
RZ 3678 (# 99688) 05/21/07
Computer Science 40 pages

Research Report

Process Anti-Patterns: How to Avoid the Common Traps of
Business Process Modeling

Jana Koehler and Jussi Vanhatalo

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

{koe,juv}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Process Anti-Patterns: How to Avoid the Common Traps of
Business Process Modeling

Jana Koehler Jussi Vanhatalo
IBM Zurich Research Laboratory

CH-8803 Rueschlikon
Switzerland

email:fkoe,juvg@zurich.ibm.com
Research Report RZ-3678

Abstract

Business process modeling is gaining increasing importance with more and more people getting
involved with business process modeling projects. The output of these projects are process models,
which become a direct input into the software development process. Consequently, the impact of the
process models on the IT systems and the operational efficiency of an enterprise is increasing. With
that, the associated economic risk of using badly designed process models is growing as well. In this
report, we address the problem of quality assurance for business process models. Based on hundreds
of real world business process models that we reviewed over the past two years, we extracted typical
modeling errors that we generalized into anti-patterns. These anti-patterns cover six common process
modeling scenarios ranging from the modeling of branching and iterative behavior, over the modeling
of data flow, to the reuse of process models in composite processes. For each scenario, an example
illustrating typical errors is introduced and then generalized into an anti-pattern, which highlights
the modeling error. Then, one or several patterns are presented that show a correct solution to the
modeling scenario, followed by a summarizing recommendation.1

1 Introduction

Business process modeling is gaining increasing importance. Not only is the number of people modeling
business processes increasing, but more and more people with different professional backgrounds are in-
volved with business process modeling projects. Business processes are one of the most important assets
of an organization. With the trend of enterprises to base their IT on a Service-Oriented Architecture [4],
business processes become first-class citizens also in the supporting IT systems. Consequently, business
process modeling is no longer a modeling exercise for documentation and discussion purposes, but the
process models become a direct input into Business-Driven Development [14, 10] where they develop a
direct economic effect on the IT systems and the processes associated with developing and maintaining
these IT systems. Consequently, a significant economic riskcan be associated with the design of pro-
cess models and the question of how to produce process modelsof high quality is receiving increasing
attention [2, 7, 8].

Unfortunately, no good way has been developed so far to measure the quality of business process
models. The underlying processes themselves are usually measured with economic key performance
indicators such as cost and profit. State-of-the-art modeling tools provide analytical capabilities to gather
insights into these economic aspects of processes. However, most analytical tools do not address quality

1This work was published in the WebSphere Developer Technical Journal in 2007. Please refer to the official publication at
http://www.ibm.com/developerworks/websphere/techjournal/0702koehler/0702koehler.html for citation.

1



requirements. Sometimes, an analytical result can even be incorrect because of hidden errors in the
model that remained undetected.

When exploring related work in the scientific literature, wefound only very few papers that address
the measurement of quality for process models. Sixguidelines(principles) to modeling are formulated
in [2, 17]. These principles arecorrectness, relevance, economic efficiency, clarity, comparability, and
systematic design. Each of the guidelines is informally described and it is discussed how following the
guideline can improve the quality of the models. However, noquantifiable criteria are given that would
allow a tool to directly measure the quality of a process model in an objective manner. In [7, 8], the
ISO/IEC 9126 Software Product Quality Model is adopted and the quality of process models is measured
based on the criteria offunctionality, reliability, usability, andmaintainability. These measures are so
far estimated based on the subjective evaluation by a human expert, who, for example, has to assess
whether an activity in a process model is functionally adequate for the process. An experimental study
that measures the degree of misinterpretations by users caused by inconsistencies between sequence
diagrams and class diagrams is described in [12]. Several types of defects are introduced, which focus
on static and syntactic aspects of models, but are not applicable to behavioral, i.e., process models.

Patterns play a very important role in the workflow community, mostly due to the pioneering work
on workflow patterns as a basis for the comparison of workflow engines [25]. Two initial investigations
on the role of patterns in the process ofdesigningbehavioral models are described in [15] and [5].
While [15] focuses on using patterns to ease the implementation of business processes in a service-
oriented architecture, the work described in [5] investigates how patterns can be used to capture non-
functional aspects in process models such as domain-specific quality constraints. The correctness and
well-formedness of business process models viewed from theperspective of Petri net theory is discussed
in [24, 23, 26].

In this report, we introduceanti-patternsfor process models that allow us to measure an important
aspect of the quality of process models in an objective way. Anti-patterns capture typical design errors
in a process model, which make the process model incorrect. Wikipedia even defines them as“classes
of commonly reinvented bad solutions to problems”[1].

By correctnesswe mean how well the execution traces of the process model correspond to the user’s
expected behavior of the process under consideration. Incorrect models thus show unexpected and in-
correct behaviors, which increase the economic risk associated with the models. Incorrect models often
also exhibit a non-systematic design, their functionalityis usually inadequate and they lead to relia-
bility problems in the implementing software. Needless to say that usability, clarity, comparability, and
maintainability are also affected. Thus, detecting and correcting anti-patterns in process models is an im-
portant prerequisite to improve the quality of process models and for reducing their associated economic
risk.

This report captures the lessons learned from reviewing hundreds of process models created in IBM
WebSphere Business Modeler (WBM) and other modeling tools such as Aris [21], Adonis [22], or MID
Innovator [6] between 2004 and 2006. The models resulted from real-world projects across various in-
dustries such as banking, insurance, retail, the pharmaceutical industry, and telecommunications. When
reviewing draft versions of these models, we noticed recurring modeling errors that we abstracted into
anti-patterns. We describe each anti-pattern in this report, explain why the model fragment in this anti-
pattern is wrong and show a corrected model. A recommendation at the end of each section summarizes
the main insights in a compact form. For the presentation in this report, we have redrawn and anonymized
all models in WBM, i.e., only abstract names are shown and no information about the origin of our ex-
amples nor the modeling tool originally used is provided.2 In many cases, we can also explain why users
unknowingly modeled their processes incorrectly and we point to support in the WBM tool that can help
finding these errors.

2We want to thank all colleagues who have sent their models to us for supporting this work.

2



This report addresses users with some experience in business process modeling, in particular in
modeling with IBM WebSphere Business Modeler. It assumes that the reader is familiar with the basics
of WBM as taught in the official product tutorials or courses.Most of our anti-patterns are completely
independent of the WBM tool and have correspondences in other modeling languages for behavioral
models such as UML2 Activity Diagrams (UML2-AD) [16], Event-Driven Process Chains (EPC) [20],
or the recent Business Process Modeling Notation (BPMN) [3].

The report is organized as follows: In Section 2, we introduce the main modeling elements for
business process modeling in WBM, draw relationships to corresponding elements in UML2-AD, EPC,
and BPMN, and provide the background for the subsequent sections addressing the various modeling
scenarios. Section 3 discusses the branching and joining ofparallel and alternative flows, while we focus
on the modeling of iterative behaviors in Section 4. These two sections are also the most interesting
sections for users of other modeling notations. Section 5 focuses on challenges when modeling data flow.
In Section 6, we address problems around the modeling of events and triggers. Section 7 addresses the
problem of how to correctly describe the termination of a process. In Section 8, we discuss hierarchical
process models that consist of nested subprocesses. Section 9 concludes with a summary of our findings.

2 Background

This section reviews the main modeling elements for business process modeling in WebSphere Business
Modeler and draws relationships to corresponding elementsin UML2 Activity Diagrams, Event-Driven
Process Chains, and the recent Business Process Modeling Notation. We then address the variability
in the WBM modeling language and introduce two forms of process models: models usinggateway
form and models usingactivity form, which we use as a basis to describe solutions to modeling chal-
lenges occurring in the various modeling scenarios. We alsointroduce our notation for anti-patterns and
patterns.

2.1 Basic Modeling Elements for Control Flow

We begin by discussing the main elements that are available for the modeling of business processes in
WBM and draw relationships to other popular modeling approaches. Figure 2.1 shows a sample business
process model with the main activities of the process and themodeling constructs to describe control flow.

Start End
Decision

Fork Join

Merge

Inclusive
Decision

Subprocess

Task

Merge

Figure 2.1: A sample process model in IBM WebSphere Business Modeler.

The process begins with astart node depicted as a green bullet, which is connected toTask 1, sym-
bolized by a yellow rectangle with rounded corners. A task inWBM is a not further refinable (atomic)
activity of the process.Task 1is followed by adecisionleading to two subsequent branches. When the

3



process executes, exactly one of the decision branches is chosen, i.e., we have an exclusive choice mod-
eled here. The upperYesbranch leads to afork, which captures a parallel branching in the process flow.
All branches following a fork get executed, i.e.,Subprocess 1andTask 2in this model. A subprocess
in WBM can be further refined by another process model. Subprocesses and tasks are the two kinds of
activities that are available in WBM. The parallel branches are joined again in ajoin, which ends the
parallel execution. The lowerNo branch of the decision leads to aninclusive decision. An inclusive
decision models then-out-of-mchoice from the well-known workflow patterns [25]. This means that
one or more subsequent branches can be chosen for execution.In our case, eitherTask 3alone, orTask
4 alone, or bothTasks 3and4, can execute. For the first two choices, a single sequential execution path
results, while the choice ofTask 3andTask 4results in both branches executing in parallel. The inclusive
branches are merged again by amerge. The join and merge elements connect to anothermerge, which
matches the initial exclusive decision. Anendnode terminates the process model. The simulation capa-
bilities of WBM can be used to visualize and analyze the possible execution traces of a process, which
show how control branches in a decision and how it leads to parallel executions after a fork.

Figure 2.2 shows the same process modeled as a UML2 Activity Diagram (UML2-AD) [16] using
IBM Rational Software Architect [9].

Flow
FinalDecision

Fork Join

Merge

Structured Activity

Initial
Call Behavior

Figure 2.2: The same sample process modeled as a UML2 Activity Diagram.

Seamless integration between WBM and Rational Software Architect enables software architects to
visualize business process models in UML2 notation using the UML 2.0 Profile for Business Model-
ing [9]. This profile provides interchange semantics between business process models and existing or
new UML2 models. Based on this semantics, the start node in WBM corresponds to theinitial node
in UML2-AD, while the end node corresponds to theflow final node. A task corresponds to acall be-
havior, while Subprocess 1is captured as astructured activity, which can be further refined. Activity
diagrams modeled directly by a user often also model anaction instead of acall behaviorand replace
thestructured activityby acall behavior. Fork, join, decision, and merge are identical in both modeling
approaches. The inclusive decision does not exist in UML2-AD and it is mapped to the UML2 decision,
which is exclusive. Thus, we explicitly added the situationto the model whenTask 3andTask 4execute
in parallel. We used a fork and join and placed additional copies of the tasks between them.

Figure 2.3 shows our sample process modeled in the tool Maestro [19], which implements the Busi-
ness Process Modeling Notation (BPMN), a recent standard notation by the OMG [3].

4



Start 
Event

End 
Event

Task

Process

Exclusive
(XOR) 

Gateway

Inclusive
(OR) 

Gateway

Parallel
(AND) 

Gateway

Figure 2.3: The sample process model in BPMN.

Similar to the previous modeling approaches, BPMN distinguishestasksandsubprocessesin the di-
agram, the latter being indicated by a ’+’ symbol in the rounded-corner rectangle. The process beginning
is indicated with astart event, while the process end is marked with anend event. The control-flow
behavior of a process is modeled usinggateways. Alternative branching is modeled with theexclusive
(XOR) gatewayvisualized as a diamond, optionally marked with an ’X’. Inclusive branching is modeled
with the inclusive (OR) gatewayand visualized with a diamond containing a circle. Parallelbranching
is modeled with theparallel (AND) gatewayand visualized with a diamond containing a ’+’. BPMN
does not provide any separate modeling elements to join or merge several branches in a process model.
Instead, it uses the same symbols for branching and joining or merging of flows.

Finally, we modeled the sample process as an Event-Driven Process Chain (EPC) using Aris Business
Architect [21]. In contrast to the previous approaches, EPCmodels are more commonly drawn in a top-
down manner.

Process 
Interface

Function

XOR Rule

OR Rule AND Rule

Figure 2.4: The control flow of the sample process modeled as an Event-Driven Process Chain.

5



The process begins with aStart eventand ends with an event, which we namedProcess End Event.
EPCs do not distinguish specific types of end events and let the user decide how to end the process.
Tasks are represented asfunctions, while a subprocess is captured with aprocess interface, which is a
function that can be further refined by another EPC model. We did not introduce any additional events
into the model following each function. Although this wouldbe common for the EPC approach, events
are represented quite differently in the other approaches.The fork corresponds to theAND Rule, the
inclusive decision corresponds to theOR Rule, and the decision corresponds to theXOR Rule. Similar to
BPMN, EPCs use the same rule symbols to open and close branches in the process flow.

We can see that although the graphical notations differ, themain elements for modeling control
flow are very similar across the different modeling approaches. Therefore, many of the following anti-
patterns are also useful for users of other modeling approaches. In the following sections we focus on
IBM WebSphere Business Modeler.

2.2 Gateway Form vs. Activity Form of Process Models

In the previous section, we modeled the same process using different modeling approaches. Each of
these models made use ofcontrol nodes(WBM and UML2-AD), rules (EPC), orgateways(BPMN)
to capture the control flow. Since the BPMN standard uses the term gateways, we call them gateways
throughout this report when we refer to the decision, fork, merge, and join modeling elements in WBM.

In addition to gateways, several of these modeling languages—we only look at WBM, though—
offer an alternative approach to model control and data flow.This modeling alternative is based on the
inputs and outputs of the activities, i.e., of the tasks and subprocesses. The inputs and outputs can be
pure control-flow links as in the models in the previous section, or can be data flow links as shown in
Figure 2.5. In WBM, a control flow is changed into a data flow by associating a so-calledbusiness item
with the flow. A business item captures a type of information or a data object that flows through the
process. Users can freely choose the names of these businessitems and further refine their description
by adding attributes. The type of business item cannot change when it is sent from one task to another,
i.e., the output, the input, and the connection between themalways have the same business item attached.

Figure 2.5 showsTask 1with three different inputs of typeA, B, andC, and three different outputs:
one control-flow output (white arrow) and two data-flow outputs of typeB andC (gray arrow).

Figure 2.5: Input and output criteria of a task.

For the inputs, three different input criteria are defined, while for the outputs, two different output
criteria are defined. The criteria specify the alternative input and output sets ofTask 1. It can execute if
it either receives all three inputs at once, i.e.,A, B, C or if it receives onlyB combined withC or onlyA combined withC. As output, it either providesB combined withC or only control output. Similar to
gateways, these criteria thus describe branching and joining behavior.

It is important to work in theadvanced editing modeof WBM in order to correctly define the required
input and output criteria. This editing mode providesinput logic andoutput logictabs in theattributes
view. The blue boxed screenshots in Figure 2.5 are extracted fromthese tabs. In the diagram, the gray

6



and black backward/forward arrows below the inputs and outputs of Task 1indicate that several input
and output criteria are defined for the task. If only one inputand output criterion is defined, no arrows
are shown and we usually do not show the blue boxed tabs in our figures. The basic editing mode hides
all these details, including the arrows.3

An activity can execute if it receives all required inputs ofat least one input criterion, otherwise it
waits for these inputs to arrive. When an activity executes,it produces all outputs of exactly one output
criterion. The output criterion it chooses can depend on which input criterion activated the activity. This
dependency can be modeled in WBM by associating an output criterion with an input criterion. If no as-
sociations are modeled explicitly, the activity can produce one of the output criteria in a nondeterministic
way.

We say that a process model is ingateway formwhen it is only using gateways (called control nodes
or rules in other modeling languages), but only has a single input and output criterion for a task or
subprocess. A process model that makes use of several input and output criteria in the activities, but does
not use gateways is denoted as being inactivity form.

Figure 2.6 shows a process model in gateway form. Gateway form makes the branching and joining
points in the model more explicit. We can also more easily assign explicit decision conditions to a
decision node by editing its output logic.

Figure 2.6: A process model showing control flow using gateway form.

The same control flow is captured in Figure 2.7 using activityform. In activity form, the decision
conditions must be captured as postconditions of the outputcriteria. Activity form has the advantage that
it makes the models more compact and reduces the modeling elements to only the functional activities
in the process. However, it makes capturing the flow logic more complex, because using and defining
input/output criteria is more difficult than using gateways.

Figure 2.7: The same process modeled using activity form.

In Figure 2.7,Task 1acts as a decision, whileTask 4acts as a combined merge and fork. Decision
and merge are always mapped to several input and output criteria—one for each branch, while fork and

3Note that by default each task or subprocess has at least one input and at least one output criterion, because any input must
belong to at least one input criterion and any output must belong to at least one output criterion.

7



join correspond to a single output and input criterion, respectively.
For models that show control flow only, both forms can be used interchangeably and the models

preserve their execution semantics. However, it is important to note that this only holds for control flow.
In the case of data flow, there are important semantic differences that we discuss in detail in Section 5.

Recommendations 1 Try to adopt one of the two possible forms for your models in order to reduce the
number of used model elements. This leads to a more homogeneous modeling style. Gateway form using
decision, fork, merge, and joins is often more readable for models that only model control flow. Activity
form using input and output criteria, but no gateways, is more suitable for simplifying visualization of
the process model by hiding the branching logic in the input and output criteria. Models that use activity
form should be worked on in advanced editing mode in WBM to seethe details of the branching flows,
which otherwise remain hidden in the basic editing mode. Tryto minimize mixing of both forms in a
single diagram. While a mixed approach may be required for data-flow models, it is never necessary for
control-flow models.

2.3 Notation for Patterns and Anti-patterns

When describing the various modeling scenarios, we begin with an illustrative example exhibiting the
error, which we then generalize into an anti-pattern. We also show a correction to the anti-pattern in
the form of a pattern. To describe the patterns and anti-patterns we use process fragments as shown in
Figure 2.8.

Figure 2.8: Process fragment notation.

This figure shows two forms of notation that we are using. If the data or control flow in and out of
activities is relevant to understand the cause of the modeling error, we use the notation in the upper half
of the figure. In this process fragment,Task 1receives inputsA andB and provides outputsA andB,
while Task 2receives inputsA andC and provides outputsA andD. Task 1precedesTask 2in the flow,
but between both tasks, an arbitrary process fragment can bemodeled. This arbitrary process fragment is
denoted with the dotted box. If data attached to the flow is irrelevant, we use blue arrows to just denote
the flow direction. An example of this notation is shown in thelower half of the figure involvingTask 3
andTask 4. Errors in a specific process model can be found by comparing afragment of the process
model to the process fragment shown in an anti-pattern. The provided patterns can be used to correct
the matching process fragment. Anti-patterns are always marked with a big red cross in the upper left
corner, whereas patterns are marked with a green check-off sign. In addition, we use red dotted circles
to highlight a usage of modeling elements that is causing theerror and orange dotted circles to highlight
a usage of modeling elements that is not recommended.

3 Scenario I: Modeling Branching Behavior

Many business process models need to show how control and data flows branch and join within the
process. WBM offers the gatewaysdecision, inclusive decision, and fork to describe alternative and

8



parallel (concurrent) branching and the gatewaysmergeand join to describe alternative and parallel
joining in a process. In principle, these gateways can be freely combined in a process model. However,
some of these combinations lead to execution problems when the process model is simulated. In the
following, we therefore systematically review the variouspairings of gateways.

3.1 Deadlocks through Decision-Join Pairs

Figure 3.1 shows two typical forms of decision-join pairingthat we found frequently in process models.
Immediately following the start node, a decision was used torepresent three alternative branches in the
process flow that eventually lead to a join precedingTask 5. This structure leads to adeadlockin the
process, because the decision only emits an output on oneof its branches, while the join waits for input
on all of its branches. This input can never come and thus the join waits forever for the missing input
and does not execute—an obvious deadlock situation. A deadlock is always a modeling error: some of
the desired process behaviors are missing due to non-executable activities in the model. This incorrect
behavior can be easily detected using the simulation capabilities of WBM, which would show thatTask
5 never executes.

Figure 3.1: Deadlocks caused by a decision followed by a join or by an inappropriate pairing of input
and output criteria in activities.

A second deadlock occurs betweenTask 3andTask 4in the example.Task 3producesA or B as
two alternative outputs in two disjoint output criteria, i.e., it behaves like an exclusive decision.Task 4
requires bothA andB as inputs in a single input criterion. In any execution of theprocess, both inputs
are never produced and thus,Task 4cannot execute. Again, we have a deadlock situation that canbe
detected during a simulation of the process when the decision selects the lower branch for execution.

The combination of a decision with a subsequent join is one ofthe most frequent anti-patterns that
we found in business process models. Apparently, many usersare not fully aware of the semantics of
these gateways and of the behaviors that result from this incorrect combination. In the above example,
the deadlock is relatively easy to spot. However in large examples, the branching logic can be very
complicated and comprise many different activities and gateways, which makes it much harder for a user
to notice these problems. It is therefore important to organize process models in a structured manner and
to decide for the use ofactivity formor gateway formas we described them in the previous section.

Anti-pattern 3.1 shows a generalization of the incorrect decision-join pairing that results in a dead-
lock. The two outgoing branches of the decision with all their connections end as incoming branches
in a join. Of course, the decision could also have more than two branches and a deadlock would also
occur when only a subset of the branches leaving the decisionis rejoined by a join. We show some
data flow here to emphasize that the anti-pattern can occur inmodels with control flow and/or data flow
and to illustrate how the connections within the single branches connect the gateways involved in the

9



anti-pattern.

Anti-Pattern 3.1: Incorrect combination of decision and join that results in adeadlock.

A variant of this anti-pattern usingactivity formis straightforward and thus not shown.

3.2 Lack of Synchronization through Fork-Merge Pairs

The fork-merge pairing as shown in Figure 3.2 below exhibitsthe opposite behavior of the decision-join
anti-pattern.

Figure 3.2: Lack of synchronization caused by a fork followed by a merge.

A fork-merge pair causes too many instances of all tasks and subprocesses following the merge to
execute, because the fork emits output on allof its outgoing branches, while the merge waits for input
on only oneof its incoming branches. This means, for each branch of the fork, the merge executes
and triggers the activities further downstream in the process model. In the workflow literature, this
anti-pattern is often calledlack of synchronization[18, 23], because for a single execution of a process
fragment preceding the merge, we obtain several executionsof the process fragments following the
merge. Sometimes, such a behavior can be intended, but in most cases, it is unconsciously introduced
into the model. A lack of synchronization can be a modeling error if more than the desired process
behaviors occur, but it must not be an error unlike a deadlock.

We find three pairs that cause a lack of synchronization in Figure 3.2. The inclusive decision fol-
lowing Task 1leads to the merge precedingTask 4. The fork following the start node leads to the merge
precedingTask 7. The single output criterion ofTask 5connects to two disjoint input criteria ofTask 6.
This means, for a single execution of the process fragment comprisingTasks 1, 2, 3, 4, 5, 6, we obtain
at least two executions ofTask 7. For a single parallel execution ofTask 2andTask 3, we obtain two
executions ofTask 4. Finally, for a single execution ofTask 5, we obtain two executions ofTask 6.

An inclusive decision captures ann-out-of-m choice[25] at an abstract level, i.e., the inclusive de-
cision can trigger any subset of the two branches. If both branches are triggered, the inclusive decision
leads to a parallel execution ofTask 2and Task 3in the same way as a fork.Task 7following the
corresponding merge would therefore execute twice—once for each triggered branch. The official rec-
ommendation in the WBM help pages is to pair an inclusive decision always with a merge. Using the

10



merge leads to a lack of synchronization as the merge is always triggered once for each incoming branch
and all tasks following the merge execute multiple times. Using a join does not solve the problem as the
join always waits for all incoming connections. It therefore blocks in any simulation run in which only a
subset of the branches is chosen by the inclusive decision, i.e., a deadlock occurs.4

Anti-pattern 3.2 captures the incorrect fork-merge pairing that is responsible for a lack of synchro-
nization.

Anti-Pattern 3.2: Incorrect combination of fork and merge that results in a lack of synchronization.

Each outgoing branch of the fork with all its connections ends as an incoming branch of the merge.
Again, even if only a subset of at least two branches ends in the merge, a lack of synchronization occurs.
This anti-pattern is also one of the most frequent modeling errors. Spotting such combinations can be
very difficult in larger process models, in particular when they occur in a more indirect way by using
inclusive decisions or input and output criteria with activities.

3.3 Correct Branching through Decision-Merge and Fork-Join Pairs

The following patterns show the correct pairings of the gateways that can be used to build more well-
formed process models, which are less likely to contain problems like deadlock or lack of synchroniza-
tion. The two patterns represent the correct pairings of decision with merge and fork with join. Note how
the two similar graphical shapes of the correctly matching gateways simplify it for the user to select the
correct pairing. Pattern 3.1 presents the correct way to model alternative branching by using a matching
decision-merge pair.

Pattern 3.1: Pairing decision with merge is the correct way to model alternative branching.

Pattern 3.2 presents the correct way to model parallel branching by using a matching fork-join pair.
Note that the decision is paired with a matching merge independent of the process fragment that is

located between these two gateways. The same holds for the fork and join. There is also one matching
input criterion in the merge for each output criterion in thedecision, such that all the connections starting
in one output criterion end in the same input criterion. Similarly, the same requirement applies to the

4A comprehensive treatment of an n-out-of-m choice requirestechniques such asdead-path elimination[13], which prunes
non-triggered branches of an inclusive decision and thus guarantees that the matching fork does not wait for input from any
non-triggered branches.

11



Pattern 3.2: Pairing a fork with a join is the correct way to model parallelbranching and joining.

connections between the fork and the join. All inputs of the decision and the merge, as well as of the
fork and join must be connected.

We recommend to always use gateways in their corresponding pairs. This means that every decision
should eventually be followed by a matching merge, which combines all the paths starting from the
decision. Similarly, every fork should eventually be followed by a matching join, which combines all the
paths starting from the fork. This pattern leads to a well-formed structure for the models, which avoids
many modeling errors that otherwise occur when gateways areused in an arbitrary way. Sometimes, this
technique can lead to many matching pairs, which add unnecessary redundancy to the process model by
several merges or joins succeeding each other.

Figure 3.3: All branches correctly closed with a single matching merge.

In such a situation, closing several decisions with a singlemerge and closing several forks with a
single join leads to a correct model. Figure 3.3 shows a typical process model that has adopted such
a “short-hand” modeling notation. In this example, a singlemerge is used instead of having three suc-
cessive merges added to the model. However, such a solution should be used with care in models that
contain both types of branching, i.e., forks and decisions,to avoid suddenly closing a fork with a merge
or a decision with a join.

3.4 Redundant Branches

We conclude this section with a closer look at the problem of redundant branches in a process. Figure 3.4
shows a process model with a decision of four branches that are closed by two succeeding merges.

The second and third branches both lead toTask 2and do not involve any activity that would occur
between the decision and the first merge. It is not clear why they were distinguished from each other
unless the modeler intended to separate the decision conditions. This might be required in an application
that uses process monitoring. If not, this distinction appears to be redundant, because exactly the same
behavior is modeled twice, i.e., the singleTask 2is executed as a result of taking any of these two decision
branches. The lowest branch represents the “do nothing” case, which can occur in a meaningful way in
a decision process. In contrast to this, “do-the-same” branches may point to redundancy in the model or
indicate that the modeling project is not yet complete.

12



Figure 3.4: Redundant “do-the-same” branches leading to the same subsequent task execution in contrast
to a “do-nothing” branch.

Recommendations 2 Never pair a decision with a join. Never combine a fork with a merge, except when
you want to introduce a lack of synchronization. Use the decision-merge and fork-join pairs always as
matching pairs and make your model as well-formed as possible. When the inclusive decision is paired
with a merge it can lead to a lack of synchronization when several branches execute in parallel. A safe
solution is to avoid the inclusive decision and to explicitly model all possible combinations of branches
using decisions and forks. If this is not possible, the inclusive decision should be used with care and the
model should receive specific attention when being implemented to make sure that the control-flow logic
is correctly captured in the refined IT-level model. Controlor data flow connections in a process model
that only connect gateways to each other without involving any activities or leading to exactly the same
activity executions should be examined for redundancy.

4 Scenario II: Modeling Cyclic Behavior

In this modeling scenario we discuss the representation of cyclic (iterative) behavior in a process model.
In a realistic process, it is often necessary to repeat a previous activity based on some decision outcome.
This leads to process fragments that execute several times,often until a certain exit condition is satisfied.
Some process models even have to represent behaviors that execute infinitely. Cyclic behavior can be
captured in WBM in four different ways, as shown in Figure 4.1.

Figure 4.1: Modeling elements to capture cyclic behavior in a process model.

The upper half of this figure shows the three modeling elements to represent awhile loop, ado-while
loop, and afor loop. The repeated process fragment must be placed inside these loop modeling elements.

13



We consider these elements as very technical and not really as suited to business users. Instead, business
users usually draw backward connections that direct a flow back to an activity further upstream as it is
shown in the lower half of the figure. This process model contains one backward connection that starts
at Task 1and leads back to the same task causing it to self-loop, and a second backward connection that
starts atTask 3and leads back toTask 2causing a cyclic process fragment comprising these two tasks.
These backward connections are very intuitive to use and often lead to overlapping cycles in the model,
e.g., the cycle fromTask 1to Task 3and back toTask 2overlaps with the cycle involvingTask 2and
Task 3only. 5

Typical errors occur when such unstructured cycles are added to the process model. The noticeable
problems relate to the correct branching and merging of the cyclic flows. Interestingly, we can easily
describe these modeling errors by continuing to discuss gateways as in the preceding section. We can
just change the order of these gateway pairs. In the preceding section, where we discussed pairs to
describe alternative and parallel flows, a decision or fork always came before a merge or a join. Cycles
are created by reversing this order, i.e., by combining a merge or join with a decision or fork. Only one
of these combinations works out well, the other three lead toanti-patterns.

4.1 Cyclic Deadlocks through Join-Fork and Join-Decision Pairs

Figure 4.2 shows a process with three cycles.

Figure 4.2: Deadlocks caused by backward connections ending in join-like modeling elements.

The first cycle involves a backward connection that starts inthe decision and leads back to the join
following the start node. It comprisesTask 1. A second cycle is the self-loop ofTask 2, which uses
activity form. Task 2has a single input criterion, in which two connections end, acting as an implicit
join. It has a single output criterion, in which two connections begin, acting as an implicit fork. As we
already know from our discussion in Section 2,Task 2waits for all inputs in this single input criterion.
However, these two inputs cannot possibly both arrive at thesame time, because one of them is produced
as an output ofTask 2. The third cycle starts in the fork preceding the end node andleads back to the
join following the decision. It also comprisesTask 2. The join waits for input on allof its branches.
However, one of its incoming branches can only receive the input afterthe join executes, because its
input originates from a modeling element further downstream in the model. This cyclic dependency
between the join and the decision, and the join and the fork, where the join must be executed before the
decision or fork and vice versa is the reason why a deadlock occurs. These incorrectly modeled cycles
are made explicit in the following two anti-patterns.

Anti-pattern 4.1 represents a join-decision pair that deadlocks. The cycle includes a join preceding
a decision. At least one incoming branch of the join connectsto an outgoing branch of the decision. A
branch can involve several connections.

Anti-pattern 4.2 is similar to the previous anti-pattern except that it contains a fork instead of the
decision. It has exactly the same kind of cyclic dependency as Anti-pattern 4.1, now between the join

5When exporting to BPEL, a process model in WBM must currentlyuse only the while-loop modeling element. Unstruc-
tured cycles can often be replaced with loops by applying control-flow normalization techniques from compiler theory [11].
Plug-ins have been prototyped for WBM that implement such a normalization. Interested readers should contact the authors.

14



Anti-Pattern 4.1: Incorrect combination of a join followed by a decision resulting in a cyclic deadlock.

and the fork.

Anti-Pattern 4.2: An incorrect join-fork pairing that always results in a cyclic deadlock.

Variants of these anti-patterns for process models using activity form are straightforward and thus not
shown. Users working in thebasic editing modeof WBM should watch for cycles such as in Figure 4.1
whereTask 1andTask 2cannot execute, because the tasks join the two incoming connections in a single
input criterion, which behaves like a join. The required alternative input criteria cannot be defined in
the basic editing mode, so most backward connections drawn in basic editing mode add a deadlock
to the model. Deadlocking cycles can be very hard to find in a larger process model. In particular,
when process models contain alternative and parallel branches combined with cycles, the risk of having
modeled a deadlock is very high. In our opinion, models that combine iterative with branching behavior
are the most complex models —they are not easy to draw or to understand. A well-formed nesting of
cyclic and branching process fragments is a good approach toreduce the possibility of modeling errors.

4.2 Cyclic Lack of Synchronization through Merge-Fork Pairs

Lack of synchronization occurs in cyclic models when backward connections occur in branches that are
executed in parallel and which are not synchronized by a joinbefore adding the backward connection
to the process model. In this situation, each of the backwardconnections results from the same fork
or output criterion of an activity and ends in a merge or different input criterion of an activity further
upstream in the model. Figure 4.3 shows an inclusive decision where two of the branches connect back
to an upstream merge, i.e., each of these branches causes an independent cycle in the process as the
merge executes separately for each incoming branch.

This error can lead to an explosion of uncontrolled iterations of the process—in the example for
Task 1—which can sometimes be detected by using the WBM simulation. It requires that a simula-
tion situation is observed where the simulation chooses more than one outgoing branch of the inclusive
decision for execution and parallel cycles become visible.The upper branch of the inclusive decision
connects to a third cyclic process fragment with a merge preceding a fork. The uncontrolled iteration of
Task 4andTask 5becomes evident during a simulation, because for each execution of the fork with its

15



Figure 4.3: Backward connections beginning in an inclusive decision orfork cause several unsynchro-
nized cycles when leading back to a merge without being first synchronized by a join.

two outgoing branches, the corresponding merge executes twice. The cyclic process fragment compris-
ing Task 4andTask 5runs infinitely in parallel with the cycles involvingTasks 1, 2, 3.

Anti-Pattern 4.3 makes the lack of synchronization throughunsynchronized cycles explicit by pairing
a fork with a merge.

Anti-Pattern 4.3: Cyclic lack of synchronization caused by a fork connecting back to a merge.

In the first process run, it triggers the fork, which leads to two outgoing parallel branches. One
branch leads to some arbitrary process fragment that is not shown. The other branch causes a cycle
between the fork and the merge. When this backward connection enters the merge, the merge executes
and triggers the fork again, which in turn activates its two outgoing branches. One of these branches
leads to another iteration of the cycle. By replacing the fork with an inclusive decision or an activity
with several outgoing connections that originate from the same output criterion, we obtain two related
variants of this anti-pattern. The difference between the behavior of the fork and the inclusive decision
lies in the number of unsynchronized cycles that are triggered when the fork and the inclusive decision
execute. The inclusive decision only leads to a lack of synchronization if it activates more than one of its
outgoing branches.

4.3 Correct Cycles with Merge-Decision Pairs

To correctly model a cycle is to use a merge followed by a decision as shown in Pattern 4.1.

Pattern 4.1: A correct way to model iterative behavior using backward connections.

16



In this pattern, a merge is followed by a matching decision independently of the process fragment
that is located between these two gateways. At least one of the incoming branches of the merge must
come from outside the cyclic process fragment, otherwise this process fragment cannot be reached from
other activities. At least one of the outgoing branches of the decision must lead to a process fragment
outside the cyclic process fragment, or the cycle would infinitely loop—when not intended, this causes a
so-calledlivelockerror. All backward connections into one branch of the mergeshould originate from the
same branch of the decision in order to avoid implicit deadlocks or a lack of synchronization. A variant
of this pattern in activity form could use activities with several disjoint input and output criteria—one
criterion for each branch of the gateways.

Recommendations 3 Cyclic processes can be correctly captured by adding backward connections to
the process model that connect to an upstream activity. The backward connection should begin in a
decision and lead back to a merge. Only this gateway pairing can lead to a correct cycle. Alternatively,
a cycle can begin in a separate output criterion of an activity and end in a separate input criterion of
this or another activity.

5 Scenario III: Modeling Data Flow

Real-world business processes always work on data in some form. They require data, they modify and
update data, and they often also derive new data by bringing various data sources together. Therefore,
capturing the data flow of a process is usually an important phase in a business process modeling project.
Adding this information to the process model is non-trivialand often leads to errors. In addition to
containing errors, models can quickly become cluttered. Therefore, we want to focus especially on
problems around the modeling of data flows in this section.

5.1 Dangling Inputs and Outputs

A phenomenon that we often observed in process models is the occurrence ofdangling inputs and out-
puts, i.e., inputs and outputs of an activity or gateway thatremain unconnected in the model. This
phenomenon usually occurs when models are edited in the basic editing mode of WBM, which does
not visualize inputs and outputs, but only shows the connecting edges between activities and gateways.
Dangling inputs and outputs very often remain as residues ofconnections that users decide to delete or
redirect. When a connection is deleted, WBM does not automatically delete the inputs and outputs that
were connected, because it can still be the case that the userwants to reconnect them.

Figure 5.1 shows an example process with dangling control flow (small white arrows) and data flow
(small gray arrows) inputs and outputs in a fork and a join.

Unfortunately,dangling inputsare often the source of simulation errors or prevent the simulation
from running all, because an activity or gateway waits for some input that it can never receive. The
fork and join in Figure 5.1 cannot execute due to their dangling inputs. In WBM, all branches of a
gateway must currently have the same data inputs and outputs. The editor enforces this requirement,
i.e., whenever the user adds an input or output to a gateway insome branch, WBM automatically adds
an input or output to all the other branches as well. It is not possible to have different business items
associated with different branches. Thus, if only some of the inputs and outputs are connected, this must
immediately lead to dangling inputs and outputs that are notdirectly visible in the basic editing mode
as Figure 5.2 shows. Only experienced users would notice thelarger shapes for the input and output
branches in the gateways that hint at the problem.

Danglingoutputsare less severe than danglinginputs, because they usually do not prevent a process
model from correctly executing. However, dangling data outputs show that a task or subprocess produced
some data, or data was involved in the branching modeled in some gateway, but this data is not used

17



Figure 5.1: Dangling inputs and outputs in a process model are only visible in the advanced editing
mode of WBM.

Figure 5.2: Dangling inputs and outputs are not visible in the basic editing mode of WBM.

anywhere in the process. Later in this section we discuss howto deal with such dangling outputs, because
they sometimes look like an unfinished model.

Anti-pattern 5.1 summarizes the dangling inputs that must be avoided (circled in red) and dangling
outputs that should be avoided (circled in orange).

Anti-Pattern 5.1: Dangling inputs that must be avoided (circled in red) and inputs and outputs that
should be avoided (circled in orange).

Dangling inputs cause deadlocks if the input is a control input of an activity or a gateway, a data input

18



of a gateway, or arequireddata input of an activity. A data input is required if its minimum multiplicity
is greater than 0. A minimum multiplicity of 0 means that the input or output is optional. The screenshots
of the input logic and output logic tabs in Anti-pattern 5.1 and in Pattern 5.1 show the defined minimum
and maximum of the inputs and outputs. Pattern 5.1 summarizes how to correctly model the inputs and
outputs of gateways and activities with a single input and output criterion.

Pattern 5.1: Correctly defining and connecting data inputs and outputs.

All required control inputs and data inputs must be connected in order to avoid a deadlock. Control
outputs and required data outputs should be connected. It isrecommended, but not required, to connect
all the optional data inputs and outputs, i.e., those that have their minimum multiplicity set to 0. Non-
required control inputs and outputs should be deleted from an activity. Removing data inputs and outputs
changes the data requirements, so it is not always possible to remove them. For example, the business
item C is only connected as an input in the lower branch of the merge on the left-hand side of Anti-
pattern 5.1. Since it not connected as an output, i.e., it is not used by any subsequent activity, it was
removed from the merge in Pattern 5.1.

Recommendations 4 Working in the basic editing mode speeds up editing models, especially when
creating models from scratch. However, before ending a modeling session it is important to switch to the
advanced editing mode in order to find and clean up dangling inputs and outputs.

5.2 Reducing Clutter in Data-Flow Models

Can there be cases where dangling inputs and outputs make sense? Yes, because they can be a valid
means to reduce clutter in models by showing only some selected flows. We see two possible modeling
approaches where dangling inputs and outputs can be used safely without affecting the ability to execute
the process model.6 Figure 5.3 shows the first approach, which uses connected control flow and puts all
data inputs and outputs into a separate input and output criterion.

The intuitive idea behind this approach is that data is not flowing through the process, but tasks
and subprocesses access data from data sources shared amongthe activities. The specified control flow
determines the order in which the data is accessed. The separation of the connected control flow from the
disconnected data inputs and outputs into separate input and output criteria ensures that the process can
correctly execute along the connected control flow. Furthermore, all gateways only involve control flow,
but no data. Data inputs and outputs are visible when the model is viewed in advanced editing mode: in
basic mode, only the control flow is visible.

6In version 6 of WebSphere Business Modeler, BPEL code can also be correctly generated from such models.

19



Figure 5.3: Dangling inputs in a separate input criterion preserve process execution.

Figure 5.4 shows the second approach, which uses only a single input and output criterion, but sets
the minimum multiplicity of all disconnected inputs and outputs to 0.

Figure 5.4: Dangling inputs with minimum multiplicity set to 0 represent optional inputs, which can
remain unconnected in executable process models.

This approach focuses on only showing selected data flows in aprocess model. No additional control-
flow connections should occur when a data-flow connection already exists between activities and gate-
ways. Furthermore, only a single business item traverses a gateway in order to keep the data flow simple.
An advantage of this presentation is that gateways involve data flow and thus the data-based branching
decisions can be captured. This was not possible in the first approach, because it only showed the control
flow. Using only a single input and output criterion makes editing the model easier. A slight disadvantage
of the approach is that it can lead to a mixture of control flow with data flow involving different business
items, which can make the models harder to understand than models that only show control flow together
with disconnected inputs and outputs. To further complicate matters, different stakeholders in the mod-
eling project sometimes disagree on which data is the most relevant and which data can be considered as
optional.

Recommendations 5 Clutter in complex data flow models can be reduced by showing disconnected data
inputs and outputs. The disconnected inputs must be either put into a separate input criterion or marked
as optional by setting their minimum multiplicity to 0 to allow the process to execute.

20



5.3 Multiple Connections between Activities

Complex control and data flows easily lead tomultiple connectionsin process models, which are another
source of cluttered models. Multiple connections, for short multi-connectionsall start in the same ac-
tivity or gateway and all end in one other activity or gateway. These connections lead to unnecessary
redundancy if the multi-connections only involve control flow. If the multi-connections are associated
with the same business item, they can easily lead to modelingerrors. Figure 5.5 shows an illustrative
example.

Figure 5.5: A cluttered model due to multi-connections.

The model in Figure 5.5 is very cluttered and hard to understand because of the control and data
flow. Two control flow connections leaveTask 1and end inTask 3. Such a control-flow multi-connection
between a source and target modeling element is redundant, because it does not add any additional
information to the model. Control only needs to flow once froma source element to a target element.
Furthermore, if there is already a data connection drawn between the source and the target, no additional
control-flow connection needs to be added, because data flow always implies control flow.

Notice also that business itemA leavesTask 1four times, while itemB leaves this task two times.
Item A flows to Task 2andTask 3once, while it flows twice to taskTask 4. ItemB flows to Task 2
andTask 3. Such data multi-connections usually point to a modeling problem where users either tried to
pass the same item to several activities or intended to express that two different instances of the item are
passed.

For example, in a negotiation process, anoffer and acounter offermay be exchanged. To capture
the flow of these two offers correctly, two options exist. Thefirst option is to give meaningful different
names to the inputs and outputs of the tasks using the business item. In the graphical model, WBM
only shows the name of the business item. In the attributes view, we can see the names of the inputs
and outputs where we can distinguish the purpose of the business item. The second option is to define a
business item template and to associate several different business items with this template. For example,
a templateoffer can be defined followed by two business itemsinitial offer andcounter offer, which
inherit their common attributes from theoffer template. This solution is more appropriate if indeed two
different data objects flow through the process model that share a common set of attributes.

The correct passing of data along alternative and parallel flows is the subject of the remainder of this
section.

Recommendations 6 Try to avoid mixing data and control flow in a model. Decide whenever possible
for a pure control-flow or a pure data-flow model. Do not use control-flow multi-connections.

21



5.4 Gateway Form versus Activity Form with Data Flow

We begin by discussing the correct usage of gateway and activity form in the presence of data flow.
Gateway form and activity form can be used interchangeably for process models that contain only control
flow, as we discussed in Section 2. However, for process models with data flow the behavior is different
depending on whether gateway form or activity form is used. In order to correctly capture complex data
flows, it may even be necessary to mix both forms in a single process model.

Data-flow errors typically arise when data is flowing along several execution branches that can either
capture alternative or parallel behaviors. Three different modeling scenarios can be distinguished. In the
first, the same, shared data is passed along several branchesin the process flow. In the second scenario,
different, unshared data is passed along the branches. In the third, and most complex scenario, a mixture
of unshared and shared data must be passed. We discuss these three different cases separately in the
subsequent subsections.

As we pointed out earlier, WBM currently requires that all incoming and outgoing branches of gate-
ways, i.e., of fork, join, decision, and merge must always have the same business items attached to them.
It is not possible in WBM to have different business items on different branches of a gateway. Conse-
quently, we use gateway form if we want to model how thesame, sharedinformation is flowing along
alternative branches in case of a decision or along parallelbranches in case of a fork. Figure 5.6 shows
an example where itemsA andB are flow intoTask 2andTask 3, whileA andC flow out of them.

Figure 5.6: Data flow shared along several branches is correctly modeledusing gateway form.

Gateway form describes how the data flow gets routed based on the valueof attributes of business
items to alternative branches in the process model. Output conditions defined for decisions can capture
in detail how these values determine the branch the item flows.

If we need to model how different business items flow along thebranches in a process model, we
must use activity form. It is the only way to correctly capture how the data flow in a process branches
based on thetype of information, i.e., the business item. Figure 5.7 shows a model where different
business items flow along severalparallel branches.

Figure 5.7: Process model in activity form. Different types of information flow along parallelbranches.

In Figure 5.7,Task 1produces outputsA, B, andC that it routes in parallel toTask 2andTask 3.
Task 2receives itemA, while Task 3receives itemsB andC. Single output and input criteria are used

22



(notice the absence of arrows below the inputs and outputs),because we model parallel branching where
Task 1acts as a fork, whileTask 4acts as a join bringing the different data flows together again.

Figure 5.8 shows the same data flow, but now flowing along alternative branches instead of parallel
ones. This means thatTask 1acts as a decision, whileTask 4acts as a merge and two different output,
respectively input criteria have to be defined for these tasks.

Figure 5.8: Process model in activity form. Different types of information flow along alternative
branches.

By defining different output criteria, we model thatTask 1provides alternative outputs, namely either
itemA or itemsB andC. Based on the output, eitherTask 2or Task 3execute. Note that again, this flow
logic can only be viewed correctly when working in the advanced editing mode in WBM. In the basic
editing mode, Figures 5.7 and 5.8 are visualized in the same way.

Now we can show the corrected model for the process in Figure 5.5. The most likely interpretation of
this model is that the user wanted to show how shared information is passed on to several tasks. It is rather
unlikely thatTask 1produces several copies of the itemA as output. Consequently, the process should
have been modeled using gateway form as Figure 5.9 shows. We removed the redundant control-flow
connections and added a new business itemA-primein order to distinguish the two different purposes of
the itemA.

Figure 5.9: A corrected model for the process from Figure 5.5 using gateway form.

Recommendations 7 Gateway form using decision, fork, merge, and join is appropriate to model how
shared information flows along several branches in the process and where branching takes place based
on the value of attributes of business items. Activity form using input and output criteria, but no gateways,
must be used in models where data flow branches based on the type of the information and different busi-
ness items travel along different branches. Try to separateprocess fragments where data flow branches
based on the business item from process fragments where dataflow branches based on an item attribute
in order to avoid the need to mix both forms.

23



5.5 Passing Shared Data along Several Branches

Understanding the difference in the behavior of data-flow models using activity form or gateway form
provides the foundation to investigate the above mentionedthree data-flow modeling scenarios in detail
and to discuss the typical modeling errors that can occur. Inmost of the cases, identical data-flow anti-
patterns and patterns apply to parallel and alternative branching. Therefore, we usually concentrate on
parallel branching and discuss alternative branching flowsonly if there is an interesting difference. We
first discuss the scenario where shared data must be routed along several branches.

Anti-pattern 5.2 shows a frequent error that we observed when using activity form to model that
shared business items flow along several branches.

Anti-Pattern 5.2: Activities provide the same data outputs multiple times forusing the same, shared
data on parallel branches.

Using activity form leads to a duplication of data in the inputs and outputs of activities.Task 1
would normally produce business itemsA andB as outputs. To route the items in parallel to two process
fragments (visualized by the blue boxed areas), the outputsof Task 1are duplicated. Similarly, the
inputs ofTask 4are duplicated. This is not only a bad modeling practice, it also changes the semantic
meaning of the model, because it adds additional business items and duplicates the inputs and outputs
of activities. When activities are designed for reuse, sucha duplication is a strong limitation, because
any reusing process must provide twoAs and twoCs as input toTask 4, or the task cannot execute.
Pattern 5.2 shows the correct modeling solution for this scenario.

Pattern 5.2: Use gateways for branching when using shared data on severalpaths.

For alternative branching, an identical pattern results where the fork is replaced by a decision and the
join is replaced by a merge. Gateway form is used for branching when shared data is used and produced
along several branches. The process fragments that comprise these branches can of course modify the
data. We can see in the pattern that itemB enters both branches, but does not leave the blue process
fragment anymore. Instead, an itemC is provided on both branches as input to the join. Note that again
the same itemC must be provided on both branches for the join to be able to correctly execute.

The simulation in WBM 6.0.2 currently shows that twoAs and twoCs leave the join in Pattern 5.2,
which causeTask 4to execute twice. This means, the simulation implements a semantics where items get
multiplied by a fork and the join does not behave symmetrically, i.e., it does not undo the multiplication.

24



The join behaves more like a merge on data flow models, so a lackof synchronization can occur, unless
the multiple execution of the process fragment following the join is intended. In Pattern 5.2, the lack
of synchronization can be prevented by setting the minimum and maximum multiplicity of the inputsA
andC to 2, because two occurrences of each item have to be synchronized byTask 4. Unfortunately, this
solution makes reusingTask 4in other process models more difficult. Furthermore, computing the right
multiplicities can be challenging in models with more complex fork-join structures.

5.6 Passing Unshared Data along Several Branches

When unshared data flows along different alternative or parallel branches, many users are tempted to
use gateway form. This often leads to dangling inputs in a join or merge, which cause a deadlock.
Anti-pattern 5.3 illustrates this error.

Anti-Pattern 5.3: Passing unshared data along parallel branches using gateways causes deadlocks due
to dangling inputs.

The dangling inputs in the join prevent it from executing andthus block all activities succeeding it.
This means,Task 4in the anti-pattern cannot execute, although the task has all its inputs connected. The
dangling outputs of the fork are not causing an execution problem, but they lead to a process model where
certain outputs are not used. Additional dangling inputs can occur in scenarios where process fragments
within the blue frame produce additional data. For example,a new business itemD is provided as output
of some task within this process fragment and it replaces input itemC.

Very often, this error is corrected by wiring all business items through all tasks, although these tasks
do not need to access these business items. For example, itemsB andC would additionally flow through
the upper parallel branch. There are several good reasons tonot wire unnecessary data through activities.
First, it makes reusing activities more difficult as they require additional input and output that not all
reusing processes may be able to provide. Secondly, it exposes information to activities that do not
need it, which can later cause security and performance problems when designing the implementing IT
solution by closely following the process model.

Pattern 5.3 shows the correct solution using activity form.

Pattern 5.3: Use activity form for branching when different, unshared data is used on several paths.

This pattern shows the case of parallel branches. When modeling alternative branching flows that

25



work on unshared data it is important to correctly define the input and output criteria of the activities.
In particular, the input criteria of activities that act as implicit merges must exactly match the alternative
branches. Otherwise, deadlocks or a lack of synchronization can occur. If we change Pattern 5.3 to show
two alternative branches, we need to define one input criterion for Task 4that includes itemA and a
second input criterion that includes itemsB andD.

5.7 Passing the Shared and Unshared Data along Several Branches

The third scenario covers the case where a subset of the data is shared on all the branches, but an individ-
ual branch works on data that is specific to this branch. Usingonly activity or gateway form cannot lead
to a correct model. Anti-pattern 5.4 shows a scenario where the upper branch works on itemA, the lower
branch receives itemC and produces itemD, but both branches work on itemB. Activity form was
used to model this process. We notice immediately the problem of the duplicated itemB in the output of
Task 1and the input ofTask 4.

Anti-Pattern 5.4: Using activity form alone to pass shared and unshared data along several paths leads
to a duplication of inputs and outputs.

Anti-pattern 5.5 shows that gateway form leads to dangling inputs in the join that cause a deadlock.

Anti-Pattern 5.5: Using gateway form alone to pass shared and unshared data along several paths leads
to deadlocks caused by dangling inputs.

The only solution is to mix both forms. Gateways are used to route business items that the branches
share, while input and output criteria are used to route business items that are specific to a branch.
Pattern 5.4 shows a solution that works for parallel branches.

The shared itemsA andB branch through the fork and rejoin in the join. It is important that the
join expects no other input in order to avoid dangling inputs. ItemC is only needed as input for the
lower branch. It is passed through the fork, where it createsa dangling output in one of the branches.
This is not an ideal modeling solution, but at least it allowsthe process to execute. Alternatively,C
could bypass the fork and enter the blue process fragment directly.D must, however, bypass the join and
enterTask 4directly to avoid the deadlock. Note thatA flows through the fork and join, but it bypasses
the process fragment in the lower branch of the fork, becauseit is not required by activities inside this
fragment.A could bypass the fork and join, but it still needs to enter andleave the process fragment in

26



Pattern 5.4: Bypassing gateways is possible in parallel flows.

the upper branch of the fork. It also needs to enterTask 4. We show in the pattern a selected variant of
bypassing that eliminates the critical deadlock. Additional flows that bypass gateways are possible, but
such a solution quickly leads to a cluttered diagram.

Bypassing forks and joins in parallel flows does not cause a deadlock, because all branches execute
in parallel and thus, all business items always arrive through the connections, i.e., all tasks receive their
inputs as specified. For example,Task 1produces all its outputs and they are therefore available for
Task 4. In the case of alternative flows, the availability of inputsis not guaranteed for an activity that
expects these inputs from several alternative branches.

Anti-pattern 5.6 shows a process model with alternative branches where itemD, which is only pro-
duced by the lower branch, bypasses the merge to enterTask 4directly.D is a required input ofTask 4.

Anti-Pattern 5.6: Bypassing gateways of alternative branches can cause deadlocks.

Unfortunately,D is not available if the upper branch executes. A required input must always be
provided by all alternative branches. If an input is not required, but optional, two possible solutions
exist to correct the input behavior ofTask 4. Pattern 5.5 shows the first solution where the minimum
multiplicity of itemD as input ofTask 4is set to 0.

Pattern 5.5: Inputs provided along only some of the alternative paths must be optional.

27



Pattern 5.6 shows the second solution by defining several input and output criteria forTask 4that
correctly match the alternative branches.Task 4has an input criterion requiring only business items A
and B for the upper branch, while for the lower branch it has a separate criterion that includes business
itemsA, B, andD.

Pattern 5.6: Input criteria must precisely match the data that flows alongalternative paths.

Both solutions enableTask 4to execute correctly and independently of the branching decision that
was taken in the decision gateway.

Recommendations 8 When modeling complex data flows, take a systematic approachbased on sce-
narios that distinguish whether shared or unshared data hasto be passed along several flows. Then
determine whether these flows occur as parallel or alternative branches in the process model. You can
use activity form to capture the flows, but when branches share data, it leads to duplicated inputs and
outputs of activities that should be avoided. Gateway form is a better solution for this scenario. When
modeling alternative branches, make sure you pay attentionto data that is only available on one of the
branches. This data must be an optional input for any activity following the merging of the alternative
branches.

6 Scenario IV: Modeling Events and Triggers

Very often, users want to model events and triggers in a process model.7 WBM supports events in the
context ofbusiness measuresthat are used to definekey performance indicatorsfor process monitoring,
but not directly as first-class modeling elements in the process model itself. Currently, it has support for
events in the form of anotification, which can be received via anotification receiverand broadcasted via
a notification broadcaster, i.e., an abstract modeling of publish-subscribe communication is supported.
A point-to-point event-based communication cannot be modeled so far and it also cannot be captured
how events flow through a process model.

6.1 Events as Control Flow?

We observed that very frequently control flow is used to capture events. However, the semantics of
control flow in WBM assumes that control flow is something thatoccurs and that defines an order of
execution between activities—it does not carry any information as events usually do. Consequently, a
modeling practice that captures events with control flow leads to various semantic problems. Figure 6.1
shows an example using control flow to capture the logic behind several initial and final events that occur
in a process.

7In our own understanding, we make no semantic difference between events and triggers and only speak of events in the
following.

28



Figure 6.1: Complex event triggering logic incorrectly captured as control flow.

In this example, three start nodes are used to represent three different initial events that can initiate
execution of the process. The control connections from these start nodes to the subsequent gateways
were named with events, however, these names are not visualized and can only be seen by clicking on
the connection or opening the attributes view. This leads toa model where essential information about
the events is not directly visible in the graphical representation. A merge and a join are used to capture
the event logic. The user’s intention here was to describe a process that is triggered by a single event or by
two events that must jointly occur. To express the event logic (event1 AND event2), the user introduced
the upper two start nodes and connected them to a join. The lower start node represents the third event.
This start node and the join are both connected to a merge in order to represent the event logic(event1
AND event2) OR event3.

However, the semantics of start nodes in WBM specifies that always all start nodes of a process model
executeat once. In case of the example, all three event-representing control connections are triggered
immediately and then the join executes. The merge executes twice, once when it receives control from
the lower start node, and again when it receives control fromthe join. Consequently,Task 1executes
twice in all executions of this process. This behavior can beobserved in the WBM simulation. So the
three alternative events that the user tried to capture withthe three start nodes always occur together and
are by no means alternative triggers for the subsequent task. The two final events that the task emits after
successful execution have been captured in a decision with two outgoing branches that directly end in a
stop node. Stop and end nodes cannot pass any event information outside the process—they only stop
the control flow. Therefore using control flow to depict events is not a good idea.

Anti-Pattern 6.1: A merge or join only preceded by start nodes, and a decision ormerge only followed
by and end or stop nodes is an error.

Anti-pattern 6.1 generalizes this insight. Multiple startnodes directly linked to gateways are not
suitable to capture any triggering logic of a process. Connecting several start nodes directly to a merge
causes a lack of synchronization. A join that only has start nodes has input can be replaced by a single
start node that should directly connect to a task or subprocess. Connecting all outgoing branches of a

29



decision or fork directly to end or stop nodes shows that the decision or fork is unnecessary. A gateway
should lead to branches that contain tasks or subprocesses.Usually, only one of the branches should
capture a “do-nothing” case and directly link to an end or stop node. We deal with the difference in the
semantics of the end and stop node in Section 7.

6.2 Events as Data Flow

In our own practice, we use two alternative solutions to capture events. In process models, which are not
intended to be exported to the IT level and where we want to capture start and end events of the process,
but do not need to show the event flow, we usereceiversandnotification broadcasters. Information on
how to correctly use these modeling elements can be found in the WBM documentation. In process
models, where we want to describe how information received through events flows between the activities
in a process, we use business items and data-flow connections.

Figure 6.2 shows on the left three different catalogues of business items to distinguishevents, notifi-
cations, and “normal”business itemsfrom each other.

Figure 6.2: Event flow represented as a specific kind of business item flow.

Each kind of information is associated with a different icon, which can be easily customized in WBM.
Notifications and business items are available as predefinedcatalogues, while theEventssubcatalogue is
user-defined. The process model fragment in this figure showsan example whereTask 1can execute if
it either receives a business itemA together with someevent 3or if events 1andevents 2occur. Task 1
sends business itemB to Task 2together with acomplex event, which now flows through the process
similar to other business items. As events are modeled as specific kinds of business items, attributes can
be defined for them in order to capture in more detail what information they carry. This information is
also accessible when modeling decision conditions.

Pattern 6.1 illustrates the approach of using data flow to represent events. Initial events are received
via the process input interface, while final events leave theprocess via the process output interface.

Pattern 6.1: Events can be modeled as business items.

30



Recommendations 9 Do not use control flow to model events and triggers in a process model. Either
use the modeling elements that are provided to capture notifications, or represent events as a specific
kind of business item flow. Do not connect all inputs or outputs of a gateway or activity directly to start,
end, and stop nodes.

7 Scenario V: Correct Termination of a Process

WBM offers two types of nodes to terminate a process, which are called theendand thestopnode. The
end node is visualized with a circle containing a cross, while the stop node is visualized with a circle
containing a black dot. A stop node stops all activities and flows in the process model. This means, the
stop node has a termination effect onall executing branches within the whole process model, i.e., itleads
to a “global shutdown” of the entire process.

If more than one branch executes, e.g., if the model containssome parallelism, the stop node always
terminates all parallel branches. In contrast, the end nodeonly has a local effect: it only ends the single
branch through which it was reached. Given the more global effect of the stop node on the entire process,
we have to be careful putting a stop node in process models that can have several branches executing in
parallel.

From the perspective of the semantics, we can use both nodes interchangeably in models that for
sure only have a single sequential execution, e.g., those models that do not use forks, inclusive decisions,
cyclic connections, and branching output criteria. From a tool perspective, at least one stop node is
required within every process, subprocess, and loop in WBM 6.0.2. The simulation in WBM 6.0.2
requires that every path in the process model ends in a stop node, i.e., the end node should be rarely
used. The stop node is particularly important when simulating data flow models, because it is required to
release the data. This means, that a parent process can only receive data from a subprocess when a stop
node is reached or when theadvanced output logic(see the tab of the same name) of the subprocess is
set tostreaming, i.e., the subprocess releases data while still running.

In the following discussion, we explore the semantic difference between the end and the stop node
in more detail. In particular, we investigate the global shutdown effect of the stop node.

7.1 The Stop Node in Parallel Execution Branches

Very often, users are not aware of the global effect of a stop node and use it to end each of the individual
branches of a process. Figure 7.1 shows a typical example.

Figure 7.1: Stop nodes used in a process model with parallel execution branches.

Immediately following the start node, we see an inclusive decision with two branches. The upper
branch leads to a fork that causesTask 1andTask 2to execute in parallel. Both tasks connect directly

31



to a stop node. The lower branch of the inclusive decision leads to a cyclic process fragment, where
Task 3iterates until a decision condition is satisfied. The ’yes’ branch of this second decision is directly
connected to a stop node.

As soon as one of the branches reaches the stop node, the entire process terminates, even if tasks
have not finished their execution. Such a “global shutdown” can sometimes be intended and this happens
during the simulation. However if we think of the IT implementation, this is most likely not the intended
process behavior: instead, branches running in parallel should end individually after the tasks on these
branches finished correctly.

A problem occurs if the initial decision is indeed inclusiveand activates both branches. If only
the lower branch is activated, no problem occurs, because the cyclic process fragment only contains a
sequential loop, i.e.,Task 3is executed repeatedly, but several instances of the task donot run at the same
time. If the decision only activates the upper branch, therecan still be a problem in the fork ifTask 1
andTask 2represent activities of different duration. When one of thetasks finishes, it would also cause
the immediate termination of the other task. When the inclusive decision activates both of its outgoing
branches andTask 1or Task 2only have a very short execution duration, this could in principle also
cause the cycle to never execute, because as soon as one of theupper stop nodes is reached, it terminates
the whole process including the cycle. Anti-pattern 7.1 alerts the user of stop nodes used in parallel
branches.

Anti-Pattern 7.1: Stop nodes ending parallel branches always terminate the whole process even if they
are only meant to end a single execution branch.

If we replace the inclusive decision and fork with two exclusive decisions, only one sequential execu-
tion path results for the process. In this case, end and stop nodes can be used interchangeably. Whithout
parallelism, the stop node has exactly the same effect as theend node, i.e., it ends the single branch
through which it was reached.

Given the current requirements of the simulation, we recommend to prefer the stop node in models.
Users should be aware, however, that some parallel paths maynot have finished execution when the stop
node is reached during a simulation run. The BPEL export in WBM maps the end and the stop node to
an implicit end of the BPEL process. It does not generate an explicit global termination behavior in the
BPEL for a stop node, e.g., via a BPELterminateactivity.

Pattern 7.1: Stop nodes model a global shutdown behavior. They can be usedsafely when this behavior
is intended, when only a single sequential execution occurs, or when parallel branches have been rejoined
before reaching a single stop node.

32



Pattern 7.1 summarizes our discussion and recommends to rejoin parallel branches before adding a
stop node to terminate the process.

Recommendations 10 Use the stop node when you want to model a “global shutdown” ofa process.
Rejoin parallel branches with a join node and then place a single end or stop node, instead of ending
parallel branches individually.

7.2 Data Output upon Termination of a Process

Finally, we want to discuss the process boundaries and the inputs and outputs of a process. Very often,
processes receive data as inputs and produce data as outputssimilar to activities inside the process model.
Consequently, input and output criteria can be defined for the process to represent the process interface.
Figure 7.2 shows an example of a process for which inputs and outputs are defined.

Figure 7.2: Input and output data of a process, combined with start and stop nodes.

The process receives itemA as input, which it passes on toTask 1. The task also has a start node,
however, this node is optional and does not change the execution semantics of the task, which can only
begin execution when the input is available. The additionalstart node visualizes the process beginning
more clearly. The process produces itemsA andB, orA andC as outputs.A is an output ofTask 4, B
is an output ofTask 2, andC is an output ofTask 3. ItemD is an output ofTask 3, and is not used by any
other task and not provided as an output of the process. It is therefore connected to an end node. Using a
stop node instead, would not be a correct solution, because it would immediately end the whole process
and prevent execution ofTask 4. ItemE is an output ofTask 4and connected to a stop node, because it
is not used by any other activity in the process. This use of the stop node is correct, becauseTask 4is the
last executing task of this process and no other activities execute in parallel. The process interface shows
two alternative output criteria in order to match the alternative outputs.

Defining a process interface is done in the same way as definingthe inputs and outputs of activities
within the process. The definition needs to take into accountthe different execution branches that can
occur, which can lead to different combinations of businessitems that can reach or leave an activity.
We discussed this in detail in Section 5. A possible source oferrors is the mismatch between the input
and output criteria of the process and its possible execution branches. It is important to link alternative
branches to alternative input and output criteria.

Anti-pattern 7.2 summarizes typical problems of process interfaces that do not match their incoming
flows. It shows two parallel branches on the left that always provide outputsA, B, andC in parallel.
The process output interface only expects a single output ineach output criterion, which means that the
process internally decides which data to release via its output interface, and this data can be different any
time the process runs. A reusing process must therefore be able to handle any of the possible outputs. On
the right, we have two alternative branches that either provideA orB orC as output of the process. The
two alternative branches result from the decision. In addition, Task 2hasB or C as alternative outputs.

33



The output criterion always expects all three business items in a single output criterion. In this situation,
a reusing process would never receive all the data that was specified in the output interface of the reused
process, because the process fragment shown in the left of the anti-pattern is deadlocking, because it
cannot release all the required data. The correct solution is to match the single output criterion on the
right with the process fragment on the left and vice versa. Note also that a stop node was not provided in
the anti-pattern, which is currently required to release the data in a simulation run.

Anti-Pattern 7.2: Process output interfaces that do not match their incoming flows lead to nondetermin-
ism (on the left) or to a deadlock (on the right).

Pattern 7.2 shows correctly matching process output interfaces and a correctly placed stop node that
does not lead to an unintended global shutdown. However, theprocess does not release its data in the
simulation, because the parallel branches involvingTask 2andTask 3do not end with a stop node.

Pattern 7.2: Process output interfaces must correctly match their incoming flows.

Each branch in a process must begin with a start node or by receiving data as input. It is also a good
modeling practice to end each branch of a process either witha termination node or by providing data as
output. To increase the well-formedness of process models,we recommend to rejoin branches opened
by forks and decisions using joins and merges when they use the some shared data. We discussed this in
detail in Section 5.

Sometimes, activities within a process output data that is not part of the output of the process. This
output often remains unconnected and becomes a dangling output. An alternative is to connect this

34



output to an end or stop node in order to emphasize that the process has been completely modeled. For
this purpose, WBM provides an asymmetry between the start and the end and stop nodes with respect to
data flow. A start node can only issue control flow, while stop and end nodes can also receive data flow.

Pattern 7.3 shows the further improved model. Note that a join was added to rejoin the two parallel
branches so that they can lead to a single stop node. The end node, to whichTask 3previously connected,
is no longer needed. No unintended shutdown can occur and alldata output is correctly released.

Pattern 7.3: Process output interfaces must correctly match their incoming flows and parallel branches
rejoin before reaching a stop node to release the data and avoid an unintended global shutdown.

Recommendations 11 Process interfaces must correctly match the data flows of theprocess. Each
process branch should be terminated with an end or stop node.Branches that release data must be ended
with a stop node. They should be rejoined before adding the stop node in order to avoid an unintended
global shutdown. Data output of activities, which is not released to the process output interface, should
be connected to an end or stop node in to avoid dangling outputs.

8 Scenario VI: Reuse of Activities in Hierarchical Process Models

So far we discussed subprocesses and tasks from the perspective of a single process model, i.e., from a
local point of view. However, different processes can sharethe same activities and increasing their reuse
in a process model is very desirable. To help with reuse, WBM offers the possibility to define tasks and
subprocesses asglobal modeling elements directly in the project tree from where they can be dragged
and dropped into other process models for reuse.

Figure 8.1 shows a project tree on the left and a compact view of the hierarchical levels of a composed
process on the right. The project tree contains the definitions of the global processes and global tasks
available for reuse. The compact view on the decomposition hierarchy of theMain Processlets us to
immediately see where processes and tasks are located on thehierarchy levels.8 Whenever possible, each
activity should only be defined once and thus, should also be implemented only once. The definition of
this activity can subsequently be reused by any other process.

8Plugins have been implemented for WBM to visualize the decomposition hierarchy and the reuse of activities. Interested
readers should contact the authors to inquire about the availability of these plugins.

35



Figure 8.1: Global tasks and processes defined in the project tree and reused at several levels of a
process.

Figure 8.2 shows the composed process in more detail. The example process is built from four
levels as both figures show. On the top level, we find theMain Process, which reusesSubprocess 1and
Global Task 1. Subprocess 1reusesGlobal Task 2andSubprocess 2. Subprocess 2reusesSubprocess 3.
The reused subprocess is followed by a decision with two branches. Both branches reuseGlobal Task 3.
As this task occurs twice inSubprocess 2, the tool distinguishes its two occurrences by adding a “:2”to
the second occurrence of this task. The upper branch of the decision reusesGlobal Task 1, Main Process
also reuses. Finally,Subprocess 3invokes theMain Processagain.

Figure 8.2: A detailed view of a hierarchical process model.

Since we focus on common modeling errors in this report, we donot want to discuss aspects of
a good hierarchical decomposition, but highlight what can go wrong when a process is composed by
reusing subprocesses and global tasks. The example above illustrates two sources of errors. First, we can
see thatMain Processoccurs twice in the hierarchical composition, which means that it reoccurs again

36



in its own decomposition. Such an occurrence of a process within its own decomposition hierarchy leads
to a recursive refinement. In case of the example process, therecursion is infinite:Subprocess 3always
invokesMain Processagain. In a proper recursive process definition,Subprocess 3would contain a
decision with two alternative branches where one branch covers the recursive invocation, while the other
leads to a stop or end node.

Infinite decompositions can easily occur in larger composite processes, where maintaining a global
overview of the model becomes difficult. Usually, users do not intentionally create recursive process
models. They result from dragging and dropping processes ortasks on different hierarchical levels of
the process. Very easily, reuse chains as in Figure 8.2 can result where a lower-level process suddenly
reuses one of its “parent” processes. To avoid such recursive refinements, reusable processes should be
grouped into several abstraction levels. Processes at a higher abstraction level should only be refined
with processes from a lower abstraction level and the lowestlevel should only contain global and local
tasks.

A second modeling error that we observed, results from the reuse of the same activity within a process
model. For example,Global Task 3occurs twice in the refinement ofSubprocess 2. Multiple occurrences
of activities should always be carefully examined, becausethey can indicate that the control flow was
not adequately captured. It can be argued that the decision should be placed afterGlobal Task 3and that
this task should only occur once in the process model. Figure8.3 shows the correctedSubprocess 2.

Figure 8.3: The corrected subprocess with only a single occurrence of the reusedGlobal Task 3.

Multiple occurrences of an activity do not necessarily leadto a process execution error, but they can
affect the readability of the model. A frequent example of redundancy occurs when users approximate
iterative behavior. Instead of drawing a cycle, a decision is added and repeated activities are placed
multiple times in the process model. This technique enablesa business analyst to separate repeated
paths in a process and it facilitates the analysis of the process model in a business scenario. However,
in an implementation scenario, the alternative sequentialpaths do no correctly capture the behavior to
implement, which makes it impossible to generate meaningful BPEL out of these models. A better
solution in case of the latter scenario would be to place the repeating activities within a cycle, as we
discussed it in Section 4. The cycle can be created either by using a merge followed by a decision, or by
using the loop modeling elements available in WBM.

Finally, reusing activities in process models with data flowrequires a careful examination of the
inputs and outputs of the reusable activities. Figure 8.4 shows aGlobal Taskthat provides alternative
input and output interfaces for reuse.

The task executes when it receives either business itemsA andB, orC andD, orB andC as inputs.
We defined these possible combinations in three different input criteria. As an output, the task provides
business itemA, orB, orC. Each single business item is thus placed in a separate output criterion. The
definitions of the input and output criteria are part of the activity definition: they cannot be changed in
any process model that reuses this task. Only additional control flow inputs and outputs can be added to
an activity after dragging and dropping it into a reusing process model.

To correctly reuse a task or subprocess, each reusing process must provide the inputs for at least one
of the input criteria, which means that these inputs must be connected to other activities in the reusing
process model. The reusing process should also be able to handle the possible outputs of the reused

37



Figure 8.4: Input and output criteria of a global task that specify alternative task interfaces for reuse.

activity. Ideally, all outputs of all output criteria should be connected. If an output cannot be connected,
because it cannot be used by the reusing process, this outputshould be connected to an end or stop node.
It must be ensured that the reusing process is able to executedespite the non-usable output. This can also
require to add an additional control-flow connection from the reused activity to other activities further
downstream in the process model.

In the example, the reusing process must be able to handle thealternative outputsA, B, orC. There
should be subsequent process fragments in the reusing process to receive these business items as separate
inputs. If a specific output occurs depending on a specific input, for example, when business itemA is
produced as an output only ifA andB are provided as an input, then the reusing process only needsto
be able to handle those outputs.

Recommendations 12 Hierarchical models become more readable if reusable subprocesses are grouped
based on identical abstraction levels and processes at one abstraction level are only refined with pro-
cesses from a lower abstraction level. A hierarchical process decomposition should not contain the same
process in different level unless an infinite recursive refinement of the process has to be modeled. In this
case, a reachable exit branch that stops the recursive invocation should be added to the model.

Multiple occurrences of the same reused activity should be examined for redundancy and possible
improvements of the control flow of the process. When reusingan activity in a process model containing
data flow, the inputs and outputs of the activity must match the possible data flows that can involve the
reused activity within the reusing process model.

9 Conclusion

In this report, we investigate typical modeling errors thatwe extracted from hundreds of real-world pro-
cess models drawn in different business process modeling tools over the last two years. The modeling
errors are grouped into six common modeling scenarios. In the report, we address the following scenar-
ios: the modeling of branching and iterative behavior, the modeling of data flow, the modeling of events
and triggers, the correct termination of a process, and the reuse of activities in hierarchical process mod-
els. Each scenario is motivated by discussing an example process model containing errors. Then, the
errors are generalized into anti-patterns that allow us to systematically describe incorrect modeling solu-
tions. The correct solution is presented in form of a pattern. A summarizing recommendation concludes
each scenario.

The scenarios enable readers to easily match the material provided in this report with the modeling
challenges they are facing. The anti-patterns and patternsare based on a systematic approach that shows
the modeling elements in combination—they make it easy for users to understand which combinations

38



work and which fail and for what reason. For example, when discussing branching and iterative behavior,
we examine the possible pairings of gateways and show that out of the eight possible combinations only
three lead to correct models. In case of data-flow modeling, we provide users with a systematic approach
where they evaluate whether the shared or unshared data is passed along several alternative or parallel
branches.

The process anti-patterns not only help users to learn how tocreate correct process models, but they
also provide the basis for quality assurance support that could be added to modeling tools in the future.

Acknowledgment

We would like to thank our colleagues Thomas Gschwind, Jochen Küster, Cesare Pautasso, Ksenia Ryn-
dina, Michael Wahler, Olaf Zimmermann, and IBM practitioners for their valuable comments on draft
versions of this report.

References

[1] Anti-pattern, 2007. en.wikipedia.org/wiki/anti-pattern.

[2] J. Becker, M. Rosemann, and C. von Uthmann. Guidelines ofbusiness process modeling. In W. Aalst,
J. Desel, and A. Oberweis, editors,Business Process Management: Models, Techniques, and Empirical
Studies, volume 1806 ofLNCS, pages 30–49. Springer, 2000.

[3] Business Process Modeling Notation Specification, 2006. Version 1.0 dtc/06-02-01.

[4] T. Erl. Service-Oriented Architecture: Concept, Technology, andDesign. Prentice Hall, 2005.

[5] A. Foerster, G. Engels, and T. Schattkowsky. Activity diagram patterns for modeling quality constraints in
business processes. InProceedings of the MoDELS Conference, volume 3713 ofLNCS, pages 2–16. Springer,
2005.

[6] MID GmbH. MID Innovator, 2007.

[7] A. Selcuk Guceglioglu and O. Demirors. A process based model for measuring process quality attributes.
In 12th European Conference on Software Process Improvement (EuroSPI), volume 3792 ofLNCS, pages
118–129. Springer, 2005.

[8] A. Selcuk Guceglioglu and O. Demirors. Using software quality characteristics to measure process quality.
In 3rd International Conference on Business Process Management, volume 3649 ofLNCS, pages 374–379.
Springer, 2005.

[9] IBM. Rational Software Architect. IBM, 2007.

[10] J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, and M. Wahler. The role of visual modeling and
model transformations in business-driven development. InProceedings of the 5th International Workshop on
Graph Transformation and Visual Modeling Techniques, pages 1–12. Elsevier, 2006.

[11] J. Koehler, R. Hauser, S. Sendall, and M. Wahler. Declarative techniques for model-driven business process
integration.IBM Systems Journal, 44(1):47–65, 2005.

[12] C. Lange, B. Dubois, M. Chaudron, and S. Demeyer. An experimental investigation of UML modeling
conventions. InProceedings of the MoDELS Conference, volume 4199 ofLNCS, pages 24–41. Springer,
2006.

[13] F. Leymann and D. Roller.Production Workflow: Concepts and Techniques. Prentice Hall, 1999.

[14] T. Mitra. Business-driven development. IBM developerWorks article,
http://www.ibm.com/developerworks/webservices/library/ws-bdd, IBM, 2005.

39



[15] J. Novatnack and J. Koehler. Using patterns in the design of inter-organisational systems - an experience
report. InProceedings of the Workshop on Modeling Inter-Organisational Systems, volume 3292 ofLNCS,
pages 444–455. Springer, 2004.

[16] Object Management Group (OMG).Unified Modeling Language: Superstructure, 2005. Version 2.0
formal/05-07-04.

[17] M. Rosemann.Komplexiẗatsmanagement in Prozessmodellen. Gabler, 1996.

[18] W. Sadiq and M. Orlowska. Applying graph reduction techniques for identifying structural conflicts in
process models. InProceedings of the 11th International Conference on Advanced Information Systems
Engineering (CAiSE ’99), volume 1626 ofLNCS, pages 195–209. Springer, 1999.

[19] SAP Research. Maestro Business Process Modeling Tool,2007.

[20] A. W. Scheer, F. Abolhassan, W. Jost, and M. Kirchner.Business Process Excellence - ARIS in Practice.
Springer, 2002.

[21] IDS Scheer. Aris Business Architect, 2007.

[22] BOC Information Systems. ADONIS Business Process Management, 2007.

[23] W.M.P. van der Aalst. Challenges in business process management: Verification of business processes using
Petri nets.Bulletin of the EATCS, 80:174–198, 2003.

[24] W.M.P. van der Aalst. Business process management demystified: A tutorial on models, systems and stan-
dards for workflow management. In J. Desel, W. Reisig, and G. Rozenberg, editors,Lectures on Concurrency
and Petri Nets, volume 3098 ofLNCS, pages 1–65. Springer, 2004.

[25] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow patterns.Dis-
tributed and Parallel Databases, 14(1):5–51, 2003.

[26] W.M.P. van der Aalst and K. van Hee.Workflow Management: Models, Methods, and Systems. MIT Press,
2002.

40


