
RZ 3685 (# 99695) 03/26/2007
Electrical Engineering 8 pages

Research Report

Tempo
A Simple Time-Sensitive Messaging System

Daniel Bauer, Luis Garcés-Erice, Sean Rooney

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
e-mail: (dnb, lga, sro)@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Tempo
A Simple Time-Sensitive Messaging System

Daniel Bauer, Luis Garćes-Erice, Sean Rooney
IBM Research, Zurich Research Laboratory Säumerstrasse 4.

8803 R̈uschlikon, Switzerland

Abstract— Tempo is a messaging system designed for time-
sensitive applications that require low-latency and high data
rates. In Tempo, unlike existing real-time messaging systems,
most of the policy is delegated by the messaging layer to the
application. It is the application’s responsibility to react to
information supplied by the messaging layer in order to achieve
some performance objective; this makes Tempo suitable for use
in environments which must reconfigure often and hence in which
the normal Real-Time techniques such as Worst Case Execution
Time analysis would be impossible or prohibitively expensive.

I. I NTRODUCTION

As the physical world becomes increasingly connected to
computer networks through intelligent sensors and actuators
there are more applications that require knowledge of the time
that it takes to achieve various tasks. Doing so enhances exist-
ing applications and enables entirely new ones as underlying
systems can be monitored and changed at granularities of time
that were previously infeasible. Examples, of such applications
are found in telematics, industrial automation, health care.

Messaging systems are attractive in such an environment
as they promote a data-centric form of communication in
which the interests of entities determines the associations
between them. This allows an entity at the application level
to be oblivious as to which other entities it is communicating
with, permitting a looser coupling between entities than inan
address-centric approach. An appropriate messaging system
should be simple enough that it can be added to low-end
devices, be self managing, scale to large number of end-points
and support high data rates with bounded delay.

We describe a messaging system called Tempo that meets
the design goals that we have outlined. Tempo is a ’bare
bones’ messaging system allowing it to scale to high data
rates and high numbers of end-points with low latency. Within
Tempo, relative guarantees can be associated with the delivery
of messages on different topics, allowing applications to
privilege the delivery of certain message types over others.
This is achieved through a design which allows resources,
e.g. CPU, to be allocated to distinct topics. Tempo monitors
and makes available information about the performance of the
messaging layer to applications allowing them to dynamically
instrument application-specific policies which can adapt to
changing circumstances. Tempo is implemented using Real-
Time Java (RTSJ) [1] enabled with the Metronome Real-Time
garbage collector [2].

II. RELATED WORK

Existing commercial messaging system have been designed
with transactional applications in mind. In such systems, for
example for stock trading, reliability and non-repudiation are
the most important design goals, in consequence they are
inappropriate for the types of application we have in mind.

Some attempts have been made to design Real-Time mes-
saging systems: CORBA [3] offers an event service that
supports a publisher/subscriber event mechanism over the
basic CORBA/IIOP. RT-CORBA can be used to tune an upper-
bound in the time it takes to achieve a distributed activity
through the allocation of resources, e.g. thread priorities,
across a distributed environment. The real-time CORBA Event
Service [4], an extension to CORBA’s event service, takes
advantage of real-time CORBA’s capabilities as well as simpli-
fying the communication protocol. CORBA does not achieve
our other design goals; it is a general purpose Distributed
Processing Environment not just a messaging system, meaning
that end-systems have to support the complete set of APIs
required by the Object Management Group (OMG). This is
not favorable to low-end devices. In addition, the requirement
that standard CORBA protocols are used within the mes-
saging service introduces unnecessary overhead. Furthermore,
CORBA’s many layers of software make it difficult to analyze
the performance of the resulting system. The need for an
explicit event server supporting the publish/subscribe appli-
cation necessitates an extra hop across which each message
must be carried even if the publisher and subscriber are in
the same broadcast or multicast domain. Finally, CORBA’s
use of explicit bindings whereby publishers and subscribers
explicitly connect and unconnect from the event server make
it unsuitable for environments where devices often fail andin
which connectivity is lost and reestablished.

Unlike CORBA, Data Distribution Service (DDS) [5] is
explicitly a publish/subscribe infrastructure. It does not define
a wire protocol but simply a set of APIs defined using CORBA
IDL. DDS implementations consequently do not inter-operate.
DDS offers some support for resource allocation. A publisher
can announce a rate that it wishes to publish at and subscribers
at a rate at which they wish to receive and DDS ensures
their consistency. An end-to-end latency requirement may be
associated with a message but this is only a hint to the
application and DDS ignores it. DDS has quite a rich set of
operations describing different semantics for message delivery.
In particular, DDS allows a data item to be associated with

2

(a) Broker mode control path (b) Peer-to-peer mode control path

(c) Broker mode data path (d) Peer-to-peer mode data path

Fig. 1. Path of control and data messages in Tempo

a key, thereby giving it an identity. Multiple data items with
the same key may exist within DDS simultaneously and the
delivery semantics determine whether old ones overwrite new
ones or are retained. Data items can be retained until explicitly
removed by subscribers; data items can be expired after a given
time period.

III. PUBLISH/SUBSCRIBEPROTOCOL

In a publish/subscribe system publications on a topic are
sent to all subscribers to that topic. The publish/subscribe
abstraction can be supported using a dedicated broker whose
role is to dispatch published messages to the appropriate sub-
scribers. Alternatively the topic/subscribers association can be
maintained at the publishers, such that publishers send directly
to subscribers. The peer-to-peer case incurs less latency as an
in-direction through a broker is avoided however it is only
appropriate for small numbers of publishers and subscribers
due to the large amount of state that needs to be maintained
at the end-points.

Tempo supports both modes of operation within the same
publish/subscribe protocol allowing the trade-off between la-
tency and scalability to be determined by the user1. A pub-
lisher periodically announces its ability to send messageson
a named topic and a subscriber periodically announces its
readiness to receive messages on a named topic. Publishers
and subscribers communicate with one another across an IP
addressable channel. The channel can be a broker or simply the
broadcast or multicast domain. These two cases are transparent
to the publishers and subscribers and are configurable simply

1Hybrid modes of operations are also possible in which a given message
may be sent to some subscribers directly while others receive it through a
broker but these are not described here due to lack of space.

through the address, i.e. in one case it is the broker’s address,
in the other it is the broadcast or multicast address.

Publishers maintain the list of subscribers to their topic and
send publications to that list of subscribers. If after sometime
a subscription announcement has not been received from a
subscriber, the publisher removes the associated state about
that subscriber and will not send any further messages to
it. In the broker case, the broker acts as a proxy appearing
as a publisher to subscribers and a subscriber to publishers.
It aggregates information between multiple announcement
messages meaning that although there may be many publishers
and subscribers on a given topic, from an end-point’s point of
view there is only ever one i.e. the broker.

A publisher sends in its announcement the rate at which
it wishes to publish on the topic and subscribers send the
rate at which they wish to receive. These messages are
sent periodically and the rates can vary over time. The rate
announced by a publisher or subscriber running on an end-
point are used locally within the scheduling mechanism to
allocates shares to the corresponding topics as described in
Section IV. Note that these rates are not the actual rate at
which data is being sent but are descriptions of the intended
sending and receiving rates. Figure 1 compares the data and
control paths of messages in the broker and peer-to-peer mode.

Tempo runs over both UDP and TCP. The messaging system
itself never reorders or discards messages meaning that if
TCP is used messages are delivered reliably. If UDP is used,
messages may be lost in the network layer. The choice of
transport protocol changes the system characteristics that we
can optimize, with UDP delay is minimized but arbitrary rates
of loss are possible, with TCP there is no loss but arbitrarily
long delays are possible.

Each end-point that is acting as a publisher on a topic

3

Fig. 2. Sending probes to estimate end-to-end delay

periodically transmits a probe message. The probe is carried
through the normal data path to all subscribers. Contained
in the probe is the time at which it was sent as well as
the source address of the sender. The probe is echoed back
at the subscriber to the publisher allowing the publisher to
estimate the current end-to-end delay on that topic between
the publisher and all subscribers. The return path of the probe
does not go though the messaging system meaning that it is
faster than the forward path allowing a publishing application
to use the round trip time as a conservative upper bound for
the forward path at the current point in time.

Figure 2 shows the general schema of the means for
estimating end-to-end delay. The controller places a probein
the messaging system at timet1. The probe is carried through
the messaging system to the subscribers, but instead of being
delivered to the applications it is echoed back. The publishing
controller, receiving the echoed probe at timet2 calculates
the round-trip ast2 − t1 this serves as a conservative upper-
bound for the end-to-end delay. The extent to which the round
trip time overestimates the end-to-end delay depends on the
relative amount of time spent in the network compared to
the messaging system. When the network is unloaded and the
propagation delay is short then we can expect the calculated
time to be a reasonable approximation, when the network is
congested or the propagation delay is large the round trip may
be twice as large as the actual end-to-end delay.

Each application participating in a topic receives periodic
reports about the performance of the publishers and sub-
scribers to that topic. Applications can then make use of
this information in application-specific ways. For example, a
publishing application may adapt its sending rate to match
the lowest subscription rate. Section V describes this in more
detail.

IV. T HE MESSAGINGENGINE

Tempo has been designed to support applications that re-
quire a messaging service with timeliness guarantees, where
timeliness means both guaranteed throughput in terms of mes-
sages per second and bounded latency between publishers and
subscribers. Timeliness is achieved by carefully allocating the
CPU. This happens on multiple levels, as shown in Figure 3.
At the coarsest level, shown at the bottom of the Figure, the
CPU is divided between the Tempo middle-ware and other
applications. It is the task of the operating system to schedule
threads of individual applications. Tempo runs in a real-time
Java environment that provides a fixed-priority scheduler as
well as periodic threads. Tempo assumes a rate monotonic [6]

Fig. 3. Scheduling Hierarchy

scheduling discipline that is used by all threads. Inside the
Tempo middle-ware, a topic scheduler decides how the CPU
is divided among different topics. Here, a weighted-fair share
scheduler is used that serves each topic according to its share,
where a share corresponds to a message rate. Finally, on the
level of individual messages, priorities are used to distinguish
messages within the same topic. High priority messages skip
low priority ones and are thus forwarded with a lower delay.

A. Thread Scheduling

The operating environment provides a thread scheduler
that controls access to the CPU. RTSJ mandates a fixed-
priority scheduler that is available on most, if not all, real-time
operating systems. This scheduler requires that applications
cooperate, otherwise an application constantly running at
high priority starves other applications. While other thread
schedulers such as proportional fair share schedulers, for
example [7], have been the subject of active research, few
commercial implementations exist. Tempo’s design builds on
the fixed-priority scheduler. This scheduler does not use time-
slicing. A running thread will continue to use the CPU until
a thread with higher priority becomes ready to run or until it
blocks on I/O or yields.

Tempo uses two different approaches for thread scheduling
that can be described as time-driven and load-driven. In order
to simplify the discussion in this Section, it is assumed that
Tempo and the other applications are single threaded and the
term application or thread is used synonymously. Section IV-D
describes Tempo’s multi-threaded implementation.

In the time-driven approach, all applications are periodic
and run for a bounded time during each period. The scheduling
discipline is the rate monotonic algorithm [6] that assigns
a fixed priority to each thread, threads with lower period
have higher priority. The rate monotonic algorithm can be
implemented in an RTSJ environment, but it requires that
applications cooperate, i.e. they must yield voluntarily after
they’ve used up their CPU budget. In addition, stopped appli-
cations must be released periodically, a feature that is provided
by RTSJ’s thread implementation. While the approach based
on rate-monotonic requires strictly periodic threads, messages
do not arrive periodically. Tempo handles the asynchronous

4

Period

Polling
Server

Period

App.

Time

handling time
Message

arrival time
Message

Fig. 4. Polling Server

arrival of messages by implementing a polling server [8]. A
polling server is a periodic thread and therefore is eligible for
being scheduled by the rate-monotonic scheduling discipline.
Using the polling server approach, Tempo is executed peri-
odically and handles pending messages. Messages that arrive
when Tempo is not active, are buffered, for example in the
OS’s network buffers. Figure 4 shows a schema of the polling
server approach.

The period of the messaging system affects the delay of
the messages. In the time-driven approach, the lowest bound
on delay can not be smaller than the period. This approach is
useful when a high level of control is required and message
latency of the same order as the scheduling period can be toler-
ated. While the scheduling period is a configurable parameter,
typical values are in the range of several milliseconds.

In the load-driven approach Tempo is assigned the highest
priority in the system. It runs not periodically, but whenever
there is work to do. The CPU time that is used depends on the
load and it is possible that with this approach, Tempo uses all
of the available CPU. The load-driven approach is useful for
event-driven applications or for applications in which message
delay is of primary concern and the load is small.

B. Topic Scheduling

The second level of CPU resource control decides how the
CPU is used within the Tempo middle-ware. The schedulable
objects at this level are not threads but topics. The topic sched-
uler assigns CPU shares to topics to forwards messages. The
scheduling unit is not a time unit but the task of forwarding
a single message to all its destinations.

The topic scheduler uses weighted-fair-sharing with optional
deadline constraints. Fair share scheduling is implemented
using virtual time and the earliest-deadline-first selection dis-
cipline. The topic scheduler is made independent of the thread
scheduling by using virtual time instead of real-time. The
topic scheduler partitions the CPU slice allocated to Tempo
by the thread scheduler according to the topic shares. Excess
resources are divided among the active topics according to
their shares, thus the topic scheduler is work conserving, i.e.
it will work when there is work to do.

For each topic where at least one waiting message exists,
a deadline for handling it is computed. Each time a message
is taken from a topic, the virtual time is advanced to the next

deadline. The share that a topic is allocated can also be seen
as a message rate, measured in virtual time. This is shown in
Figure 5(a). Here, two topics exists. TopicT1 is given a rate of

(a) Mapping Rates to Shares

(b) Prioritizing

Fig. 5. Assigning Deadlines to Topics

2 and TopicT2 is given a rate of 3. In the basic configuration,
the reciprocal values of the rates are used for the deadlines. In
this particular example, multiple schedules exist, for example
T2, T1, T2, T1, T2, T2, T1, · · · or T2, T1, T2, T2, T1, T2, T1, · · ·.
In order to control message latency, the topic scheduler allows
the setting of a deadline that is independent of the rate, as
long as this deadline is smaller than the reciprocal value
of the rate. This is shown in Figure 5(b). In this case, a
unique schedule exists:T1, T2, T1, T2, T2, T1, T2, · · · Note that
reducing the deadline does not change the share of the topic.

Setting the deadline to less than1/rate is useful for topics
that have a low message rate and thus a small CPU share but
require low latency. For example, a topic might be used for the
transmission of alert events that happen very rarely but that
must be forwarded as quickly as possible. The deadline of the
topic is computed when a message arrives. Due to the small
share, the default deadline will be rather large and the message
will experience a high delay. Adding the additional deadline
decouples rate from latency and allows the configuration of
topics for low rate, low latency messaging.

C. Message Prioritization

Most applications require that messages within a topic are
delivered in order. However, there are applications that require
that certain messages are forwarded out of order, for example
messages that represent alarm events. These messages have to
be delivered with the smallest possible delay. Tempo supports
the prioritization of messages within a topic such that high
priority messages can skip ahead of low priority messages
within a topic. Messages of the same priority are forwarded
in FIFO order.

5

D. Implementation

Figure 6 shows the implementation of the data path of
Tempo in peer-to-peer mode, publishers on the left and sub-
scribers on the right.

Topics are the central data structure. A topic consists of an
input queue that receives messages either from the application
when used by a publisher or from the network when used
by a subscriber. Furthermore, each topic contains a set of
destinations to which messages are delivered, i.e. the set of
subscribers. Finally, topics contain state information that is
used by the topic scheduler.

The implementation of the data path in the broker is shown
in Figure 7. In the case of the broker, the transport layer
delivers messages into the input queues, from where they are
selected by the topic scheduler and forwarded out through the
transport layer again. The software components used by the
broker are the same as those used in the endpoints.

Fig. 7. Data Path in Broker Mode

Tempo is designed for real-time Java on real-time Linux.
This environment supports two thread types: real-time threads
and standard threads. The standard threads are scheduled using
a time-sharing approach, where the priority of threads is
reduced the longer they run. Real-time threads are scheduled
using a fixed-priority scheduler. A real-time thread runs until
it yields or until a thread with a higher priority is ready to
run. Real-time priorities are always higher than the priorities
of normal threads.

The garbage collector is an integral part of each Java
environment and it effects the runtime behavior of threads.Al-
though RTSJ supports threads that are not stopped by garbage
collection, those threads are not allowed to allocate memory
on the heap and are therefore not suitable for Tempo. Instead,
Tempo runs on an RTSJ implementation that is equipped
with a real-time collector called Metronome. Metronome is an
incremental collector that runs periodically when there iswork
to do. The current implementation [9] of Metronome pauses
threads for typically500µs, with maximum pause times of
about3ms. The maximum CPU utilization of Metronome is
configurable and a typical value is to not use more than 25% of
the CPU during collector runs. The low pause times achieved

by Metronome allows the delay of messaging in Tempo to be
bounded to a few milliseconds, which is sufficient for a large
range of applications.

Due to restrictions imposed by the Java runtime environ-
ment, Tempo is multi-threaded and uses two kinds of threads:
Input threads that read messages from the network and a
real-time thread for the topic scheduler. The Input threads
are indirectly controlled by the topic scheduler and thread
synchronization is done using the input queues. Input threads
put messages into a wait-free read queue [1] that blocks when
the queue is full, see also Figure 6. The queue is wait-free for
reading and therefore the topic scheduler never blocks.

The polling server approach requires that all threads are
periodic. The input threads, however, do not run periodically
but whenever there is work to do. Tempo can still use
the polling server approach with appropriate configuration.
Since the input threads run aperiodically, they must run in
the background when no other periodic thread is executed.
Furthermore, the input threads must still run with the same
periodicity as the topic scheduler. This is achieved by using
the same period for all applications and leaving enough slack
for the input threads to run, as shown in Figure 8

Fig. 8. Periodicity of Topic Scheduler and Input Threads

E. Analysis

Assume that if the messaging system ran by itself that an
average service rate ofµ would be achievable. Supposing that
there areN topics such thatSi is the rate allocated to topici,
then the guaranteed service rate of the jth topic is given by:

µj = µ
Sj

∑N

i=1
Si

For the sake of analysis we assume that the inter-arrivals
and service times are exponentially distributed such thatµj

andλj are the average service and arrival rate for the topicj.
From experiments we observe that for a given message size
the service time is deterministic, but if the size of the messages
is exponentially distributed we would expect a corresponding
distribution for the service times. Theintensityof the topic is
then given by:

ρj = µj/λj

The mean response time in the messaging system i.e. av-
erage time it takes to be forwarded, is then given by [10]:

E[response time] =
1/µj

1 − ρj

6

Fig. 6. Data Path in Peer-to-Peer Mode

and the q-percentile of the response time, i.e. the value at
which q percent of the response time is expected to be inferior,
is:

E[response time] · ln[
100

100 − q
]

For example, ifµj = 10000 messages/sec andλj = 250
messages/sec, then the average response time is 0.1 ms and
99.9% of all packets are treated within 0.7 ms.

In the time-driven approach the thread scheduling model
means that the messaging thread can only run for timeT,
every periodP. In effect it reduces the guaranteed service
rate allocated to a topic byT/P. For a D/D/1 system with
µj · T/P > λj the expected time in the system is P/2 and the
maximum is P. For a M/M/1 system there is some probability
of a message remaining in the queue across multiple periods.
This can occur if the number of messages that arrive in time P
exceeds the number that can be serviced in time T. As the inter-
arrival rate is exponentially distributed then the probability of
k arrivals within the period P-T, i.e. the time Tempo does not
run, is given by the Poisson distribution; the system duringT
can then be treated as a classic M/M/1 system with an initial
queue length given by this distribution. The probability ofno
messages staying in the system more than one period P is the
probability that all arrivals within time T are treated within
time T and that there is enough idle time to remove the backlog
k.

As explained in Section IV-B a topic i may have a deadline
di in addition to a rateri. By definition, if di is defined
thendi ≤ 1/ri. Deadlines affect the order in which messages
from different topics are serviced without changing the share
allocated to each topic. Letwi = min(di, 1/ri), and Q =
{wj | i 6= j, wj ≤ wi} then in the load-driven approach the
average time a topic i will wait to be serviced is:

∑
wk in Q⌈wi/wk⌉

µ

This must be less than1/ri for the system to be stable.

V. API

The Application Programming Interface (API) contains: the
means for a subscriber to register a function to callback when

a message arrives on a topic; the means by which a publisher
can publish a message on that topic. The API also allows
publishers and subscribers to change the rate and deadline as-
sociated with the corresponding topic. This allows applications
to attempt to calibrate the system to achieve an acceptable
performance. The application is periodically informed of the
current performance of the system. In particular, publishers
are informed of the end-to-end delay and the announced
subscription rates on a topic and subscribers are informed of
the loss-rate and the announced deadlines of publishers.

How applications make use of the above information is
application-specific. A subscriber experiencing loss might use
the API to reduce the rate for that topic. The publishing
application receiving this information might then adapt to
reduce its sending rate to the lowest announced subscription
rate; by repeating this process a loss free rate from publishers
to subscribers can be determined. A publisher with a target
maximum end-to-end delay learns if the measured delay
exceeds this and can reduce the deadline on the topic. All
subscribers will learn of this change in deadline through the
control messages and can change their deadlines as well. This
process is continued until an acceptable end-to-end delay is
achieved or it is clear that the delay is not achievable. The
exact algorithm used, changes as a function of the needs of
the application but only subscribers know the actual numberof
messages being achieved and only publishers know the actual
end-to-end delay. Figure 9 shows information received at the
publishers and subscribers and an example of the way in which
they can respond.

VI. RESULTS

In this section we report performance figures that have been
obtained with Tempo on machines that are equipped with 3
Ghz dual Xeon processors, 2 GB of RAM running a real-time
version of Linux and IBM’s real-time Java environment. We
provide a comparison with CORBA’s real-time event service
on the same setup, using the TAO implementation [4].

First we present latency measurements on a single pub-
lisher/subscriber pair. The transport mechanism is TCP. The
publisher sends at a constant rate of 250 messages per second,
each message of size 128 bytes. The experiment runs for 16
hours, resulting in a total of 14.4 million messages sent.

7

Publisher

For s in Subscription Rates
 If s < CurrentRate
 Then CurrentRate = s

End-to-end
delay

If delay > TargetDelay AND
 deadline > 0
 reduce deadline

Subscriber

Publication
Deadlines

For d in Publisher Dealines
 If d < CurrentDeadline
 Then CurrentDeadline = d

Loss
Rate

If loss > TargetLoss
 reduce Subscription Rate

Subscription
Rates

Fig. 9. Example of application-level adaptation

In a first experiment, Tempo is configured in peer-to-peer
mode with the load-driven scheduling approach. The resulting
latency distribution can be seen in Table I. While more than
95% of all messages are delayed less than300µs, there are a
few messages that are delayed up to10ms.

Delay bound Percentage of all Messages
Less than300µs 95.28022%
Less than500µs 99.98569%
Less than1000µs 99.99563%
Less than2000µs 99.99986%
Less than10000µs 100%

Average 235µs

Median 220µs

TABLE I

DELAY DISTRIBUTION TEMPO PEER-TO-PEER

In a second experiment, Tempo uses a broker. A single
publisher/subscriber pair is executed on one machine and the
broker on another, identical machine. The two machines are
connected by a gigabit ethernet network. Table II shows the
result. The additional delay of the broker as well as the
network delay are visible and contribute to an increase of the
latency of about200µs. Nevertheless, more than 99% of all
messages experience a delay of less than500µs.

Delay bound Percentage of all Messages
Less than300µs 0%
Less than500µs 99.92622%
Less than1000µs 99.98165%
Less than2000µs 99.99867%
Less than10000µs 100%

Average 383µs

Median 380µs

TABLE II

DELAY DISTRIBUTION TEMPO BROKER MODE

Next we show the end-to-end delay measured on the same
set-up, but using CORBA’s real-time event service. We place
a subscriber and a publisher on one machine, while we install
the real-time event service on another. The delay distribution
is presented in Table III. This distribution shows a somewhat
higher average and median latency compared to Tempo. The
vast majority of all messages are delivered in less than1ms,
although a very few messages get delay up to14ms.

Delay bound Percentage of all Messages
Less than300µs 0%
Less than500µs 3.38493%
Less than1000µs 99.99916%
Less than2000µs 99.99954%
Less than10000µs 99.99995%

Average 526µs

Median 520µs

TABLE III

DELAY DISTRIBUTION CORBA RT-EVENT SERVICE

Figure 10(a) shows the trade-off between throughput and
end-to-end delay. In the experiment, the sending rate was in-
creased every 3 seconds until saturation was reached at 10,000
msgs/s. The corresponding end-to-end delay increases as the
sending rate increases, becoming highly volatile at sending
rates higher than 8000 msgs/s. This is due to the Metronome
garbage collector running more frequently as the memory
allocation rate increases. Each of the peaks in Figure 10(b)
corresponds to a garbage collection. Garbage collection is
visible in Figure 10(c) at positions where the free memory size
suddenly increases. Metronome uses a configurable, bounded
share of the CPU. Tempo’s CPU consumption increases with
the sending rate and therefore a garbage collection affects
Tempo more strongly at high rates when few spare CPU cycles
are available.

We are unable to give comparable figures for CORBA as the
implementation seems to fail at rates higher than 4000 msgs/s.
At this rate, CORBA showed an an average end-to-end delay
of 950µs, while Tempo achieved less than750µs.

The isolation experiment tests how the end-to-end delay
of a single publisher-subscriber pair is affected by another
publisher-subscriber pair. The experiment features two clients,
each running a publisher and a subscriber publishing on dif-
ferent topics, as well as a broker. Both publishers are allocated
the same CPU share and initially publish 1000 msg/s. During
a period of 10 seconds, the ”misbehaving” publisher increases
its rate to 7000 msg/s and then drops back to 1000 msg/s. The
clients’ share does not change. During the contention period,
the broker operates close to its capacity. Figure 11 shows
the delay of the well-behaving client. During the contention
period, the experienced delay triples. However, in absolute
values, it increases by only 3 ms. Complete isolation can
be achieved by allocating resources to topics throughout the

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18

m
sg

 p
er

 s
ec

on
d

time in s

Throughput

Throughput at subscriber

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16 18

tim
e

in
 m

s

time in s

End-to-end delay

max delay
median delay

(b) Delay

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18

M
em

or
y

in
 M

B

time in s

Free memory

free Mem
total Mem

(c) Memory

Fig. 10. Achievable Throughput in Tempo

system. In Tempo, however, some resources are still shared:for
example the input threads reading from the sockets compete
for the CPU, the kernel’s network stack does not provide
resource sharing and neither does the network interface.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 5 10 15 20 25 30

tim
e

in
 m

s

time in s

End-to-end delay for Tempo isolation experiment

max delay
median delay

Fig. 11. End-to-end delay, well-behaving client

The picture looks different for the non-respecting client,as
shown in Figure 12. During the contention period, the mes-
sages experience a delay that is several orders of magnitude
higher than during normal operation. In addition, there are
several peaks of short duration. These delay peaks are caused
by garbage collection in the broker.

In conclusion, our real-time Java implementation achieves
a comparable end-to-end delay compared to the real-time
event service of CORBA. The achievable throughput of Tempo
appears to be superior. Tempo allows the isolation of one
topic from another through the allocation of CPU shares, no
comparable means of resource allocation for topics exists in
CORBA.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

tim
e

in
 m

s

time in s

End-to-end delay for Tempo isolation experiment, misbehaving client

max delay
median delay

Fig. 12. End-to-end delay of Tempo, misbehaving client

VII. C ONCLUSION

We have shown how time-sensitive applications can make
use of a simple messaging system to achieve high-data rates
and bounded delays without requiring extensive analysis. The
messaging system achieves this by reporting aspects of the
performance to applications and allowing them to calibrate
the messaging system to achieve performance targets. We have
described the protocols and algorithms the messaging systems
uses and have shown that 250 messages/per second can be
delivered over our test infrastructure where 99.995% messages
are not delayed more than 1 millisecond and that our system
supports up to 10,000 msgs/s before reaching saturation.

REFERENCES

[1] P. Dibble et al., “JSR 1: Real-time specification for java.”http://
jcp.org/en/jsr/detail?id=1, July 2006.

[2] D. F. Bacon, P. Cheng, and V. Rajan, “The metronome: A simpler
approach to garbage collection in real-time systems,” inWorkshop on
Java Technologies for Real-Time and Embedded Systems(R. Meersman
and Z. Tari, eds.), vol. 2889 ofLecture Notes in Computer Science,
pp. 466–478, Nov. 2003.

[3] OMG, CORBA Notification Service Specification. Object Management
Group Publication, Aug. 2002.

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The designand
performance of a real-time CORBA event service,” inProceedings of
OOPSLA ’97, (Atlanta, GA), pp. 184–200, ACM, October 1997.

[5] OMG, Data Distribution Service for Real-time Systems, v1.1. Object
Management Group Publication, May 2004.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,”JACM, vol. 20, no. 1, pp. 46–61,
1973.

[7] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair scheduling:
A Proportional-Share CPU scheduling algorithm for symmetricmulti-
processors,” inProc. of the 4th Symposium on Operating Systems Design
and Implementation, (San Diego, CA), pp. 45–58, Oct. 2000.

[8] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments,”IEEE Transactions on Computers, vol. 44, pp. 73–91, Jan.
1995.

[9] D. F. Bacon, P. Cheng, D. Grove, M. Hind, V. Rajan, E. Yahav,
M. Hauswirth, C. Kirsch, D. Spoonhower, and M. T. Vechev, “High-level
real-time programming in java,” inProc. of the Fifth ACM International
Conference on Embedded Software, (Jersey City, New Jersey), Sept.
2005.

[10] R. Jain,The Art of Computer Systems Performance Analysis. Wiley
Professional Computing, 1991.

