
RZ 3693 (# 99703) 06/25/2007
Computer Science 12 pages

Research Report

An Incremental Approach to the Analysis and Transformation of
Workflows using Region Trees

Rainer Hauser, Michael Friess, Jochen M. Küster, and Jussi Vanhatalo

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
rfh@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research
 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

2 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

An Incremental Approach to the Analysis and
Transformation of Workflows using Region Trees

Rainer Hauser, Michael Friess, Jochen M. Küster, and JussiVanhatalo

Abstract— The analysis of workflows in terms of structural
correctness is important for ensuring the quality of workflow
models. Typically, this analysis is only one step in a larger
development process, followed by further transformation steps
that lead from high-level models to more refined models until
the workflow can finally be deployed on the underlying workflow
engine of the production system. For practical and scalable
applications, both analysis and transformation of workflows must
be integrated to allow incremental changes of larger workflows.

In this paper, we introduce the concept of a region tree for
workflow models that can be used as the central data structure
for both workflow analysis and workflow transformation. A
region tree is similar to a program structure tree and imposes a
hierarchy of regions as an overlay structure onto the workflow
model. It allows an incremental approach to the analysis and
transformation of workflows and thereby significantly reduces the
overhead because individual regions can be dealt with separately.

The region tree is built using a set of region-growing rules.The
set of rules presented here is shown to be correct and complete in
the sense that a workflow is region-reducible as defined through
these rules if and only if it is semantically sound.

Index Terms— Business process modeling, workflow modeling,
workflow verification, workflow transformation, control flow .

I. I NTRODUCTION

GRAPHICAL notations for workflow models or business
process models, in the following called workflows, have

been used for a long time to describe behaviors in terms of
a control-flow between activities and their temporal relations.
Workflows are therefore a relatively advanced area, in which
model-driven architecture (MDA) [1] or, in a broader sense,
model-driven engineering (MDE) [2] concepts and methods
have been applied. The development of an application based on
graphical models is a complicated process, leading in partially
manual and partially automated steps from analysis models via
design models to a complete and deployable IT solution [3].
To support this development cycle including the deployment,
(1) modeling tools are necessary for sketching and refining
workflows, (2) support is required for validation, verification,
optimization and testing of workflows, and (3) algorithms are
needed for transforming a workflow into the elements and
structure required by the underlying workflow or execution
engine, in the following called runtime platform.

Two main groups of graphical notations for workflows are
used. Petri nets [4], specifically free-choice Petri nets [5],
have been proposed to model and analyze workflows scientif-
ically [6]. However, the major software products and industry
standards including the Unified Modeling Language 2 (UML2)

Manuscript received November 30, 2006; revised March 16, 2007.
R. Hauser (e-mail: rainer.hauser@gmail.com), J.M. Küster and J. Vanhatalo

are (or have been) with the IBM Zurich Research Laboratory, Switzerland,
and M. Friess is with IBM Deutschland Entwicklung GmbH, Germany.

Activity Diagrams [7] are based on simpler, often only infor-
mally defined process modeling languages inspired by general-
purpose drawing tools and preferred by mathematically less
thoroughly trained business analysts. The translation of results
described in terms of Petri nets into the theory of these other
process modeling languages is not always straightforward.

The challenge of validation, verification and testing is to
discover errors and unexpected behaviors as early as possible,
but also not to restrict the designer by imposing unnecessary
overhead. Structural conflicts, most importantly deadlocks, as
one source of errors in a workflow can be detected by various
methods. Graph-reduction rules similar to the reduction rules
for Petri nets in [4] and [5] were introduced in [8] for process
modeling languages to detect structural conflicts in acyclic
workflows. One of these graph-reduction rules, the so-called
overlapped reduction rule defined for an infrequently occurring
pattern, turned out to be insufficient as demonstrated on a
sample workflow, and hence was replaced in [9] by three other,
albeit very complicated rules. In [10], another valid workflow
was presented in which the original rules fail, and a case was
made for using Petri nets to detect structural conflicts because
they outperform the reduction algorithms operating on process
models and can also handle cyclic workflows. Despite this, a
rule-based reduction approach for process modeling languages
is not intrinsically limited to acyclic workflows, and a carefully
chosen set of rules does not only detect but, as will be shown
below, also localize errors and helps understand the structure
of workflows.

In a model-driven approach to workflow modeling, work-
flow analysis for structural conflicts is not a one-time ac-
tivity but is performed repeatedly on different (or even the
same) parts of a larger workflow model during refinement,
as discussed in [3]. One important transformation used in this
process is the deployment step, which transforms the workflow
into the form required by, and possibly optimized for, the
runtime platform. This transformation can be quite complex,
because graphical process modeling languages for workflows
such as UML2 Activity Diagrams [7] and the related notation
used by the IBM WebSphere Business Modeler (Modeler) [11]
permit the specification of models that are less structured than
are allowed by some runtime platforms such as the workflow
engines for the Business Process Execution Language for
Web Services (BPEL) [12]. In BPEL, unstructured cycles,
for example, must be converted to structured do-while loops.
Thus, if the target runtime platform is based on BPEL the
unstructured parts of the workflow that cannot be represented
in BPEL must be resolved into structured constructs [13].

To enable workflow analysis and workflow transformation
for an incremental and iterative approach, we introduce the

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 3

concept of a region tree. Similar to the program structure
tree [14], the region tree imposes a hierarchical structureon
the workflow model. Individual regions can then be analyzed
separately, and one region can be transformed and refined
without affecting other parts. The region tree can be built
using rules that adapt and extend the reductions rules for
detecting structural conflicts described in [8] and [9]. These
rules, called region-growing rules, are used to construct a
hierarchy of regions as an overlay structure in which structural
conflicts become visible at the interfaces between interacting
regions. The resulting tree of regions can be used to optimize
workflows and to transform unstructured or partially structured
workflows into equivalent, more structured versions of the
workflow. Unlike a program structure tree, the region tree may
contain not only the special type of regions called single-entry-
single-exit [14], but also more general regions.

Contrary to the reduction rules in [4], [5] and [8], the
transformation building the region tree does not change the
workflow and, thus, does not remove information. By ignoring
the content of the regions, it can still be used as a reduction
procedure, and the region-growing rules used this way lead to
the concept of region reducibility. It turns out that semantical
soundness defined through behavioral properties of workflows
is equivalent to region reducibility. In other words, a workflow
is region-reducible if and only if it is semantically sound.

This paper, based on the conference paper [15] extended
with the main theorems proving the equivalence of semantical
soundness and region reducibility, is organized as follows.
Section II introduces the basic workflow concepts. In Sec-
tions III and IV, the region tree and the region-growing rules
for workflows are presented. The application of the region tree
to combine workflow analysis and transformation is illustrated
with an example in Section V. In Section VI, we prove that the
set of region-growing rules is correct and complete. Finally,
the paper concludes with a summary in Section VII.

II. BASIC CONCEPTS

Here, the definition of a workflow is introduced, and struc-
tural conflicts as a class of errors are discussed.

A. Workflows and Soundness

Various graphical notations for modeling workflows as
process graphs exist, but they are all based on the concept
of directed graphs. We use the definition of workflows and
the graphical representation for their elements, as shown in
Fig. 1, similar to the notation in [16], but not limited to only
two edges. The start node, the end node, and the activity1 are
shown in Figs. 1a, 1b, and 1c, respectively. The sequential
control nodes, choice and merge, in Figs. 1d and 1e are also
called or-split and or-join2. The parallel control nodes, fork
and join, in Figs. 1f and 1g are also called and-split and
and-join. These nodes can be connected through edges, and a
directed graph built with these elements is called aworkflow.

1Note that the start and end nodes are sometimes considered activities and
sometimes no-op elements, although the distinction is not relevant here.

2The term “or” is slightly misleading, and the term “xor” is sometimes
used instead because one and only one edge is assumed to be enabled.

a) b) c) d)

or

e)

or

f)

and

g)

and

Fig. 1. Workflow graph elements

In the following we assume that all workflows arestructurally
sound [17], i.e., they contain exactly one start and one end
node, and there is a path from the start node to every node
and a path from every node to the end node.

We introduce the semantics, i.e., the behavior, of a struc-
turally sound workflow, in terms of Petri-net-like tokens. The
start node emits a token on its outgoing edge when the
workflow is started. An activity starts when a token arrives on
its incoming edge, i.e., when the incoming edge is enabled,
and eventually ends by sending a token to its outgoing edge.
The end node consumes a token on its incoming edge and
terminates the workflow. The or-split emits a token on one of
its outgoing edges after consuming a token on its incoming
edge. The or-join emits a token on its outgoing edge after
consuming a token on one of its incoming edges, and thus
behaves according to the “multiple executions” semantics de-
fined in [16]. The and-split consumes a token on its incoming
edge and emits a token on all outgoing edges. The and-join
emits a token on its outgoing edge after consuming a token
on all incoming edges.

Several concepts of semantical soundness of workflows
exist. In addition to the original definition introduced forWF
nets in [6], relaxed, weak, and lazy soundness have been
proposed depending on the workflow patterns in [18] to be
modeled and on workflow properties such as what happens
to running activities when the workflow terminates after the
end node received a token [17]. We use the initial definition
adapted from WF nets and define semantical soundness as
follows: Executions of a workflow are described through the
flow of the tokens. An executionterminatesas soon as the
end node consumes a token. It terminatessuccessfullyif at
this point no other tokens are present in the workflow.

Definition 1: A structurally sound workflow issemantically
soundif and only if all possible executions terminate success-
fully.

To avoid unreachable nodes in general and infinite loops in
particular, we assume further that every or-split will enable
each of its outgoing edges eventually if reached often enough
in the same or in different executions.

B. Structural Conflicts

Not all structurally sound workflows are semantically sound.
Fig. 2 shows prototypical examples of structural conflicts.
The first two were identified in [8], [16] and [19], where the
situation in Fig. 2a is calleddeadlockand the one in Fig. 2b
is called eitherlack of synchronizationor multiple active
instances of the same activity. The third structural conflict
shown in Fig. 2c can only occur in cyclic workflows. We call
it parallel cycle.

The and-join of thedeadlocknever emits a token if the
or-split only gets a single token. The or-join of thelack
of synchronizationalways receives at least two tokens and,

4 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

a) b)

or orandand

c)

andand

Fig. 2. Structural conflicts

depending on the semantics of the or-join [16], either dis-
cards all but one token or emits one token for each token
received3. These two structural conflicts may not necessarily
be considered an error when using more relaxed definitions of
soundness, but certainly need careful inspection.

In general,deadlockis a situation in which an and-join gets
some but not all tokens, andlack of synchronizationa situation
in which an or-join gets too many tokens on its incoming
edges. Theparallel cycleis also a kind of deadlock: it occurs
if the nodes on the path from the and-split back to the and-join
can only get a token through the path from the and-join to the
and-split. The and-join will never emit a token.

III. R EGION ANALYSIS

Here, relevant concepts regarding workflow regions in gen-
eral and the region tree in particular are introduced.

A. Single-entry-single-exit Regions

An important type of region is thesingle-entry-single-exit
(SESE) region known from compiler theory [14]. Informally
speaking, a SESE region is a set of nodes that does not
contain the start and/or end node, such that there is exactly
one edge, called the incoming edge, leading from nodes not
in the region to nodes in the region, and exactly one edge,
called the outgoing edge, leading from nodes in the region to
nodes not in the region. The set of all nodes of a structurally
sound workflow other than the start and end node build a SESE
region, with the edge leaving the start node as the incoming
edge and the edge going to the end node as the outgoing
edge. In the following, the terms workflow and SESE region
will therefore often be used interchangeably, and most figures
will only show the SESE region instead of the workflow with
start and end node. Consequently, we call a SESE region
semantically soundif and only if the corresponding workflow
with start and end node is semantically sound.

Different levels of syntactical structuredness can be defined
using the concept ofsubstitution, i.e., of replacing an edgee
in a workflow w1 with a structurally sound workfloww2. As
depicted in Fig. 3, edgee is removed fromw1, the start and
end node are removed fromw2, and the remaining parts ofw2

are plugged intow1 such that the original source ofe becomes
the new source of the edge leaving the original start node of
w2 and the original target ofe becomes the new target of the
edge going to the original end node ofw2. A part of workflow
w1 with edgee is shown in Fig. 3a, workfloww2 is depicted
in Fig. 3b, and the result is presented in Fig. 3c.

The simplest level, apart from linear workflows, i.e., work-
flows with a single path from start to end node, is called

3As the or-join allows different behaviors, the termlack of synchronization
is more appropriate thanmultiple instances of the same activity.

B Cor or DA
or

or X

Z

Y or

w1

w2

a) b)

e

or

or X

Z

Y or

c)

B Cor or DA

Fig. 3. Substitution of workfloww2 for edgee in workflow w1

structured in [19] and consists of those workflows in which
each or- or and-split has one corresponding or- or and-join,
respectively.

Definition 2: A workflow is structuredif and only if it can
be constructed using the following inductive rules:

1) All structurally sound linear workflows, i.e., workflows
without control nodes, are structured.

2) All structurally sound workflows with one or-split and
one or-join as the only control nodes are structured.

3) All structurally sound acyclic workflows with one and-
split and one and-join as the only control nodes are
structured.

4) If w1 andw2 are structured workflows andw1 contains
an edgee, the result of replacinge with w2 in w1 is
structured.

If the sequential parts of a workflow, i.e., those parts only
using or-splits and -joins, can be separated from the parallel
parts, i.e., those parts only using and-splits and -joins, we call
the workflowseparable.

Definition 3: A workflow is separableif and only if it can
be constructed using the following inductive rules:

1) All structurally sound workflows with only or-splits and
or-joins as control nodes are separable.

2) All structurally sound acyclic workflows with only and-
splits and and-joins as control nodes are separable.

3) If w1 andw2 are separable workflows andw1 contains
an edgee, the result of replacinge with w2 in w1 is
separable.

Clearly, all structured workflows are separable, but not all
separable workflows are structured. Separable workflows have
the following important property.

Lemma 1:All separable workflows are semantically sound.
Proof: We observe the token flow in one single SESE

region that is either sequential or parallel:
1) In a SESE region with only sequential control nodes, all

nodes (or other SESE regions) consume one token and
eventually emit one token. Thus, there is exactly one
token in the region between the time the token enters
the region and the time it leaves it.

2) In an acyclic SESE region with only parallel control
nodes and activities (or other SESE regions), one token
passes through every edge exactly once.

In both cases, all executions terminate successfully.
However, there are semantically sound workflows that are

not separable. Workflows containing so-called overlapped pat-
terns as shown in Fig. 4 mix and-splits with or-joins or or-
splits with and-joins in such a way that executions of the

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 5

a)

or

orand

and or

and

b)

and

andor

or and

or

Fig. 4. Overlapped patterns

a) b) c) d)

SESE-region or-logic and-logic ?-logic

Fig. 5. Region graph elements with input/output logic

workflow can terminate successfully. The pattern in Fig. 4a
made it necessary to define a special rule [8]. All executions
of this workflow terminate successfully, and the pattern is
semantically sound. For the dual workflow, i.e., a workflow
in which or-splits and -joins are replaced with and-splits and
-joins and vice versa as in Fig. 4b, executions can only
terminate successfully if the two or-splits both enable either
the upper edge or the lower edge. The pattern is therefore not
semantically sound. If or-splits (one or more) in a workflow
need additional information to make a workflow execute, their
conditions are calledsynchronized. Other examples in which
or-splits need synchronization of their conditions, e.g.,to exit
two parallel cycles at the same time, are discussed in [19].

B. Well-defined Input and Output Logic

When seen as a black box, a SESE region behaves with
respect to the flow of tokens in a similar way as does an
activity. If a token enters the region through the incoming
edge, a token will eventually come out on the outgoing edge.
This approach of describing the behavior of regions as black
boxes through their interfaces can be generalized by means of
the definition of the input/output logic of a region. Informally
speaking, the input logic is “or” if and only if a token on one
of the incoming edges triggers the region, and is “and” if and
only if a token on all its incoming edges triggers the region.
Similarly, the output logic is “or” if and only if the region
eventually emits a token on one of its outgoing edges when
triggered, and is “and” if and only if the region eventually
emits a token on all its outgoing edges when triggered. In this
way, regions with an input/output logic can also be treated as
black boxes with respect to their token-flow behavior, and the
input/output logic determines the two interfaces of a region.

If the behavior of the interfaces of a region can be described
in this way, we call the region and its interfaceswell-defined.

a) b)

S T S T

deadlock lack of
synchronization

Fig. 6. Structural conflicts between regions

or

and and

or

A

B

H

L

C

I

K

J

or D E

G

Mor

andN

or or F

or

Fig. 7. A workflow with a partition into well-defined basic regions

The graphical notations used in the following are presented
in Fig. 5. In Fig. 5a, a SESE region is shown. The input
and output logic is “or” in Fig. 5b, “and” in Fig. 5c, and
either unknown or irrelevant but still well-defined in Fig. 5d.
If a region has one incoming edge, the input logic can be
interpreted as “or” or “and”, and if a region has one outgoing
edge, the output logic can be interpreted as “or” or “and”.

As illustrated in Fig. 6, the structural conflicts defined for
acyclic workflows become incompatible input and output logic
for regions. A regionS with output logic “or” connected to a
region T with input logic “and” through two or more edges
as in Fig. 6a results in adeadlock. A region S with output
logic “and” connected to a regionT with input logic “or”
through two or more edges as in Fig. 6b corresponds to alack
of synchronization.

C. Region Tree

Starting with a partition into well-defined basic regions, we
can build composite regions by combining one or more regions
into a new region that is also well-defined. If we continue in
this way, we may finally reach the point where only a single
region is left. The resulting structure is called aregion tree
(RT), similar to the program structure tree (PST) in [14], with
the remaining single region as its root.

An initial partition in which each node of the workflow is
packed into its own region is a valid starting point. Alterna-
tively, also the initial partition in which each region contains
only one single control node, but may contain in addition an
arbitrary number of activities as in Fig. 7, is valid.

For a single workflow, many different RTs can be con-
structed. Depending on how the RT is created, it will reveal
more or less of the structure of the workflow. In the following
section, we define region-growing rules to build the composite
regions in such a way that we can detect structural errors.

IV. REGION-GROWING RULES

In this section, three families of region-growing rules will
be introduced that allow new well-defined regions to be built
from existing well-defined regions.

6 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

S S

a)

S
T

S
T

b)

S1 T1

Sn Tm

... ...

S1 T1

Sn Tm

... ...

c)

Fig. 8. The three families of region-growing rules

A. Families of Rules

Transformation rules have a left-hand side specifying the
pattern expected by the rule and a right-hand side showing
the result of the application of the rule if the pattern matches.
The left-hand side of such a region-growing rule is a set of
regions assumed to be well-defined, and the right-hand side
is a single new region. We call a region-growing rulewell-
definedif the resulting new region is well-defined whenever
the input regions on the left-hand side are well-defined.

In the following, we present the three families of rules
shown in Fig. 8 with their member rules, but without the error
rules discussed in [15]. The simplest family of rules covers
cycles as depicted in Fig. 8a. The family of rules for two
neighbors shown in Fig. 8b contains different member rules
for the possible input and output logics of regionsS and T

and depending on the successors ofS or predecessors ofT .
These two families have a fixed number of input regions. The
third family, shown in Fig. 8c, has a variable number of input
regions. It covers the overlapped patterns.

The first two families of region-growing rules are based but
only to a limited extent on the reduction rules in [8] and [9].
Their more important root is compiler theory [20], explicitly
the T1-T2 analysis [21], the area of goto-elimination [22]
and subsequent work on cycle-removal transformations for
sequential (and therefore separable) workflows [23]. Although
the T1-T2 analysis was invented as a method for determining
irreducibility, it turned out that reducibility for cycle-removal
is far less important than it seemed [24]. Note that these
two families of rules, i.e., the rules for self-loops and for
two neighbors, correspond to the T1 and T2 rule from T1-
T2 analysis, respectively, extended to handle irreducibility and
parallelism.

For the rules represented graphically (such as the one shown
in Fig. 8), we use the following conventions: a single edge
represents exactly one edge, two edges with the same source
and/or target region mean one or more edges.

B. Rules for Self-loops

The only rule for handling self-loops, i.e., edges in which
the source and target are the same region, isrule L shown in
Fig. 9. The other combinations of input/output logic for region
S correspond to the structural conflicts shown in Fig. 2.

S S
rule L

Fig. 9. Rules for self-loops

a)

S T S T

S T S T

b)

rule C st

rule P st

Fig. 10. Rules for two neighbors with{S} = pred(T), {T} = succ(S)

C. Rules for Two Neighbors

Two regionsS and T (S 6= T) with one or more edges
leading fromS to T build the pattern for the rules for two
neighbors. Depending on whether regionS has successors
other thanT and regionT has predecessors other thanS,
this group is split into four sets of member rules.

The first set of member rules is shown in Fig. 10. It covers
the cases in which regionS is the only predecessor of region
T and regionT is the only successor of regionS: {S} =
pred(T) and{T } = succ(S). The output logic ofS and the
input logic ofT must be compatible.RuleCst with “or” logic
is shown in Fig. 10c andrule Pst with “and” logic in Fig. 10b.

The second set of member rules is shown in Fig. 11. It
covers the cases in which regionT is the only successor of
regionS but has predecessors other thanS: {S} ⊂ pred(T)
and {T } = succ(S). Rule Cs in Fig. 11a andrule Ps in
Fig. 11b correspond to the two possible cases in which the
output logic ofS and the input logic ofT are consistent with
each other.

The third set of member rules is shown in Fig. 12. It covers
the cases in which regionS is the only predecessor of region
T but has successors other thanT : {S} = pred(T) and
{T } ⊂ succ(S). RuleCt in Fig. 12a andrule Pt in Fig. 12b
correspond to the two possible cases in which the output logic
of S and the input logic ofT are consistent with each other.

S
T

S
T

a)

S
T

S
T

b)

rule C s

rule P s

Fig. 11. Rules for two neighbors with{S} ⊂ pred(T), {T} = succ(S)

S
T

S
T

a)

S
T

S
T

b)

rule C t

rule P t

Fig. 12. Rules for two neighbors with{S} = pred(T), {T} ⊂ succ(S)

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 7

S
T

S
T

a)

S
T

S
T

b)

rule C

rule P

Fig. 13. Rules for two neighbors with{S} ⊂ pred(T), {T} ⊂ succ(S)

S1 T1

Sn Tm

... ...

S1 T1

Sn Tm

... ...
rule O

Fig. 14. Rules for overlapped patterns

The fourth and final set of member rules is shown in Fig. 13.
It covers the cases in which regionS has successors other than
T and regionT has predecessors other thanS: {S} ⊂ pred(T)
and{T } ⊂ succ(S). RuleC in Fig. 13a andrule P in Fig. 13b
correspond to the two possible cases in which the output logic
of S and the input logic ofT are consistent with each other.

D. Rules for Overlapped Patterns

The overlapped pattern is a situation in which a group of
n regionsSi (n ≥ 2) is connected to a group ofm regions
Tj (m ≥ 2) in such a way that from everySi exactly one
edge leads to everyTj . The only member rule allowed in this
family is rule O shown in Fig. 14.

E. Region Reducibility

Depending on the goal, the region-growing rules can be
applied differently. The effect of the application strategy as
well as its properties and pitfalls such as pseudo-cycles have
been discussed in [15]. Here, we concentrate on the set of
workflows that can be resolved by the region-growing rules if
these rules are used as reduction rules.

Definition 4: A SESE region isregion-reducibleif it can be
reduced to a single region with one incoming and one outgoing
edge using the region-growing rulesL, Cst, Cs, Ct, C, Pst,
Ps, Pt, andO when starting from an initial partition into basic
regions with at most one control node per region.

Note that ruleP is not used because it is not needed
and would in addition cause problems. Moreover, either rule
Ps or rule Pt is redundant too. Because structurally sound
workflows and SESE regions can be used interchangeably
here, the concept of region reducibility can be extended to
workflows in a straightforward way by removing their start
and end node.

Termination and confluence are important properties of such
rule-based systems. The application of the region-growing
rules always terminates because each rule reduces the number
of edges and either keeps the number of nodes the same or also
reduces the number of nodes. Used as transformation rules,
the set of region-growing rules is not confluent, because if
rule L has highest priority on a cyclic sequential workflow,

or

and and

or

A

B

H

L

C

I

K

J

or D E

G

Mor

andN

or or F
a)

b)

R9
R1

R2

R5
R10

or

R3 R4

R7 R8

R6

A

B, C, G
D, E

N

F

K, L

MH, I, J

Fig. 15. Sample workflow with deadlock

many cycles may be detected, but if ruleL has lowest priority,
all cycles are combined into one single cycle [24]. Used as
reduction rules, the set of region-growing rules is, however,
confluent, as will be shown below.

V. COMBINED ANALYSIS AND TRANSFORMATION

The combination of the analysis of workflows for structural
conflicts and their transformation into a more structured form
is demonstrated on the example workflow from Fig. 7.

A. Analysis for Structural Conflicts

The example workflow and its initial regions are shown in
Fig. 15. Even with the non-trivial SESE regions marked in
Fig. 15a by dotted rectangles, it is not obvious that it contains
a deadlock. The basic regions from the initialization in Fig. 7
have been given names, and the regions are annotated with the
names of the activities they contain in Fig. 15b.

Fig. 16 shows the transformation steps until the deadlock
becomes visible. RuleCst is applied to regionsR3 andR4 to
obtain the state shown in Fig. 16a with regionR3+4, to which
rule L can be applied as shown in Fig. 16b. The situation
in Fig. 16c results from the application of ruleCt to regions
R5 andR6. The new region can be combined with regionR7

using ruleCt again as shown in Fig. 16d and with regionR8

using ruleCst as shown in Fig. 16e. Next, ruleCt combines
regionsR2 and R3+4, leading to the state in Fig. 16f. At
this point, either rulePt can be applied to regionR1 and
the composite regionR5+6+7+8, or rulePs can be applied to
regionsR9 andR10. (Note, however, that the two regionsR1

andR2+3+4 have incompatible output logic such that rulePt

cannot be applied to these two regions.) As the sequence in
which the rules are applied in this situation has no significant
influence on the result, we apply rulePs first and get the state
shown in Fig. 16g, in which the deadlock between regions
R2+3+4 andR9+10 becomes visible.

We consider the correction of such problems a manual step,
although the algorithm that detected the conflict may come
up with suggestions4. These suggestions can indicate which

4The number of changes needed to fix the problem in the workflow is one
of the criteria on which such suggestions could be based.

8 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

a)

R9
R1

R2

R5
R10

R3+4

R7 R8

R6

A

B, C, G
D, E, F

N

K, L

MH, I, J

b)

R9
R1

R2

R5
R10

R3+4

R7 R8

R6

A

B, C, G
D, E, F

N

K, L

MH, I, J

c)

R9
R1

R2

R5+6
R10R7 R8

A

B, C, G

NMH, I, J, K, L

R3+4

D, E, F

d)

R9
R1

R2

R5+6+7
R10R8

A

B, C, G

NMH, I, J, K, L

R3+4

D, E, F

e)

R9
R1

R2

R5+6+7+8
R10

A

B, C, G

NH, I, J, K, L, M

R3+4

D, E, F

f)

R9
R1

R2+3+4

R5+6+7+8
R10

A

B, C, G, D, E, F

NH, I, J, K, L, M

g)

R9+10
R1

R2+3+4

R5+6+7+8
A

B, C, G, D, E, F

NH, I, J, K, L, M

Fig. 16. Rules applied to the sample workflow with deadlock

steps could lead to a structurally correct workflow, but only
the designer can determine which solution is the right one
given what the workflow is supposed to do. In this example,
the problem can be resolved by changing either the or-split
after activityC into an and-split or all three and-splits in the
workflow into or-splits. We assume that here the correct choice
is to turn the or-split after activityC into an and-split.

The corrected version of the workflow is shown in Fig. 17.
The workflow in Fig. 17a is now separable (and therefore
semantically sound according to Lemma 1) as shown by the
three non-trivial SESE regions. It consists of two sequential
SESE region (one cyclic, one acyclic), both contained in a
parallel SESE region. Because of the correction, regionR2

gets an output logic “and” in Fig. 17b. The change is local,
and only the regions affected have to be processed again, i.e.,
regionR2 must be regenerated and the application of ruleCt

combining regionsR2 andR3+4 needs to be re-examined.
Resuming the transformation from here allows the remain-

ing steps to be completed as shown in Fig. 18. The composite

or

and and

or

A

B

H

L

C

I

K

J

and D E

G

Mor

andN

or or F
a)

b)

R9
R1

R2

R5
R10

or

R3 R4

R7 R8

R6

A

B, C, G
D, E

N

F

K, L

MH, I, J

Fig. 17. Corrected sample workflow

a)

R1

R2

R5+6+7+8
A

B, C, G

H, I, J, K, L, M

R3+4

D, E, F

R9+10

N

b)

c)

R1 R5+6+7+8
A

H, I, J, K, L, M

R9+10

N

R2+3+4

B, C, G, D, E, F

R5+6+7+8

H, I, J, K, L, M

R9+10

N

R1+2+3+4

A, B, C, G, D, E, F

d) R9+10

N

R1+2+3+4+5+6+7+8

A, B, C, G, D, E, F, H, I, J, K, L, M

e) R1+2+3+4+5+6+7+8+9+10

A, B, C, G, D, E, F, H, I, J, K, L, M, N

Fig. 18. Rules applied to the corrected sample workflow

regionR3+4 in Fig. 18a can be merged with its predecessor
R2, leading to the four remaining regions shown in Fig. 18b.
At this point, rulePt can merge the two composite regions
in the middle into regionR1, or rule Ps can merge the same
regions into regionR9+10. The application sequence of the
rules has no significant impact in this case, and we just select
one possible sequence. RulePt, for example, merging regions
R1 andR2+3+4, leads to the situation shown in Fig. 18c, and,
applied again to merge regionsR1+2+3+4 andR5+6+7+8, to
the situation shown in Fig. 18d. A final application of rulePst

results in the single region shown in Fig. 18e.

D E For

R3

or

R4

R3+4 (Cst)

R3+4 (L)

Fig. 19. Detailed content of regionR3+4 resulting from ruleL

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 9

R1+2+3+4+5+6+7+8+9+10 (Pst)

R1+2+3+4+5+6+7+8 (Pt)

R1+2+3+4 (Pt) R5+6+7+8 (Cst)

R5+6+7 (Cst) R8

R7

R2+3+4 (Pt)R1

R3+4 (L)R2

R9+10 (Ps)

R9 R10

R3+4 (Cst)

R3 R4

R5+6 (Ct)

R6R5

Fig. 20. Region tree for the corrected sample workflow

The content of composite regions, i.e., regions contained in
other regions, is not shown in Figs. 16 and 18. The nested
containment for regionR3+4 after applying ruleL, as an
example, is depicted in Fig. 19. The complete RT for the
corrected workflow is presented in Fig. 20 in compact form.

B. Transformation into Structured Form

For MDE interpreted as the field of developing complete
applications and other systems using visual models and mod-
eling tools (such as the Modeler [11]), the transformation from
graphical process models to the deployable code expected by
the runtime platform (e.g., BPEL) is analogous to the compila-
tion from a high-level programming language to machine code
expected by the underlying hardware platform. Cycle-removal
transformations and other transformations for workflows from
a less to a more structured form are part of this activity.

The equivalence of workflows and the transformation of
unstructured workflows into an equivalent structured form has
been studied in [19]. Sequential SESE regions can always be
transformed into an equivalent structured form and further
to the structured BPEL activitiesswitch and while. Al-
though not all parallel SESE regions can be turned into an
equivalent structured form, they can be directly transformed
into BPEL flow activities pluslink constructs. Thus, the
compilation of separable workflows into BPEL is possible.
The semantically sound overlapped pattern can be turned into
an equivalent structured form by first duplicating the activities
between the or-joins and the and-join and then switching these
join nodes [16]. Thus, all region-reducible workflows can be
converted into an equivalent form that can be represented in
BPEL.

To demonstrate the compilation to BPEL in greater detail,
we examine one region more closely and apply the trans-
formation rules discussed in [24]. Applying these rules blindly
to the part of the RT shown in Fig. 19 leads to the following
BPEL skeleton code:

<while condition>
<invoke D />
<invoke E />

<switch>
<case condition>

<invoke F />
</case>

</switch>
</while>

The parameters for theinvoke activities and the conditions
for the while andswitch activities have not been set, but
it is assumed here that they could be derived from the original
workflow. Because the cycle would be better represented by
a do-until than by a do-while loop, the condition of the loop
must also guarantee that activitiesD and E are invoked at
least once.

As described in [24], rulesCt andCs tend to move nodes
(such as activityF in this example) from the right and
from the left, respectively, into the cycles, although these
nodes would better stay outside. Because the area of the
workflow contributing to a cycle is well-known (see Fig. 19),
an optimization step can identify these nodes and move them
out of the loop:

<while condition>
<invoke D />
<invoke E />

</while>
<invoke F />

VI. M AIN THEOREMS

The main theorems prove that a structurally sound workflow
is semantically sound if and only if it is region-reducible.

A. Correctness Theorem

From the definition of the region-growing rules, the follow-
ing theorem is to be expected.

Theorem 1: (Correctness Theorem)If a structurally sound
workflow is region-reducible, it is semantically sound.

Proof: The behavior of a region with well-defined input
and output logic in terms of the flow of tokens is fully
described through its input and output logic, i.e., throughits
interfaces. Therefore, we have to show (1) that the initial
regions with at most one control node are well-defined, and (2)
that for all rules used in the definition of region reducibility
the behavior of the region on the right-hand side is the same
as the behavior of the region pattern on the left-hand side. The
first part of the proof is trivial because basic regions having no
control node are SESE regions, and basic regions containing
one control node inherit their logic from the control node.

For the second part of the proof, we show as an example
that ruleCt in Fig. 12a is well-defined and leave the proof for
the other rules to the reader5. If the number of tokens expected
by the input logic of regionS is available, regionS eventually
submits either a token on one of its upper two edges or a token
on one of the lower two edges to regionT . In the latter case,
regionT will eventually emit a token. The new region on the

5Note that ruleP in Fig. 13b is not well-defined, because tokens on the
upper two input edges of the new region would result in tokenson the upper
two output edges even without tokens pending on the lower twoinput edges.

10 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

right-hand side of the rule has the same input logic as region
S, and in any case, it will emit eventually one and only one
token on one of its outgoing edges when the expected number
of tokens is available on the input side.

B. Non-separable Patterns

Practically all workflows used in reality are separable. Thus,
workflows with an overlapped pattern come as a surprise
for most people when they are first exposed to them. If
such an unexpected pattern exists, the question arises whether
other patterns can be found among the semantically sound
workflows that are also not separable. We will show in the
following lemmata that this is not the case.

Before doing this, we first define theoverlapped pattern
more precisely asn and-splits (n ≥ 2) andm or-joins (m ≥ 2)
with one path from every and-split to every or-join such that
(1) the and-splits have no other outgoing paths, (2) the or-joins
have no other incoming paths, and (3) the regions between the
and-splits and or-joins are SESE regions (if the path from the
and-split to the or-join is not just one single edge). The last
point guarantees that the token emitted by an and-split to an
or-join eventually arrives and that no other tokens are created
or consumed in this part of the workflow.

Lemma 2: If a workflow w contains a SESE region that is
not semantically sound,w is not semantically sound.

Proof: If the SESE region is not semantically sound,
there are executions in which the region consumes a token,
but does not emit one, or there are executions in which the
region consumes and emits a token, but unconsumed tokens
remain in the region.

1) There is no node in a workflow that can consume a token
without emitting one except for the end node. Because
an end node cannot be part of the SESE region, at least
one unconsumed token must remain inside the SESE
region if a token entered but no token left the region.

2) If a token remains inside the SESE region when another
token leaves it, there are three possibilities: (1) the
workflow terminates with the unconsumed token still in
the SESE region, (2) the workflow never terminates, or
(3) the additional token leaves the SESE region as well.
Only the last case needs further considerations. Because
there are no synchronized conditions, the second token
leaving the region may take the same path as the first
token for some executions. However, there are no nodes
that can emit tokens after consuming two tokens waiting
on the same incoming edge, but could not emit tokens
if only one token is waiting there. Therefore,w either
never terminates or does so with unconsumed tokens.

In any case,w is not semantically sound.
Thus, if a workfloww contains a SESE region that is not

semantically sound, this cannot be fixed in another part ofw.
Lemma 3: If a semantically sound workflow is not separa-

ble, it contains an overlapped pattern.
Proof: Let us assume that the structurally sound work-

flow w is semantically sound but not separable. We show that
if all executions ofw terminate successfully,w contains an
overlapped pattern.

a) b)

x xy
z

y
z

Fig. 21. Splitting and merging of control nodes

or

and

and

a)

and and
xpath 1

path 2

path 0

b)

and or or…

orand

c)

path 0

or

and

and

orand

d)

path 0 and

as1
aj

aj

as1

as2

aj

oj 1

oj 2

Fig. 22. Situations discussed in the proofs of Lemmata 3 and 4

We first simplify w in such a way that the token flow and
thus also the property of semantical soundness are not affected.
(These simplifications have an obvious similarity with the
reduction rules defined in [8].) Activities and, similarly,SESE
regions that must be semantically sound owing to Lemma 2
can be eliminated because they only influence the timing
of the token flow. Separable SESE regions can simply be
removed, and non-separable SESE regions can be checked
for overlapped patterns independently. Thus, we can assume
that w does not contain any SESE region except for the one
resulting when the start and end node have been removed.

Furthermore, and as illustrated in Fig. 21, two adjacent
control nodes of the same type can be merged into one control
node of this type, or one control node (with enough edges)
can be split into two adjacent control nodes of the same type
if this is needed to eliminate additional separable parts ofw.
Assuming thatx, y andz have the same type, the split control
nodex with at least three outgoing edges and the two adjacent
split control nodesy and z in Fig. 21a are equivalent, and,
similarly, the join control nodex with at least three incoming
edges and the two adjacent join control nodesy and z in
Fig. 21b are equivalent. In this way, two direct edges from a
split node to a join node of the same type can be turned into
a SESE region and can be eliminated in this way.

Fig. 22 illustrates the remaining steps of the proof once all
possible simplifications of this kind have been performed:

1) Workflow w must contain at least one parallel control
node because otherwisew would be separable. We select
one as shown in Fig. 22a having only sequential control
nodes (zero or more) on a pathpath0 to the end node.
If this parallel control node emits a token, a token
reaches the end node in at least one possible execution
throughpath0. The parallel control node must therefore
be an and-joinaj because an and-split would lead to
unconsumed tokens and thus to unsuccessful executions.

2) We select an and-splitas1 and two pathspath1 and
path2 such that the two paths lead fromas1 to aj and
do not contain another and-split. (If this is not possible,
there must be unconsumed tokens or simplifications that
have not yet been performed. Note that no other tokens
must be in the workflow whenaj emits a token.) At least
one of the two paths, saypath1, must contain a nodex

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 11

that is notas1 as the predecessor ofaj, because the two
paths would otherwise have been eliminated through the
simplifications. Nodex as shown in Fig. 22b cannot be
an and-split because we selectedas1 such that there is
no other and-split on the two paths. It also cannot be
an and-join because it would have been merged with
aj. It cannot be an or-split because this would require
synchronized conditions as a token would otherwise
reachaj on path2 but not necessarily onpath1. Thus,
x must be an or-joinoj1.

3) If node oj1 gets a token through an input edge other
than the one on pathpath1, a token must also arrive
at aj via the last edge ofpath2. As all SESE regions
have been eliminated during the initial simplification
step, the token arriving atoj1 cannot come from a node
on path1. Thus there must be an or-joinoj2 on path2

(it is the predecessor ofaj, for the same reasons as
above), and there must be another and-splitas2 leading
to these two or-joins as shown in Fig. 22c. We can
repeat this argument if one of the or-joins, sayoj2, has
other incoming edges. If one of the and-splits, sayas1,
has other outgoing edges, the token sent on it must be
consumed beforeaj in such a way that no deadlock
occurs ifas2 emits tokens. This is only possible if there
aren and-splitsasi andm or-joinsojj arranged in such
a way that whenever one of theasi receives a token, all
ojj eventually get a token. Anything else would lead to
unconsumed tokens or a deadlock ataj.

4) If tokens are emitted from oneasi to everyojj , these
tokens and only these tokens must also arrive. Because
all SESE regions have been removed, this is only pos-
sible through direct edges. Ifaj has incoming edges
not coming from aojj , we split aj such that all its
incoming edges come from one of the or-joinsojj . We
can therefore define a region as depicted in Fig. 22d (for
the casen = 2 and m = 2), in which the only edges
leading into this region are the incoming edges of the
and-splits and the only edge leading out of this region
is the outgoing edge of the and-join.

This region is an overlapped pattern connected to an and-join
at the back.

The proof only shows that there must be an overlapped
pattern in a semantically sound workflow that is not separable,
but not that there are no other unexpected patterns.

Lemma 4:The overlapped pattern is the only non-separable
pattern in semantically sound workflows.

Proof: The rectangle shown in Fig. 22d is a region with
exactlyn incoming edges leading to then and-splits and one
outgoing edge leading eventually to the end node. If a token
comes into the region through one of the incoming edges, a
token will come out on the outgoing edge. With respect to the
token flow, this region is equivalent to a single or-join.

If the workflow after replacing the region with an or-join is
separable, we are done. If it is not separable, we repeat the
argument in the proof of Lemma 3. The original workflow has
only a finite number of nodes, and each step replacing a region
with an or-join reduces the number of nodes. Therefore, we
reach a separable workflow in a finite number of steps.

R

T1

T2

S1

S2

a)

c)

R

T3

T4

S3

S4

......
b)

LR

W

W

W

Fig. 23. Situations discussed in the proof of Theorem 2

C. Confluence Theorem

The rule-application sequence is important for the creation
of an RT, but is irrelevant when determining whether a SESE
region or a workflow is region-reducible.

Theorem 2: (Confluence Theorem)If one rule-application
sequence shows that a SESE region is region-reducible, also
all other possible rule-application sequences do so.

Proof: We assume that a SESE regionW has been
shown to be region-reducible through one application sequence
of the rules (and, therefore, is semantically sound owing
to Theorem 1), but another application sequence terminates
before the SESE region has been reduced to a single region
having one incoming and one outgoing edge. The assumption
is that no rule can be applied to the remaining region graph.

The proof is similar to the one of Lemma 3. We start
from the outgoing edge of the SESE regionW and determine
possible regions that may remain if we avoid (1) combinations
of regions that could be resolved with one of the region-
growing rules and (2) configurations that lead to deadlocks
and/or unconsumed tokens. The situations described during
the proof are shown in Fig. 23.

The last regionL, i.e., the region with the outgoing edge
of W , must have “or” output logic, because no unconsumed
tokens are allowed to remain inW , when a token leaves the
outgoing edge ofW . If an outgoing edge ofL leads back
to L, i.e., if there is a self-cycle,L must have “or” input
logic, because a deadlock or unconsumed tokens would result
otherwise, but ruleL could have been applied in this situation
contrary to the assumption above.

Thus, regionL cannot be the only remaining region, and
we can deduce the following structure of regions:

1) We look for a regionR with “and” input and “or” output
logic close to the exit of the SESE regionW . If region
L has “and” input logic, we select it to be regionR as
shown in Fig. 23a.

2) Otherwise, we take one of the predecessorsR of L

as shown in Fig. 23b, and note thatR must have
“and” input logic, because with “or” logic, one of the
sequential region-growing rules for two neighbors could
have been applied toR andL.

3) In both cases,R has “or” output logic and “and” input
logic, and it emits the only token available inW when
it emits a token because otherwise unconsumed tokens
would result.
We determine all predecessors ofR and call themTj.
There must be more than one because either rulePst

12 To appear inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS – PART C

could have been applied or there must be deadlocks
and/or unconsumed tokens. If oneTj sends a token
to R, all the others eventually must do so also, and
we can further conclude that allTj have “and” output
logic (or only one outgoing edge), with all outgoing
edges leading directly or indirectly toR, because “or”
output logic would require synchronized conditions. The
connections, however, cannot be indirect because either
rule Pst would be applicable to one of theTj and R

or deadlocks and/or unconsumed tokens would result
otherwise.
Because allTj must emit tokens toR when oneTj does,
there must be regionsSi with direct or indirect paths to
the Tj and with “and” output logic such that everyTj

is connected to at least twoSi. (If there is only one,
the input logic of theTj would either be “and” or could
be interpreted as “and”, and a rule for two neighbors
could have been applied to theseTj andR.) Note that
not everySi may lead to everyTj , but that theSi and
Tj can be partitioned such that every pairSi andTj is
connected if in the same partition or are unconnected if
in different partitions. This situation is shown in Fig. 23c
for two partitions. The first partition consists of regions
S1, S2, T1 andT2, and the second partition consists of
regionsS3, S4, T3 andT4.
If one of the Si in every partition gets enabled, it
sends a token to everyTj in the same partition, and
eventually everyTj is enabled. Thus, if oneSi per
partition is enabled, the SESE regionW may emit a
token. Therefore, theSi must have “or” input logic. The
connections between theSi and theTj must be such
that whenever anSi sends a token on the path to the
Tj, a token must also arrive there. That is only possible
through direct edges (or through other SESE regions).
Thus, each partition contains at least twoSi and twoTj

and builds an overlapped pattern.

Contrary to our assumption, ruleO can be applied.

D. Completeness Theorem

The region-growing rules allow all semantically sound
workflows to be detected.

Theorem 3: (Completeness Theorem)If a structurally sound
workflow is semantically sound, it is region-reducible.

Proof: We determine all SESE regions of the workflow
and select an innermost region, i.e., a SESE region that does
not contain other SESE regions. Because of the definition of
separable workflows and the Lemmata 3 and 4, the following
three cases have to be discussed:

1) Sequential SESE region: As long as the SESE region
contains at least two regions, one of the rulesCst, Cs,
Ct or C can be applied because they cover all cases of
two neighbors with only “or” logic. If in the end a single
region remains that has more edges than the incoming
and the outgoing edge, these edges must be self-cycles
and can be resolved with ruleL.

2) Parallel SESE region: As the region is not allowed
to contain cycles, there must be a path from the first

region, i.e., the region with the incoming edge of the
SESE region, to the last region, i.e., the region with the
outgoing edge of the SESE region, having maximal path
length. RulePst or rule Pt must be applicable to the
first two regions on this path because the second region
cannot have predecessors other than the first region in
the SESE region, as otherwise a longer path than the
one with maximal path length would result.

3) Overlapped pattern in a SESE region: The overlapped
patterns can be removed with ruleO. We observe that
the result of ruleO is the same as the result of rule
Cst (or Pst) applied to a regionS with “or” input
logic and a regionT with “and” output logic connected
through a single edge6. Thus, there exists a different
workflow that does not contain overlapped patterns, but
that would have led to the same configuration. Because a
semantically sound SESE region without an overlapped
pattern must be separable, we can apply Theorem 2
together with the proof for sequential and parallel SESE
regions.

In any case, the SESE region can be reduced to a single region
with one incoming and one outgoing edge, and, therefore, can
be replaced by an activity without changing the behavior in
terms of token flow. In this way, the entire workflow can be
resolved, SESE region by SESE region, from inside out.

VII. C ONCLUSION

In this paper, we introduced the region tree of a workflow
and the region-growing rules that allow the region tree to
be built in an incremental and iterative way. Three families
of rules have been proposed: one for self-loops, one for
processing two neighbors, and one for overlapped patterns.
The regions detected by the rules and the interfaces between
them, as defined through the input/output logic of a region,
reveal structural information about the workflow that is useful
for further applications. We combined two such applications
to demonstrate the power of the region tree on an example.

The first area in which we used this structural information
is the detection of structural conflicts in workflows. The
rules not only detect but even localize the structural conflicts
called deadlock, lack of synchronization, and parallel cycles.
They can handle cyclic workflows and workflows containing
overlapped patterns, but they cannot handle workflows that
would require synchronized conditions.

The second possible application area explored in this paper
is the transformation (or compilation) of unstructured or
insufficiently structured workflows into a more structured form
as expected by some runtime platforms. If, for example, the
workflow is supposed to be deployed on a workflow engine
based on BPEL, cycles are only allowed in the form of do-
while loops, and unstructured cyclic workflows therefore have
to be transformed into this form first. This is possible because
the region-growing rules, in contrast to the reduction rules
in [4], [5] and [8], do not modify the original workflow, but
create an overlay structure.

6Compare the abstraction ruleφA in [5] and the merge-fork reduction rule
in [9] that are based on the same observation.

HAUSER et al.: AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 13

The region-growing rules introduced for constructing the
region tree can still be used as reduction rules, leading to a
concept of reducibility similar to the one introduced in [8].
In the main theorems, we proved that this property, called
region reducibility, is equivalent to the property of semantical
soundness, and that therefore no additional rules are needed.
As a consequence, an algorithm to detect whether a workflow
is region-reducible can also be used to determine whether it
is semantically sound.

This paper concentrated on the demonstration of the concept
of the region tree, on its application to structurally and
semantically sound workflows, on the definition of the region-
growing rules, on their applicability as reduction rules, and on
the proof of the main theorems. Future work includes extend-
ing the applicability of the region tree to other areas, and the
definition of further rules and concepts to handle structurally
sound workflows that require synchronized conditions and
other more general forms ofm-out-of-n logic, e.g., interfaces
expressible with pins in UML2 Activity Diagrams.

REFERENCES

[1] OMG (Object Management Group), “OMG Model Driven Architecture”
(MDA). [Online]. Available: http://www.omg.org/mda/

[2] S. Kent, “Model Driven Engineering”, inProc. 3rd International Con-
ference on Integrated Formal Methods (IFM’02), Turku, Finland, LNCS
2335, pp. 286-298, 2002.

[3] J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, and
M. Wahler, “The Role of Visual Modeling and Model Transformation in
Business-driven Development”, inProc. 5th International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT’06),
Vienna, Austria, 2006.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications”, Proc.
IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[5] J. Desel and J. Esparza,Free Choice Petri Nets. Cambridge, Great
Britain: Cambridge University Press, 1995.

[6] W.M.P. van der Aalst, “Verification of Workflow Nets”, inProc. 18th
International Conference on Application and Theory of Petri Nets
(ICATPN’97), Toulouse, France, LNCS 1248, pp. 407-426, 1997.

[7] OMG (Object Management Group), “Unified Modeling Language: Su-
perstructure” (UML2 Activity Diagrams), version 2.0. [Online]. Avail-
able: http://www.omg.org/docs/formal/05-07-04.pdf

[8] W. Sadiq and M.E. Orlowska, “Analyzing Process Models Using Graph
Reduction Techniques”,Information Systems, vol. 25, no. 2, pp. 117-
134, 2000.

[9] H. Lin, Z. Zhao, H. Li, and Z. Chen, “A Novel Graph Reduction
Algorithm to Identify Structural Conflicts”, inProc. 35th Hawaii In-
ternational Conference on System Sciences (HICSS-35), 2002.

[10] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek, “An Alter-
native Way to Analyze Workflow Graphs”, inProc. 14th International
Conference on Advanced Information Systems Engineering (CAiSE’02),
Toronto, Canada, LNCS 2348, pp. 535-552, 2002.

[11] IBM (International Business Machines), “WebSphere Business Modeler”
(Modeler), Advanced Version 6.0. [Online]. Available: http://www-
306.ibm.com/software/integration/wbimodeler/

[12] Microsoft et al., “Business Process Execution Language for Web Ser-
vices” (BPEL4WS), version 1.1., 5 May 2003. [Online]. Available:
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[13] W. Zhao, R. Hauser, K. Bhattacharya, B.R. Bryant, and F.Cao, “Com-
piling Business Processes: Untangling Unstructured Loopsin Irreducible
Flow Graphs”,Intl. J. Web Grid Services, vol. 2, no. 1, pp. 68-91, 2006.

[14] R. Johnson, D. Pearson, and K. Pingali, “The Program Structure Tree:
Computing Control Regions in Linear Time”, inProc. ACM Sigplan
Conference on Programming Language Design and Implementation
(PLDI’94), Orlando, Florida, pp. 171-185, 1994.

[15] R. Hauser, M. Friess, J.M. Küster, J. Vanhatalo, “Combining Analysis of
Unstructured Workflows with Transformation to Structured Workflows”,
in Proc. 10th International Enterprise Distributed Object Computing
Conference (EDOC’06), Hong Kong, China, pp. 129-140, 2006.

[16] R. Liu and A. Kumar, “An Analysis and Taxonomy of Unstructured
Workflows”, in Proc. 3rd International Conference on Business Process
Management (BPM’05), Nancy, France, LNCS 3649, pp. 268-284, 2005.

[17] F. Puhlmann and M. Weske, “Investigations on SoundnessRegarding
Lazy Activities”, In Proc. 4th International Conference on Business
Process Management (BPM’06), Vienna, Austria, LNCS 4102, pp. 145-
160, 2006.

[18] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros, “Workflow Patterns”,Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5-51, 2003.

[19] B. Kiepuszewski, A.H.M. ter Hofstede, and C.J. Bussler, “On Structured
Workflow Modelling”, in Proc. 12th Conference on Advanced Informa-
tion Systems Engineering (CAiSE’00), Stockholm, Sweden, LNCS 1789,
pp. 431-445, 2000.

[20] A. Aho, R. Sethi, and J. Ullman,Compilers - Principles, Techniques,
and Tools. Reading, MA: Addison-Wesley, 1986.

[21] M.S. Hecht and J.D. Ullman, “Flow Graph Reducibility”,SIAM J.
Comput., vol. 1, no. 2, pp. 188-202, 1972.

[22] Z. Ammarguellat, “A Control-Flow Normalization Algorithm and Its
Complexity”, IEEE Trans. Software Engineering, vol. 18, no. 3, pp.
237-251, 1992.

[23] R. Hauser and J. Koehler, “Compiling Process Graphs into Executable
Code”, in Proc. 3rd International Conference on Generative Program-
ming and Component Engineering (GPCE’04), Vancouver, Canada,
LNCS 3286, pp. 317-336, 2004.

[24] R. Hauser, “Transforming Unstructured Cycles to Structured Cycles in
Sequential Flow Graphs”,IBM Research Report RZ 3624, 2005.

