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Abstract. We present a technique to enhance control-flow analysis of business
process models. The technique considerably speeds up the analysis and improves
the diagnostic information that is given to the user to fix control-flow errors.
The technique consists of two parts: Firstly, the process model is decomposed
into single-entry-single-exit (SESE) fragments, which are usually substantially
smaller than the original process. This decomposition is done in linear time. Sec-
ondly, each fragment is analyzed in isolation using a fast heuristic that can ana-
lyze many of the fragments occurring in practice. Any remaining fragments that
are not covered by the heuristic can then be analyzed using any known complete
analysis technique.

We used our technique in a case study with more than 340 real business pro-
cesses modeled with the IBM WebSphere Business Modeler. The results suggest
that control-flow analysis of many real process models is feasible without signif-
icant delay (less than a second). Therefore, control-flow analysis could be used
frequently during editing time, which allows errors to be caught at earliest possi-
ble time.

1 Introduction

The quality of a business process model becomes crucial when it is executed directly on
a workflow engine or when it is used for generating code that is to be executed. A correct
model is also important when one tries to obtain realistic business measures from a
process model through simulation. Detecting and fixing errors as early as possible can
therefore substantially reduce costs.

The control flow of a business process can be modeled as a workflow graph [11, 14].
A workflow graph that has no structural errors such as deadlocks or lack of synchroniza-
tion [11] is said to be sound [14]. Soundness can and should be checked automatically
during the modeling phase. To achieve a high acceptance among the users, the sound-
ness check should

o be as fast as possible and not delay the process of constructing the model — note
that a fast soundness check that can be done after each small change of the model
allows the user to identify the change that introduced an error — and

e produce useful diagnostic information that helps to locate and fix errors.



When reviewing the techniques currently available for deciding soundness, there
seems to be a trade-off between the two requirements. The fastest technique known (cf.
[14, 6]) translates the workflow graph into a free choice Petri net (cf. [2]) and then de-
cides soundness of that Petri net using the rank theorem (cf. [2]). This technique uses
time that is cubic in the size of the workflow graph, but does not provide useful diag-
nostic information. The best diagnostic information is currently provided by a search of
the state space of the workflow graph. This can return an execution sequence that leads
to the error but it can use time that is exponential in the size of the workflow graph.
Esparza [3] (cf. also [2]) provides a technique that can be used to decide soundness in
polynomial time (more than cubic) which could potentially provide some diagnostic in-
formation, but the latter has not yet been worked out. The analysis tool Woflan [17] can
decide soundness and provide diagnostic information, but because the tool ultimately
resorts to state space search, it can also take exponential time.

Some authors provide algorithms for deciding soundness for the special case of
acyclic workflow graphs. Perumal and Mahanti [10] gave an algorithm that takes quad-
ratic time, which improves on previous approaches for that special case, which were
either slower [7] or incomplete [11].

Given any complete technique for deciding soundness from above, we propose two
enhancements in this paper. Firstly, we propose to decompose the workflow graph into
a tree of single-entry-single-exit (SESE) fragments. This technique is known from com-
piler theory and can be done in linear time [5]. To check soundness of the workflow
graph, one can now check soundness of each fragment in isolation. The overall time
used now depends mainly on the size of the largest fragment. We show by experimental
evidence on a large number of industrial workflow models that the largest fragment of
a workflow graph is usually considerably smaller than the workflow graph itself.

Zerguini [18] and Hauser et al. [4] have proposed similar techniques of decid-
ing soundness through decomposition into fragments. However, they decompose into
multiple-entry-multiple-exit (MEME) fragments. These fragments are more general,
and include SESE fragments as a special case. This however implies that a fragment
can be less intuitive in general. Moreover, their decomposition into fragments is no
longer unique and their decomposition algorithms are slower; while Zerguini’s algo-
rithm [18] uses quadratic time, the time complexity of the approach of Hauser et al. [4]
is unknown, but we conjecture it to be at least quadratic. Both techniques could be used
after our fast SESE decomposition.

A nice feature of the decomposition (SESE or MEME) approach is that each error is
contained in a fragment. Thus, the error can be shown in a small local context, which in
turn should help fixing the error. Errors that are located in disjoint fragments are likely
to be independent. Hence, the decomposition also allows multiple independent errors
to be detected in one pass.

The second enhancement we propose are two heuristics that can prove soundness
or unsoundness of some fragments in linear time. The heuristics are meant to be used
before any of the complete techniques from the literature are used, because the latter are
likely to be more expensive. The heuristics are based on the observation that many of the
fragments found in real process models have a simple structure that can be recognized
quickly. The first heuristic uses ideas from Hauser et al. [4].



Note that simple reduction rules (e.g. [2, 11, 15]) can also be used to speed up the
verification. Usually applied with low cost, they reduce the process model while pre-
serving soundness.

We have implemented our technique and tried it on two libraries of altogether more
than 340 industrial process models. 81% of the process models can be completely ana-
lyzed with the SESE decomposition and the heuristics alone. For the remaining cases,
the analysis task becomes considerably smaller through SESE decomposition.

Mendling et al. [9, 8] have analyzed more than 2000 EPC process models using the
Woflan tool [17] for a relaxed version of soundness. We are not aware of any other
published case study with large industrial data.

This paper is structured as follows. In Sect. 2, we recall the definition of work-
flow graphs and their soundness. Section 3 describes our approach in detail. Section 4
presents the results of the case study. This technical report extends a conference pa-
per [16] with an appendix outlining proofs that the paper omits due to lack of space.

2 Sound Workflow Graphs

In this section, we recall the definition of sound workflow graphs [11, 14]. We also give
an equivalent characterization of soundness, which will be used later in this paper.

2.1 Workflow Graphs

A workflow graph is a directed graph G = (N, E), where a node n € N is exactly one of
the following: a start node, a stop node, an activity, a fork, a join, a decision, or a merge
such that

1. there is exactly one start node and exactly one stop node; the start node has no
incoming edges and exactly one outgoing edge, whereas the stop node has exactly
one incoming edge but no outgoing edges;

2. each fork and each decision has exactly one incoming edge and two or more out-
going edges, whereas each join and each merge has exactly one outgoing edge and
two or more incoming edges; each activity has exactly one incoming and exactly
one outgoing edge;

3. each node n € N is on a path from the start node to the stop node.

It follows from the definition that no
node is directly connected to itself. Figure 1
shows an example of a workflow graph. An
activity is depicted as a square, a fork and
a join as a thin rectangle, a decision as a
diamond, and a merge as a triangle. Start
and stop nodes are depicted as (decorated)
circles. The unique outgoing edge of the
start node is called the entry edge, and the
unique incoming edge of the stop node is
called the exit edge of the workflow graph.

activity -

fork join

Fig. 1. A workflow graph



The semantics of a workflow graph is, similarly to Petri nets, defined as a token
game. A state of a workflow graph is represented by tokens on the edges of the graph.
Let G = (N, E) be a workflow graph. A state of G is a mapping s : £ — N, which
assigns a natural number to each edge. When s(e) = k, we say that edge e carries k
tokens in state s. The semantics of the various nodes is defined as usual. An activity,
a fork, and a join remove one token from each of its ingoing edges and add one token
to each of its outgoing edges. A decision node removes a token from its incoming
edge, nondeterministically chooses one of its outgoing edges, and adds one token to
that outgoing edge. A merge node nondeterministically chooses one of its incoming
edges on which there is at least one token, removes one token from that edge, and adds
a token to its outgoing edge.

To be more precise, let s and s’ be two states and n a node that is neither a start nor

a stop node. We write s 4 s when s changes to s’ by executing n. We have s 5 yif

1. nis an activity, fork or join and
s(e) — 1 eis anincoming edge of n,
s'(e) ={s(e) + 1 eis an outgoing edge of n,
s(e) otherwise.
2. nis adecision and there exists an outgoing edge e’ of n such that
s(e) — 1 eis anincoming edge of n,
s'e)=1s(e)+1 e=¢,
s(e) otherwise.
3. nis a merge and there exists an incoming edge e’ of n such that
s(e)—1 e=¢,
s'(e) ={s(e)+ 1 eis an outgoing edge of n,
s(e) otherwise.

Node 7 is said to be activated in a state s if there exists a state s’ such that s — s’.
A state s’ is reachable from a state s, denoted s — s, if there exists a (possibly empty)

. ni g
finite sequence so — §; ... 8- — S such that so = sand s; = 5.

2.2 Soundness

To define soundness [14] of a workflow graph G, we use the following notions. The
initial state of G is the state that has exactly one token on the entry edge and no tokens
elsewhere. The terminal state of G is the state that has exactly one token on the exit
edge and no tokens elsewhere. A stopping state of G is a state of G in which the exit
edge carries at least one token.

G is live if for every state s that is reachable from the initial state, a stopping state is
reachable from s. G is safe if the terminal state is the only stopping state that is reachable
from the initial state. G is sound if it is live and safe. The soundness criterion is a global
view on correctness. Liveness says that each run can be completed, and safeness says
that each completion of a run is a proper termination, i.e., there are no tokens inside the
graph upon completion. The workflow graph in Fig. 1 is sound. Figure 2 shows simple



examples of unsound graphs. The graph in part (a) is not live, the graph in part (b) is
not safe.

Fig. 2. Structural conflicts: (a) a local deadlock (b) a lack of synchronization

The two examples of unsound workflow graphs in Fig. 2 are examples of a structural
conflict, viz. a local deadlock (part a) and a lack of synchronization (partb) [11]. A local
deadlock is a state s such that there exists a join n where (i) at least one incoming edge of
n carries a token in s and (ii) there is an incoming edge e of n such that e does not carry
a token in any state s’ that is reachable from s. That is, that join will never get ‘enough’
tokens. A state s of G has lack of synchronization if there is a merge n such that more
than one incoming edge of n carries a token, i.e., that merge gets ‘too many’ tokens.
Note that a lack of synchronization can lead to a state where there is more than one
token on a single edge. Van der Aalst et al. [14] have shown that for acyclic workflow
graphs, soundness is equivalent with the condition that neither a local deadlock nor a
state with lack of synchronization is reachable from the initial state. We generalize this
here for arbitrary workflow graphs, therefore providing a local view of correctness for
arbitrary workflow graphs.

Definition 1. Let G be a workflow graph. G is locally live if there is no local deadlock
that is reachable from the initial state. G is locally safe if no state is reachable from the
initial state that has more than one token on a single edge.

Theorem 1. A workflow graph is sound if and only if it is locally safe and locally live.

3 Enhanced Control-Flow Analysis

In this section, we explain the decomposition of a workflow graph into SESE fragments
and show how some fragments can be quickly recognized as sound or unsound.

3.1 Decomposition into Fragments

Figure 3 shows a workflow graph and its decomposition into SESE fragments (cf. e.g.
[5SD. A SESE fragment is depicted as a dotted box. Let G = (N, E) be a workflow
graph. A SESE fragment (fragment for short) F = (N’, E’) is a nonempty subgraph of
G,ie, N C Nand E' = EN (N’ x N’) such that there exist edges e,e’ € E with
EN((N\N)XN')={e}and EN(N' X (N \ N')) = {¢’}; e and ¢’ are called the entry
and the exit edge of F, respectively.



Fig. 3. Decomposition of a workflow graph into canonical fragments

The workflow graph shown in Fig. 3 has more fragments than those that are shown
explicitly. For example, the union of fragments J and K, denoted J U K, as well as
K U L are fragments. Those however are not of interest here and they are subsumed
in fragment X. Interesting fragments will be called canonical, which are defined in the
following. We say that two fragments F' and F’ are in sequence if the exit edge of F is
the entry edge of F” or vice versa. The union F'U F” of two fragments F and F’ that are
in sequence is a fragment again. A fragment F is non-canonical if there are fragments
X,Y,Z such that X and Y are in sequence, FF = X U Y, and F and Z are in sequence;
otherwise F is said to be canonical.

The fragments shown in Fig. 3 are exactly the canonical fragments of that workflow
graph. Canonical fragments do not overlap. Two canonical fragments are either nested
or disjoint [5]. Therefore, it is possible to organize the canonical fragments in a unique
tree, similarly to the Program Structure Tree shown in [5]. We call this tree the process
structure tree of a workflow graph. It can be computed in time linear in the size of
the workflow graph [5]°. As we are only interested in canonical fragments, we mean
‘canonical fragment’ whenever we say ‘fragment’ in the following.

Figure 4 shows the process structure tree of the workflow graph from Fig. 3. A
fragment is represented as a boxed tree node. In addition, we represent the nodes of the
workflow graph as leaves in the tree. The parent of a fragment F' (a workflow graph
node n) is the smallest fragment F’ that contains F' (n). Then, we also say that F is a
child fragment of F’ (n is a child node of F’).

To check the soundness of a workflow graph, it is sufficient to analyze the soundness
of its fragments in isolation. Note that a fragment can be viewed as a workflow graph by
adding entry and exit edges as well as a start and a stop node. Hence we can apply the
notion of soundness also to fragments. The following theorem follows from classical
Petri net theory (e.g. [12], cf. also [13, 14, 18]).

3 Note: Ananian [1] gives a slightly modified linear time algorithm that includes corrections.
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Fig. 4. The process structure tree of the workflow graph in Fig. 3

Theorem 2. A workflow graph is sound if and only if all its child fragments are sound
and the workflow graph that is obtained by replacing each child fragment with an ac-
tivity is sound.

Checking soundness of fragments can therefore be done along the structure of the
process structure tree, starting from the leaves upwards. If a fragment F was checked
for soundness, checking soundness of the parent fragment (in the tree) can abstract from
the internal structure of F, i.e., F' can be treated as an activity in the parent fragment.
Figure 5 shows fragments J and V from Figs. 3 and 4, where fragment J abstracts from
the structure of the child fragments C and D and fragment V abstracts from the structure
of fragment O.

ml

(@ (b)

Fig. 5. Fragments J and V ignoring the structure of their child fragments

3.2 Heuristic for Sound Fragments

Many fragments that occur in practice have a simple structure that can easily be rec-
ognized, which identifies those fragments as being sound. To this end, we define the
following categories, based on definitions given by Hauser et al. [4].

Definition 2. Let F be a fragment of a workflow graph. F is

1. well-structured if it satisfies one of the following conditions:



o F has no decisions, merges, forks or joins as children in the process structure
tree (sequence),

e F has exactly one decision and exactly one merge, but no forks and no joins as
children. The entry edge of F is the incoming edge of the decision, and the exit
edge of F is the outgoing edge of the merge (sequential branching),

e F has exactly one decision and exactly one merge, but no forks and no joins as
children. The entry edge of F is an incoming edge of the merge, and the exit
edge of F is an outgoing edge of the decision (cycle),

e F has exactly one fork, exactly one join, no decisions and no merges as chil-
dren. The entry edge is the incoming edge of the fork. The exit edge is the

outgoing edge of the join. (concurrent branching).
2. an unstructured concurrent fragment if F is not well-structured, contains no cycles,

and has no decisions and no merges as children.

3. an unstructured sequential fragment if F is not well-structured and has no forks
and no joins as children.

4. a complex fragment if it is none of the above.

It is easy to see that it can be decided in linear time to which of the four categories
listed above a fragment belongs.

Theorem 3. If a fragment F is well-structured, an unstructured concurrent, or an un-
structured sequential fragment, then F is sound if and only if all its child fragments are
sound.

This theorem was already observed by Hauser et al. [4]. Note that all fragment
categories ignore the structure of child fragments, taking only the top-level structure
into account. In Fig. 3, fragments X and Y are well-structured (sequence) and so are also
fragments C, O, Z (concurrent branching) and J (sequential branching). Fragments K
and V are examples of unstructured concurrent and unstructured sequential fragments,
respectively. Note that unstructured sequential fragments may contain cycles, whereas
unstructured concurrent fragments must not.

A complex fragment may be sound or unsound. Fragment W in Fig. 3 is a sound
complex fragment. It follows from Theorems 2 and 3 that the entire workflow graph in
Fig. 3 is sound.

3.3 Heuristic for Unsound Fragments
Some complex fragments can be efficiently determined as not being sound:

Theorem 4. A complex fragment F is not sound if it satisfies one of the following con-
ditions:
1. F has one or more decisions (merges), but no merges (decisions) as children in the

process structure tree,
2. F has one or more forks (joins), but no joins (forks) as children,
3. F contains a cycle, but has no decisions or no merges as children.

It is again easy to see that this heuristic can be applied in linear time. We actu-
ally found numerous errors in real process models using this heuristic (see Sect. 4.2).
The relative strength of this heuristic is due to the fact that, similar to the heuristic in
Sect. 3.2, the structure of child fragments is ignored.



4 Case Study

In this section, we describe the results of an application of our proposed technique in a
case study with industrial data.

4.1 The Data

We have analyzed the soundness of more than 340 workflow graphs that were extracted
from two libraries of industrial business processes modeled in the IBM WebSphere
Business Modeler. Although the modeling language used there is more expressive than
workflow graphs, it was possible to translate the process models into workflow graphs
because strict guidelines were used for the construction of these process models. The
description of the translation is beyond the scope of this paper.

Library 1 consists of more than 140 processes. The extracted workflow graphs have,
on average, 67 edges, with the maximum being 215. Library 2 is an experimental ex-
tension of Library 1. It contains similar processes, but many features were added to the
processes and also some processes were added. It contains more than 200 processes,
the extracted workflow graphs have 99 edges on average, with the maximum being 342.

4.2 The Results

We analyzed the libraries using an IBM ThinkPad T43p laptop that has a 2.13 GHz Intel
Pentium M processor and 2 GB of main memory. The entire Library 1 is analyzed in
9 seconds, and Library 2 in 15 seconds. Thus, the average analysis time per workflow
graph is less than 0.1 seconds.

SESE Decomposition As described in Sect. 1, the worst-case time a complete tech-
nique needs for checking the soundness of a workflow graph can be polynomial or
exponential in the size g of the workflow graph, which is defined to be its number of
edges. Similarly, the size of a fragment is defined as its number of edges plus 2 (for the
entry edge and the exit edge). If we use a complete technique after the SESE decompo-
sition according to the procedure in Sect. 3.1, the time used is linear in the number of
fragments. Note also that the number of fragments in a workflow graph is at most twice
the number of nodes. The overall time used therefore mainly depends on the size fi.x of

Table 1. Graph size (i.e., number of edges) compared to the size of the largest fragment in the
graph and size reductions for the workflow graphs in Library 1

Graph size Largest fragment size Reduction Reduction

8 fmax g_fmax g/fmax
Maximum 215 51 191 9.0
Average 67 24 44 2.8

Minimum 11 11 0 1.0
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Fig. 6. Size of largest fragment in relation to graph size for all workflow graphs in Library 1

the largest fragment to which we have to apply the complete technique. If the complete
technique uses polynomial time g¢ for some constant ¢, then the reduction that SESE
decomposition could achieve is g°/f5.. = (8/fmax)". If the complete technique uses
exponential time ¢, then the possible reduction is ¢8/c/m> = ¢/ Table 1 shows the
values for g/ fiax and g — fiax for Library 1 as an indication of the reduction achieved
due to SESE decomposition.

Figure 6 shows the largest fragment size in relation to the graph size for each work-
flow graph in Library 1. It shows that the graph size has only a minor impact on the
largest fragment size. Therefore, the reduction increases as the graph size increases.
Thus, the technique is most useful when the complete techniques would be most time
consuming. Even a small reduction can be significant, as the complete techniques for
checking soundness can take a time that is cubic or exponential in the graph size.

Table 2 shows the reduction statistics for the workflow graphs in Library 2. The
graphs are larger, and also the reduction is higher.

Table 2. Graph size compared to the size of the largest fragment in the graph, and size reductions
for Library 2

Graph size Largest fragment size Reduction Reduction

8 fmax g_fmax g/fmax
Maximum 342 82 328 24.4
Average 99 21 78 5.6
Minimum 12 6 5 1.5

Using both heuristics from Sect. 3, we can decide soundness for 68.5% of the work-
flow graphs in Library 2. For the remaining graphs, our prototype tool highlights the
complex fragments that may be unsound. A complete analysis method is needed to
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Table 3. Library 2: Graph size, largest fragment size, and reduction for the remaining 31.5% of
workflow graphs for which soundness is unknown after applying our heuristics

Graph size Largest fragment size Reduction Reduction

8 Jimax 8 — Jmax 8/ fmax
Maximum 334 82 284 104
Average 126 32 94 4.3
Minimum 40 12 25 1.6

decide their soundness, or they can be reviewed manually. The reduction statistics for
these remaining workflow graphs are shown in Table 3.

Fragment Categories Even though our heuristics from Sect. 3 are incomplete, we
were able to decide soundness for all the workflow graphs from Library 1. They are all
sound.

The first column in Table 4 illustrates the distribution of fragments according to
the categories defined in Sects. 3.2-3.3 for Library 1. We excluded here any fragments
that are well-structured sequences from these statistics, because most fragments are
sequences and those are trivially sound and thus not interesting.

We can also put entire workflow graphs into the various categories. For example, a
workflow graph is complex if it has at least one complex fragment. Complex graphs are
further divided into those known to be not sound by applying the heuristic in Sect. 3.3
and those for which soundness is unknown. A workflow graph is unstructured if it has
at least one unstructured fragment and no complex fragments. Otherwise, a graph has
only well-structured fragments and it is therefore called well-structured. Column 3 of
Table 4 shows the distribution of workflow graphs in Library 1 in the various categories.
The last two columns present the same statistics for Library 2.

Table 4. Categories of fragments and workflow graphs in the libraries

Library 1 Library 2
Fragment category / Percentage  Percentage Percentage  Percentage
Workflow graph category of fragments of graphs  of fragments of graphs
Well-structured (sound) 54.8% 37.5% 65.4% 33.3%
Unstructured (sound) 45.2% 62.5% 14.9% 23.1%
- Unstructured concurrent 1.4% - 6.0% -
- Unstructured sequential (acyclic)  29.2% - 4.4% -
- Unstructured sequential (cyclic) 14.6% - 4.6% -
Complex 0.0% 0.0% 19.7% 43.5%
- Complex (not sound) 0.0% 0.0% 5.4% 12.0%

- Complex (soundness unknown) 0.0% 0.0% 14.3% 31.5%
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Most fragments are well-structured, which makes it attractive to analyze fragments
separately. However, only a third of the workflow graphs are well-structured and there
is a considerable number of sound unstructured workflow graphs. Therefore, although
well-structuredness is also an appealing correctness requirement, it seems to be overly
restrictive. As unstructured fragments occur often, it makes sense to detect those with
fast heuristics before using a complete analysis technique. Our heuristics can decide
soundness not only for many fragments, but also for a significant proportion of the
workflow graphs.

In Library 2, 43.5% of the workflow graphs contain at least one complex fragment.
Only one workflow graph has more than one complex fragment. 19.7% of the fragments
in Library 2 are complex fragments. Our heuristic recognized 27.3% of these fragments
as being unsound. We have not yet checked the soundness of the remaining complex
graphs by integrating our tool with a complete analysis method. The high error rate in
Library 2 is due to its experimental nature.

5 Conclusion

We proposed a technique to focus and speed up control-flow analysis of business pro-
cess models that is based on decomposition into SESE fragments. The SESE decom-
position could also be used for other purposes such as browsing and constructing large
processes, discovery of reusable subprocesses, code generation, and others.

We also proposed a partition of the fragments into various categories, which can be
computed fast. We think that tagging a fragment with its category may help to better
understand the process model and may help to establish modeling patterns. It also helps
to speed up the control-flow analysis as many of the correct fragments that occur in
practice have a simple structure.

We plan to integrate our prototype with existing complete verification techniques
and measure the impact of SESE decomposition on the analysis time. In addition, we
plan to investigate the errors that occur in Library 2, together with approaches to fix
them.
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6 Appendix - Proofs

Note. This technical report extends a conference paper [16] with this appendix that
outlines the proofs that were omitted from the conference paper due to lack of space.

First, we extend the definition of an activated node to cover the stop node. Stop
node n is said to be activated in a state s if the incoming edge e of the stop node carries
at least one token in state s, s(e) > 1. This extension is needed for the following lemma
that we use frequently in the sequel.

Lemma 1. Let G be a workflow graph that is locally live, s a state that is reachable
from the initial state, e and edge that carries a token in s and n a node of G. If there is
a path from e to n in G, then there exists a state s’ such that n is activated in s’.

Proof. The claim is proven by induction over the length of the path. The base case is
only not trivial when n is a join. Then, the claim directly follows from local liveness.
The induction step uses the same argument.

Theorem 1. A workflow graph is sound if and only if it is locally safe and locally live.
Proof. Let G be a workflow graph.

= Let G be live and safe.

1. We have to show that G is locally live. Let s be a local deadlock that is reachable
from the initial state and e be an edge that carries a token; Since G is live, a
stopping state s” can be reached from s. Since G is safe, s must be the terminal
state which contradicts s being a local deadlock.

2. We have to show that G is locally safe. This follows from a corresponding
results on Petri nets: Every sound free choice workflow net is 1-safe (cf. [14,
2]).

& Let G be locally live and locally safe.

1. We have to show that G is live. Let s be a state that is reachable from the initial
state. It is clear from the definitions of workflow graphs and their semantics
that their exists an edge e such that e carries a token in s. The edge e lies on a
path from the entry edge to the exit edge. Since G is locally live, that token can
be moved to the exit edge yielding a stopping state (Lemma 1).

2. We have to show that G is safe. Suppose s is a stopping state that is reachable
from the initial state such that besides one token on the exit edge, there is an
edge e carrying another token; e could also be the exit edge. Since G is locally
live, we can move that second token to the exit edge (Lemma 1) hence obtaining
a state with two tokens on the exit edge. That contradicts G being locally safe.

Theorem 2. A workflow graph is sound if and only if all its child fragments are sound
and the workflow graph that is obtained by replacing each child fragment with an ac-
tivity is also sound.

Proof. When a workflow graph is translated to a free choice Petri net in a standard way
[14], the workflow graph is sound if and only if the Petri net is sound. This theorem then
becomes a theorem for Petri nets, which is well known. It can be easily derived from
the results of the classic paper by Valette [12]. Explicit proofs of stronger theorems are
given by van der Aalst [13] and Zerguini [18].
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Theorem 3. If a fragment F is well-structured, an unstructured concurrent, or an un-
structured sequential fragment, then F is sound if and only if all its child fragments are

sound.

Proof. Let F be a fragment. Suppose that all child fragments are sound. Then they can
be replaced by activities resulting in a workflow graph, which we call G. By Thm. 2,
we have that F is sound if G is sound. Conversely if a child fragment is not sound, it
follows by Thm. 2 that F' is unsound. We distinguish the following cases:

1. Let G be unstructured sequential. Since there are no joins and forks there is always
exactly one token inside the fragment. It directly follows that the fragment is sound.

2. Let G be unstructured concurrent. Since G is acyclic, the edges of G are partially
ordered. Local safeness with respect to an edge can be proven by induction over
the distance of the edge from the entry edge. Local liveness is shown by proving
that a token on some edge e can be removed from e, which in turn can be shown by
induction over the distance of e to the exit edge.

3. The well-structured cases are special cases of the corresponding unstructured cases.

Theorem 4. A complex fragment F is not sound if it satisfies one of the following con-

ditions:

1. F has one or more decisions (merges), but no merges (decisions) as children in the
process structure tree,

2. F has one or more forks (joins), but no joins (forks) as children,

3. F contains a cycle, but has no decisions or no merges as children.

Proof. Let F be a complex fragment. Suppose that F' is sound.

3. (a)

(b)

Let F contain a cycle, but no decisions. There exists a maximal strongly con-
nected component O that contains this cycle. Since there is no decision, there
must be a fork f and edges e and ¢’ such that

e f belongs to O,

e ¢ is outgoing from f leading to a node inside O,

e ¢’ is outgoing from f leading to a node outside O.
Since F is sound, f can be activated and executed (Lemma 1). In the resulting
state, there is a token in e and ¢’. Since there is a path from e to f and F is
sound, a state can be reached where f is activated again (Lemma 1). This can
be done without removing the token on e’, because ¢’ is outside O. When f
is executed again, we obtain a state with two tokens on e’, which contradicts
soundness.
Let F contain a cycle, but no merges. There exists a maximal strongly con-
nected component O that contains this cycle. In the initial state, no edge in O
carries a token. Since F is sound, it follows from Lemma 1 that for each edge
there exists a reachable state, where this edge carries a token. Let e be an edge
and s, s’ be states and n be a node such that

e ¢isinside O,

e s is reachable from the initial state,

e no edge inside O carries a token in s,
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1. (a)

(b)

2. (a)

(b)

n ’
o 5> 5,

e ¢ carries a token in s’.
As executing n can only produce a token in an outgoing edge of n, e is an
outgoing edge of n. Since e is inside O, also n is inside O. Since 7 is inside
O, there exists an incoming edge ¢’ of n such that ¢’ is inside O. n cannot be
activated in s, because there are no merges and ¢’ carries no token in s. This
contradicts soundness.
Let F have at least one decision d, but no merges. If F is cyclic and has no
merges, it is unsound as proven above in case 3 (b). Therefore, we assume F' has
no cycles. Decision d has at least two outgoing edges which have distinct paths
to the exit edge. These paths have non-empty disjoint parts in the beginning.
Since F has no cycles, there is a node, which is the first node that merges the
disjoint paths. This node is either a merge or a join. Since there is no merge,
both paths merge in a common join j. Since F is sound, there is a state s
that is reachable from the initial state that activates d. When d is executed,
we have only one token on one of the disjoint paths from the decision to the
join. Because F is acyclic and safe, d is executed only once. Since there are no
merges on these disjoint paths, the last edge on a path can get a token only if
first edge on that path gets one. Thus, the join can get a token only from one of
these paths. This leads into a local deadlock, which contradicts soundness.
Let F have at least one merge, but no decisions. If F is cyclic and has no
decisions, it is unsound as proven above in case 3 (a). Therefore, we assume F
has no cycles. The merge has at least two incoming edges which have distinct
paths from the entry edge. Since F has no cycles, there is a node, which is the
last node that splits the distinct paths into non-empty disjoint parts in the end.
This node is either a decision or a fork. Since there is no decision, both paths
split in a common fork f. Since F is sound, there is a state s that is reachable
from the initial state that activates f. When f is executed, we have two tokens,
each being on a different disjoint path from the fork to the merge. Because
these paths are disjoint, F' is sound and there is no decision, we can move the
two tokens up to the merge, independently of each other. The merge can be
executed twice resulting in a state violating local safeness.
Let F have at least one fork, but no joins. Since there is a fork and F is sound,
the fork can be activated and thus there is a reachable state, where at least two
edges carry a token. As there are no joins, moving one of the tokens to the
exit edge (Lemma 1) cannot require moving the other token(s). Thus, there is
a reachable stopping state, which is not the terminal state, which contradicts
soundness.
Let F have at least one join, but no forks. Since there is no fork, F has never
more than one token. Since F is sound, the join can be activated, which however
needs more than one token — a contradiction.



