RZ 3693 (#99703) 06/25/2007
Computer Science 12 pages

Research Report

An Incremental Approach tothe Analysisand Transfor mation of
Workflows using Region Trees

Rainer Hauser, Michael Friess, Jochen M. Kister, and Jussi Vanhatalo

IBM Research GmbH
Zurich Research Laboratory
8803 Ruschlikon
Switzerland
rfh@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some reports are available at
http://[domino.watson.ibm.com/library/Cyberdig.nsf/home.

T=== Reseach
===7= Almaden ¢ Austin * Beijing * Delhi « Haifa* T.J. Watson Tokyo ¢ Zurich

2 To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

An Incremental Approach to the Analysis and
Transformation of Workflows using Region Trees

Rainer Hauser, Michael Friess, Jochen M. Kister, and Msssiatalo

Abstract— The analysis of workflows in terms of structural Activity Diagrams [7] are based on simpler, often only infor
correctness is important for ensuring the quality of workflow mally defined process modeling languages inspired by genera
models. Typically, this analysis is only one step in a larger ,,rh0se drawing tools and preferred by mathematically less
development process, followed by further transformation teps . . .
that lead from high-level models to more refined models until thorOl_Jgth_tralned busmes_s a”a'YStS- The translatioesilts
the workflow can finally be deployed on the underlying workflow ~described in terms of Petri nets into the theory of theserothe
engine of the production system. For practical and scalable process modeling languages is not always straightforward.
applications, both analysis and transformation of workflows must The challenge of validation, verification and testing is to
be integrated to allow incremental changes of larger workflavs. discover errors and unexpected behaviors as early as fgssib

In this paper, we introduce the concept of a region tree for but al tt trict the desi by | .
workflow models that can be used as the central data structure PUl @lSO NOL 10 Testrict the designer by 1IMposing unnecgssar

for both workflow analysis and workflow transformation. A~ overhead. Structural conflicts, most importantly deadipeis
region tree is similar to a program structure tree and impose a one source of errors in a workflow can be detected by various
hierarchy of regions as an overlay structure onto the workflov methods. Graph-reduction rules similar to the reductidasru

model. It allows an incremental approach to the analysis and ¢, peti nets in [4] and [5] were introduced in [8] for proses
transformation of workflows and thereby significantly reduces the deli | to detect structural flicts | i
overhead because individual regions can be dealt with sepaiely. modeling languages 1o detect structural conflicts in acycl

The region tree is built using a set of region-growing rulesThe ~ Workflows. One of these graph-reduction rules, the so-dalle

set of rules presented here is shown to be correct and comptein ~ overlapped reduction rule defined for an infrequently odogr

the sense that a workflow is region-reducible as defined thrah pattern, turned out to be insufficient as demonstrated on a

these rules if and only if it is semantically sound. sample workflow, and hence was replaced in [9] by three other,
Index Terms— Business process modeling, workflow modeling, albeit very complicated rules. In [10], another valid wookfl

workflow Veriﬁcation, workflow transformation, control flow . was presented |n Wh|ch the 0r|g|na| rules fa", and a case was
made for using Petri nets to detect structural conflicts beea
I. INTRODUCTION they outperform the reduction algorithms operating on gssc

RAPHICAL notations for workflow models or businesgnodels and can also handle cyclic workflows. Despite this, a

process models, in the following called workflows, havelle-based reduction approach for process modeling layesia
been used for a long time to describe behaviors in terms i§fot intrinsically limited to acyclic workflows, and a céuly
a control-flow between activities and their temporal refagi. chosen set of rules does not only detect but, as will be shown
Workflows are therefore a relatively advanced area, in whi@¢low, also localize errors and helps understand the steict
model-driven architecture (MDA) [1] or, in a broader sensé®f workflows.
model-driven engineering (MDE) [2] concepts and methods N @ model-driven approach to workflow modeling, work-
have been applied. The development of an application basedlgw analysis for structural conflicts is not a one-time ac-
graphical models is a complicated process, leading ingirti tivity but is performed repeatedly on different (or even the
manual and partially automated steps from analysis models §ame) parts of a larger workflow model during refinement,
design models to a complete and deployable IT solution [$S discussed in [3]. One important transformation usedis th
To support this development cycle including the deploymerrocess is the deployment step, which transforms the waevkflo
(1) modeling tools are necessary for sketching and refinitigfo the form required by, and possibly optimized for, the
workflows, (2) support is required for validation, verifiicat, runtime platform. This transformation can be quite complex
optimization and testing of workflows, and (3) algorithme arPecause graphical process modeling languages for workflows
needed for transforming a workflow into the elements arfdich as UML2 Activity Diagrams [7] and the related notation
structure required by the underlying workflow or executioHsed by the IBM WebSphere Business Modeler (Modeler) [11]
engine, in the following called runtime platform. permit the specification of models that are less structurad t

Two main groups of graphical notations for workflows ar@re allowed by some runtime platforms such as the workflow

used. Petri nets [4], specifically free-choice Petri nefs [5engines for the Business Process Execution Language for
have been proposed to model and analyze workflows sciendifeb Services (BPEL) [12]. In BPEL, unstructured cycles,
ically [6]. However, the major software products and indyst for example, must be converted to structured do-while loops

standards including the Unified Modeling Language 2 (UML2)hus, if the target runtime platform is based on BPEL the
unstructured parts of the workflow that cannot be represgente

Manuscript(’ecei‘fd NOVﬁmber éO, 2006 fe;’ised March 167 20 o in BPEL must be resolved into structured constructs [13].
R. Hauser (e-mail: rainer.hauser@gmail.com), J.M. Kiestel J. Vanhatalo . .
are (or have been) with the IBM Zurich Research LaboratowyitZerland, To enable workflow anaIyS|s and workflow transformation

and M. Friess is with IBM Deutschland Entwicklung GmbH, Geny for an incremental and iterative approach, we introduce the

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 3

concept of a region tree. Similar to the program struct H:l—‘ —'|:[| —’D—‘
a) b) c) d) e) f) 9)

tree [14], the region tree imposes a hierarchical structure
the workflow model. Individual regions can then be analy:
separately, and one region can be transformed and ret Fig- 1. Workflow graph elements
without affecting other parts. The region tree can be b
using rules that adapt and extend the reductions rules
detecting structural conflicts described in [8] and [9]. 3¢
rules, called region-growing rules, are used to construc
hierarchy of regions as an overlay structure in which stmadt
conflicts become visible at the interfaces between intargc
regions. The resulting tree of regions can be used to optin
workflows and to transform unstructured or partially stanet

workflows into equivalent, more structured versions of {
workflow. Unlike a program structure tree, the region tree/

In the following we assume that all workflows astucturally
sound[17], i.e., they contain exactly one start and one end
node, and there is a path from the start node to every node
and a path from every node to the end node.

We introduce the semantics, i.e., the behavior, of a struc-
turally sound workflow, in terms of Petri-net-like tokenshél
start node emits a token on its outgoing edge when the
workflow is started. An activity starts when a token arrives o
. . : . its incoming edge, i.e., when the incoming edge is enabled,
contain not only the special type of regions called singi&ye and eventually ends by sending a token to its outgoing edge.

single-exit [14], but also more gener.al regions. The end node consumes a token on its incoming edge and

Contrary to the reduction rules in [4], [5] and [8], th . enli ;

. . . erminates the workflow. The or-split emits a token on one of
transformation building the region tree does not change t

e : ! o .
) . . . IS outgoing edges after consuming a token on its incomin
workflow and, thus, does not remove information. By ignoring going edg . ga . 9
. . . .€dge. The or-join emits a token on its outgoing edge after
the content of the regions, it can still be used as a reduction

. . . consuming a token on one of its incoming edges, and thus
procedure, and the region-growing rules used this way lead,t . “ . 2 .

: . " behaves according to the “multiple executions” semantes d
the concept of region reducibility. It turns out that senzait

soundness defined through behavioral properties of WorkfIO\f/!/nEd In [16]. The and-split consumes a token on its incoming

is equivalent to region reducibility. In other words, a witolv edge and emits a token on all outgoing edges. The and-join

. . L2 I ; emits a token on its outgoing edge after consuming a token
is region-reducible if and only if it is semantically sound. going edg g

7 n.all incoming edges.
This paper, based on the conference paper [15] extené)e%everal concepts of semantical soundness of workflows

;Vétﬁnﬁsergsalgggegeir:: ?;%\32%526 e;gu;alzgéigf;:Todljrgxe%<ist. In addition to the original definition introduced férfF
. . 9 DIy, 9 Fets in [6], relaxed, weak, and lazy soundness have been
Section Il introduces the basic workflow concepts. In Sec-

. : . . proposed depending on the workflow patterns in [18] to be
tions Il and 1V, the region tree and the region-growing sule .
- . modeled and on workflow properties such as what happens
for workflows are presented. The application of the regies tr . - .
. ; S to running activities when the workflow terminates after the
to combine workflow analysis and transformation is illustch

with an example in Section V. In Section VI. we prove that thend node received a token [17]. We use the initial definition
amp . N ' P . gdapted from WF nets and define semantical soundness as
set of region-growing rules is correct and complete. Fnall

: . . follows: Executions of a workflow are described through the
the paper concludes with a summary in Section VII. . .
flow of the tokens. An executioterminatesas soon as the
end node consumes a token. It terminasescessfullyif at
this point no other tokens are present in the workflow.
Here, the definition of a workflow is introduced, and struc- Definition 1: A structurally sound workflow isemantically

Il. BASIC CONCEPTS

tural conflicts as a class of errors are discussed. soundif and only if all possible executions terminate success-
fully.
A. Workflows and Soundness To avoid unreachable nodes in general and infinite loops in

VArious . . . garticular, we assume further that every or-split will eleab
graphical notations for modeling workflows a . : .

) each of its outgoing edges eventually if reached often elmoug
process graphs exist, but they are all based on the concept. . <ame or in different executions
of directed graphs. We use the definition of workflows anc? '
the graphical representation for their elements, as shown i)
Fig. 1, similar to the notation in [16], but not limited to gnl B- Structural Conflicts
two edges. The start node, the end node, and the aétaity Not all structurally sound workflows are semantically sound
shown in Figs. 1a, 1b, and 1c, respectively. The sequentrf. 2 shows prototypical examples of structural conflicts.
control nodes, choice and merge, in Figs. 1d and le are ale first two were identified in [8], [16] and [19], where the
called or-split and or-joi The parallel control nodes, fork situation in Fig. 2a is calledeadlockand the one in Fig. 2b
and join, in Figs. 1f and 1g are also called and-split and called eitherlack of synchronizationor multiple active
and-join. These nodes can be connected through edges, amktances of the same activitifhe third structural conflict
directed graph built with these elements is calleda@kfloww shown in Fig. 2¢c can only occur in cyclic workflows. We call

it parallel cycle
INote that the start and end nodes are sometimes consideietiescand The and-join of thedeadlocknever emits a token if the
sometimes no-op elements, although the distinction is elevant here.

2The term “or” is slightly misleading, and the term “xor” is raetimes OI’-Spllt Only. ggts a smgle to.ken. The or-join of thack
used instead because one and only one edge is assumed toblelena Of synchronizatioralways receives at least two tokens and,

4 To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

Ontnily O
o«%@ @4%»@ m wll' OO
a) b) ©) a) b b)
Fig. 2. Structural conflicts o o E) ﬂ O
z or

<)

depending on the semantics of the or-join [16], either dis-

cards all but one token or emits one token for each toké&ig- 3. Substitution of workfloww, for edgee in workflow w;

received. These two structural conflicts may not necessarily

be considered an error when using more relaxed definitions of _ _ : .

soundness, but certainly need careful inspection. structuredin [19] an_d consists of those qukflows in whlt_:h_
In generaldeadlockis a situation in which an and-join getseaCh or- or and-split has one corresponding or- or and-join,

some but not all tokens, ar@ck of synchronizatioa situation respef:tllv.ely. . : . .

in which an or-join gets too many tokens on its incomin% Definition 2: Avyorkflow is strl_Jctu_red|f gnd only .|f it can

edges. Thearallel cycleis also a kind of deadlock: it occurs e constructed using the folllowmg inductive r.ules.

if the nodes on the path from the and-split back to the anul-joi 1) A!I structurally sound linear workflows, i.e., workflows

can only get a token through the path from the and-join to the Without control nodes, are structured.

and-split. The and-join will never emit a token. 2) All structurally sound workflows with one or-split and
one or-join as the only control nodes are structured.
1. REGION ANALYSIS 3) All structurally sound acyclic workflows with one and-
split and one and-join as the only control nodes are

Here, relevant concepts regarding workflow regions in gen-

. ; :) structured.
eral and the region tree in particular are introduced.

4) If w; andw, are structured workflows and; contains
an edgee, the result of replacing with wy in w; is
A. Single-entry-single-exit Regions structured.

An important type of region is thsingle-entry-single-exit If the sequential parts of a workflow, i.e., those parts only
(SESE) region known from compiler theory [14]. Informallyusing or-splits and -joins, can be separated from the rall
speaking, a SESE region is a set of nodes that does patts, i.e., those parts only using and-splits and -joirescail
contain the start and/or end node, such that there is exadtlg workflowseparable
one edge, called the incoming edge, leading from nodes noDefinition 3: A workflow is separableif and only if it can
in the region to nodes in the region, and exactly one edds constructed using the following inductive rules:
called the outgoing edge, leading from nodes in the region to1) All structurally sound workflows with only or-splits and
nodes not in the region. The set of all nodes of a structurally or-joins as control nodes are separable.
sound workflow other than the start and end node build a SESE2) Al structurally sound acyclic workflows with only and-
region, with the edge leaving the start node as the incoming splits and and-joins as control nodes are separable.
edge and the edge going to the end node as the outgoing) If w,; andw, are separable workflows and, contains
edge. In the following, the terms workflow and SESE region an edgee, the result of replacing with w, in w; is
will therefore often be used interchangeably, and most égur separable.
will only show the SESE region instead of the workflow with Clearly, all structured workflows are separable, but not all
start and end node. Consequently, we call a SESE regiggparable workflows are structured. Separable workflows hav
semantically sound and only if the corresponding workflow the following important property.
with start and end node is semantically sound. Lemma 1:All separable workflows are semantically sound.

Different levels of syntactical structuredness can be ddfin Proof: We observe the token flow in one single SESE
using the concept odubstitution i.e., of replacing an edge region that is either sequential or parallel:

in a workflow w; with a structurally sound workflow,. AS 1) |n a SESE region with only sequential control nodes, all
depicted in Fig. 3, edge is removed fromw},_the start and nodes (or other SESE regions) consume one token and
end node are removed fromy, and the remaining parts of; eventually emit one token. Thus, there is exactly one
are plugged intav; such that the original source efbecomes token in the region between the time the token enters

the new source of the edge leaving the original start node of the region and the time it leaves it.

wy and the original target of becomes the new target of the) |n an acyclic SESE region with only parallel control
edge going to the original end nodew$. A part of workflow nodes and activities (or other SESE regions), one token
wy with edgee is shown in Fig. 3a, workfloww, is depicted passes through every edge exactly once.

in Fig. 3b, and the result is presented in Fig. 3c. In both cases, all executions terminate successfully. =

f The s_lr;:plest_ Ie\I/eI, apﬁr]t from linear WOfI((jﬂOW(Sj, €., Wolzk- However, there are semantically sound workflows that are
ows with a single path from start to end node, Is ca eHot separable. Workflows containing so-called overlappse p

3As the or-join allows different behaviors, the tetatk of synchronization tems as_ Shown_'n Flg. 4 mix and-splits with Or'JF)'nS or or-
is more appropriate thamultiple instances of the same activity splits with and-joins in such a way that executions of the

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 5

deadlock lack of -
synchronization

a) b)

Fig. 6. Structural conflicts between regions

Fig. 4. Overlapped patterns

SESE-region or-logic and-logic ?-logic

| | :q: :B: | | Fig. 7. A workflow with a partition into well-defined basic iegs
— >
b) c) d)

The graphical notations used in the following are presented
in Fig. 5. In Fig. 5a, a SESE region is shown. The input
Fig. 5. Region graph elements with input/output logic and output logic is “or” in Fig. 5b, “and” in Fig. 5¢, and

either unknown or irrelevant but still well-defined in Figd.5

If a region has one incoming edge, the input logic can be
workflow can terminate successfully. The pattern in Fig. 4aterpreted as “or” or “and”, and if a region has one outgoing
made it necessary to define a special rule [8]. All executioggge, the output logic can be interpreted as “or” or “and”.
of this workflow terminate successfully, and the pattern is As jllustrated in Fig. 6, the structural conflicts defined for
semantically sound. For the dual workflow, i.e., a workflowcyclic workflows become incompatible input and outputdogi
in which or-splits and -joins are replaced with and-splitsl a for regions. A regionS with output logic “or” connected to a
-joins and vice versa as in Fig. 4b, executions can onf¢gion 7 with input logic “and” through two or more edges
terminate successfully if the two or-splits both enablée&it a5 in Fig. 6a results in deadlock A region S with output
the upper edge or the lower edge. The pattern is therefore pejic “and” connected to a regioff with input logic “or”

Semantica”y sound. If OI‘-SplitS (One or more) in a Workﬂo%rough two or more edges as in F|g 6b Correspondsunﬂa
need additional information to make a workflow execute,rtheif synchronization

conditions are calledynchronizedOther examples in which
or-splits need synchronization of their conditions, etg.exit

. : 4 C. Region Tree
two parallel cycles at the same time, are discussed in [19]. s . L) . .
Starting with a partition into well-defined basic regiong w

can build composite regions by combining one or more regions
B. Well-defined Input and Output Logic into a new region that is also well-defined. If we continue in
When seen as a black box, a SESE region behaves wiftis way, we may finally reach the point where only a single
respect to the flow of tokens in a similar way as does dRgion is left. The resulting structure is calledregion tree
activity. If a token enters the region through the incomingRT), similar to the program structure tree (PST) in [14]ttwi
edge, a token will eventually come out on the outgoing edg@e remaining single region as its root.
This approach of describing the behavior of regions as blackAn initial partition in which each node of the workflow is
boxes through their interfaces can be generalized by mdan$acked into its own region is a valid starting point. Alterna
the definition of the input/output logic of a region. Inforliya tively, also the initial partition in which each region cairts
speaking, the input logic is “or” if and only if a token on one@nly one single control node, but may contain in addition an
of the incoming edges triggers the region, and is “and” if ar@fbitrary number of activities as in Fig. 7, is valid.
only if a token on all its incoming edges triggers the region. For a single workflow, many different RTs can be con-
Simi|ar|y’ the Output |Ogic is “or” if and 0n|y if the region structed. Depending on how the RT is Created, it will reveal
eventua”y emits a token on one of its Outgoing edges whéagpre or less of the structure of the workflow. In the fOllOWing
triggered, and is “and” if and only if the region eventuallypection, we define region-growing rules to build the comfeosi
emits a token on all its outgoing edges when triggered. ks tHegions in such a way that we can detect structural errors.
way, regions with an input/output logic can also be treated a
black boxes with respect to their token-flow behavior, arel th IV. REGION-GROWING RULES
input/output logic determines the two interfaces of a ragio In this section, three families of region-growing ruleslwil
If the behavior of the interfaces of a region can be described introduced that allow new well-defined regions to be built
in this way, we call the region and its interfacssll-defined from existing well-defined regions.

a)

6 To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

—]
—

= 4':> =22 =

At

S = ol ol S H —— L, Fig. 9. Rules for self-loops
T . > O = T s ’ P

= = e

H
l
"
I

S T

: :I.; T m - ‘ a) -

o = H e ' Y = B
>< — >< s ——. ey [—.1

=l s, N T, s, -~ T, :>

Fig. 10. Rules for two neighbors withS} = pred(T'), {T'} = succ(S)

i
T

1

Fig. 8. The three families of region-growing rules

C. Rules for Two Neighbors

A. Families of Rules Two regionsS and T (S # T) with one or more edges

Transformation rules have a left-hand side specifying t}gading fromS to 7' build the pattern for the rules for two
pattern expected by the rule and a right-hand side showiRgighbors. Depending on whether regiénhas successors
regions assumed to be well-defined, and the right-hand siderpe first set of member rules is shown in Fig. 10. It covers
is a single new region. We call a region-growing rwlell- e cases in which regiofi is the only predecessor of region
definedif the resulting new region is well-defined whenevef 5ng regionT is the only successor of regiofi: {S} =
the input region_s on the left-hand side are WeII_-(_jefined. pred(T) and {T} = succ(S). The output logic ofS and the

In the following, we present the three families of ruleﬁ]put logic of T must be compatibleRule C; with “or” logic
shown in Fig. 8 with their member rules, but without the errqg shown in Fig. 10c ancule P,; with “and” logic in Fig. 10b.
rules discussed in [15]. The simplest family of rules covers The second set of member rules is shown in Fig. 11. It
cycles as depicted in Fig. 8a. The family of rules for tWqyers the cases in which regidnis the only successor of
neighbors shown in Fig. 8b contams_dﬁferent _member ru"?égions but has predecessors other th&n{S} ¢ pred(T)
for the poss_|ble input and output logics of regiofisand 7" 54 {T} = succ(S). Rule C, in Fig. 11a andrule P, in
and depending on the successorsSobr predecessors &f. g 11h correspond to the two possible cases in which the
These two families have a fixed number of input regions. Thgnut logic of S and the input logic of” are consistent with
third family, shown in Fig. 8c, has a variable number of inpy-h other.
regions. It covers the overlapped patterns. The third set of member rules is shown in Fig. 12. It covers

The first two families of region-growing rules are based byfe cases in which regiofi is the only predecessor of region
only to a limited extent on the reduction rules in [8] and [Ol3 ,t has successors other thdh (S} = pred(T) and

Their more import_ant root is compiler theory [_20_], expliy:it T} suce(S). RuleC, in Fig. 12a andtule P, in Fig. 12b
the T1-T2 analysis [21], the area of goto-elimination [224,respond to the two possible cases in which the output logi

and subsequent work on cycle-removal transformations fgf ¢ 414 the input logic off” are consistent with each other.
sequential (and therefore separable) workflows [23]. Altito

the T1-T2 analysis was invented as a method for determining
irreducibility, it turned out that reducibility for cycleemoval

is far less important than it seemed [24]. Note that these —]
two families of rules, i.e., the rules for self-loops and for
two neighbors, correspond to the T1 and T2 rule from T1-

S rule C

T e >
s =
a)

Ell
!
1

g

ull

S rule P P s
T2 analysis, respectively, extended to handle irredutjldhd = el s —> I sl s
parallelism. = b N EaE

For the rules represented graphically (such as the one shown
in Fig. 8), we use the following conventions: a single edd@d- 11. Rules for two neighbors withS} C pred(T), {T} = suce(S)
represents exactly one edge, two edges with the same source
and/or target region mean one or more edges.

rule C, alals

N

}
[[1

T

—

a)

B. Rules for Self-loops "]
s rule P, Sl ols

The only rule for handling self-loops, i.e., edges in which | T > —> =™ % T ;

the source and target are the same regionyls L shown in b)

Fig. 9. The other combinations of input/output logic forimey
S correspond to the structural conflicts shown in Fig. 2. Fig. 12. Rules for two neighbors withS} = pred(T), {T'} C succ(S)

AR

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 7

a)

s — rule C S H_’
— — T L= I =R —
= R T @ &
s rule P dAs L
:é % T 9: |::> m T N :r):
b) I
Fig. 13. Rules for two neighbors withS} C pred(T'), {T} C succ(S) b) r Rs R, 1

—|
B,C, G D.E F
s T s T — R R R R Ry Rio
1 1 3: 1 1 P A 5 || Re | | Re —
rule O H N

S, B S, T B R
=

I

Fig. 14. Rules for overlapped pattems Fig. 15. Sample workflow with deadlock

19rany cycles may be detected, but if rdlehas lowest priority,

r.'flll cycles are combined into one single cycle [24]. Used as
reduction rules, the set of region-growing rules is, howgeve
confluent, as will be shown below.

The fourth and final set of member rules is shown in Fig.
It covers the cases in which regidhhas successors other tha
T and regioril” has predecessors other th&n{.S} C pred(T)
and{T'} C succ(S). RuleC in Fig. 13a andule P in Fig. 13b
correspond to the two possible cases in which the output logi
of S and the input logic off” are consistent with each other. V. COMBINED ANALYSIS AND TRANSFORMATION

The combination of the analysis of workflows for structural

D. Rules for Overlapped Patterns conflicts and their transformation into a more structureginfo

The overlapped pattern is a situation in which a group of demonstrated on the example workflow from Fig. 7.

n regionssS; (n > 2) is connected to a group ofi regions . .
T; (m > 2) in such a way that from everg; exactly one A. Analysis for Structural Conflicts

edge leads to every;. The only member rule allowed in this The example workflow and its initial regions are shown in

family is rule O shown in Fig. 14. Fig. 15. Even with the non-trivial SESE regions marked in
Fig. 15a by dotted rectangles, it is not obvious that it cimista
E. Region Reducibility a deadlock. The basic regions from the initialization in.Fig

. , . have been given names, and the regions are annotated with the
Depending on the goal, the region-growing rules can be

.) - names of the activities they contain in Fig. 15b.
applied _d|ﬁerently._ The eﬁe_ct of the application strategs Fig. 16 shows the transformation steps until the deadlock
well as its properties and pitfalls such as pseudo-cycles haIoe omes visible. Rulé',, is applied to regiond?s and Ry to
been discussed in [15]. Here, we concentrate on the Seto?)fain the state .ShOWHSitn Fig. 16a with regiB@i o wﬁich

workflows that can be resolved_by the region-growing rules e I can be applied as shown in Fig. 16b. The situation
these rules are used as reduction rules.

Definition 4: A SESE region isegion-reduciblef it can be In Fig. 16¢ results from the application of rufé to regions

reduced to a single region with one incoming and one outgoir@csi and ftg. The new region can b? combined W.ith reg_iBa
using ruleC, again as shown in Fig. 16d and with regi&y

B e i i et TC, 2 Sown i Fi. 162 Nex, i, comnes
b 9 P regions R, and R4, leading to the state in Fig. 16f. At

regions with at most one control node per region. ;) . . .
9 . Perreg this point, either ruleP; can be applied to regioi; and
Note that rule P is not used because it is not neede . . .
) " . e composite regioms¢17+8, OF rule P; can be applied to
and would in addition cause problems. Moreover, either rule”. .
P, or rule P, is redundant too. Because structurally soung9/0nSH and izio. (Note, however, that the two regior
° ! ' Y d R21 344 have incompatible output logic such that rute

Influence on the result, we apply ruf& first and get the state

o . : shown in Fig. 16g, in which the deadlock between regions
Termination and confluence are important properties of su

L . . andR becomes visible.
rule-based systems. The application of the region-growing 34 <™ 9410 .
. We consider the correction of such problems a manual step,
rules always terminates because each rule reduces the num

of edges and either keeps the number of nodes the same or:"?t‘sﬁ()oljgh the algorithm that detected the conflict may come

reduces the number of nodes. Used as transformation rullé%,W'th suggestiorfs These suggestions can indicate which

the set of region-growin_g rules is not Conﬂuent' because ifsthe number of changes needed to fix the problem in the workfioane
rule L has highest priority on a cyclic sequential workflowef the criteria on which such suggestions could be based.

and end node.

8 To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

a) H H H

) ! . ;

= D.EF i

B,C,G H

EER Y (and G nd N and

Ry >éR R H
— A Rs | R; | Rg 9 10 . '

or L
K, L
b) I:]
b) R, Raws R, Rs L] R
-
B,C,G D.EF B,C,Gi D.E F
R
— R . R, | [|| re z Rq Rio . — R . Ry | [= | R z Ry Rio L,
H,I,J1[/ M N H,I,J]I: M N
I: Rg Rs
K, L K, L
R. .
o R, s Fig. 17. Corrected sample workflow
- D, EF
B,C,G i
R Rs.g —| R, Ry Ry Rio |
A [» N R Raua
H, I,J,K L / M a) 2 D.E F
B,C,G il
R.
Rsua e N Rsis7:s Rsiso .
) R, L H 13 K LM N
B,C, G i
R
— ! A Rs.67 = Rs z R Rio - b) Roi3e4
H, 1,3, K L M N B,C,G,D,EF
R
=7 P Reers Rowto L.
R. N
e) Ry | ED“E . H L3 K LM
B,C,G Sl
R. C
—{ 4 Rs.617:8 z R § Rio —) Ruszisia R. Rg.10
A N - 5+6+7+8 —
H, 1,3, K, L, M ABCGDEF 13K LM N
Raiea d
kK B,C, G,D,E,F _). Rit2i3eas5064748 % Rgi10 .
A BCGDEFHILIKLM N
— Ry Rs6:7:8 Rg Rio .
A 13K LM N e)
Il [T EE— .
AB,C,G,D,EFHIJKLMN
R.
9) 2+3+4
B,C,G,D,E,F[— . .
Fig. 18. Rules applied to the corrected sample workflow
R
— Tt R Roi10
51647+ .
A N
H 1,3, K LM

Fig. 16. Rules applied to the sample workflow with deadlock region R?>+4 in Fig. 18a can _b_e merg_ed with its p_rEd_ecessor
R, leading to the four remaining regions shown in Fig. 18b.

At this point, rule P, can merge the two composite regions

steps could lead to a structurally correct workflow, but onl§? the middle into regiorn;, or rule P; can merge the same
the designer can determine which solution is the right ohg9ions into regioniy..o. The application sequence of the
given what the workflow is supposed to do. In this exampIéL,'IeS has_ no significant impact in this case, and we just selec
the problem can be resolved by changing either the or-srﬂﬁe possible sequence. RLH’g_for e_zxample, merging regions
after activity C into an and-split or all three and-splits in the/tt @1d 2134, leads to the situation shown in Fig. 18c, and,

workflow into or-splits. We assume that here the correctahoi@PPlied again to merge regios, 2,314 and Rs+7+s, 10
the situation shown in Fig. 18d. A final application of rupg,

is to turn the or-split after activity” into an and-split. ,)) e
The corrected version of the workflow is shown in Fig. 17r.esults in the single region shown in Fig. 18e.
The workflow in Fig. 17a is now separable (and therefore
semantically sound according to Lemma 1) as shown b
three non-trivial SESE regions. It consists of two sequ Rawa (1)
SESE region (one cyclic, one acyclic), both contained Rsia (Ca)
parallel SESE region. Because of the correction, regi Rs R,
gets an output logic “and” in Fig. 17b. The change is Ic o o1 =1 I =1
and only the regions affected have to be processed agaj ~ T \J\-l [|
region R, must be regenerated and the application of (i)
combining regionsk, and R34 needs to be re-examined.
Resuming the transformation from here allows the ren
ing steps to be completed as shown in Fig. 18. The comy Fig. 19. Detailed content of regiofts 4 resulting from ruleL

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 9

Ri+2+3+4+5+6+7+8+9+10 (Pst) <swWi tch>
— <case condition>
Ris2rarassier7es (Po) Rg.10 (Ps) <i nvoke F />
e T N\ </ case>
Ryszeaea (P) Rsge748 (Cet) Ry Ry </ swi tch>
/\ /\ </ whi | e>
Ri R (P) Rsier7 (Cs) R The parameters for thienvoke activities and the conditions
N\ N\ for thewhi | e andswi t ch activities have not been set, but
Ry Rau (L) Rss (C) Ry it is assumed here that they could be derived from the origina
| VAN workflow. Because the cycle would be better represented by
Ra.s (Co) Rs Rs a do-until than by a do-while loop, the condition of the loop
/\ must also guarantee that activitiés and £ are invoked at
R, R, least once.
As described in [24], rule§’;, and C, tend to move nodes
Fig. 20. Region tree for the corrected sample workflow (such as activity F' in this example) from the right and

from the left, respectively, into the cycles, although thes
nodes would better stay outside. Because the area of the
The content of composite regions, i.e., regions containedworkflow contributing to a cycle is well-known (see Fig. 19),
other regions, is not shown in Figs. 16 and 18. The nestad optimization step can identify these nodes and move them
containment for regionRs;4 after applying ruleL, as an out of the loop:
example, is depicted in Fig. 19. The complete RT for the , . L
i . : <whi | e condition>
corrected workflow is presented in Fig. 20 in compact form.” " .
<invoke D />
<i nvoke E />
B. Transformation into Structured Form </ whi | e>

For MDE interpreted as the field of developing completéi nvoke F />

applications and other systems using visual models and mod-
eling tools (such as the Modeler [11]), the transformatiomf VI. MAIN THEOREMS
graphical process models to the deployable code expected byhe main theorems prove that a structurally sound workflow
the runtime platform (e.g., BPEL) is analogous to the coapilis semantically sound if and only if it is region-reducible.
tion from a high-level programming language to machine code
expected by the underlying hardware platform. Cycle-remhova. Correctness Theorem
gallgiotromgtﬁgfeagﬁu(ltg?;g?grsr;o;T:tp')c;?ts;?rtr\:;/:g(élt?\\/’gm ~ From the definition of the region-growing rules, the follow-
" ing theorem is to be expected.

T[]e (taqw(\j/alenﬁfei of Wct)rkflows e}ndl thte :rantsfor??tlonhof Theorem 1: (Correctness Theoretfi)a structurally sound
unstructured workflows Into an equivaient Sructured Tors N . 4,y js region-reducible, it is semantically sound.

been studied in [19]. Sequential SESE regions can always be Proof: The behavior of a region with well-defined input
transformed into an equivalent structured form and furthghd output logic in terms of the flow of tokens is fully

o the structured BPEL act|V|t|esyV| tch andwhile. 'A.‘I' described through its input and output logic, i.e., throitgh
though not all parallel SESE regions can.be turned into Mlerfaces. Therefore, we have to show (1) that the initial
equivalent structured form, they can be directly transkeuim regions with at most one control node are well-defined, ahd (2

Into B.IPItE.Lfl ?W achwgles pluiﬂ' nk 92”52205‘ _Thus, thb? that for all rules used in the definition of region reducilyili
compriation of separable WOTKIIoWs Into IS POSSIDI&He phehavior of the region on the right-hand side is the same

The semantically sound overlappgd patte_rn can be tu.r.n.ed '35 the behavior of the region pattern on the left-hand side. T
an equivalent structured form by first duplicating the atts first part of the proof is trivial because basic regions hgvio

between the or-joins and the and-join and then switchingethe - - : o
-~ . . control node are SESE regions, and basic regions containin
join nodes [16]. Thus, all region-reducible workflows can b dl c regl ning

. . 8ne control node inherit their logic from the control node.
converted into an equivalent form that can be represented NEor the second part of the proof, we show as an example
BP_I_EL(']I h ilati BPEL i d t(:at ruleC; in Fig. 12a is well-defined and leave the proof for

0 demonstrate the compi atlor|1 tol q n grleatﬁr @he other rules to the readetf the number of tokens expected
¥ve exgmmel Or:f regmnd morzi cher_ an h app ylt eduyrarb%-, the input logic of regiors is available, regiors eventually
ormation rules discussed in []'. pplying these rulesdily . submits either a token on one of its upper two edges or a token
to the part of the RT shown in Fig. 19 leads to the followmgn one of the lower two edges to regid@h In the latter case,

BPEL skeleton code: regionT' will eventually emit a token. The new region on the
<whi | e condition> 5 o , _
Note that ruleP in Fig. 13b is not well-defined, because tokens on the

<! nvoke D /> upper two input edges of the new region would result in tokemshe upper
<i nvoke E /> two output edges even without tokens pending on the lowerimwot edges.

10 To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

right-hand side of the rule has the same input logic as regio —(H< {—> _.@<@4 >O— < >‘(D).(D_.

S, and in any case, it will emit eventually one and only one ® b
token on one of its outgoing edges when the expected numb

of tokens is available on the input side. B Fig. 21. Splitting and merging of control nodes
B. Non-separable Patterns _. f...

Practically all workflows used in reality are separable.§hu pa,

a)

workflows with an overlapped pattern come as a surpri
for most people when they are first exposed to them. :
such an unexpected pattern exists, the question arisefigvhe
other patterns can be found among the semantically sot
workflows that are also not separable. We will show in th
following lemmata that this is not the case.

Before doing this, we first define theverlapped pattern
more precisely as and-splits { > 2) andm or-joins (n > 2)
with one path from every and-split to every or-join such the - we first simplify w in such a way that the token flow and
(1) the and-splits have no other outgoing paths, (2) theimisj thys also the property of semantical soundness are notedtec
have no other incoming paths, and (3) the regions between (These simplifications have an obvious similarity with the
and-splits and or-joins are SESE regions (if the path froen tirequction rules defined in [8].) Activities and, similar§ESE
and-split to the or-join is not just one single edge). The laregions that must be semantically sound owing to Lemma 2
point guarantees that the token emitted by an and-split to @ be eliminated because they only influence the timing
or-join eventually arrives and that no other tokens aretetka of the token flow. Separable SESE regions can simply be

as;

Fig. 22. Situations discussed in the proofs of Lemmata 3 and 4

or consumed in this part of the workflow. . _removed, and non-separable SESE regions can be checked
Lemma 2:1f a workflow w contains a SESE region that isfor overlapped patterns independently. Thus, we can assume
not semantically soundy is not semantically sound. thatw does not contain any SESE region except for the one

Proof: If the SESE region is not semantically soundiesulting when the start and end node have been removed.
there are executions in which the region consumes a tokengyrthermore, and as illustrated in Fig. 21, two adjacent
but does not emit one, or there are executions in which tBgntrol nodes of the same type can be merged into one control
region consumes and emits a token, but unconsumed tokggge of this type, or one control node (with enough edges)
remain in the region. can be split into two adjacent control nodes of the same type

1) Thereis no node in a workflow that can consume a tokéthis is needed to eliminate additional separable parts of
without emitting one except for the end node. Becaugessuming thatr, y andz have the same type, the split control
an end node cannot be part of the SESE region, at leasidex with at least three outgoing edges and the two adjacent
one unconsumed token must remain inside the SESRIit control nodeg, and z in Fig. 21a are equivalent, and,
region if a token entered but no token left the region. similarly, the join control node: with at least three incoming

2) If a token remains inside the SESE region when anotheriges and the two adjacent join control nodesnd z in

token leaves it, there are three possibilities: (1) theig. 21b are equivalent. In this way, two direct edges from a

workflow terminates with the unconsumed token still irsplit node to a join node of the same type can be turned into

the SESE region, (2) the workflow never terminates, @ SESE region and can be eliminated in this way.
(3) the additional token leaves the SESE region as well. Fig. 22 illustrates the remaining steps of the proof once all
Only the last case needs further considerations. Becapgsssible simplifications of this kind have been performed:

there are no synchronized conditions, the second tokeny) workflow w must contain at least one parallel control
leaving the region may take the same path as the first node because otherwisewould be separable. We select
token for some executions. However, there are no nodes one as shown in F|g 22a ha\/ing 0n|y Sequentia| control
that can emit tokens after consuming two tokens waiting nodes (zero or more) on a pathth, to the end node.
on the same incoming edge, but could not emit tokens |f this parallel control node emits a token, a token

if only one token is waiting there. Therefore, either reaches the end node in at least one possible execution
never terminates or does so with unconsumed tokens. throughpathg. The parallel control node must therefore
In any casew is not semantically sound. [] be an and-joinaj because an and-split would lead to
Thus, if a workfloww contains a SESE region that is not unconsumed tokens and thus to unsuccessful executions.
semantically sound, this cannot be fixed in another patb.of 2) We select an and-splits; and two pathspath; and
Lemma 3:If a semantically sound workflow is not separa- paths such that the two paths lead froms; to aj and
ble, it contains an overlapped pattern. do not contain another and-split. (If this is not possible,

Proof: Let us assume that the structurally sound work- there must be unconsumed tokens or simplifications that
flow w is semantically sound but not separable. We show that have not yet been performed. Note that no other tokens
if all executions ofw terminate successfullyy contains an must be in the workflow whea; emits a token.) At least
overlapped pattern. one of the two paths, sgyth,, must contain a node

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES 11

that is notas; as the predecessor af, because the two w =S
paths would otherwise have been eliminated through the qr A
simplifications. Noder as shown in Fig. 22b cannot be | =
an and-split because we selected such that there is @
no other and-split on the two paths. It also cannot be
an and-join because it would have been merged with
aj. It cannot be an or-split because this would require |
synchronized conditions as a token would otherwise b) T
reachaj on patho but not necessarily opath;. Thus,
2 must be an or-joir;j;. Fig. 23. Situations discussed in the proof of Theorem 2

3) If node 0j; gets a token through an input edge other
than the one on patpath;, a token must also arrive
at aj via the last edge opaths. As all SESE regions C. Confluence Theorem
have been eliminated during the initial simplification The rule-application sequence is important for the creatio
step, the token arriving atj; cannot come from a node of an RT, but is irrelevant when determining whether a SESE
on path,. Thus there must be an or-joiry, on path, region or a workflow is region-reducible.
(it is the predecessor aij, for the same reasons as Theorem 2: (Confluence Theoretfi)one rule-application
above), and there must be another and-sglitleading Sequence shows that a SESE region is region-reducible, also
to these two or-joins as shown in Fig. 22c. We caéll other possible rule-application sequences do so.
repeat this argument if one of the or-joins, say, has Proof: We assume that a SESE regidlii has been
other incoming edges. If one of the and-splits, say, Shown to be region-reducible through one application secgie
has other outgoing edges, the token sent on it must 8k the rules (and, therefore, is semantically sound owing
consumed beforej in such a way that no deadlockto Theorem 1), but another application sequence terminates
occurs ifas, emits tokens. This is only possible if therdoefore the SESE region has been reduced to a single region
aren and-splitsas; andm or-joinsoj; arranged in such having one incoming and one outgoing edge. The assumption
a way that whenever one of the; receives a token, all is that no rule can be applied to the remaining region graph.
0j; eventually get a token. Anything else would lead to The proof is similar to the one of Lemma 3. We start
unconsumed tokens or a deadlockaat from the outgoing edge of the SESE regidhand determine

4) If tokens are emitted from ones; to everyoj;, these possible regions that may remain if we avoid (1) combination
tokens and only these tokens must also arrive. Becau¥eregions that could be resolved with one of the region-
all SESE regions have been removed, this is only pogrowing rules and (2) configurations that lead to deadlocks
sible through direct edges. Kj has incoming edges and/or unconsumed tokens. The situations described during
not coming from aoj;, we split aj such that all its the proof are shown in Fig. 23.
incoming edges come from one of the or-joins. We The last regionl, i.e., the region with the outgoing edge
can therefore define a region as depicted in Fig. 22d (fof W, must have “or” output logic, because no unconsumed
the casen = 2 andm = 2), in which the only edges tokens are allowed to remain iV, when a token leaves the
leading into this region are the incoming edges of theutgoing edge ofi¥’. If an outgoing edge of. leads back
and-splits and the only edge leading out of this regid® L, i.e., if there is a self-cyclel must have “or” input

S,

—| Ss

Y
[

—DSA

is the outgoing edge of the and-join. logic, because a deadlock or unconsumed tokens would result
This region is an overlapped pattern connected to an am_j@itherwise, but ruld. could have been applied in this situation
at the back. m contrary to the assumption above.

The proof only shows that there must be an overlappedThus, regionl cannot be the only remaining region, and
pattern in a semantically sound workflow that is not separabye can deduce the following structure of regions:

but not that there are no other unexpected patterns. 1) We look for a regiom? with “and” input and “or” output
Lemma 4:The overlapped pattern is the only non-separable logic close to the exit of the SESE regid#. If region
pattern in semantically sound workflows. L has “and” input logic, we select it to be regidhas

Proof: The rectangle shown in Fig. 22d is a region with shown in Fig. 23a.
exactlyn incoming edges leading to theand-splits and one 2) Otherwise, we take one of the predecessBrof L
outgoing edge leading eventually to the end node. If a token as shown in Fig. 23b, and note th& must have
comes into the region through one of the incoming edges, a “and” input logic, because with “or” logic, one of the
token will come out on the outgoing edge. With respect to the sequential region-growing rules for two neighbors could
token flow, this region is equivalent to a single or-join. have been applied t& and L.

If the workflow after replacing the region with an or-join is 3) In both casesR has “or” output logic and “and” input
separable, we are done. If it is not separable, we repeat the logic, and it emits the only token available W when
argument in the proof of Lemma 3. The original workflow has it emits a token because otherwise unconsumed tokens
only a finite number of nodes, and each step replacing a region would result.
with an or-join reduces the number of nodes. Therefore, we We determine all predecessors Bfand call themT};.
reach a separable workflow in a finite number of stepsm There must be more than one because either Ryjle

12

To appear inlEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART C

could have been applied or there must be deadlocks
and/or unconsumed tokens. If orf§ sends a token

to R, all the others eventually must do so also, and
we can further conclude that dlf; have “and” output

logic (or only one outgoing edge), with all outgoing
edges leading directly or indirectly t&, because “or”
output logic would require synchronized conditions. The
connections, however, cannot be indirect because either
rule P;; would be applicable to one of th€; and R 3)
or deadlocks and/or unconsumed tokens would result

region, i.e., the region with the incoming edge of the
SESE region, to the last region, i.e., the region with the
outgoing edge of the SESE region, having maximal path
length. RuleP,; or rule P, must be applicable to the
first two regions on this path because the second region
cannot have predecessors other than the first region in
the SESE region, as otherwise a longer path than the
one with maximal path length would result.

Overlapped pattern in a SESE regiohhe overlapped
patterns can be removed with rul2 We observe that

the result of ruleO is the same as the result of rule
Cs: (or Pgy) applied to a regionS with “or” input
logic and a regior?” with “and” output logic connected
through a single ed§e Thus, there exists a different
workflow that does not contain overlapped patterns, but
that would have led to the same configuration. Because a
semantically sound SESE region without an overlapped
pattern must be separable, we can apply Theorem 2
not everyS; may lead to eveny;, but that theS; and together with the proof for sequential and parallel SESE
T, can be partitioned such that every p&jrandT} is regions.

connected if in the same partition or are unconnected|f any case, the SESE region can be reduced to a single region
in different partitions. This situation is shown in Fig. 236yith one incoming and one outgoing edge, and, therefore, can
for two partitions. The first partition consists of regionge replaced by an activity without changing the behavior in
S1, S2, Ty andT3, and the second partition consists oferms of token flow. In this way, the entire workflow can be

regionssSs, Sy, T3 andTy. resolved, SESE region by SESE region, from inside oust
If one of the S; in every partition gets enabled, it

sends a token to every; in the same partition, and
eventually everyl; is enabled. Thus, if one5; per
partition is enabled, the SESE regidii may emit a
token. Therefore, thé; must have “or” input logic. The
connections between thg; and theT; must be such
that whenever arb; sends a token on the path to thé
T;, a token must also arrive there. That is only possib
through direct edges (or through other SESE region
Thus, each partition contains at least téjoand twoT};
and builds an overlapped pattern.

Contrary to our assumption, rute can be applied.

otherwise.

Because alll’; must emit tokens td when onel’; does,
there must be regions; with direct or indirect paths to
the 7; and with “and” output logic such that evef)

is connected to at least tw8;. (If there is only one,
the input logic of thel’; would either be “and” or could
be interpreted as “and”, and a rule for two neighbors
could have been applied to the$g and R.) Note that

VIl. CONCLUSION

In this paper, we introduced the region tree of a workflow
and the region-growing rules that allow the region tree to
be built in an incremental and iterative way. Three families
f rules have been proposed: one for self-loops, one for
rocessing two neighbors, and one for overlapped patterns.

he regions detected by the rules and the interfaces between
tPfem, as defined through the input/output logic of a region,
reveal structural information about the workflow that isfuse
for further applications. We combined two such applicagion
to demonstrate the power of the region tree on an example.

The first area in which we used this structural information
D. Completeness Theorem is the detection of structural conflicts in workflows. The

The region-growing rules allow all semantically sounéu/€s not only detect but even localize the structural coisfli
workflows to be detected. called deadlock, lack of synchronization, and parallelleyc

Theorem 3: (Completeness Theoréf)structurally sound They can handle cyclic workflows and workflows containing
workflow is semantically sound, it is region-reducible. overlapped patterns, but they cannot handle workflows that
Proof: We determine all SESE regions of the workflowvould require synchronized conditions.
and select an innermost region, i.e., a SESE region that doed e second possible application area explored in this paper
not contain other SESE regions. Because of the definition i§f the transformation (or compilation) of unstructured or

separable workflows and the Lemmata 3 and 4, the followikgsufficiently structured workflows into a more structuredm
three cases have to be discussed: as expected by some runtime platforms. If, for example, the

1) Sequential SESE regiors long as the SESE regionworkflow is supposed to be deployed on a workflow engine
contains at least two regions, one of the rués, C based on BPEL, cycles are only allowed in the form of do-

C; or C can be applied because they cover all cases v(x{pile loops, and ur_wstruct_ured Cy(.:lic wor_kﬂ_ows thgreforeeha
two neighbors with only “or” logic. If in the end a singleto be trgnsforme_d into this _form first. This is p053|ble_ beeau
region remains that has more edges than the inc:omine region-growing rules, in c_ontrast t9 .the reduction sule
and the outgoing edge, these edges must be self-cyéféy]’ [5] and [8], do not modify the original workflow, but

and can be resolved with rulk. create an overlay structure.

Parallel _SESE region As the region is not alloweq 6Compare the abstraction rufes in [5] and the merge-fork reduction rule
to contain cycles, there must be a path from the first[9] that are based on the same observation.

2)

HAUSER et al.. AN INCREMENTAL APPROACH TO THE ANALYSIS AND TRANSFORMATION OF WORKFLOWS USING REGION TREES

13

The region-growing rules introduced for constructing thg9] H. Lin, Z. Zhao, H. Li, and Z. Chen, “A Novel Graph Redugtio
region tree can still be used as reduction rules, leading to a

concept of reducibility similar to the one introduced in .[8][10

In the main theorems, we proved that this property, called
region reducibility, is equivalent to the property of serizad
soundness, and that therefore no additional rules are deegg
As a consequence, an algorithm to detect whether a workflow

is region-reducible can also be used to determine whether it <Y _ :
[12] Microsoft et al., “Business Process Execution Languégy Web Ser-

is semantically sound.
This paper concentrated on the demonstration of the concept ftp://iwwwé.software.ibm.com/software/developer/iby/ws-bpel.pdf
of the region tree, on its application to structurally and3l
semantically sound workflows, on the definition of the region
growing rules, on their applicability as reduction rulesdan
the proof of the main theorems. Future work includes extend-

ing the applicability of the region tree to other areas, dmal t

[14]

definition of further rules and concepts to handle strudiyira[15]
sound workflows that require synchronized conditions and
other more general forms ef-out-of- logic, e.g., interfaces
expressible with pins in UML2 Activity Diagrams.

(1]
(2]

(3]

(4]
(5]
(6]

(7]

(8]

REFERENCES

OMG (Object Management Group), “OMG Model Driven Ardtture”
(MDA). [Online]. Available: http://www.omg.org/mda/

S. Kent, “Model Driven Engineering”, ifProc. 3rd International Con-
ference on Integrated Formal Methods (IFM’'Q2urku, Finland, LNCS
2335, pp. 286-298, 2002.

J. Koehler, R. Hauser, J. Kuster, K. Ryndina, J. Vanlbatand
M. Wabhler, “The Role of Visual Modeling and Model Transfortioa in
Business-driven Development”, Iroc. 5th International Workshop on
Graph Transformation and Visual Modeling Techniques (GTT06),
Vienna, Austria, 2006.

T. Murata, “Petri Nets: Properties, Analysis and Apgtions”, Proc.
IEEE, vol. 77, no. 4, pp. 541-580, 1989.

J. Desel and J. Esparz&ree Choice Petri NetsCambridge, Great
Britain: Cambridge University Press, 1995.

W.M.P. van der Aalst, “Verification of Workflow Nets”, ifProc. 18th
International Conference on Application and Theory of Pdtiets
(ICATPN'97) Toulouse, France, LNCS 1248, pp. 407-426, 1997.
OMG (Object Management Group), “Unified Modeling Langea Su-
perstructure” (UML2 Activity Diagrams), version 2.0. [Om]. Avail-
able: http://www.omg.org/docs/formal/05-07-04.pdf

W. Sadiq and M.E. Orlowska, “Analyzing Process ModelsrigsGraph
Reduction Techniquesinformation Systemsvol. 25, no. 2, pp. 117-
134, 2000.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Algorithm to Identify Structural Conflicts”, inProc. 35th Hawaii In-
ternational Conference on System Sciences (HICSS2B5p.

] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. VerbeeRn Alter-

native Way to Analyze Workflow Graphs”, iRroc. 14th International
Conference on Advanced Information Systems EngineeriAgSE02)
Toronto, Canada, LNCS 2348, pp. 535-552, 2002.

IBM (International Business Machines), “WebSpheresiBess Modeler”
(Modeler), Advanced Version 6.0. [Online]. Available: gftwww-
306.ibm.com/software/integration/wbimodeler/

vices” (BPEL4WS), version 1.1., 5 May 2003. [Online]. Awdile:

W. Zhao, R. Hauser, K. Bhattacharya, B.R. Bryant, an€#&o, “Com-
piling Business Processes: Untangling Unstructured Laopseducible
Flow Graphs”,Intl. J. Web Grid Servicesvol. 2, no. 1, pp. 68-91, 2006.
R. Johnson, D. Pearson, and K. Pingali, “The Programc8ire Tree:
Computing Control Regions in Linear Time”, iRroc. ACM Sigplan
Conference on Programming Language Design and Implementat
(PLDI'94), Orlando, Florida, pp. 171-185, 1994.

R. Hauser, M. Friess, J.M. Kister, J. Vanhatalo, “Carirly Analysis of
Unstructured Workflows with Transformation to Structuredrtflows”,

in Proc. 10th International Enterprise Distributed Object i@puting
Conference (EDOC’'06)Hong Kong, China, pp. 129-140, 2006.

R. Liu and A. Kumar, “An Analysis and Taxonomy of Unsttued
Workflows”, in Proc. 3rd International Conference on Business Process
Management (BPM'05Nancy, France, LNCS 3649, pp. 268-284, 2005.
F. Puhlmann and M. Weske, “Investigations on Soundriesgarding
Lazy Activities”, In Proc. 4th International Conference on Business
Process Management (BPM’'Q6)ienna, Austria, LNCS 4102, pp. 145-
160, 2006.

W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszaty and
A.P. Barros, “Workflow Patterns™Distributed and Parallel Databases
vol. 14, no. 1, pp. 5-51, 2003.

B. Kiepuszewski, A.H.M. ter Hofstede, and C.J. Bussl®n Structured
Workflow Modelling”, in Proc. 12th Conference on Advanced Informa-
tion Systems Engineering (CAISE'08Yockholm, Sweden, LNCS 1789,
pp. 431-445, 2000.

A. Aho, R. Sethi, and J. UllmanCompilers - Principles, Techniques,
and Tools Reading, MA: Addison-Wesley, 1986.

M.S. Hecht and J.D. Ullman, “Flow Graph ReducibilitySIAM J.
Comput, vol. 1, no. 2, pp. 188-202, 1972.

Z. Ammarguellat, “A Control-Flow Normalization Algdhm and Its
Complexity”, IEEE Trans. Software Engineeringol. 18, no. 3, pp.
237-251, 1992.

R. Hauser and J. Koehler, “Compiling Process Graphs Executable
Code”, inProc. 3rd International Conference on Generative Program-
ming and Component Engineering (GPCE’Q4jancouver, Canada,
LNCS 3286, pp. 317-336, 2004.

R. Hauser, “Transforming Unstructured Cycles to Stnted Cycles in
Sequential Flow GraphsIBM Research Report RZ 3622005.

