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Today’s data storage systems are increasingly adopting low-cost disk drives that have higher ca-
pacity but lower reliability, leading to more frequent rebuilds and to a higher risk of unrecoverable
media errors. We propose an efficient intradisk redundancy scheme to enhance the reliability of
RAID systems. This scheme introduces an additional level of redundancy inside each disk, on top
of the RAID redundancy across multiple disks. The RAID parity provides protection against disk
failures, whereas the proposed scheme aims to protect against media-related unrecoverable errors.
In particular, we consider an intradisk redundancy architecture that is based on an interleaved
parity-check coding scheme, which incurs only negligible I/O performance degradation. A com-
parison between this coding scheme and schemes based on traditional Reed–Solomon codes and
single-parity-check codes is conducted by analytical means. A new model is developed to capture
the effect of correlated unrecoverable sector errors. The probability of an unrecoverable failure
associated with these schemes is derived for the new correlated model as well as for the simpler
independent error model. We also derive closed-form expressions for the mean time to data loss
of RAID 5 and RAID 6 systems in the presence of unrecoverable errors and disk failures. We
then combine these results to characterize the reliability of RAID systems that incorporate the
intradisk redundancy scheme. Our results show that in the practical case of correlated errors, the
interleaved parity check scheme provides the same reliability as the optimum, albeit more com-
plex, Reed–Solomon coding scheme. Finally, the I/O and throughput performance are evaluated
by means of analysis and event-driven simulations.
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1. INTRODUCTION

Large-capacity data-storage systems are ubiquitous in modern enterprises, and the
demand for more capacity continues to grow. Such data storage systems use hun-
dreds of hard-disk drives (HDDs) to achieve the required aggregate data capacity.
A problem encountered in these systems is failures of HDDs. Protection against
such failures is achieved by employing redundant disks in a system. The common
technique used in modern data storage systems for tolerating disk failures is the
redundant array of independent disks (RAID) [Chen et al. 1994; Patterson et al.
1988]. A popular RAID scheme is RAID Level 5, in which disks are arranged in
groups (or arrays), each with one redundant disk. RAID 5 arrays can tolerate
one disk failure per array. In addition, data striping and distributed parity place-
ment across multiple disks are used to benefit from faster parallel access and load
balancing.

As the number of disks in a data storage system grows, also the need for tolerating
two disk failures in an array increases. The RAID 5 scheme cannot protect against
data loss if two disks fail. Instead, using a RAID 6 scheme allows up to two disks
to fail in an array. The RAID 6 scheme stores two parity strips (stripe units)
per stripe set [Blaum et al. 1995; Corbett et al. 2004]. However, this increase in
reliability reduces the overall throughput performance of RAID 6 arrays as well as
the available storage space for a fixed number of total disks in an array. The main
reason for the reduced throughput is that each write request also requires updating
the two corresponding parity units on different disks.

A current trend in the data storage industry is towards the adoption of low-
cost components, most notably SATA disk drives instead of FC and SCSI disk
drives. SATA drives offer higher capacity per drive, but have a comparatively
lower reliability. As the disk capacity grows, the total number of bytes that are
read during a rebuild operation becomes very large. This increases the probability
of encountering an unrecoverable error, i.e., an error that cannot be corrected by
either the standard sector-associated error-control coding (ECC) or the re-read
mechanism of the HDD. Unrecoverable media errors typically result in one or more
sectors becoming unreadable. This is particularly problematic when combined with
disk failures. For example, if a disk fails in a RAID 5 array, the rebuild process must
read all the data on the remaining disks to rebuild the lost data on a spare disk.
During this phase, a media error on any of the good disks would be unrecoverable
and lead to data loss because there is no way to reconstruct the lost data sectors.
A similar problem occurs when two disks fail in a RAID 6 scheme. In this case,
any unrecoverable sectors encountered on the good disks during the rebuild process
also lead to data loss. Typical data storage installations also include a tape-based
back-up or a disk-based mirrored copy at a remote location. These mechanisms can
be used to reconstruct data lost because of unrecoverable errors. However, there is
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a significant penalty in terms of latency and throughput.

We propose a new technique to enhance the reliability of RAID schemes that
incurs only a negligible I/O performance degradation and is based on intra-disk
redundancy. The method introduces an additional “dimension” of redundancy in-
side each disk that is orthogonal to the usual RAID dimension based on redun-
dancy across multiple disks. The RAID redundancy provides protection against
disk failures, whereas the proposed intra-disk redundancy aims to protect against
media-related unrecoverable errors.

The basic intra-disk redundancy scheme works as follows: each strip (stripe unit)
is partitioned into segments, and within each segment, a portion of the storage,
usually several sectors (called data sectors), is used for storing data, whereas the
remainder is reserved for redundant sectors, which are computed based on an era-
sure code. The novelty of the proposed scheme lies in the fact that it copes with
precisely those type of errors that cannot be handled by the built-in ECC and re-
read mechanisms of an HDD. It can also be used to address similar “data-integrity”
errors such as bit-flips and other incorrect responses. Furthermore, we address the
placement issue of the redundant sectors within the segment to minimize the impact
on the throughput performance.

The key contributions of this paper are the following. A new intra-disk redun-
dancy scheme for high-reliability RAID storage systems is introduced for erasure
correction in the presence of unrecoverable sector errors. In particular, we consider
an intra-disk redundancy architecture that is based on a simple XOR-based inter-
leaved parity-check (IPC) coding scheme. Furthermore, a new model capturing
the effect of correlated unrecoverable sector errors is developed and subsequently
used to analyze the proposed coding scheme as well as the traditional redundancy
schemes based on Reed–Solomon (RS) codes and single-parity-check (SPC) codes.
The probability of an unrecoverable failure associated with these schemes is derived
for the new correlated model as well as for the simpler independent error model.
Furthermore, suitable Markov models are developed to derive closed-form expres-
sions for the mean time to data loss (MTTDL) of RAID 5 and RAID 6 systems
in the presence of unrecoverable errors and disk failures. We then combine these
results to comprehensively characterize the reliability of these RAID systems if com-
plemented with the intra-disk redundancy scheme. Finally, the I/O and throughput
performance of these RAID systems is evaluated by means of analysis and by using
event-driven simulations under a variety of workloads.

As our results demonstrate, the easy-to-implement IPC coding scheme considered
here achieves a reliability very close to that of the optimal but much more complex
RS scheme. As will be explored in further detail in this paper, a key advantage
of the intra-disk redundancy scheme is that it can be applied to various RAID
systems, including RAID 5 and RAID 6. It can also be applied in conjunction with
any other mechanism that is used to reduce the number of unrecoverable errors and
thereby improve reliability, such as, for example, disk scrubbing. Furthermore, the
analytical expressions derived can also be used to obtain the system reliability in
this context, based on the adjusted probability of encountering an unrecoverable
error.

The remainder of the paper is organized as follows. Section 2 provides a survey of



4

the relevant literature on reliability-enhancement schemes for RAID systems. Sec-
tion 3 describes the problem of data loss due to unrecoverable errors in more detail.
Section 4 presents the intra-disk redundancy scheme, with the relevant performance
measures being considered in Section 5. Section 6 provides a detailed analysis of
the erasure correction capability of the various coding schemes in the presence of
independent as well as correlated unrecoverable sector errors. In Section 7 closed-
form expressions for the reliability of RAID 5 and RAID 6 storage systems that
incorporate the intra-disk redundancy scheme are derived. The I/O performance
is evaluated analytically in Section 8. Section 9 presents numerical results demon-
strating the effectiveness of the proposed scheme. An analytical investigation of
the reliability and sensitivity to the various parameters is conducted, and the I/O
response time and throughput performance are evaluated by means of simulation.
Finally, we conclude in Section 10.

2. RELATED WORK

Data storage systems are designed to meet increasingly more stringent data-integrity
requirements [Keeton et al. 2004]. Using a tape-based back-up or a disk-based mir-
rored copy is the approach commonly used to enhance data integrity. However,
recovering data from such copies is time consuming.

The emergence of SATA drives as low-cost alternative to SCSI and FC drives in
data storage systems has brought the issue of system reliability to the forefront.
The key problem with SATA drives in this respect is that unrecoverable errors are
ten times more likely than on SCSI/FC drives [Hitachi Global Storage Technolo-
gies 2007]. A simple scheme based on using intra-disk redundancy is described in
[Hughes and Murray 2004] and aims at increasing the reliability of SATA drives
to the same level as that of SCSI/FC drives. This scheme is based on using a
single parity sector for a large number of data sectors, but does not address its
placement issue. In the case of small writes, the data and parity sectors to be up-
dated will require separate I/O requests, leading to a severe penalty in throughput
performance.

Following the introduction of RAID [Patterson et al. 1988], the reliability of
RAID systems was analyzed by several groups. A basic reliability analysis of RAID
systems was presented in [Burkhard and Menon 1993; Malhotra and Trivedi 1993;
Schulze et al. 1989]. Unrecoverable errors were considered in [Malhotra and Trivedi
1995], where a detailed Markov model is developed to capture a variety of failures
possible in a disk array. The model also incorporated uncorrectable permanent
errors caused by media-related errors. In [Wu et al. 1997], the reliability of RAID 5
arrays in the presence of uncorrectable bit errors was analyzed. The authors assume
that reading data from disks does not cause uncorrectable errors. These errors are
assumed to occur during writing and are then encountered during reading. A
separate analysis of two cases is done: one in which uncorrectable errors exist
on good disks before a disk failure, the other in which uncorrectable errors occur
during writes to good disks after a disk failure but before the rebuild is completed.
The latter scenario captures the case when the disk array continues to receive read
and write requests during the rebuild phase. The authors use Markov models to
characterize the occurrence of uncorrectable errors and obtain expressions for the



5

reliability of RAID 5 arrays. They demonstrate that unrecoverable errors have a
big impact on the reliability of the system.

More recently, the reliability of large storage systems that encounter disk failures
as well as unrecoverable errors was evaluated in [Xin et al. 2003]. The use of a
signature scheme was proposed to identify unrecoverable blocks. Redundancy was
introduced based on two-way mirroring, three-way mirroring, and RAID 5 with
mirroring (RAID 5+1). The redundancy in the schemes analyzed was placed on
different disks to protect against disk failures, thus exploiting the RAID dimension.
The reliability of these schemes was analyzed using Markov models. In [Chen and
Towsley 1996], the performance of different RAID systems was studied and various
scheduling policies were presented. More recently, an integrated performance model
was developed in [Varki et al. 2004] that incorporated several features of real disk
arrays such as caching, parallelism and array controller optimizations.

3. DATA LOSS FROM UNRECOVERABLE ERRORS

In this section, we consider the problem of unrecoverable errors and their impact
on the reliability of a RAID 5 system to motivate the need for devising a coding
scheme.

Consider an example of a number of RAID 5 systems installed in the field. Each
system may contain more than one RAID 5 array. What is important is the total
number of RAID 5 arrays. We assume that all arrays have the same parameters.
Consider an installed base of nG = 125000 RAID 5 arrays, each with N = 8 disks.
All the systems in the field are assumed to comprise the same type of disks. Two
types of disks are assumed, either the expensive and highly reliable SCSI drives or
the low-cost SATA drives with lower reliability. The disks are characterized by the
following parameters:

—Drive capacity (Cd): SCSI drives with 73, 146, and 300 GB, and SATA drives
with 300 and 500 GB.

—Mean time to failure (1/λ): 1 × 106 h for SCSI and 5 × 105 h for SATA drives.

—Mean time to rebuild (1/µ): 9.3 h for 146 GB SCSI and 17.8 h for 300 GB SATA
drives.

—Unrecoverable bit error probability (Pbit): 1 × 10−15 for SCSI and 1 × 10−14 for
SATA drives.

Assuming a sector size of 512 bytes, the equivalent unrecoverable sector error
probability is Ps ≈ Pbit × 4096, which is 4.096 × 10−12 in the case of SCSI and
4.096 × 10−11 in the case of SATA drives.

For a RAID 5 array, the unrecoverable errors lead to data loss when encoun-
tered in the critical mode, i.e. when one drive has already failed. In this case, the
remaining N − 1 drives are read to rebuild the data of the failed drive. As the
number of sectors on a drive is Cd/512, the total number of sectors read while
rebuilding from N − 1 drives is (N − 1)Cd/512. Assuming each sector encounters
an unrecoverable error independently of all other sectors with probability Ps, the
probability of encountering at least one unrecoverable sector, i.e., the probability
of an unrecoverable failure Puf is given by

Puf = 1 − (1 − Ps)
(N−1)Cd/512 . (1)



6

10
−12

10
−11

10
−10

10
−9

10
−8

10
−3

10
−2

10
−1

10
0

Sector Error Probability (P
s
)

P
ro

ba
bi

lit
y 

of
 U

nr
ec

ov
er

ab
le

 F
ai

lu
re

 (
P uf

)

Prob. unrecoverable failure
SCSI drives (73GB)
SCSI drives (146GB)
SCSI drives (300GB)
SATA drives (300GB)
SATA drives (500GB)

Fig. 1. Puf as a function of Ps.

Figure 1 shows Puf for disks of 300 GB capacity as a function of the unrecoverable
sector error probability. Also shown are the results for SCSI drives with three
different capacities and SATA drives with two different capacities. An array with
300 GB SCSI drives has a Puf of more than 1%. For arrays using the low-cost SATA
drives with 500 GB capacity, Puf increases to more than 25%.

The detrimental effect of unrecoverable failures on the overall data loss expe-
rienced by users of large storage systems can be seen by examining the MTTDL
metric. In the presence of disk failures only, the MTTDL of a RAID 5 array system
is well known [Chen et al. 1994; Patterson et al. 1988] and is given by

MTTDL =
µ

nGN(N − 1)λ2
, (2)

assuming λ � µ. The MTTDL of a large data storage installation of RAID 5
arrays as a function of the total user capacity is shown in Figure 2. It can be
seen that a 10 PB installation using either SCSI or SATA drives has an MTTDL
of more than five years. Bringing unrecoverable failures into consideration changes
the picture dramatically. Using the expression for the MTTDL in the presence of
both disk failures and unrecoverable failures, which we derive in Section 7.2, a 10
PB installation using 146 GB SCSI drives experiences a MTTDL of approximately
ten weeks, as shown in Figure 2. More interestingly, the MTTDL of a 10 PB
installation using 300 GB SATA drives drops to less than one week. These examples
clearly show that data loss resulting from unrecoverable sectors is a key limitation
of current large-scale data storage systems.

4. INTRA-DISK REDUNDANCY SCHEME

Here we introduce and describe the intra-disk redundancy scheme. A number of
contiguous data sectors in a strip as well as redundant sectors derived from these
data sectors are grouped together forming a segment. A number of different schemes
can be used to obtain the redundant parity sectors, as will be described later in
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Intra−disk

segment
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n data sectors
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Fig. 3. Basic intra-disk redundancy scheme.

this section. The entire segment, comprising ` data and parity sectors, is stored
contiguously on the same disk, as shown in Figure 3, where ` = n + m.

The size of a segment should be chosen such that sufficient degrees of storage
efficiency, performance and reliability are ensured. For practical reasons, the strip
size should be a multiple of the data-segment size. In addition, the number m of
parity sectors in a segment is a design parameter that can be optimized based on the
desired set of operating conditions. In general, more redundancy (large m) provides
more protection against unrecoverable media errors. However, it also incurs more
overhead in terms of storage space and computations required to obtain and update
the parity sectors. Furthermore, for a fixed degree of storage efficiency, increasing
the segment size results in an increased reliability, but also in an increased penalty
on the I/O performance. Therefore, a judicious trade-off between these competing
requirements needs to be made. The storage efficiency se(IDR) of the intra-disk
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Table I. Notation of System Parameters

Notation Parameter

N Number of disks per array group
nG Number of array groups in the system
Cd Disk drive capacity
S Sector size
` Number of sectors in a segment
nd Number of segments in a disk drive

m Number of parity sectors in a segment, number of interleaves, or
interleaving depth

1/λ Mean time to failure for a disk
Pbit Probability of an unrecoverable bit error

se(IDR) Storage efficiency of the intra-disk redundancy scheme

se(RAID) Storage efficiency of the RAID scheme

se(RAID+IDR) Overall storage efficiency of the entire system
1/µ Mean time to rebuild in the critical mode for a RAID 5 array
1/µ1 Mean time to rebuild in the degraded mode for a RAID 6 array
1/µ2 Mean time to rebuild in the critical mode for a RAID 6 array
Ps Probability of an unrecoverable sector error
Pseg Probability of a segment encountering an unrecoverable sector error
Puf Probability of an unrecoverable failure

redundancy scheme is given by

se(IDR) =
` − m

`
. (3)

5. SYSTEM ANALYSIS

The notation used for the purpose of our analysis is given in Table I. The parameters
are divided into two sets, namely, the set of independent and that of dependent
parameters listed in the upper and lower part of the table, respectively.

Assuming that errors occur independently over successive bits, the unrecoverable
sector error probability Ps is given by

Ps = 1 − (1 − Pbit)
S , (4)

with S expressed in bits.
Similarly, when no coding within the segment is applied (m = 0), the unrecover-

able segment error probability Pseg is given by

PNone
seg = 1 − (1 − Ps)

` = 1 − (1 − Pbit)
S` , (5)

with S expressed in bits.
As the segment size is equal to `S, the number of segments in a disk drive, nd,

is given by

nd =
Cd

`S
. (6)

A RAID array is considered to be in the critical mode when an additional disk
failure can no longer be tolerated. Thus, RAID 5 and RAID 6 arrays are in critical
mode when they operate with one disk and two disks failed, respectively. Also, a
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RAID 6 array is considered to be in the degraded mode when it operates with one
disk failed. An unrecoverable failure occurs when an array is in the critical mode
and at least one of the ns segments that need to be read is in error. Consequently,
the probability of an unrecoverable failure, Puf, is given by

Puf = 1 − (1 − Pseg)
ns . (7)

For a RAID 5 and a RAID 6 system in the critical mode, the corresponding

probabilities of an unrecoverable failure P
(1)
uf and P

(2)
uf are obtained by setting ns =

(N − 1)nd and ns = (N − 2)nd, as there are N − 1 and N − 2 operational disks,
respectively. From (6), it follows that

P
(1)
uf = 1 − (1 − Pseg)

(N−1)Cd
`S , (8)

and

P
(2)
uf = 1 − (1 − Pseg)

(N−2)Cd
`S . (9)

The probability Pseg of the various coding schemes is evaluated in Section 6.

5.1 Storage Efficiency

The storage efficiency of the RAID scheme chosen is given by

se(RAID) =
N − p

N
, (10)

with

p =

{

1 for a RAID 5 system

2 for a RAID 6 system.
(11)

Note that the above expressions hold for a scheme not using intra-disk redun-
dancy. If an intra-disk redundancy scheme is used, the overall storage efficiency of
the entire array (or system) is given by

se(RAID+IDR) = se(RAID) se(IDR) =
(

1 −
p

N

)(

1 −
m

`

)

. (12)

5.2 Rebuild Time

The time required to rebuild depends on the various parameters listed in Table II,
which include the drive capacity and the bandwidth that the drive provides. The
first part of the table lists the independent parameters.

We assume that during a disk rebuild, the disk array continues to actively ser-
vice I/O requests, which implies that every rebuild command requires a seek. The
utilization factor U refers to the fraction of time the controller spends perform-
ing rebuilds as opposed to servicing I/O requests. The size sreq of the read/write
requests issued to the drive is usually 64 to 256 KB. The average read/write oper-
ations per second, rio, for single randomly chosen sectors are around 250 to 300 for
SCSI, and 150 for SATA. This term accounts for seeks and rotational latency. The
average disk transfer rate td following the seek and rotational latency is typically
60-100 MB/s for SCSI and 40-60 MB/s for SATA. The sustained bandwidth bm of
the memory subsystem is typically of the order of GB/s.
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Table II. System Parameters Affecting Rebuild Time

Notation Parameter

U Utilization factor
sreq Size of read/write requests issued to the drive
rio Rate of random single-sector disk read/write operations
td Average disk transfer rate
bm Sustained bandwidth of memory subsystem
Cd Disk drive capacity

N Number of disks per array group

bd Effective disk-rebuild bandwidth

From the above, it follows that the average time required by an I/O request to
complete is equal to the sum of 1/rio, the seek and rotational latency, and sreq/td,
the transfer time. Therefore, the effective disk-rebuild bandwidth bd is given by

bd =
sreq

1

rio
+

sreq

td

. (13)

The mean time to rebuild, assuming that the bottleneck is encountered at the
disk drives, is then given by Cd/(bdU). We now proceed with the evaluation of the
mean time to rebuild, assuming that the bottleneck is encountered at the memory
subsystem.

Let us first consider a RAID 5 array in the degraded mode. During a rebuild of a
data unit, N −1 data units are being read in parallel from the disks and transferred
to the memory, and then from the memory to the XOR engine. The XOR operation
yields a data unit, which is written back to the memory and then from the memory
to the disk. Consequently, the total number of data units transferred through the
memory subsystem is equal to 2(N − 1) + 2 = 2N . Assuming approximately equal
read and write speed, the time required for a disk rebuild is equal to Cd2N/(bmU).
It now follows that the mean time to rebuild is the maximum of the two times
evaluated, i.e.

µ−1 = max

(

Cd

bdU
,
2NCd

bmU

)

=
Cd

U
max

(

1

bd
,
2N

bm

)

. (14)

Let us now consider a RAID 6 array in the degraded mode. As the rebuild of a
data unit is performed based on N − 2 data units, the total number of data units
transferred through the memory subsystem is equal to 2(N − 2) + 2 = 2(N − 1).
Consequently, the mean time to rebuild is given by

µ−1
1 = max

(

Cd

bdU
,
2(N − 1)Cd

bmU

)

=
Cd

U
max

(

1

bd
,
2(N − 1)

bm

)

. (15)

Finally, let us now consider a RAID 6 array in the critical mode. To rebuild
the two strips of a stripe that correspond to the two failed disks, N − 2 strips
are being read in parallel from the disks and transferred to the memory. They
are subsequently transferred from the memory to the XOR engine twice in order to



11

Table III. Numerical values and results

Value

Parameter SCSI SATA

U 0.10 0.20

sreq 256 MB

rio 300 op/s 150 op/s

td 100 MB/s 60 MB/s

bm 2 GB/s

Cd 146 GB 300 GB

N 8 for RAID 5
16 for RAID 6

bd 43.4 GB/s 23.4 GB/s

bm/(2N) 125 GB/s for RAID 5

bm/[2(N − 1)] 66.6 GB/s for RAID 6

bm/(3N − 2) 43.5 GB/s for RAID 6

1/µ 9.3 h 17.8 h

1/µ1 9.3 h 17.8 h

1/µ2 9.3 h 17.8 h

perform the two XOR operations required for retrieving the two lost strips. The two
resulting strips are written back to the memory and then from the memory to the
disk. Consequently, the total number of data units transferred through the memory
subsystem is equal to 3(N −2)+4 = 3N −2. Note that all working drives are being
read in parallel, whereas the two drives that are being rebuilt are being written in
parallel. Hence, they are all equally bottlenecked (assuming approximately equal
read and write speeds). Consequently, the mean time to rebuild is given by

µ−1
2 = max

(

Cd

bdU
,
(3N − 2)Cd

bmU

)

=
Cd

U
max

(

1

bd
,
3N − 2

bm

)

. (16)

The parameter values assumed and the corresponding results obtained are listed
in the upper and lower part of Table III, respectively. The utilization factor is
considered to be higher in the case of SATA drives because the I/O activity of a
system using SATA drives is likely to be less than that of a system using SCSI drives.
Note that in all cases the bottleneck during a rebuild operation is encountered at
the disk drives.

6. INDEPENDENT AND CORRELATED ERRORS

The performance of the intra-disk redundancy scheme is analytically assessed based
on two models. According to the first model (independent model), each sector en-
counters an unrecoverable error, independently of all other sectors, with probability
Ps. This implies that the lengths (in number of sectors) of error-free intervals are
independent and geometrically distributed with parameter Ps. In addition, we in-
troduce a model for capturing error-correlation effects in which sector errors are
assumed to occur in bursts. We refer to this model as the correlated model. Let B
and I denote the lengths (in number of sectors) of bursts and of the error-free inter-
vals between successive bursts, respectively. Let B̄ and Ī denote the corresponding
average lengths. These lengths are assumed to be i.i.d., i.e. independently and
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identically distributed random variables. In particular, the error-free intervals are
assumed to be geometrically distributed, as in the independent model, but with a
parameter α. Therefore, the probability density function (pdf) {aj} of the length
j of a typical error-free interval is given by aj = P (I = j) = α(1 − α)j−1 for
j = 1, 2, . . ., such that Ī = 1/α, with 0 < α ≤ 1. Let also {bj} denote the pdf of the
length j of a typical burst of consecutive errors, i.e. P (B = j) = bj for j = 1, 2, . . ..
The average burst length is then given by B̄ =

∑∞

j=1 jbj and is assumed to be
bounded. Owing to ergodicity, the probability Ps that an arbitrary sector has an
unrecoverable error is given by

Ps =
B̄

B̄ + Ī
. (17)

From the above, it follows that

α =
Ps

B̄(1 − Ps)
=

Ps

B̄
+

P 2
s

B̄
+

P 3
s

B̄
+ · · · =

Ps

B̄
+ O(P 2

s ) ≈
Ps

B̄
, (18)

and that

Ps ≤
B̄

B̄ + 1
, (19)

given that α ≤ 1, or, equivalently, Ī ≥ 1. This approximation as well as the ones
derived below are valid when Ps is quite small, in which case terms involving powers
of Ps to higher orders are negligible and can be ignored.

Note that the independent model is a special case of the correlated model in which
the {bj} distribution is geometric with parameter 1−Ps, i.e. bj = (1−Ps)P

j−1
s for

j = 1, 2, . . ., and B̄ = 1/(1 − Ps). Let {Gn} denote the complementary cumulative
density function (ccdf) of the burst length B. Then Gn denotes the probability
that the length of a burst is greater than or equal to n, i.e. Gn ,

∑∞

j=n bj , for
n = 1, 2, . . .. In this case, and for a given m (m ∈ N), it holds that the probability
Gm+1 that a burst of more than m consecutive errors occurs is negligible because
Gm+1 = Pm

s � Ps. In the remainder of the paper, however, we consider fixed
(independent of Ps) burst distributions for which this probability is nonnegligible,
i.e. Gm+1 � Ps, and the average burst length is relatively small, i.e. B̄ � 1/Ps.
Consequently, the results for the independent model need to be obtained separately
as they cannot be derived from those for the correlated model.

Let us consider the sectors divided into groups of ` (` > m) successive sec-
tors, with each such group constituting a segment. If no coding scheme is applied
(m = 0), a segment is in error if there is an unrecoverable sector error. For the
independent model, the probability Pseg that a segment is in error is then given by

PNone
seg = 1 − (1 − Ps)

` = `Ps + O(P 2
s ) ≈ `Ps . (20)

For the correlated model, the segment is correct if the first sector is correct and
the subsequent `−1 sectors are also correct. The probability of the first sector being
correct is equal to 1 − Ps, whereas from the geometric assumption the probability
of each subsequent sector being correct is equal to 1−α. By making use of (18) we
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obtain

PNone
seg = 1 − (1 − Ps)(1 − α)`−1 = 1 − (1 − Ps)

(

1 −
Ps

B̄

)`−1

=

=

(

1 +
` − 1

B̄

)

Ps + O(P 2
s ) ≈

(

1 +
` − 1

B̄

)

Ps . (21)

We now proceed with the evaluation of Pseg for various coding schemes. In
particular, we consider Pseg expressed as a series expansion in powers of Ps, i.e.
Pseg =

∑∞

i=1 ciP
i
s , with the coefficients ci being independent of Ps. It turns out

that in the case of the correlated model and for small Ps, the performance of the
coding schemes considered can be obtained by considering the power series taken
to the first order. That is, it suffices to make a power series expansion of Pseg in
Ps of the form Pseg = c1Ps + O(P 2

s ). First we establish the following propositions
which hold for the correlated model and independently of the coding scheme used.

Proposition 6.1. The probability P
(k)
seg that a segment contains k (k ≤ `/2)

bursts of errors and is in error is of order O(P k
s ).

Proof. See Appendix A.

Proposition 6.2. It holds that Pseg = c1Ps +O(P 2
s ), with c1 derived based only

on P (segment contains a single burst of errors and is in error).

Proof. By conditioning on the number of bursts of errors in a segment and
using Proposition 6.1, we obtain

Pseg =

`/2
∑

k=1

P (segment contains k bursts of errors and is in error) =

`/2
∑

k=1

P (k)
seg =

= P (segment contains a single burst of errors and is in error) +

`/2
∑

k=2

P (k)
seg =

= P (segment contains a single burst of errors and is in error) + O(P 2
s ) .

(22)

6.1 Reed–Solomon (RS) Coding

Reed–Solomon (RS) coding is the standard choice for erasure correction when im-
plementation complexity is not a constraint. This is because these codes provide
the best possible erasure correction capability for a given number of parity symbols,
i.e. for a given storage efficiency (code rate). Essentially, for a code with m parity
symbols in a codeword of n symbols, any m erasures in the block of n symbols
can be corrected. RS codes are used in a wide variety of applications and are the
primary mechanism that allows the stringent uncorrectable error probability spec-
ification of HDDs to be met. Note that the RS codes considered here provide an
additional level of redundancy to that of the built-in ECC scheme.

The performance of the RS scheme is the best that can be achieved. With such
a code, the probability of a segment being in error is equal to the probability of
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getting more than m unrecoverable sector errors per segment and is given by

PRS
seg =

∑̀

j=m+1

(

`

j

)

P j
s (1 − Ps)

`−j =

(

`

m + 1

)

Pm+1
s + O(Pm+2

s ) ≈

≈

(

`

m + 1

)

Pm+1
s . (23)

In the case of the correlated model, an approximate expression for the probability
of a segment being in error is given by the following theorem.

Theorem 6.3. It holds that

PRS
seg = cRS

1 Ps + O(P 2
s ) , (24)

where

cRS
1 = 1 +

(` − m − 1)Gm+1 −
∑m

j=1 Gj

B̄
. (25)

Proof. See Appendix B.

Corollary 6.4. For small values of Ps, it holds that

PRS
seg ≈

[

1 +
(` − m − 1)Gm+1 −

∑m
j=1 Gj

B̄

]

Ps . (26)

Corollary 6.5. The coefficient cRS
1 is equal to zero if and only if Gm+1 = 0,

i.e. the maximum burst length does not exceed m.

Proof. Note that cRS
1 can also be written as [(` − m)Gm+1 +

∑∞

j=m+2 Gj ]/B̄,
which is equal to zero if and only if Gm+1 = 0.

6.2 Single-Parity Check (SPC) Coding

The simplest coding scheme is one in which a single parity sector is computed by
using the XOR operation on ` − 1 data sectors to form a segment with ` sectors
in total. Such a scheme can tolerate a single erasure anywhere in the segment. In
fact, the parity in a RAID 5 scheme is based on such a single parity-check (SPC)
scheme, albeit with the redundancy along the RAID dimension. The probability
of a segment being in error is equal to the probability of getting at least two
unrecoverable sector errors. The independent model yields

P SPC
seg =

∑̀

j=2

(

`

j

)

P j
s (1 − Ps)

`−j =
`(` − 1)

2
P 2

s + O(P 2
s ) ≈

`(` − 1)

2
P 2

s . (27)

In the case of the correlated model, an approximate expression for the probability
of a segment being in error is given by the following theorem.

Theorem 6.6. It holds that

P SPC
seg = cSPC

1 Ps + O(P 2
s ) , (28)

where

cSPC
1 = 1 +

(` − 2)G2 − 1

B̄
. (29)
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Fig. 4. Intra-disk redundancy scheme using the interleaved parity-check coding scheme.

Proof. Note that the SPC coding scheme is a special case of the RS coding
scheme in which only a single sector error can be corrected in a segment. Expres-
sions (28)–(29) are therefore derived from (24)–(25) by setting m = 1.

Corollary 6.7. For small values of Ps, it holds that

P SPC
seg ≈

[

1 +
(` − 2)G2 − 1

B̄

]

Ps . (30)

6.3 Interleaved Parity-Check (IPC) Coding

A coding scheme called interleaved parity check (IPC), which has a simplicity akin
to that of the SPC scheme but considerably better performance is introduced next.
In this scheme, n (n = `−m) contiguous data sectors are conceptually arranged in
a matrix as shown in Figure 4. Data sectors in a column are XORed to obtain the
parity sector and together form an interleave. When updating a data sector, the
corresponding parity sector needs to be updated also. Instead of two read requests,
a single longer request involving these two sectors is issued to reduce the response
time. The expected length of this single request is evaluated in Section 8.2, where
it is also shown that the parity sectors should be placed in the center of the IPC
segment to minimize the expected length of this single request.

An IPC scheme with m (m ≤ `/2) interleaves per segment, i.e. `/m sectors per in-
terleave, has the capability of correcting a single error per interleave. Consequently,
a segment is in error if there is at least one interleave in which there are at least
two unrecoverable sector errors. Note that this scheme can correct a single burst of
m consecutive errors occurring in a segment. However, unlike the RS scheme, it in
general does not have the capability of correcting any m sector errors in a segment,
implying that P IPC

seg > PRS
seg .

According to the independent model, the probability Pinterleave of an interleave



16

being in error is given by

Pinterleave =

`/m
∑

j=2

(

`/m

j

)

P j
s (1 − Ps)

`/m−j =

=
`
m

(

`
m − 1

)

2
P 2

s + O(P 3
s ) ≈

`(` − m)

2m2
P 2

s . (31)

Consequently,

P IPC
seg = 1 − (1 − Pinterleave)

m ≈
`(` − m)

2m
P 2

s . (32)

In the case of the correlated model, an approximate expression for the probability
of a segment being in error is given by the following theorem.

Theorem 6.8. It holds that

P IPC
seg = cIPC

1 Ps + O(P 2
s ) , (33)

where

cIPC
1 = 1 +

(` − m − 1)Gm+1 −
∑m

j=1 Gj

B̄
. (34)

Proof. According to Proposition 6.2, coefficient c1 is derived based on the prob-
ability that a segment contains a single burst of errors and is in error. In the case
of the IPC coding scheme, the segment is in error when the burst length exceeds
m, which is the same as in the case of the RS scheme. Consequently, the coefficient
c1 is the same as in the case of the RS scheme, i.e. cIPC

1 = cRS
1 .

Corollary 6.9. For small values of Ps, it holds that

P IPC
seg ≈

[

1 +
(` − m − 1)Gm+1 −

∑m
j=1 Gj

B̄

]

Ps . (35)

Remark 6.10. From (26) and (35), it follows that P IPC
seg ≈ PRS

seg given that P IPC
seg −

PRS
seg = O(P 2

s ). Therefore, when the unrecoverable sector errors are known to occur
in bursts whose length can exceed m with a nonnegligible likelihood, using an IPC
check code is preferable because it is as efficient as the more complex RS code. This
is because the interleaved coding scheme provides additional gain by recovering from
consecutive unrecoverable sector errors, which can be as many as the interleaving
depth. Note also that if, contrary to our assumption, the maximum burst length
does not exceed m, then the term in brackets is equal to zero, implying that PRS

seg

and P IPC
seg are no longer of order O(Ps). In this case, the two probabilities are of

order O(P 2
s ) and significantly different.

6.4 Numerical Results

We consider SATA drives with Cd = 300 GB and Pbit = 10−14. Assuming a sector
size of 512 bytes and according to (4), the equivalent unrecoverable sector error
probability is Ps ≈ Pbit × 4096, which is 4.096× 10−11. We also consider a segment
comprised of ` = 128 sectors with m = 8 interleaves and the following error-burst
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Table IV. Approximate Pseg.

Coding Model for Errors

Scheme Independent Correlated

None 5.2 × 10−9 5.0 × 10−9

RS 6.2 × 10−81 2.5 × 10−12

SPC 1.3 × 10−17 9.5 × 10−11

IPC 1.6 × 10−18 2.5 × 10−12

Table V. Approximate P
(1)
uf for RAID 5 with N = 8.

Coding Model for Errors

Scheme Independent Correlated

None 1.5 × 10−1 1.5 × 10−1

RS 2.0 × 10−73 7.9 × 10−5

SPC 4.3 × 10−10 3.1 × 10−3

IPC 5.1 × 10−11 7.9 × 10−5

Table VI. Approximate P
(2)
uf for RAID 6 with N = 16.

Coding Model for Errors

Scheme Independent Correlated

None 2.8 × 10−1 2.7 × 10−1

RS 3.9 × 10−73 1.6 × 10−4

SPC 8.7 × 10−10 6.1 × 10−3

IPC 1.0 × 10−10 1.7 × 10−4

length distribution:

b = [0.9812 0.016 0.0013 0.0003; 0.0003 0.0002 0.0001 0.0001 0 0.0001 0

0.0001 0.0001 0 0.0001 0.0001] . (36)

Then, we have bursts of at most 16 sectors with B̄ = 1.0291, G2 = 0.0188, and
G9 = 0.0005. These values are based on actual data collected from the field for a
product that is currently being shipped. The results for Pseg are listed in Table IV.
The corresponding unrecoverable failure probabilities for a RAID 5 array with N =
8 and a RAID 6 array with N = 16 are listed in Table V and Table VI, respectively.
From the results it follows that in the case of correlated errors, the proposed IPC
scheme improves the unrecoverable failure probability by two orders of magnitude
compared with the SPC scheme. This is also the improvement we would achieve
when using the more complex RS code.

7. RELIABILITY ANALYSIS

In this section, the reliability of a RAID 5 array is analyzed using a direct probabilis-
tic approach. Then, an alternative approach based on a continuous-time Markov
chain (CTMC) model is presented and applied to obtain the MTTDL for a RAID 6
array. Assuming that the MTTDL of a single array is exponentially distributed,
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Fig. 5. RAID 5 array operation with normal mode and rebuild cycles.

the MTTDL of a RAID system, MTTDLsys, comprising nG arrays is subsequently
obtained as follows:

MTTDLsys =
MTTDL

nG
. (37)

7.1 Reliability of RAID 5 Array

The period of safe operation TG of an array group consists of a number, say M ,
of cycles C1, . . . , Ci, . . . , CM , with cycle Ci (1 ≤ i ≤ M) consisting of a normal
operation interval Ti followed by a subsequent critical mode interval Ri in which
the rebuild process takes place. Thus, Ci = Ti + Ri (see Figure 5). The former
interval ends when a disk fails, whereas the latter interval ends when either the
rebuild finishes or there is another disk failure during the rebuild phase.

We assume that disk failures are independent and exponentially distributed with
parameter λ. Then a RAID 5 array with N disks operating in normal mode ex-
periences the first disk failure after a period that is exponentially distributed with
parameter Nλ. Thus, E(Ti) = 1/Nλ. Let F denote the time to the next disk
failure while in critical mode. Then F is exponentially distributed with parameter
(N − 1)λ, given that now there are N − 1 disks operating in normal mode. Let us
also assume that the rebuild time R in critical mode is exponentially distributed
with parameter µ. Then the duration of a critical mode is equal to the minimum of
F and R, which in turn is exponentially distributed with parameter (N − 1)λ + µ,
implying that E(Ri) = 1

(N−1)λ+µ .

Furthermore, the probability Pfr that the critical mode ends because of another
disk failure is given by

Pfr = P (F < R) =

∫ ∞

0

P (F < R|R = x)fR(x)dx =
(N − 1)λ

(N − 1)λ + µ
. (38)

Note that Pfr is also the probability that any cycle is the last one. Consequently,
the probability P (M = k) that the period of safe operation consists of k (k ≥ 1)
cycles is equal to (1−Pfr)

k−1Pfr, as there are k−1 successful rebuilds followed by a
failed one. Consequently, the random variable M has a geometric distribution with
mean 1/Pfr, i.e. E(M) = 1/Pfr. From the above, it follows that the mean time in
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each cycle is now given by

E(Ci) = E(Ti) + E(Ri) =
1

Nλ
+

1

(N − 1)λ + µ
, (39)

and that the MTTDL of the RAID 5 array is given by

MTTDL = E(
M
∑

i=1

Ci) = E(M)E(Ci). (40)

Combining (38), (39) and (40), we get

MTTDL =
(2N − 1)λ + µ

N(N − 1)λ2
. (41)

Note that in the case where λ � µ, (41), together with (37), leads to the expres-
sion (2) derived in [Chen et al. 1994; Patterson et al. 1988].

7.2 Unrecoverable Errors and Disk Failures

Let Pfhr denote the probability that the critical mode ends because of either an-
other disk failure or an unrecoverable error. Then, the probability 1 − Pfhr of the
critical mode ending with a successful rebuild is equal to the product of 1 − Pfr,

the probability of not encountering a disk failure during a rebuild, and 1 − P
(1)
uf ,

the probability of not encountering an unrecoverable error during the rebuild, i.e.

1 − Pfhr = (1 − P
(1)
uf )(1 − Pfr). Consequently,

Pfhr = P
(1)
uf + (1 − P

(1)
uf )Pfr (42)

Analogously to the derivation of (41) and using Pfhr instead of Pfr, we get

MTTDL =
(2N − 1)λ + µ

Nλ[(N − 1)λ + µP
(1)
uf ]

. (43)

7.3 Continuous-Time Markov Chain (CTMC) Models

Continuous-time Markov models (CTMC) have been extensively used for the relia-
bility analysis of RAID systems [Burkhard and Menon 1993; Malhotra and Trivedi
1993]. Here we establish that the reliability of RAID systems in the presence of un-
recoverable errors can also be obtained using CTMC models. Appropriate CTMC
models are developed, and, furthermore, we show that these models are also suit-
able to analyze the reliability of RAID systems that operate in conjunction with
an intra-disk redundancy scheme.

First, we demonstrate that the MTTDL for a RAID 5 array derived in Sec-
tion 7.2 can also be obtained using a CTMC model under the assumptions made
in Sections 7.1 and 7.2 regarding the disk failure, unrecoverable error, and rebuild
processes. Based on this, we subsequently use the CTMC methodology to obtain
the MTTDL for a RAID 6 array. The numbered states of the Markov models rep-
resent the number of failed disks. The DF and UF states represent a data loss due
to a disk failure and an unrecoverable sector failure, respectively.
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7.3.1 Intra-Disk Redundancy with RAID 5. In a RAID 5 array, when the first
disk fails, the disk array enters the critical mode. This is reflected by the transition
from state 0 to state 1 in the Markov chain model shown in Figure 6. The critical
mode ends because of either another disk failure (state transition from state 1 to
state DF), or a failed rebuild due to an unrecoverable failure (state transition from
state 1 to state UF), or a successful rebuild (state transition from state 1 to state

0). As the probability of an unrecoverable failure in the critical mode is P
(1)
uf ,

the transition rates from state 1 to states UF and 0 are µ1P
(1)
uf and µ1(1 − P

(1)
uf ),

respectively.
The infinitesimal generator matrix Q is given by









−Nλ Nλ 0 0

µ(1 − P
(1)
uf ) −µ − (N − 1)λ (N − 1)λ µP

(1)
uf

0 0 0 0
0 0 0 0









.

In particular, the submatrix corresponding to the transient states 0 and 1 is

QT =

[

−Nλ Nλ

µ(1 − P
(1)
uf ) −µ − (N − 1)λ

]

.

The vector τ of the average time spent in the transient states before a failure
occurs, i.e. before the Markov chain enters either one of the absorbing states DF
and UF, is obtained based on the following relation [Trivedi 2002]

τQT = −PT (0) ,

where τ = [τ0 τ1] and PT (0) = [1 0]. Solving the above equation for τ yields

τ0 =
(N − 1)λ + µ

Nλ[(N − 1)λ + µP
(1)
uf ]

, τ1 =
1

(N − 1)λ + µP
(1)
uf

. (44)

Finally, the MTTDL is given by

MTTDL = τ0 + τ1 =
(2N − 1)λ + µ

Nλ[(N − 1)λ + µP
(1)
uf ]

, (45)

where P
(1)
uf is given by (8). Note that this is the same result as in (43). Note

also that for P
(1)
uf = 0 (which holds when Ps = 0) and λ � µ, Eq. (45) can be
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approximated as follows:

MTTDL u
µ

N(N − 1)λ2
, (46)

which is the same result as in (2) (for a single array, i.e. nG = 1).

7.3.2 Intra-Disk Redundancy with RAID 6. A RAID 6 array can tolerate up to
two disk failures; thus it is in the critical mode when the disk array has two disk
failures. When the first disk fails, the disk array enters into the degraded mode,
in which the rebuild of the failing disk takes place while still serves I/O requests.
The rebuild of a segment of the failed drive is performed based on up to N − 1
corresponding segments residing on the remaining disks. When the rebuild fails,
then two or more of these segments are in error. Note, however, that the converse
does not hold. It may well be that two segments are in error and the corresponding
sectors in error are in such positions that the RAID 6 reconstruction mechanism
can correct all of them. Consequently, the probability Precf that a given segment of
the failed disk cannot be reconstructed is upper-bounded by the probability that
two or more of the corresponding segments residing in the remaining disks are in
error. As segments residing in different disks are independent, the upper bound
PUB

recf of the probability Precf is given by

PUB
recf =

N−1
∑

j=2

(

N − 1

j

)

P j
seg(1 − Pseg)

N−1−j ≈

(

N − 1

2

)

P 2
seg . (47)

Furthermore, the reconstruction of each of the nd segments of the failed disk is
independent of the reconstruction of the other segments of this disk. Consequently,

the upper bound P
(r)
uf of the probability that an unrecoverable failure occurs because

the rebuild of the failed disk cannot be completed is given by

P
(r)
uf = 1 − (1 − PUB

recf)
nd , (48)

where nd is given by (6).
Assuming that the rebuild times in the degraded and the critical mode are expo-

nentially distributed with parameters µ1 and µ2, respectively, we obtain the CTMC
model shown in Figure 7. Note that, in contrast to the case of a RAID 5 array, the

rate from state 1 to UF is µ1P
(r)
uf instead of µ1P

(1)
uf .

The infinitesimal generator submatrix QT , restricted to the transient states 0, 1
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and 2, is given by






−Nλ Nλ 0

µ1(1 − P
(r)
uf ) −(N − 1)λ − µ1 (N − 1)λ

µ2(1 − P
(2)
uf ) 0 −(N − 2)λ − µ2






.

Solving the equation τQT = −PT (0) for τ = [τ0 τ1 τ2], with PT (0) = [1 0 0], we
get

τ0 =
[(N − 1)λ + µ1] [(N − 2)λ + µ2]

NλV
, (49)

τ1 =
(N − 2)λ + µ2

V
, τ2 =

(N − 1)λ

V
, (50)

where

V , [(N − 1)λ + µ1P
(r)
uf ][(N − 2)λ + µ2P

(2)
uf ] + µ1µ2P

(r)
uf (1 − P

(2)
uf ) , (51)

and P
(r)
uf and P

(2)
uf are given by (48) and (9), respectively.

Then, we have

MTTDL = τ0 + τ1 + τ2 . (52)

Note that for P
(r)
uf = P

(2)
uf = 0 (which holds when Ps = 0) and λ � µ1 = µ2 = µ,

Eq. (52) can be approximated as follows:

MTTDL u
µ2

N(N − 1)(N − 2)λ3
, (53)

which is the same result as that reported in [Chen et al. 1994].

8. PERFORMANCE EVALUATION

8.1 I/O Performance Analysis

The two key components that make up the response time for an I/O request to
a disk are the seek time and the access time [Ruemmler and Wilkes 1994]. The
seek time depends on the current and the desired position of the disk head and is
typically specified using an average value corresponding to a seek that requires the
head to move half of the maximum possible movement. The access time depends
on the size of the data unit requested. The response time is determined by the type
of workload (e.g., random vs. sequential I/O) and the size of the data unit. The
response time of an I/O request, containing e.g. k 4 KB chunks, normalized to the
seek time is expressed by the I/O equivalent metric, denoted by IOE, which was
introduced in [Hafner et al. 2004]. It is given by

IOE = 1 + k/50 . (54)

For RAID 5 arrays, writing small (e.g., 4 KB) chunks of data located randomly
on the disk poses a challenge, the so-called “small-write” problem. This is because
each write operation to data also requires the corresponding RAID parity to be
updated. A practical way to do this is to read the old data and the old parity from
the two corresponding disks, compute the new parity, and then write the new data
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and the new parity. Hence, each small-write request results in four I/O requests
being issued. A RAID 6 array must update two parity units for each data unit
being written. This leads to six I/O requests, namely, reading of the old data and
two old parity units, and writing of the new data and the two new parity units.
Because of the small size of the data units involved, the predominant component
of the response time for each I/O request is the seek time. Based on the above, it
follows that the corresponding response times for RAID 5 and RAID 6 expressed
through the I/O equivalent metric are given by

IOE =

{

4 (1 + n/400) for RAID 5

6 (1 + n/400) for RAID 6,
(55)

where n is the I/O request size expressed in sectors.
Using the intra-disk redundancy scheme requires that the intra-disk parity must

also be updated whenever a data unit is written. This imposes some constraints
on the design of intra-disk redundancy schemes. For a long write, it is natural to
directly compute the new intra-disk parity from the new data, and write it along
with the data to the disk, resulting in large I/O request lengths and thus longer
access time. For a small write, a practical solution is to read the old data and
the corresponding old intra-disk parity as part of a single I/O request. Then the
new data and the new intra-disk parity are computed and subsequently written
back to the disk by a single I/O request. The size of the requested data increases,
thereby increasing the access time. However, for small writes and an appropriately
designed intra-disk redundancy scheme, the response time is still dominated by the
seek time. The issues of the requested data increase and of the placement of the
intra-disk parity sectors are addressed in the following subsection.

The scheme proposed in [Hughes and Murray 2004] does not discuss placement
of the intra-disk parity sectors. Furthermore, their scheme adds a parity sector for
a very large number of data sectors. Therefore, a small-write request must issue
separate I/O requests for updating the data and the corresponding intra-disk parity,
bringing the total I/O requests to eight. This has an adverse impact on the overall
throughput performance.

8.2 Impact of Intra-Disk Redundancy on I/O Performance

Here we analyze the performance of the IPC scheme. We evaluate the average
length of a single-sector write when the IPC scheme is used. As mentioned above,
when sector A needs to be written, it will be written by a single I/O request also
containing the corresponding intra-disk parity sector PA, as shown in Figure 8 with
the parity sectors placed in the p-th row. In fact, the single I/O request will contain
all the sectors between A and PA, as depicted in Figure 8 by the shaded sectors.
Note that the total number of sectors ni depends only on the row position i of
sector A, but not on its column position. It is given by

ni = 1 + m · |p − i| for i 6= p . (56)

Therefore, the expected length n̄ of a single-sector write request is given by
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Fig. 8. Length of a single-sector write request using the IPC coding scheme.
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∑
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∑
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 , (57)

where

r ,
`

m
, r ∈ N . (58)

Substituting (56) into (57) yields

n̄ =
1

r − 1

[

mp2 − (r + 1)mp +
mr(r + 1)

2
+ r − 1

]

. (59)

From the above, it follows that n̄ is minimized when

p =

⌊

r + 1

2

⌋

=

⌊

` + m

2m

⌋

, (60)

which implies that the average length of an I/O request is minimized when the the
intra-disk parity sectors are placed in the middle of the segment. Substituting (60)
into (59) yields

n̄ =











1 +
mr2

4(r − 1)
= 1 +

`2

4(` − m)
for r even

1 +
m(r + 1)

4
= 1 +

` + m

4
for r odd.

(61)
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Table VII. I/O Equivalent for Small and Long Writes (` = 128, m = 8).

Request RAID Intra-disk Redundancy Scheme Relative

Length Scheme None IPC Difference

Small write RAID 5 4.01 4.351 8.5 %
(1 Sector) RAID 6 6.015 6.527 8.5 %

Long write RAID 5 8.8 9.12 3.6 %
(480 Sectors) RAID 6 13.2 13.68 3.6 %

From (55), it now follows that the corresponding IOE metrics for RAID 5 and
RAID 6 are given by

IOE =

{

4 (1 + n̄/400) for RAID 5

6 (1 + n̄/400) for RAID 6.
(62)

Equations (61) and (62) imply that the larger the segment size and the interleav-
ing depth, the higher the IOE metric. Let us now consider an IPC scheme with a
segment length of 128 sectors, using 8 redundant sectors for every 120 data sectors.
This corresponds to ` = 128, m = 8, r = 16, and p = 8. The corresponding IOE
metrics for RAID 5 and RAID 6 are obtained from (62) and listed in Table VII. In
the case of no-coding n̄ is equal to 1, whereas in the case of IPC coding n̄ is derived
from (61) and is equal to 35.13. It follows that the response time is dominated by
the seek time and that the introduction of the IPC scheme causes the response time
for a single-sector I/O request to increase by approx. 9%. In contrast, for a long
request, taken to be equal to 480 sectors, the increase is much less, approx. 4%,
as shown in Table VII. The corresponding length including the intra-disk parity
sectors is 512 sectors. The corresponding IOE for no-coding and IPC coding are
derived from (62) by setting n̄ = 480 and n̄ = 512, respectively. From the results
shown in Table VII, we also deduce that a plain RAID 6 system has an I/O per-
formance penalty of 50% compared with a plain RAID 5 system, and approx. 40%
compared with a RAID 5 + IPC system.

9. NUMERICAL EXAMPLES

9.1 Analytical Results

Here we assess the reliability of the various schemes considered through illustrative
examples. We consider different systems using SATA disk drives and storing a user
database of 10 PB. The corresponding parameter values for the SATA disks are
summarized in Table VIII. In particular, for a sector size of 512 bytes, we have
Ps = 4.096 × 10−11.

From (10), (11), and (12), it follows that the storage efficiency of the entire
system is independent of the RAID configuration if the arrays in a RAID 6 system
are twice the size of these in a RAID 5 system. For a RAID 5 system with N = 8,
when no intra-disk redundancy is used, the required number of arrays to store the
user data is equal to 4762 (i.e. 10 PB/(7×300 GB)), whereas for a RAID 6 system
with N = 16, it is equal to 2381 (i.e. 10 PB/(14×300 GB)). The corresponding
storage efficiency is equal to 7/8, i.e. 0.875. For the RS, SPC, and IPC coding
schemes, the intra-disk storage efficiency is obtained from (3) by setting m = 8, 1,
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Table VIII. Parameter Values

Parameter Value

1/λ 500,000 h

Cd 300 GB

Pbit 10−14

N 8 (for RAID 5), 16 (for RAID 6)

1/µ 17.8 h

1/µ1 17.8 h

1/µ2 17.8 h

S 512 bytes = 4096 bits

` 128 sectors

m 8 interleaves per segment

and 8, respectively. For ` = 128, the storage efficiency is equal to 0.94, 0.99,
and 0.94, respectively. Furthermore, the required number of arrays for a RAID 5
configuration is obtained as the ratio of 4762 to the intra-disk storage efficiency and
is equal to 5080, 4800, and 5080, respectively. Similarly, for a RAID 6 configuration,
the required number of arrays is equal to 2540, 2400, and 2540, respectively. The
overall storage efficiency is obtained by (12) and is equal to 0.82, 0.87, and 0.82,
respectively. Note that the cost of the system is proportional to the required number
of arrays and, therefore, inversely proportional to the storage efficiency.

The combined effects of disk and unrecoverable failures can be seen in Figure 9
as a function of the unrecoverable sector error probability. The vertical line in the
figures indicates the SATA drive specification for unrecoverable sector errors. Note
that for small sector error probabilities, the MTTDL remains unaffected because
data is lost owing to a disk rather than an unrecoverable failure. In particular, the
MTTDL of a RAID 6 system is three orders of magnitude higher than that of a
RAID 5 system. However, as the sector error probability increases, the probability
of an unrecoverable failure in the critical mode Puf also increases and therefore
the MTTDL decreases. This decrease ends when the sector error probability is
such that the corresponding Puf is extremely high, i.e. close to one. In this case
the rebuild process in critical mode cannot be successfully completed because of
an unrecoverable failure. Consequently, the MTTDL is the mean time until the
system (i.e. any of the disk arrays) enters the critical mode. In a RAID 5 system,
this occurs when the first disk fails after an expected time of 1/(nGNλ). In a
RAID 6 system, this occurs when a second disk fails while the system is in the
degraded mode. Note that this corresponds to the MTTDL of a RAID 5 system
without unrecoverable sector errors. This also explains why the RAID 6 curves
become flat at about the height of a RAID 5 system, as can be seen in Figure 10.
This range of sector error probabilities is of primary interest because it includes

the SATA drive specification. Note that in this range the upper bound P
(r)
uf of

the probability (as well as the probability itself) of an unrecoverable failure in the
degraded mode is negligible, as shown in Figure 11. Consequently, in this range
of sector error probabilities, called the first range, the RAID 6 curves are tight
lower bounds of the actual MTTDL. We subsequently consider the second range
of the remaining sector error probabilities. As the sector error probability further
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(d) RAID 6 with correlated unrecoverable sector
errors.

Fig. 9. MTTDL for RAID 5 and RAID 6 systems with unrecoverable sector errors
(` = 128, m = 8).

increases, the upper bound P
(r)
uf of the probability of an unrecoverable failure in

the degraded mode starts becoming significant, as shown in Figure 11, resulting
in a further decrease of the MTTDL. This decrease ends when the sector error
probability is such that the corresponding P

(r)
uf is extremely high, i.e. close to one.

In this case the rebuild process in degraded mode cannot be successfully completed
because of an unrecoverable failure. Consequently, the MTTDL is the mean time
until the system (i.e. any of the disk arrays) enters the degraded mode. In a RAID 6
system, this occurs when the first disk fails after an expected time of 1/(nGNλ),
which is the same as for a RAID 5 system.

In all cases, the intra-disk redundancy schemes considerably improve the relia-
bility over a wide range of sector error probabilities. In particular, in the case of
correlated errors, the IPC coding scheme offers the maximum possible improvement
that is also achieved by the RS coding scheme. Furthermore, for large sector error
probabilities, the gain from the use of the intra-disk redundancy schemes is smaller
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(b) Correlated unrecoverable sector errors.

Fig. 10. RAID 5 vs. RAID 6 systems with independent or correlated unrecoverable
sector errors (` = 128, m = 8).

for correlated errors than for independent errors. Note that according to Remark
6.10, in the case of correlated errors the MTTDL for the IPC scheme is roughly
the same as for the optimum, albeit more complex, RS coding scheme. This is
because for both the IPC and RS schemes, and for small sector error probabilities,
the probability of an unrecoverable failure is essentially determined by the event of
encountering a single burst of more than 8 consecutive errors.

The results shown in Figure 9 along the vertical line reveal that in the practical
case of SATA-drive unrecoverable sector errors, the MTTDL is reduced by more
than two orders of magnitude. The IPC scheme, however, improves the MTTDL
by more than two orders of magnitude, therefore eliminating the negative impact
of the unrecoverable sector errors. Note that the IPC scheme can also improve
the reliability when disk scrubbing is used. The scrubbing process identifies un-
recoverable sector errors at an early stage and attempts to correct them. Data
is recovered using the RAID capability, and subsequently written to a good disk
location using the bad block relocation mechanism. Thus, the scrubbing effectively
reduces the probability of encountering unrecoverable sector errors. The extent of
this reduction is a subject of current investigation. If the reduction is of an order
of magnitude, then, according to Figure 9, the MTTDL for no coding improves by
an order of magnitude. It remains, however, more than an order of magnitude less
than the MTTDL offered by the IPC scheme.

Both the plain RAID 6 and the RAID 5 + IPC system improve the reliability over
the plain RAID 5 system, with the respective gains shown in Figure 10. Note that
in the case of SATA drives the resulting MTTDLs for these two systems are of the
same order (depicted by the ellipse) for independent as well as for correlated errors.
Therefore, the RAID 5 + IPC system is an attractive alternative to a RAID 6
system, in particular because its I/O performance is better than that of a RAID 6
system, as we shall see in Section 8.2.

We now consider the IPC redundancy scheme employed in conjunction with
RAID 5 and RAID 6 systems in the presence of correlated unrecoverable errors
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Fig. 11. Probabilities P
(2)
uf and P

(r)
uf for a RAID 6 system (` = 128, m = 8).

and investigate the effect of its parameters. First we note that in the range of sec-
tor error probabilities of interest, the MTTDL increases as the interleaving depth
m increases, as can be seen in Figure 12. This is to be expected because the larger
the m the higher the likelihood that a burst of errors can be corrected. In contrast,
the MTTDL is practically insensitive to the segment length `, as can be seen in
Figure 13, because, regardless of the segment length an unrecoverable failure within
a segment is essentially caused by a single burst of errors. A judicious selection of
` can be made considering that increasing ` results in an increased storage effi-
ciency (i.e. reduced cost), but also in an increased penalty on the I/O performance,
according to (12), (61) and (62).

The MTTDL as well as the overall storage efficiency of a RAID 6 system for
various values of ` and m are shown in Figure 14. We observe that an almost max-
imal MTTDL is achieved by selecting m = 8. This is because when bursts of errors
occur, the IPC scheme can correct them in 99.95% of the cases. This percentage
corresponds to the probability that the length of a burst does not exceed 8. This
reveals that critical to the choice of m and hence to the success of the IPC scheme
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(a) RAID 5.
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(b) RAID 6.

Fig. 12. MTTDL of RAID + IPC systems for m = 2, 4, 8, 15 and ` = 128 under
correlated unrecoverable sector errors.
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(a) RAID 5.
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(b) RAID 6.

Fig. 13. MTTDL of RAID + IPC systems for ` = 64, 128, 256, 512 and m = 8
under correlated unrecoverable sector errors.

is not the actual burst lengths, but rather their probability distribution. According
to the results presented in Figure 14, a reasonable compromise between storage
efficiency and I/O performance can be achieved by selecting `/m = 16, which cor-
responds to ` = 128, se(IDR) = 94%, se(RAID+IDR) = 82%, and a relative I/O
performance difference of 8.5% for small writes and 3.6% for long writes, according
to the results of Table VII. Note that this is also a good choice of parameter values
in the case of a RAID 5 system.

Next we examine the sensitivity of reliability to the error-burst length B by con-
sidering a truncated geometric distribution of burst lengths in the range 1, 2, . . . , L,
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(a) `/m = 4 (se(IDR) = 75%). (b) `/m = 8 (se(IDR) = 88%).
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(c) `/m = 16 (se(IDR) = 94%). (d) `/m = 32 (se(IDR) = 97%).
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(e) `/m = 64 (se(IDR) = 98%). (f) `/m = 256 (se(IDR) = 99%).

Fig. 14. MTTDL for RAID 6 + IPC systems with correlated unrecoverable sector
errors and m = 2, 4, 8, 15.

i.e.

bj =











1 − q

1 − qL
qj−1 for q 6= 1

1

L
for q = 1

, with j = 1, 2, . . . , L , (63)
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Fig. 15. MTTDL of RAID + IPC systems as a function of B̄ for m = 8 and ` = 128.
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Fig. 16. Pseg and P (B > n) as a function of B̄ for m = 8 and ` = 128.

where q is a parameter taking values in the range (0,∞). From (63), it follows that
the mean burst length B̄ is given by

B̄ =











1 − (L + 1)qL + LqL+1

(1 − q)(1 − qL)
for q 6= 1

L

2
for q = 1 ,

(64)

which is monotonically increasing in q. Note that for q = 0 it holds that B = B̄ = 1,
and that for q → ∞ it holds that B = B̄ = L.

Figure 15 shows the MTTDL as a function of the mean burst length for a RAID 5
and a RAID 6 system, and for Ps = 4.096×10−11. Clearly, the impact of the mean
burst length on the MTTDL is the same for both the RAID 5 and RAID 6 systems.
First, we observe that in the case of no coding the MTTDL increases as the mean
burst length increases. This is because, owing to (21), PNone

seg decreases in B̄, as can
be seen in Figure 16(a). Second, in the case of SPC, the MTTDL drops sharply and
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than starts increasing approaching the no-coding case. This is because the SPC
scheme improves the reliability significantly only if the probability that the length
of an error burst exceeds one is negligible. This holds only when B̄ is very small, as
can be seen in Figure 16(b). As B̄ increases further, the improvement over the no-
coding scheme reduces and therefore the MTTDL approaches that of the no-coding
scheme. Third, in the case of IPC (and RS) and for small values of B̄, the MTTDL
remains unchanged. This is because the probability that the length of an error
burst exceeds m is negligible, as can be seen in Figure 16(b), and therefore the IPC
scheme can correct almost all of the errors. As B̄ increases further, this probability
is no longer negligible and, therefore, the effectiveness of the IPC scheme reduces.
The improvement over the no-coding scheme reduces and accordingly the MTTDL
approaches that of the no-coding scheme. Note that for B = 1, there are only single
sector errors in a segment, and hence the SPC, IPC and RS schemes are capable of
correcting all sector errors. Consequently, the MTTDL is the same as in the case
of no coding and Ps = 0. The results obtained show that the MTTDL reduction
caused by the unrecoverable errors is of more than two orders of magnitude. They
also suggest that in the practical case of small mean burst lengths, the IPC scheme
copes very efficiently with this problem and therefore results in an improvement of
the MTTDL by more than two orders of magnitude.

9.2 Simulation Results

In this section we focus on using event-driven simulation techniques to characterize
various redundancy schemes, specifically to study the performance impact of the
intra-disk redundancy scheme when incorporated into RAID systems. Two perfor-
mance metrics are commonly used to benchmark a storage system: the response
time and the saturation throughput.

Most modern RAID controllers have a large battery-backed cache that boosts
the overall system performance by reducing the I/O requests to the disks, and per-
forming aggressive read-ahead and write-behind. The response time of an array as
experienced by the end user can be dramatically shortened by increasing the size of
the array cache and selecting the replacement strategy based on the characteristics
of workloads. As our main interest in the simulation is the performance difference
of RAID schemes rather than caching mechanism or characteristics of workloads,
we start measuring the response time of requests after caching, i.e. from the instant
when they are sent to the disks. Therefore, the saturation throughput measures
the maximum throughput between the front-end (cache) and the back-end (disk
array). The higher the saturation throughput, the better the performance of the
underlying RAID mechanism.

We have developed a lightweight event-driven simulator that also includes a HDD
model, specifically a 3.5-inch SCSI IBM Ultrastar 146Z10 having a capacity of 146.8
GB and a rotational speed of 10K RPM. Various standard RAID simulators are
publicly available in the community, such as, for example, HP Labs’ Pantheon for
disk arrays [HP Labs 2006]. However, these simulators focus mainly on standard
RAID functions and are not flexible enough to easily accommodate a new level of
redundancy such as we wish. With the advent of the C++ standard library and
the concept of generic programming, particularly the standard template library
(STL), developing a lightweight event-driven simulator from scratch often turns
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out to be an easier task than understanding and tailoring an existing large software
package. Another alternative would have been to use the CMU’s DiskSim for
disks [The DiskSim Simulation Environment (Version 3.0) 2007], but we found that
DiskSim only supports some obsolete disk models. Therefore, we have built an HDD
module targeted for the IBM drive 146Z10, following the approach described in
[Ruemmler and Wilkes 1994] and consulting the source code of DiskSim. The disk-
drive model captures major features such as zoned cylinder allocation, mechanical
positioning parameters such as seek time, settling time, cylinder and head skew, as
well as rotational latency, data transfer latency, and buffering effects such as read
ahead. The simulated response time of the HDD exhibits a good match with its
nominal specification. We assume a first-come first-served (FCFS) scheduling policy
for serving the I/O requests at each disk. Actually, we have tested several other
disk-scheduling policies such as SSTF, LOOK, and C-LOOK, and have found that
the scheduling policy practically does not affect the performance of the intra-disk
redundancy scheme.

We compare the RAID 5 and RAID 6 schemes with the corresponding schemes
enhanced by the addition of the intra-disk redundancy scheme. We also consider a
RAID N+3 scheme, which is a natural extension of the RAID 5 and RAID 6 schemes
that uses three redundant disks to protect against as many as three simultaneous
disk failures. In our entire evaluation, each array consists of 8 disks. For the intra-
disk redundancy scheme, we employ an IPC scheme with a segment size of 128
sectors, comprising 8 redundant sectors and 120 data sectors.

First we focus on the small-write scenario and use synthetic workloads generating
aligned 4 KB small I/O requests with uniformly distributed logical block addresses
(LBAs). The ratio of read to write is set to be 1:2, i.e. there are 33.33% reads
and 66.67% writes, because a front-end cache reduces the number of read requests
sent to the disks. The request inter-arrival times are assumed to be exponentially
distributed. Figure 17 shows the average response times for a range of arrival rates.
Of primary interest is the mean arrival rate at a given mean response time. It is
evident that RAID 6 and RAID N+3 suffer severely from the small-write problem
compared with RAID 5, suggesting that they are too costly to cope with unrecov-
erable failures when these are the predominant source of data loss. In contrast, the
RAID 5 and RAID 6 schemes enhanced by the IPC-based intra-disk redundancy
scheme exhibit a more graceful degradation. The saturation throughput for RAID 5
is 305 I/O requests per array per second, whereas for the IPC scheme on top of
RAID 5 it is 295 I/O requests per array per second. This represents a minor, 3%
degradation in saturation throughput due to the IPC scheme. Similarly, a minor
degradation in saturation throughput is observed when the IPC scheme is used on
top of RAID 6.

In Figure 18 we investigate the impact of having request sizes exponentially
distributed with a mean of 256 KB. These requests approximate a mix of random
and sequential requests. We set the read-to-write ratio to 2:1. We observe that the
relative performance of the five RAID schemes mentioned does not change, although
the corresponding differences are reduced. This is to be expected because for read
requests and for sequential requests the impact of different redundancy schemes
is not as significant as in the case of small updates. The saturation throughput
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Fig. 17. Response time of various RAID systems (synthetic workload, small writes).
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Fig. 18. Response time of various RAID systems (synthetic workload, mix of random and sequen-
tial requests).

for RAID 5 is 218 I/O requests per array per second, whereas for the IPC scheme
on top of RAID 5 it is 200 I/O requests per array per second. This represents a
9% degradation in saturation throughput due to the IPC scheme. It may seem
conceptually counterintuitive that the IPC overhead is smaller for the small-write
than for the large-write case. This is due to the fact that the small-write case is
4K aligned, whereas the large-write case is not.

To gain an understanding of how these redundancy schemes perform under ac-
tual user workloads, we use two traces from the Storage Performance Council (SPC)
benchmark SPC-1 [SPC a; b] that have the largest data records, namely, the Fi-
nancial 1 (154 MB) and Websearch 2 (139 MB). The traces vary widely in their



36

0  50% 100% 150% 200% 250% 300%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
FCFS scheduler

Trace scaling factor

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(s
)

RAID 5
IPC on top of RAID 5
RAID 6
IPC on top of RAID 6
RAID N+3

Fig. 19. Response time of various RAID systems (SPC Financial 1 trace).
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Fig. 20. Response time of various RAID systems (SPC Websearch 2 trace).

read/write ratios, access sizes, arrival rates, degree of sequentiality, and bursti-
ness. The performance graphs use a range of arrival-rate scaling factors for the
traces. The workloads with a unity (100%) scaling factor correspond to the orig-
inal request stream. Figure 19 shows the average response times for a range of
trace-scaling factors on the Financial 1 trace. As approx. 76.8% requests are small
writes in Financial 1 trace, we observe that the IPC on top of RAID 5 scheme
performs slightly worse than the RAID 5 scheme but significantly better than the
RAID 6 scheme. Similarly, the IPC on top of RAID 6 scheme performs worse than
the RAID 6 scheme but better than the RAID N+3 scheme.

Figure 20 shows the average response times for a range of trace scaling-factors on
Websearch 2 trace. This trace is characterized by a nearly 100% reads, with request
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sizes ranging from 8 to 32 KB. In the case of the intra-disk redundancy scheme it
follows that there is a slight performance drawback due to alignment issues.

10. CONCLUSIONS

Owing to increasing disk capacities and the adoption of low-cost disks in modern
data storage systems, unrecoverable errors are becoming a significant cause of user
data loss. To cope with this issue, a new intra-disk redundancy scheme was in-
troduced and its design described. An intra-disk redundancy architecture that is
specifically based on a simple interleaved parity-check (IPC) coding scheme was
proposed. A new model capturing the effect of correlated unrecoverable sector er-
rors was developed to analyze this scheme. Moreover, redundancy schemes based
on traditional Reed–Solomon (RS) codes and single-parity-check codes were ana-
lyzed in the context of the generic intradisk redundancy architecture. Closed-form
expressions were derived for the mean time to data loss of RAID 5 and RAID 6
systems in the presence of unrecoverable errors and disk failures. The I/O and
throughput performance of the RAID 5 and RAID 6 systems enhanced by the
new intra-disk redundancy scheme was evaluated by means of analysis and simula-
tions. Our results demonstrate that the proposed IPC-based intra-disk redundancy
scheme considerably improves reliability over a wide range of sector error probabil-
ities. In particular, in the case of correlated errors, the IPC coding scheme offers
the maximum possible improvement that is also achieved by the RS coding scheme.
Furthermore, the associated penalty on the I/O performance is minimal. Therefore
a RAID 5 system enhanced by an intra-disk redundancy scheme that uses IPC is
an attractive alternative to a RAID 6 system as its reliability is similar to and its
I/O performance better than that of a RAID 6 system. Alternative designs of the
intra-disk redundancy concept introduced in this paper and a potential adoption
of other erasure-coding schemes are the subject of further investigation.

APPENDIX

A. NUMBER OF BURSTS OF ERRORS IN A SEGMENT

Proof of Proposition 6.1.

Let us consider an instance of k bursts in a segment and let us denote by ~L
the vector (L1, . . . , Lk) of the corresponding burst lengths and by ~S the vector
(S1, . . . , Sk) of their corresponding starting sector positions with 1 ≤ S1 < · · · <
Sk ≤ `. The length of the error-free interval Ij following the j-th burst is then
given by Sj+1 − Sj − Lj, for j = 1, 2, . . . , k − 1. Also, the length of the error-free
interval I0 preceding the first burst is at least S1−1, and the length of the error-free
interval Ik following the k-th burst is at least ` + 1 − Sk − Lk.

Let us now consider the following realization in terms of burst lengths ~l =
(l1, . . . , lk) and starting sector positions ~s = (s1, . . . , sk). Let us denote by Rk

the set of all possible realizations {(~l, ~s )}, and by Ek its subset containing those
realizations that lead to a segment error. Next we proceed to calculating the prob-
ability P (~L = ~l, ~S = ~s ). Depending on the value of s1, two cases are considered:

Case 1) s1 = 1. As the first sector of the segment has an error, the corresponding
burst may have started in the preceding segment. Therefore, the length R1 of the
remaining consecutive errors is distributed according to the residual burst length
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B̂, i.e. P (R1 = j) = b̂j , where b̂j , P (B̂ = j) = Gj/B̄ for j = 1, 2, . . . [Kleinrock
1976]. Note that the length L1 of consecutive errors within the segment is equal

to min(R1, `), and therefore its pdf is given by P (L1 = j) = P (R1 = j) = b̂j for

j = 1, 2, . . . , ` − 1, and P (L1 = `) = P (R1 ≥ `) =
∑∞

j=` b̂j . Depending on whether
Ik exists, two cases are considered:

Case 1.a) ∃ Ik. This is equivalent to the condition sk + lk ≤ `. As in this case
the length of the interval Ik is at least ` + 1 − sk − lk, it holds that

P (~L = ~l, ~S = ~s ) = P (first sector in error, L1 = l1, I1 = s2 − s1 − l1, L2 =
l2, . . . , Lk = lk , Ik ≥ ` + 1− sk − lk) = Ps P (L1 = l1)P (I1 = s2 − s1 − l1)P (L2 =

l2) · · · P (Lk = lk)P (Ik ≥ ` + 1 − sk − lk) = Ps
Gl1

B̄
α(1 − α)s2−s1−l1−1 bl2 · · ·

blk (1−α)`−sk−lk = Ps
Gl1

B̄
bl2 · · · blk (1−α)`−k−(l1+···+lk) αk−1 =

Gl1
bl2

··· blk

B̄k P k
s +

O(P k+1
s ).

Case 1.b) @ Ik. This is equivalent to the condition sk + lk = ` + 1. Depending
on the value of k, two cases are considered:

Case 1.b.i) k = 1. In this case it holds that l1 = `. Thus,

P (L1 = `, S1 = 1) = P (first sector in error, R1 ≥ `) = Ps P (R1 ≥ `) =
P∞

j=` Gj

B̄
Ps.

Case 1.b.ii) k ≥ 2. As the last sector of the segment has an error, the corre-
sponding burst may extend into the next segment. Therefore, the pdf of the length
Lk of consecutive errors within the segment is distributed according to the com-
plementary cumulative density function of the burst length B, i.e. P (Lk = n) =
∑∞

j=n bj = Gn for n = 1, 2, . . .. In this case it holds that sk + lk = ` + 1. Thus,

P (~L = ~l, ~S = ~s ) = P (first sector in error, L1 = l1, I1 = s2 − s1 − l1, L2 =
l2, . . . , Lk = lk) = Ps P (L1 = l1)P (I1 = s2−s1−l1)P (L2 = l2) · · · P (Ik−1 = sk−

sk−1−lk−1)P (Lk = lk) = Ps
Gl1

B̄
α(1−α)s2−s1−l1−1 bl2 · · · α(1−α)sk−sk−1−lk−1−1

Glk = Ps
Gl1

B̄
bl2 · · · blk−1 Glk

(1−α)`−(k−1)−(l1+···+lk) αk−1 =
Gl1

bl2
··· blk−1

Glk

B̄k P k
s +

O(P k+1
s ).

Case 2) s1 ≥ 2. Let Pbs be the probability that a burst of errors starts at a
given sector position. This is equal to the product of the probability of the sector
being in error and of the probability of an erroneous sector being the first of its
corresponding burst, i.e. Pbs = Ps/B̄. Depending on whether Ik exists, two cases
are considered:

Case 2.a) ∃ Ik. This is equivalent to the condition sk + lk ≤ `. Similarly to
Case 1.a, it holds that
P (~L = ~l, ~S = ~s ) = P (I0 ≥ s1 − 1, burst of errors starts at s1, L1 = l1, I1 =
s2−s1−l1, . . . , Lk = lk , Ik ≥ `+1−sk−lk) = P (I0 ≥ s1−1)Pbs P (L1 = l1)P (I1 =
s2 − s1 − l1) · · · P (Lk = lk)P (Ik ≥ ` + 1 − sk − lk) = (1 − α)s1−2 Ps

B̄
bl1 α(1 −

α)s2−s1−l1−1 · · · blk (1−α)`−sk−lk = Ps

B̄
bl1 · · · blk (1−α)`−k−(l1+···+lk)−1 αk−1

=
bl1

··· blk

B̄k P k
s + O(P k+1

s ).

Case 2.b) @ Ik. This is equivalent to the condition sk + lk = ` + 1. Similarly to
Case 1.b.ii, and for all values of k, it holds that
P (~L = ~l, ~S = ~s ) = P (I0 ≥ s1 − 1, burst of errors starts at s1, L1 = l1, I1 =
s2 − s1 − l1, . . . , Lk = lk) = P (I0 ≥ s1 − 1)Pbs P (L1 = l1)P (I1 = s2 −
s1 − l1) · · · P (Ik−1 = sk − sk−1 − lk−1)P (Lk = lk) = (1 − α)s1−2 Ps

B̄
bl1 α(1 −



39

α)s2−s1−l1−1 · · · α(1 − α)sk−sk−1−lk−1−1 Glk = Ps

B̄
bl1 · · · blk−1

Glk (1 −

α)`−k−(l1+···+lk) αk−1 =
bl1

··· blk−1
Glk

B̄k P k
s + O(P k+1

s ).

From the above, it follows that P (~L = ~l, ~S = ~s ) is of order O(P k
s ) because for

every (~l, ~s ) it holds that P (~L = ~l, ~S = ~s ) = A(~l,~s )

B̄k P k
s + O(P k+1

s ), with A(~l, ~s )

being a function of ~l, ~s and {bj}. Consequently, P
(k)
seg =

∑

(~l,~s )∈Ek
P (~L = ~l, ~S =

~s ) =

P

(~l,~s )∈Ek
A(~l,~s )

B̄k P k
s + O(P k+1

s ).

B. REED–SOLOMON (RS) CODING SCHEME

Proof of Theorem 6.3.

According to Proposition 6.2, coefficient c1 is derived based on the probability
that a segment contains a single burst of errors and is in error. In the case of
an RS coding scheme, the segment is in error when the burst length exceeds m.
Consequently, for k = 1 and using the terminology of Appendix A, the segment is
in error for all realizations (l, s) such that l ≥ m + 1. Thus,

Pseg =
∑

l≥m+1
1≤i≤`

P (L = l, S = i) =
`−1
∑

l=m+1

P (L = l, S = 1) + P (L = `, S = 1) +

+

`−m−1
∑

i=2

`−i
∑

l=m+1

P (L = l, S = i) +

`−m
∑

i=2

P (L = ` + 1 − i, S = i) ,

with the four summation terms corresponding to Cases 1.a, 1.b.i, 2.a and 2.b,
respectively. Using the following relations B̄ =

∑∞

j=1 Gj and bj = Gj−Gj+1, j ∈ N,
we get

Pseg =

`−1
∑

l=m+1

Gl

B̄
Ps +

∑∞

j=` Gj

B̄
Ps +

`−m−1
∑

i=2

`−i
∑

l=m+1

bl

B̄
Ps +

`−m
∑

i=2

G`+1−i

B̄
Ps + O(P 2

s ) =

=

(

∞
∑

l=m+1

Gl +
`−m−1
∑

i=2

`−i
∑

l=m+1

bl +
`−m
∑

i=2

G`+1−i

)

Ps

B̄
+ O(P 2

s ) =

=

(

∞
∑

l=1

Gl −

m
∑

l=1

Gl +

`−2
∑

l=m+1

`−l
∑

i=2

bl +

`−1
∑

i=m+1

Gi

)

Ps

B̄
+ O(P 2

s ) =

=

[

1 +
(` − m − 1)Gm+1 −

∑m
j=1 Gj

B̄

]

Ps + O(P 2
s ) .
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