern data storage systems,
unrecoverable errors are becoming a significant cause ptlateloss. To cope with this issue, we consider
the XOR-based intra-disk redundancy scheme called iatezt parity-check (IPC) coding scheme. A new
model capturing the effect of correlated unrecoverabléosexrors was developed to analyze this scheme.
Traditional redundancy schemes based on Reed-Solomonc(83 and single-parity-check codes were
also analyzed. Closed-form expressions were derived éomisan time to data loss of RAID 5 and RAID 6
systems in the presence of unrecoverable errors and diskefai

The results obtained demonstrate that the proposed IP@nschensiderably improves the reliability
over a wide range of sector error probabilities. In particuln the case of correlated errors where the
maximum burst length exceeds the interleaving depth, tleckitling scheme offers the maximum possible
improvement that is also achieved by the RS coding schenréhd¥more, in the case of SATA disk drives,
the IPC scheme applied to a RAID 5 system offers the samedéveliability as a RAID 6 system.
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APPENDIX A
NUMBER OF BURSTS OF ERRORS IN A SEGMENT

Proof of Proposition 1.

Let us consider an instance bbursts in a segment and let us denotefhjne vector L1, ..., L) of the
corresponding burst lengths and 5yhe vector §1, ..., Si) of their corresponding starting sector positions
with 1 < §; < --- < S < L. The length of the error-free intervé) following the j-th burst is then given
by Sj41 — S; — Lj, forj = 1,2,...,k — 1, implying thatS;,,; > S; + L; + 1. Also, the length of the
error-free intervally preceding the first burst is at lea$t — 1, and the length of the error-free intendl
following the k-th burst is atleast + 1 — S, — Ly,.

Let us now consider the following realization in terms ofsmlengthslq: (l1,...,l;) and starting sector
positionss = (s1,...,s;). Let us denote byR; the set of all possible realizatior{a{f, §)}, and by&
its subset containing those realizations that lead to a eegerror. Next we proceed to calculating the
probability P(L = [,.S = §). Depending on the value of, two cases are considered:

Casel) s; = 1.

As the first sector of the segment has an error, the correggpbdrst may have started in the preceding
segment. Therefore, the length of the remaining consecutive errors is distributed accwydh the residual
burst sizeB, i.e. P(R, = j) = b;, whereb; 2 P(B = j) = G;/B for j = 1,2,... [6]. Note that the
length L; of consecutive errors within the segment is equalnia (R, ¢), and therefore its pdf is given
by P(L1 = j) = P(Ry = j) = bjforj = 1,2,...,£ — 1, andP(Ly = £) = P(Ry > £) = 3%, b;.
Depending on whethef;, exists, two cases are considered:

Case l.a) 3 I;.. This is equivalent to the condition, + I, < 4.

As in this case the length of the intervalis at least + 1 — s, — I, it holds that
P(L=1,5=3)=

P(firstsectorinerrorly =1y, Iy = 89— 81 —ly, Lo=1o, ... \ L =1l Iz >L+1—5; — 1) =
PsP(Ly=0)P(Iy =50 —s1—l) P(Ly=13) -« P(Lp =1lg) P(Ix > £+ 1— s —lg) =

P % a(l — a)‘”_sl_ll_l by, - blk (1- a)z_sk_lk =

ps% b, -+ by, (1— a)th=(tetle) gh=1 =

% {Psk i [k 1 l—k—(lll;...Jrlk)} Pf“} +O(PH2),

Case 1.b) 3 I;,. This is equivalent to the conditio), + 1, = ¢ + 1.

Depending on the value &f, two cases are considered:

Caselb.i)k=1.

In this case it holds thd{ = ¢. Thus,

P(Ly =¢,5, =1) = P(first sector in errorRy > ¢) = Ps P(R; > /) = % Ps.

Case 1L.b.ii) &k > 2.

As the last sector of the segment has an error, the corresgphdrst may extend into the next segment.
Therefore, the pdf of the length,, of consecutive errors within the segment is distributedetiog to the
complementary cumulative density function of the bursediz i.e. P(Ly = n) = > 322 b; = G, for
n =1,2,.... Inthis case it holds that, + I, = £+ 1. Thus,

P(L=1,5=3)=
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P(firstsectorinerrorLy =1y, Iy = sg —s1 —ly, Lo =19, ... Ly =1) =
PSP(Ll = ll)P(Il =89 — 81 — ll) P(L2 = 12) s P(Ik_l = Sk — Sk—1 — lk_l)P(Lk = lk) =
P, % a(l —a)s2—s—h-1 by, - a(l — a)skfskflflkflfl G, =

Gl1 b - bzk,lle (1 — @)~ k=D~ () b

G b - b G _
17 Y1y Bklk 1 Gy {Pf—i— [k_l_é—i—l k— l1+ 'Hk] k+1}+0 Pk+2)

Case?2) s1 > 2.

Let Pys be the probability that a burst of errors starts at a givetos@osition. This is equal to the product
of the probability of the sector being in error and the prolitsttof an erroneous sector being the first of its
corresponding burst, i.é%s = P;/B. Depending on whethdy, exists, two cases are considered:

Case2.a) 3 I.. This is equivalent to the condition, + I, < 4.

Similarly to Case 1.a, it holds that
P(L=01,§=3)=
P(Iy > s;—1, burstof errors starts &t, Ly =1y, Iy = so—s1—1l1, ... Ly =1l Iy > L+1—s;—1f)

P(I(] 2 S1 — 1)Pb5P(L1 :ll)P(Il = S92 — 81 —ll) P(Lk :lk)P(Ik 2 E—I—l—sk —lk) =
(1- a)SrQ % by, o1 — a)SrSrlrl by, (1-— a)Z*Sk*lk =
Ps bl1 . blk ( _ a)l*k*(l1+---+lk)fl ak*l -
by b ko =l—k—=(littl) | ph+1 k+2
S k{P [k—l— B ’“}PS+}+O(PS+)-
Case 2.b) 7 I;. This is equivalent to the conditio), + 1, = ¢ + 1.

Similarly to Case 1.b.ii, and for all values kf it holds that
PL=01,§=3)=

P(Iy > sy — 1, burstof errors starts at, L1 =1y, [y =s9 —s1 —l1, ... , Ly =1}) =

P(Iy > sy — 1) PosP(Ly = 1) P(I) = s —s1 —l1) -+ P(Ip—1 = s — Sp—1 — lp—1) P(Lp = lg) =
(1— )2 % by, a(l —a)s2 sl g1 — @) skl @) o=

:%s bllb L. Cl;lk—l le (1 _ a)é—k—(l1+...+lk) alc—l —

1y gck—1 g {Psk + [k . E—k—(hB-l-"'-l—lk)} P;c-l-l} + O(ch-I-Q)'

From the above it follows thaP(ﬁ = lj,g = 7) is of orderO(PF) because for every, 5) it holds that
P(L=10,§8=35)="LS pky FEHLS) phil 4 O(pk+2), with F(I, §) and H(I, 5') being functions

Lo [s
of I, §and{b,}. ConsequentlyP&) = Yisyee, PL=15=7)= Z““+’;(S) PE 4 O(PFH1). B
APPENDIX B

REED-SOLOMON (RS) CODING SCHEME

Proof of Theorem 1.

Let us consider an arbitrary segment. ko 1 and using the terminology of Appendix A, the segment
is in error for all realization$l, s) such that > m + 1. Thus,
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P = Y Pr=
1>m+1
1<i<t

- i P(L=1,S=1)+P(L

0,85=1)+
l=m+1
l—m—1 f(—i -1
+ > Y PL=1S=i)+ > PL=1S=L+1-1), (45)
1=2 l=m+1 l=m+1

with the four summation terms corresponding to the CasgsIlkai), 2.a) and 2.b) of Appendix A, respec-
tively. Thus,

£—1 00 l—m—1 {—i
G —1-1 Do b 0—2-1
P 3 EZ(PS— =P+ P+ Y (P, - =P} +
I=m+1 =2 [=m+1
-1
G (-1-1_, ,
—= (P — =P P
l=m+1
00 l—m—1 [({—i l—m P
( Z G+ Z b + Z Gg+1z> §s
l=m+1 1=2 I=m+1 =2
-1 {—m—1 [f{—1 P2
—[2 Y (-1-1G+ (¢ —2 -1 B—32+O(PS3)
l=m+1 =2 l=m+1
oo m -2 (-l -1 P
(ZGl G+ Y Zbl—i- > G1> =
=1 =1 l=m+1 1=2 i=m+1
—1 ‘ p?
—[2 C-1-DG+ > > (t—-2-1 B—;+0(PS3)
l=m+1 l=m-+1 i=2
~ m -2 -1
B=Y G+ Y (-1-Dh+ > Gi| =
=1 l=m+1 i=m+1
-1

-2 P2
- [2 SN(-1-0G+ Y (t—-1-D(t—2-1)p
m+1

== +0(P}

= I=m+1 B? ( )

m
B=Y G+ (t—m—-1)Gpny1 — Z G + Z Gi TS

=1 i=m-+1 i=m-+1

P2

—[(E—m—l)(f—m—Q)GmH]B—5+O(Ps3):

_ — 2
o O 22 @ o (70 G| B o).

(46)
For k£ = 2, and using the terminology used in Appendix A, the segmeint &ror for all realizations
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(l1,12) such thaty + I, > m + 1. Thus,

PG = Y PL=0S=3)=
(,5)eRy
li+lp2m+1
l—ls
= > Y P(L=(1,lr),S=(1,5)) +

(11,12) so=l1+2
mA1<1] +lp<l—2

+ Y P(L=(hl),S=(1L+1-1))+

(I1,12)
mA1<1] +Ha<l—1

£=1—(l1+12) L—Iy

+ S P(E= (1), = (s1,52)) +
(I1,12) §1=2 so=s1+l1+1
m41<l]+l5<t—3
Z—(ll-i-lz)
+ S P(L= (), 8 = (51, +1 1)),
(lIJZ) 81:2

mA1<l] +lp<0—2

with the four summation terms corresponding to the CasgsiLlaii), 2.a) and 2.b) of Appendix A, respec-
tively. Thus,

l—la
(2) _ Gi, b, 0 Gy, G, 9
Peg = > P -l D DRl S
m41<l1+12<€—-2 s9=11+2 m+1<l1+12<f-1

£—1—(l1+12) l—ls b b
S SIS S v
m+1<l1+12<f-3 s1=2 so=81+l1+1

Z—(ll-l—lz)b G
o3 X T peorh =
m+41<l1+12<l—-2 s1=2

= > [ —1— (1 +12)] Gy by, +
m+1§11+l2§l72

+ > Gy, Gy, +
m+1§l1+lg Sl*l

1 (l1+13)
+ Z Z [€ = (I1 +12) — s1] by bi, +
m+1<l1+12<f-3 §1=2
p2
+ Y. =1-+w)n G, § 25+ OF), (47)

m41<l1 +12<l-2
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or

-2
P = {Z C=1-7)( > Guby)+

j=m+1 li+la=j

-1
Z ( Z G, Gi,) +

j=m+1 L+la=j

-3 01—
+ Z Z (E_j_sl)( Z bllblz) +
j=m+1 s51=2 l1+l2=j
-2
+ Y (=1-5)( > b,G) +O(P3) (48)
j=m+1 li+l2=j
Introducing the following notation:
£ N byb,, GBE Y Gub,. GGE D GG, (49)
(U1,l2) (U1l2) (U1l2)
l1+lo=j l1+la=j l1+lo=j

Eqg. (48) can be written as follows:

o =2 -1 =3,y y P2
Pseg = 2‘Z(£—l—j)GBj+‘Z GG]'+.Z ( ) )BBj 55 +
j=m+1 j=m+1 J=m+1
+O0(P3) . (50)
Next we expresé/B; and B B; as functions of;:
GBj = Z Gllblz = Z Gl1 (Glz Glz-l-l Z Gll GlQ Z Gll Glz-l-l =
(I1,l2) (I1,l2) (I1,l2) (I1.12)
l1+lo=j I1+lo=j l1+lo=j l1+lo=j
= GG - Y. G,Gy -GG =GG;—GGj1+ Gy . (51)
1.1y
Ly +ly=j+1

BBj = Z bl1bl2: Z (Gl1 Gl1+1 blz Z Gllbll Z Gll'Hle:

(I1,12) (11,12) (11,l2) (I1,12)
li+la=j li+la=j l1+la=j li+la=j

= GB]' — Z Gl’1 612 — Glbj] = GB]' — GB]'_H + bj =

:l2)

U +lo=j+1
51
D (GG~ GG+ ) — (GGa1 — GGyas + Gan) + (G — Gyan) =
= GG] — 2GGj+1 + GGj+2 + Q(G]’ — Gj-l-l) . (52)

Substituting (51) and (52) into (50), yields the following:
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-2 -1
P = {2 > (-1-))(GGj -GG +Gj) + Y. GGy +

j=m+1 j=m+1
< [l—1-} P2
+ Z ( 9 ) (GG —2GG 41 + GGj0 +2G; — 2G41) B—SQ + O(PSB) =
j=m-+1
-3 01—
= Z [2(6—1—j)+1+< 9 ]>] GG +3GG—o + GGy —
j=m+1
— (—1—j
-2 Y [(6—1—j)+< 0 )] GG — 2GG, +
j=m+1
-3 .
£—1-—
+ Y < ) ]>GGj+2+
Jj=m-+1
= L—1—3
+2Z [(6—1—])+< 9 )] Gj + 2Gy—9 —
j=m+1
-3 .
t—1—3 P?
-9 Z < 9 ) Gj-l-l ﬁ—FO(PSB):
j=m+1
-3 .
(+1—
-y ( +2 j) GG +3GG 5 — GGy, —
Jj=m+1
—2 . —1 .
£+1—14 L+1—14
=P < ) )GG¢+.Z < . )GGZ-Jr
1=m-+2 1=m-+3
-3 £-2 9
J {—1 P;
+2 > < ) > Gj + 2Gpy — 2‘Z < ) ) Gz} 75 TOP)) =
Jj=m-+1 1=m-+2
{—m £—m—1 £—m—1 p?
= {( 5 )GGm+1_< 9 )GGm+2+2< 5 )Gm+1}B_SQ+
+O0(P) . (53)
Owing to Proposition 2, and by making use of (46) and (53), at(81) — (23). [ |

Proof of Corallary 2.

First we show that conditioG[Mq = 0 is necessary. From (23), and by making use of (51), it follows
2
that

C—m—1 C—m—1 1
c;S:{(f—m—l)GGm-kl"i‘( ’I’;l > GBm_|_1 — < Ir;l > Gm—l—l} ﬁ (54)

As the coefficient}S is equal to zero, from the above and Corollary 1 it follows the coefficientc}>
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is equal to zero if and only i6G,,,+1 = GBjp1 = 0. As0 < b; < Gj, Vj € N, from definitions (49)
it follows that0 < GB,,11 < GGpy1. ConsequentlyGG,,,+1 = 0 impliesGB,,+1 = 0 and therefore
X5 = 0if and only if GG, 11 = 0. Moreover, from the definition (24) it follows th&G,, 1 = 0 if and
only if G[’"T“W =0.

Next we show that conditioG[mTHw = (0 is sufficient. This condition implies that,,; = 0, which in

turn by virtue of Corollary 1 implies thafS = 0. From the above it also follows that conditidl‘rwq =0
2
implies thatcRS = 0. u

APPENDIXC
SPC (MDING SCHEME

Proof of Theorem 2.
Let us consider an arbitrary segment. According to the SRIth\gasscheme, the segment is not in error if
either there are no sectors in error or if there is one seaterror, i.e.

1 - Psizc = Pno+ Psingle ; (55)

where P, and Psingle denote the probabilities of the former and the latter eversipectively. From (18) it
follows that
Py = (1= P)(1 - oz)z_l . (56)

Fork = 1, and using the terminology used in Appendix A, the segmentaios a single sector in error
for all realizationg(/, s) such that = 1. Therefore,

Psingle = Z P(L:l,S:i):
1<i</
—1
= P(L=1,S=1)+)Y P(L=1,8=i)+P(L=185=1), (57)
=2

with the three summation terms corresponding to the Casgs2la) and 2.b) of Appendix A, respectively.
Thus,

G P. P
Pange = P (1=0) 43" 2 b (1= )2 4 261 (1-0) 2 =
1=
P -1 p
= 3 |20 T 3 b (=) = (1) 21— a) + (- 2]
=2

Equation (26) follows immediately from (55), (56) and (58). |
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1 2 m
S I s+l
Sector
r Sectors
per Interleave S, i s+l
4
Interleave 2
Interleaving Depthnf }—————+

Fig. 8. Segmentin error under IPC coding scheme.

APPENDIX D
IPC CODING SCHEME

Proof of Theorem 4.

According to the IPC coding scheme, a segment is in erroeiilis at least one interleave in which there
are at least two unrecoverable sector errors. In the cassiofjke burst, this occurs when the burst length
exceeds the interleaving depth. Consequently, the priityati the segment being in error is the same as
in the case of the RS coding scheme given by (46). In the caseodbursts, this occurs if the sum of the
two burst lengths exceeds, but also occurs if the sum of the two burst lengths is lesgjoaktom and the
bursts are positioned in a way such that there is at leastmekdegave in which there are two unrecoverable
sector errors. LePs(gé“) andPszgb) denote the probabilities of these two events, respectigalyh that

P& = P&V + PEY . (59)

The probabilityPs(géa) of the former event is equal to the one derived in (53), whetka probabilityPs(Zéb)
of the latter event will be evaluated next.

For £ = 2, and using the terminology of Appendix A, the segment is irorefor all realizations
(I1,19, 51, s2) With [ +19 < m, andsy, s9 such that there are secterandyj, with s; < i < s1+1;1—1, s9 <
j<sy+1ly—1 andi = j. The symbolZ has the following meaning:

aZbe (a modm)=( modm) & a—b=nm, with ncZ andm € N. (60)

A typical such realization is shown in Fig. 8 with = 8, [y = 4, I3 = 3 and the segment being in error
because each of interleavésand I, contain two sector errors. Alse,denotes the number of sectors per
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1 2 m 1 2 m
S |+l S+l S s+l
r Sectors
per Interleave S, S+, X X X X X s |S+1
4 7
Interleaving Depthri }————— . Interleaving Depthrl }————+

(@) (b)

Fig. 9. Sequence of positions of second burst leading to meegerror.

interleave, i.e.

L

r (61)

‘
=

Let us now examine the positions of the second burst thatttieadsegment error, given its burst length
I, and for a given first burst, i.e. for fixed andl;. As demonstrated in Fig. 9a, whefn+ I, = s; + 1
there is a single interleavds() containing two sectors in error, namely, the first sectatheffirst burst and
the last sector of the second burst. When the second butsiftisdsforward, there are multiple interleaves
with two sector errors until the position shown in Fig. 9b,esds, + 1 = s; 4 1; and a single interleave
(Zg) containing two sectors in error, namely, the last sectahefirst burst and the first sector of the second
burst. Therefore, the sequences of positipnthat lead to a segment error are the intervals

s1+1l—-lb+nm<sy <8+l —1+nm, withn € N . (62)

We now proceed by considering the various positions of tleelursts leading to a segment error, and in
particular the following cases:

Casel: s1=1.

According to (62), the sequences of positieasare the following:2 — Iy + nm < s9 < I3 + nm, for
n=1,2,...,7r — 1, as shown in Fig. 10b. Note thaf + o < Iy +lo+ (r—1)m < m + (r — 1)m =¥,
which implies that there is always an interval Thus, unconditioning on lengtlis andl,, and using Case
1.a of Appendix A and (48) we get
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IR [ D lg I lg Iy I, lg g4 ls g I, g
St S+l S St s+l X | X
S+, X | X | X | X X | X
X X X X X X
r Sectors X X X X X X
per Interleave X X X X X X
X X X X X X
/4 X | x| X | = S+l £
Interleaving Depthri }————— . Interleaving Depthrl }————+
(@) (b)

Fig. 10. Position of second burst leading to a segment estoe(1).

nm-+ly

Ps(ggb b= Z Z Z P(I_; = (11712)75": (LSQ)) =

(11,02) n=1 so=nm+2—Is
2<l1+lo<m

nm-+ly

= ¥ Z 3 G]gblz P? +0(P}), (63)

(11,12) n=1 so=nm+2—Io

2<i1+lo<m
or
b r—1 P2
2,b.1
Pag = 3 Y(litl—1)CGyby gy +OF) =
(1:t2) n=1
2<11+19<m
= Z Z ’I“—l j_l)GlleQB_SQ_FO(Ps):
7J=2 (1.l2)
li+la=j
m 2
= =D |DG-D| > Guby|| 55 +OF) =
j:Q (ll,IQ).
L ly+lp=j
e . 3
= (r=1) > (G-1)GB 75 TOF). (64)
j:2

Case2: so+1lo=40+1.
In this case the second burst runs until the end of the segmsrghown in Fig. 11b, for a giveh and
l5, the sequence of positiors that lead to a segment error are the followingz +2 — I, — s < s1 < nm,

forn =1,2,...,r — 1. Thus, unconditioning on lengtlis andl,, and using Case 2.b of Appendix A (as
s1 > 2 and3 I,) we get
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I, Iy I3 A I's I'g 15 Ig I I, I3 I 4 I's l'g I, lg

1 S s+l 1 X X X X X X

X X X X X X

X X X X X X

r Sectors X X X X X X
per Interleave X X X X X X

X X X X X S
S ¢ S +lg 4
Interleaving Depthri }————— . Interleaving Depthrl }————+
(@) (b)

Fig. 11. Position of first burst leading to a segment erser I> = £ + 1).

P& = S Y Y PE=(k).S=(s1,0+1- 1)) =

(11,12) n=1 s;=nm-+2—11—1s
2<l1+ip<m

r—1 nm
b, G
— 162 2 3\
= > 2 D g Rrowr) =
(I1,12) n=1 s;=nm+2—I11—1s
2<l1+ip<m

r—1 9

P
= § E (h+1la—1) bllGZZB_SQ +O(F]) =
(I1;l2)  n=1
2<l1+l2<m

2

P;
= Z Z (r—1) J_l)thlz D +O(P3) =

J=2 (l1,l2)
l1+l2=j

<N P2
= (r—1) Z(j_l) Z bi, Gi, E_FO(PS?)):
Jj=2 (1512)
L li+la=j
S r; 3
= (r—1)|>_ (i—1)GB, B TOWF). (65)
=2

Note that this case is the symmetric of case 1 because it HatB (L = (I1,12), S = (s1,0+1—1y)) =
P(E = (l9, 1), S = (Le+2—51—1)). ConsequentIyPsggb D _ ngé“).

Case3: s; > 2andsy 419 < /4.

This corresponds to Case 2.a of Appendix A. As shown in Figtli€ boundary positions for the first
burst ares; = 2 and s; = (r — 2)m + m — 1, which implies thats; can be represented as follows:
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IR [ D lg I lg Iy I, lg g4 ls g I, g

1 S s+l S 1

S+,
r Sectors
per Interleave
S

4 s +ly S St
Interleaving Depthri }————— . Interleaving Depthrl }————+

(@) (b)

Fig. 12. Boundary positions of first burst leading to a segreeror (s; > 2 andss + Iy < £).

) 2<1 < -1 fi =
31:{1’ <71<m , for ¢q =0, (66)

gn+i, 0<i<m-1, forg=1,...,r—2.

Let us now derive the sequence of positiegagor the second burst that lead to a segment error. From
(61), (62), (66), and owing to the restriction+ Iy < /, it follows thatgm +i+1+nm = s1+ 1+ nm <
s9g+1ly < € =rm,or nm < (r—q)m —1—1i. This, together with the fact thgt — ¢ — 1)m <
(r—qm—1—14 < (r—q)m, implies thatn < r — ¢ — 1. On the other hand, owing to the restriction
so+lo < £, 0rsy < £—1Iy, the upper bound for the sequences of positigrgiven in (62) should not exceed
L—lgiesi+lh—14+nm<tl—Ily & nm<tl—sg—li—lb+1l=rm—gm—i—(l1+l)+1 &
nm < (r—q)m—i— (l;+12)+ 1. Note that this inequality holds for allwith n < r —g— 2. However, for
n = r—q—1, thisinequality holds only ifr—g—1)m < (r—q¢)m—i—(l1+l2)+1 < i < m+1—(l1+Is).
From the above it follows that the sequence of positignfor the second burst that lead to a segment error
are given by

{gm+i+1—lo+nm<so<gm+i+li—1+nm, withne{l,2,....r—q—1}},
f0r0§i§m+1—(11+12), (67)

and

gm+i+1l—Ilo+nm<so<gm-+i+li—1+nm, withne{l,2,....,7r—q—2}
(r=1m+i+1—-Ir<ss<rm-—-Ily, (n=r—q-—1)

form+2—(ll+12)§i§m—l. (68)
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Unconditioning on burst lengthis andl,, and noting that condition (68) applies whirt I > 3 and
that m + 2 — (I; +l3) > 2, we get

PEY = 3 SN P(L = (), § = (s1,52)) =

li,la) s1 82
m—1 r—1
= Y > PL=(1,1),8 = (i,i+nm)) +
=2 n=1
r—2 m—1 r—q—1
+ Z P(L = (1,1),8 = (gm +i,qm + i +nm)) +

(I1,l2)
3<l;+la<m

m+1—(li+l2) r—1  gm+titli—14+nm

z_: > P(L=(l1,ls),§ = (i, 52)) +

=2 n=1 s2=qgm+i+1—Il2+nm
r—2 m+1—(li+l2) r—q—1 gm+it+li—1+nm
+ > > P(L = (I1,12),S = (gm +1,52)) +
qg=1 =0 n=1 s2=gm+i+1l—Ils+nm
r—2 m—1 r—q—2 (r—1)m+i+l;—1
+ > P(L = (I1,15), 8 = (gm +1,59)) +
¢=0 i=m+2—(l1+l2) n=1 s2=(r—1)m+i+1-Iy
r—2 m—1 rm—la
+ > P(L = (I1,12), S = (gqm +i,9)) p =
q=0 i=m+2—(l1+l2) s2=(r—1)m+i+1—Io
m—1 r—1 r—2 m—1 r—q—1
_ _1 1 2
= 2 Xk > mEh
=2 n=1 g=1 =0 n=1

m+1—(li+l2) r—1  gm+i+li—14+nm

- by, b
+ ) > S 5113 b p2 4
(11,12) =2 n=1 s2=qgm+i+1—Il2+nm
3<ly+lg<m

N

r—2 m+1—(l1+l2) r—qg—1  gm+it+li—1+nm
b by o
+ > > 5 Pt
1 n=1 s2=gm+i+1—Is+nm
r—q—2 (r—=1)ym+i+l;—1

Il
Il
-
i
(=]

<
|
N
i
—

by, b
: SRS SR
q=0 i=m+2—(l1+l2) n=1 s2=(r—1)m+i+1-1ls
r—2 m—1 rm—Ils b b
+ > Ll p2y +O(PY).
q=0 i=m+2—(l1+1l2) s2=(r—1)m+i+1—l2

(69)

Thus,
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r—2
bQ
Ps(ggb3) = [(m 2)(r—1) —i—erql)] 23] P
q=1

m m+1—(l1+l2) r—1
+ Z Z (h+1la—1)
1

j=3 (1,l2) n—=
l1+l2=j
r—2 m+1*(l1+lg) r—q—1
+ > > (hi+l-1)
q=1 1=0 n=1
r—2 m—1 r—q—2
+ Z Z (Li+1—-1)+
=0 j=m+42—(l1+l2) n=1
r—2 m—1 bl bl
+> (m =) § 2 P2+ O(P?) =
q=0 i=m+2—(I1 +l2)
—1)(r—2)] v?
= |20 - e T=HE=A] A 2
m r—2
Y)Y A m=Hr-DE-D)+> (m+2-4)(r—q-1)(G-1) +
Jj=3 (1,l2) q=1
hi+lg=j
5 2 G-1G-2) | bub
j i — — 2 p2 3y _
+ G- —g-2)G 1) + 5 = P+ o) =
q=0 q=0
_ (r=D(e-4% P?
= 5 7
S . m+2—-7)(r—1)(r—2
+Y G- 1) [ -y E2ENCZDEZD)
j=3
G- -DE-2)  (-1(-2) .
+ 2 + 2 (;) bllblg ﬁ +O(P) =
llil,;—):j
r—1 ] P2
- { ol +Z (G- 1)(~2-) BB, } B HOP) =
r—1 [ m ) ] P52
= { s— |>_ G-D-2-3) BB, }BQ+O(P§)- (70)
[ =2

The probabilityPs(géb) of encountering two bursts of errors that lead to a segmeat, evhile the total
number of errors does not exceed is given byPsfgé) ngg” P + ngg” 2) + ngg” 3) Combining (64),
(65) and (70) yields
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P& = {Z (j— 1D)4GB; + (¢~ 2])33]} % +0(P?). (71)
7j=2

Making use of (51) and (52), after some manipulations, tha ia braces in (71) is written as follows:

> (- D4GB; + (t—2—j)BB;] =
Jj=2
= ) (- DMA(GG; — GG+ Gj) + (L =2 - ) (GG; —2GG 11 + GGjys +2G; — 2Gj41)] =
j=2
= Y G-DIE+2-)GGC; —2(t - j)GGj1 + (£ =2 = j) GGjpo +2(L = )Gy = 2(t =2 = )G 1] =
Jj=2
m m+1 m+2
= > (-DU+2-j)GG; -2 (i-2)(l+1—i)GG;+ > (i—3)({—i)GG; +
j=2 i=3 1=4
m m—+1
+2) (i -1 -5)G —222—2 (t-1-9)G; =
Jj=2

_ {ch:]} +0GGy+2GGs — (Ml —m? +m —2) GGy + (m — 1) — m + 2) GGryz +

+ {i 2(0 — 2)G,} +2(0-2)Go = 2(m = 1)({ =2 —=m)Gpy1 =

i=3

L+2) GG — (ml—m® +m—2) GGy + (m—1)({ —m +2) GGpyyn +
j=3

200 — QZG —2m =1l =2 =m)Gmy1 =

4+2(§: ) (ml—m?+m—2)GGpy1 + (m—1)(l —m +2) GGrys +
—2) (zm:c:j - 1) —2m = 1)l =2 —m)Grms1 . (72)
j=1

Substituting (61) and (72) into (71) yields

/ —
PGP = S |2t (= 1) == 2) GGris — (ml = m® - — 2) GGy +
m m P2 (73)
12 GGy = 2m — 1)(E =2 = m) G +2(—2) Y Gy | 55 +O(P).
j=2 =

Substituting (53) and (73) into (59), yields the following:
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9 {—m n m
P& = {W 2—£+2ZGGj —2(m — 1) GGy +2(£—2)ZGj +
=2 7=1 (74)
£—2m)(f —m — 2 P?
( )ém ) (2Gmi1 — GGryo )} 75+ O(P2) .
Owing to Proposition 2, and by making use of (46) and (74), at(80) — (32). |
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