
RZ 3702 (# 99712) 02/11/08 (Revised version: 09/29/2008)
Computer Science 27 pages

Research Report

Runtime Monitoring of Metric First-order Temporal Properties
(Revised Version)

David Basin1, Felix Klaedtke1, Samuel Müller1,2, and Birgit Pfitzmann3

1Information Security Group, Department of Computer Science
Swiss Federal Institute of Technology - ETH Zurich
8092 Zurich, Switzerland

2IBM Research GmbH, Zurich Research Laboratory
8803 Rüschlikon, Switzerland

3IBM Thomas J. Watson Research Center
Hawthorne, NY 10532-1596, USA

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Runtime Monitoring of Metric First-order Temporal Properties

David Basin1, Felix Klaedtke1, Samuel Müller1,2, and Birgit Pfitzmann3

1 ETH Zurich, Switzerland
2 IBM Zurich Research Lab, Switzerland

3 IBM Watson Research Lab, USA

Abstract. We introduce a novel approach to the runtime monitoring of complex system properties.
In particular, we present an online algorithm for a safety fragment of metric first-order temporal logic
(mfotl) that is considerably more expressive than the logics supported by prior monitoring methods.
Our approach, based on automatic structures, allows the unrestricted use of negation, universal and
existential quantification over infinite domains, and the arbitrary nesting of both past and bounded
future operators. Moreover, we show how to use and optimize our approach for the common case where
structures consist of only finite relations, over possibly infinite domains. Under an additional restriction,
we prove that the space consumed by our monitor is polynomially bounded by the cardinality of the
data appearing in the processed prefix of the temporal structure being monitored.

1 Introduction

Runtime monitoring [1] is an approach to verifying system properties at execution time by using
an online algorithm to check whether a system trace satisfies a temporal property. Whereas novel
application areas such as compliance or business activity monitoring [13, 15] require expressive
property specification languages, current monitoring techniques are restricted in the properties
they can handle. They either support properties expressed in propositional temporal logics and
thus cannot cope with variables ranging over infinite domains [6,16,21,24,30], do not provide both
universal and existential quantification [5,12,17,24–26] or only in restricted ways [5,29,31], do not
allow arbitrary quantifier alternation [5, 23], cannot handle unrestricted negation [8, 23, 28, 31], do
not provide quantitative temporal operators [23, 26], or cannot simultaneously handle both past
and future temporal operators [8, 23–25,27,28].

In this paper, we present a runtime monitoring approach for an expressive safety fragment
of metric first-order temporal logic (mfotl) [8] that overcomes most of these limitations. The
fragment consists of formulae of the form ¤φ, where φ is bounded, i.e., its temporal operators
refer only finitely into the future. Our monitor uses automatic structures [7] to finitely represent
infinite structures, which allows for the unrestricted use of negation and quantification in monitored
formulae. Moreover, our monitor supports the arbitrary nesting of both (metric) past and bounded
future operators. This means that complex properties can be specified more naturally than with
only past operators.4

In a nutshell, our monitor works as follows: Given a mfotl formula ¤φ over a signature S,
where φ is bounded, we first transform φ into a first-order formula φ̂ over an extended signature
Ŝ, obtained by augmenting S with auxiliary predicates for every temporal subformula in φ. Our
monitor then incrementally processes a temporal structure (D, τ) over S and determines for each
time point i those elements in (D, τ) that violate φ. This is achieved by incrementally constructing a
collection of automata that finitely represent the (possibly infinite) interpretations of the auxiliary
predicates and by evaluating the transformed first-order formula ¬φ̂ over the extended Ŝ-structure
4 It is unknown whether the past-only fragment of mfotl is as expressive as the fragment with both past and

bounded future operators and whether formulae in the past-only fragment can be expressed as succinctly as those
in the future-bounded fragment.

2 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

at every time point. In doing so, our monitor discards any information not required for evaluating
¬φ̂ at the current and future time points.

We also show how to adapt our monitoring approach to the common case where all relations
are required to be finite and hence relational databases can serve as an alternative to automata.
Under the additional (realistic) restriction that time increases after at most a fixed number of time
points, our incremental construction ensures that our monitor requires only polynomial space in the
cardinality of the data appearing in the processed prefix of the monitored temporal structure. This is
in contrast to complexity results for other approaches, such as the logical data expiration technique
proposed for 2-fol [31]. While this logic is at least as expressive as mfotl, the space required
for monitoring (syntactically-restricted) 2-fol formulae is non-elementary in the cardinality of the
data in the processed prefix.

Overall, we see our contributions as follows. First, the presented monitor admits a substantially
more expressive logic than previous monitoring approaches. In particular, by supporting arbitrary
bounded mfotl formulae, it significantly extends Chomicki’s dynamic integrity checking approach
for temporal databases [8]. Second, we extend runtime monitoring to automatic structures, which
allows for the unrestricted use of negation and quantification in monitored formulae. Third, for
the restricted setting where all relations are finite, we show how to implement our monitor using
relational databases. Here, we extend the rewrite procedure of [11] to handle a larger class of
temporal formulae. We then prove that, under an additional restriction, the space consumed by our
monitor is polynomially bounded in the cardinality of the data appearing in the processed prefix
of a monitored temporal structure. Finally, our work shows how to effectively combine ideas from
different, but related areas, including database theory, runtime monitoring, model checking, and
model theory.

2 Metric First-order Temporal Logic

In this section, we introduce metric first-order temporal logic (mfotl) [8], which extends propo-
sitional metric temporal logic [4, 20] in a standard way. In the forthcoming sections, we present a
method for monitoring requirements formalized within mfotl.

Syntax and Semantics. Let I be the set of nonempty intervals over N. We often write an interval
in I as [c, d), where c ∈ N, d ∈ N ∪ {∞}, and c < d, i.e., [c, d) := {a ∈ N | c ≤ a < d}. A signature
S is a tuple (C, R, a), where C is a finite set of constant symbols, R is a finite set of predicates
disjoint from C, and the function a : R → N associates each predicate r ∈ R with an arity a(r) ∈ N.
For the rest of this paper, V denotes a countably infinite set of variables, where we assume that
V∩ (C ∪R) = ∅, for every signature S = (C, R, a). In the following, let S = (C, R, a) be a signature.

Definition 1. The formulae over S are inductively defined: (i) For t, t′ ∈ V ∪ C, t ≈ t′ and t ≺ t′

are formulae. (ii) For r ∈ R and t1, . . . , ta(r) ∈ V ∪ C, r(t1, . . . , ta(r)) is a formula. (iii) For x ∈ V,
if θ and θ′ are formulae then (¬θ), (θ∧ θ′), and (∃x. θ) are formulae. (iv) For I ∈ I, if θ and θ′ are
formulae then (I θ), (#I θ), (θ SI θ′), and (θ UI θ′) are formulae.

To define the semantics of mfotl, we need the following notions: A (first-order) structure D
over S consists of a domain |D| 6= ∅ and interpretations cD ∈ |D| and rD ⊆ |D|a(r), for each c ∈ C
and r ∈ R. A temporal (first-order) structure over S is a pair (D, τ), where D = (D0, D1, . . .) is a
sequence of structures over S and τ = (τ0, τ1, . . .) is a sequence of natural numbers (time stamps),
where:
1. The sequence τ is monotonically increasing (i.e., τi ≤ τi+1, for all i ≥ 0) and makes progress

(i.e., for every i ≥ 0, there is some j > i such that τj > τi).

Runtime Monitoring of Metric First-order Temporal Properties 3

2. D has constant domains, i.e., |Di| = |Di+1|, for all i ≥ 0. We denote the domain by |D| and
require that |D| is linearly ordered by the relation <.

3. Each constant symbol c ∈ C has a rigid interpretation, i.e., cDi = cDi+1 , for all i ≥ 0. We denote
the interpretation of c by cD.

A valuation is a mapping v : V → |D|. We abuse notation by applying a valuation v also to
constant symbols c ∈ C, with v(c) = cD. For a valuation v, a variable vector x̄ = (x1, . . . , xn), and
d̄ = (d1, . . . , dn) ∈ |D|n, v[x̄/d̄] is the valuation that maps xi to di, for i such that 1 ≤ i ≤ n, and
the valuation of the other variables is unaltered.

Definition 2. Let (D, τ) be a temporal structure over S, with D = (D0, D1, . . .) and τ = (τ0, τ1, . . .),
θ a formula over S, v a valuation, and i ∈ N. We define the relation (D, τ, v, i) |= θ as follows:

(D, τ, v, i) |= t ≈ t′ iff v(t) = v(t′)
(D, τ, v, i) |= t ≺ t′ iff v(t) < v(t′)
(D, τ, v, i) |= r(t1, . . . , ta(r)) iff (v(t1), . . . , v(ta(r))) ∈ rDi

(D, τ, v, i) |= (¬θ1) iff (D, τ, v, i) 6|= θ1

(D, τ, v, i) |= (θ1 ∧ θ2) iff (D, τ, v, i) |= θ1 and (D, τ, v, i) |= θ2

(D, τ, v, i) |= (∃x. θ1) iff (D, τ, v[x/d], i) |= θ1, for some d ∈ |D|
(D, τ, v, i) |= (I θ1) iff i > 0, τi − τi−1 ∈ I, and (D, τ, v, i− 1) |= θ1

(D, τ, v, i) |= (#I θ1) iff τi+1 − τi ∈ I and (D, τ, v, i + 1) |= θ1

(D, τ, v, i) |= (θ1 SI θ2) iff for some j ≤ i, τi − τj ∈ I, (D, τ, v, j) |= θ2,
and (D, τ, v, k) |= θ1, for all k ∈ [j + 1, i + 1)

(D, τ, v, i) |= (θ1 UI θ2) iff for some j ≥ i, τj − τi ∈ I, (D, τ, v, j) |= θ2,
and (D, τ, v, k) |= θ1, for all k ∈ [i, j)

Note that the temporal operators are augmented with lower and upper bounds. A temporal formula
is only satisfied if it is satisfied within the bounds given by the temporal operator, which are relative
to the current time stamp τi.

Terminology and Notation. As syntactic sugar, we use the standard boolean connectives like
(θ1 ∨ θ2) := (¬((¬θ1) ∧ (¬θ2))) and (θ1 → θ2) := ((¬θ1) ∨ θ2), the universal quantifier (∀x. θ) :=
(¬(∃x.¬θ), and the temporal operators (¨I θ) := (true SI θ), (¥I θ) := (¬(¨I(¬θ))), (♦I θ) :=
(trueUIθ), and (¤I θ) := (¬(♦I(¬θ))), where I ∈ I and true abbreviates (∃x. x = x). The non-metric
variants of the temporal operators are easily defined, e.g., (¤ θ) := (¤[0,∞) θ). We use standard
conventions concerning the binding strength of operators to omit parentheses. For example, ¬
binds stronger than ∧, which binds stronger than ∨, which in turn binds stronger than ∃. Moreover,
temporal operators bind weaker than Boolean connectives and quantifiers.

We call formulae of the form t ≈ t′, t ≺ t′, and r(t1, . . . , ta(r)) atomic, and formulae with no
temporal operators first-order. The outermost connective (i.e., Boolean connective, quantifier, or
temporal operator) occurring in a formula θ is called the main connective of θ. A formula that has
a temporal operator as its main connective is a temporal formula. A formula θ is bounded if the
interval I of every temporal operator UI occurring in θ is finite.

MFOTL denotes the set of mfotl formulae and FOL the set of first-order formulae. For θ ∈
MFOTL, we define its immediate temporal subformulae tsub(θ) to be:

tsub(θ) :=





tsub(α) if θ = ¬α or θ = ∃x.α,
tsub(α) ∪ tsub(β) if θ = α ∧ β,
{θ} if θ is a temporal formula,
∅ otherwise.

4 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

For example, for θ := (α) ∧ ((#β) S[1,9) γ), we have that tsub(θ) = { α, (#β) S[1,9) γ}.
If θ ∈ MFOTL has the free variables given by the vector x̄ = (x1, . . . , xn), we define the set of

satisfying assignments at time instance i as

θ(D,τ,i) :=
{
d̄ ∈ |D|n ∣∣ (D, τ, v[x̄/d̄], i) |= θ, for some valuation v

}
.

If the formula θ is in FOL, we write (Di, v) |= θ instead of (D, τ, v, i) |= θ and θDi for θ(D,τ,i). Note
that (Di, v) |= θ agrees with the standard definition of satisfaction in first-order logic.

3 Monitoring by Reduction to First-order Queries

To effectively monitor mfotl formulae, we restrict both the formulae and the temporal structures
under consideration. We discuss these restrictions in §3.1 and describe monitoring in §3.2–§3.5.

3.1 Restrictions

Throughout this section, let (D, τ) be a temporal structure over the signature S = (C, R, a) and
ψ the formula to be monitored. We make the following restrictions on ψ and D. First, we require
ψ to be of the form ¤φ, where φ is bounded. It follows that ψ describes a safety property [3].
Note though that not all safety properties can be expressed by formulae of this form [9]. This is
in contrast to propositional linear temporal logic, where every safety property can be expressed as
¤β, where β contains only past-time operators [22].

Second, we require that each structure in D is automatic [18]. Roughly speaking, this means
that each structure in D can be finitely represented by a collection of automata over finite words.
Let us briefly recall some background on automatic structures [7,18]. Let Σ be an alphabet and #
a symbol not in Σ. The convolution of the words w1, . . . , wk ∈ Σ∗ with wi = wi1 · · ·wi`i is the word

w1 ⊗ · · · ⊗ wk :=

[
w′11
...

w′k1

]
· · ·

[
w′1`

...
w′k`

]
∈ ((

Σ ∪ {#})k)∗
,

where ` = max{`1, . . . , `k} and w′ij = wij , for j ≤ `i and w′ij = # otherwise. The padding symbol
is added to the words wi to ensure that all of them have the same length.

Definition 3. A structure A over a signature S = (C, R, a) is automatic if there is a regular
language L|A| ⊆ Σ∗ and a surjective function ν : L|A| → |A| such that the language L≈ := {u ⊗
v |u, v ∈ L|A| with ν(u) = ν(v)} is regular and, for each relation rA ⊆ |A|a(r) with r ∈ R, the
language Lr := {w1 ⊗ · · · ⊗ wa(r) |w1, . . . , wa(r) ∈ L|D| with (ν(w1), . . . , ν(wa(r))) ∈ rA} is regular.

An automatic representation of the automatic structure A consists of (i) the function ν : L|A| → |A|,
(ii) a family of words (wc)c∈C with wc ∈ L|A| and ν(wc) = cA, for all c ∈ C, and (iii) a collection
(A|A|,A≈, (Ar)r∈R) of automata that recognize the languages L|A|, L≈, and Lr, for all r ∈ R. In
the following, we assume that for an automatic structure, we always have an automatic represen-
tation for it at hand. A relation rA ⊆ |A|k is regular if the language {u1 ⊗ · · · ⊗ uk |u1, . . . , uk ∈
L|A| with (ν(u1), . . . , ν(uk)) ∈ r} is regular. Note that an automaton reads the components of the
convolution of a representative of ā ∈ |A|k synchronously.

In addition to the requirement that each structure in D is automatic, we require that D has
a constant domain representation. This means that the domain of each Di is represented by the
same regular language L|D| and each word in L|D| represents the same element in |D|, i.e., each
automatic representation has the same function ν : L|D| → |D|. Finally, we assume that |D| = N
and that < is the standard ordering on N. This is without loss of generality whenever the function

Runtime Monitoring of Metric First-order Temporal Properties 5

ν is injective, i.e., every element in |D| has only one representative in L|D|. See Appendix A.1 for
details. Furthermore, note that every automatic structure has an automatic representation in which
the function ν is injective [18].

Remark 4. Let us state some properties of automatic structures that we will use later. First, for a
first-order formula θ, we can effectively construct an automaton that represents the set θDi . This
follows from the closure properties of regular languages. Second, some basic arithmetical relations
are first-order definable in the structure (N, <) and thus regular. In particular, the successor relation
{(x, y) ∈ N2 | y = x+1} is regular, since the formula x ≺ y∧¬∃z. x ≺ z ∧ z ≺ y defines it. It is also
easy to see that {(x, y) ∈ N2 |x + d ≤ y} is regular, for any d ∈ N.

Example 5. Before presenting our monitoring method, we give two examples of system properties
expressed in the mfotl fragment that our monitor can handle. First, the property “whenever
the program variable in stores the input x, within 5 time units x must be stored in the program
variable out” can be expressed by ¤∀x. in(x) → ♦[0,6) out(x). Second, the property “the value of the
program variable v increases by 1 in each step from an initial value 0 until it becomes 5, then it stays
constant” can be formalized as ¤(¬(true) → v(0))∧(∃i. v(i)∧i≺5 → # v(i+1))∧(v(5) → # v(5)).
Note that we use relations that are singletons to model program variables.

3.2 Overview of the Monitoring Method

To monitor the formula ¤φ over a temporal structure (D, τ), we incrementally build a sequence
of structures D̂0, D̂1, . . . over an extended signature Ŝ. The extension depends on the temporal
subformulae of φ. For each time point i, we determine the elements that violate φ by evaluating a
transformed formula ¬φ̂ ∈ FOL over D̂i. Observe that with future operators, we usually cannot do
this yet when time point i occurs. Our monitor, which we present in §3.5, therefore maintains a list
of unevaluated subformulae for past time points. In the following, we first describe how we extend
S and transform φ. Afterwards, we explain how we incrementally build D̂i. Finally, we present our
monitor and prove its correctness. Omitted proofs are given in Appendix A.2.

3.3 Signature Extension and Formula Transformation

In addition to the predicates in R, the extended signature Ŝ contains an auxiliary predicate pα for
each temporal subformula α of φ. For subformulae of the form β SI γ and β UI γ, we introduce
further predicates, which store information that allow us to incrementally update the auxiliary
relations.

Definition 6. Let Ŝ := (Ĉ, R̂, â) be the signature with Ĉ := C and

R̂ := R∪{pα |α temporal subformula of φ}∪
{rα |α subformula of φ of the form β SI γ or β UI γ}∪
{sα |α subformula of φ of the form β UI γ} .

For r ∈ R, let â(r) := a(r). If α is a temporal subformula with n free variables, then â(pα) := n,
and â(rα) := n + 1 and â(sα) := n + 2, if rα and sα exist. We assume that pα, rα, sα 6∈ C ∪ R ∪ V.

We transform mfotl formulae over the signature S into first-order formulae over the extended
signature Ŝ as follows.

6 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

Definition 7. For θ ∈ MFOTL with the vector of free variables x̄, we define

θ̂ :=





¬β̂ if θ = ¬β,
β̂ ∧ γ̂ if θ = β ∧ γ,
∃y. β̂ if θ = ∃y. β,
pθ(x̄) if θ is a temporal formula,
θ is an atomic formula.

We assume throughout this section, without loss of generality, that each subformula of φ has the
vector of free variables x̄ = (x1, . . . , xn). The formula transformation has the following properties,
which are easily shown by an induction over the formula structure.

Lemma 8. Let θ be a subformula of φ. For all i ∈ N, the following properties hold:
(i) If pD̂i

α = α(D,τ,i) for all α ∈ tsub(θ), then θ̂D̂i = θ(D,τ,i).
(ii) If pD̂i

α is regular for all α ∈ tsub(θ), then θ̂D̂i is regular.

3.4 Incremental Extended Structure Construction

We now show how the auxiliary relations in the D̂is are incrementally constructed. Their instanti-
ations are computed recursively both over time and over the formula structure, where evaluations
of subformulae may also be needed from future time points. We later show that this is well-defined
and can be evaluated incrementally.

For c ∈ C and r ∈ R, we define cD̂i := cDi and rD̂i := rDi . We address the auxiliary relations
for each type of main temporal operator separately.

Previous and Next. For α = I β with I ∈ I, we define

pD̂i
α :=

{
β̂D̂i−1 if i > 0 and τi − τi−1 ∈ I,

∅ otherwise.

Intuitively, a tuple ā is in pD̂i
α if ā satisfies β at the previous time point i− 1 and the difference of

the two successive time stamps is in the interval I given by the metric temporal operator I .

Lemma 9. Let α = I β. For i > 0, if p
D̂i−1

δ is regular and p
D̂i−1

δ = δ(D,τ,i−1) for all δ ∈ tsub(β),
then pD̂i

α is regular and pD̂i
α = α(D,τ,i). Moreover, pD̂0

α is regular and pD̂0
α = α(D,τ,0).

Proof. For i = 0, the lemma obviously holds. For i > 0, the regularity of pD̂i
α follows from the

assumption that the relations p
D̂i−1

δ are regular and Lemma 8(ii). The equality of the two sets
follows from Lemma 8(i) and the semantics of the temporal operator I . a

For α = #I β with I ∈ I, we define

pD̂i
α :=

{
β̂D̂i+1 if τi+1 − τi ∈ I,

∅ otherwise.

Note that the definition of pD̂i
α depends on the relations of the next structure Di+1 and on the aux-

iliary relations for δ ∈ tsub(β) of the next extended structure D̂i+1. Hence, the monitor instantiates
pD̂i

α with a delay of at least one time step.
The following lemma is proved similarly to Lemma 9.

Lemma 10. Let α = #I β. If p
D̂i+1

δ is regular and p
D̂i+1

δ = δ(D,τ,i+1) for all δ ∈ tsub(β), then pD̂i
α

is regular and pD̂i
α = α(D,τ,i).

Runtime Monitoring of Metric First-order Temporal Properties 7

Since and Until. We first address the past-time operator SI with I = [c, d) ∈ I. Assume that
α = β SI γ. We start with the initialization and update of the auxiliary relations for rα. We define

rD̂0
α := γ̂D̂0 × {0} ,

and for i > 0, we define

rD̂i
α :=

(
γ̂D̂i × {0}) ∪ {

(ā, y) ∈ Nn+1
∣∣ ā ∈ β̂D̂i , y < d, and (ā, y′) ∈ r

D̂i−1
α , for y′ = y − τi + τi−1

}
.

Intuitively, a pair (ā, y) is in rD̂i
α if ā satisfies α at the time point i independent of the lower bound

c, where the “age” y indicates how long ago the formula γ was satisfied by ā. If ā satisfies γ at
the time point i, it is added to rD̂i

α with the age 0. For i > 0, we additionally update the tuples

(ā, y) ∈ r
D̂i−1
α . First, ā must satisfy β at the time point i. Second, the age is adjusted by the

difference of the time stamps τi−1 and τi. Third, the new age must be less than d, otherwise it is
too old to satisfy α.

The arithmetic constraint y′ = y − τi + τi−1 in the definition of rD̂i
α for i > 0 is first-order

definable in D, see Remark 4. Note that τi + τi−1 is a constant value. Now it is not hard to see that
rD̂i
α is regular if all its components are regular.

With the relation rD̂i
α , we can determine the elements that satisfy α at the time point i. We

define
pD̂i

α :=
{
ā ∈ Nn

∣∣ (ā, y) ∈ rD̂i
α , for some y ≥ c

}
.

Lemma 11. Let α = β S[c,d) γ. Assume that p
D̂j

δ is regular and p
D̂j

δ = δ(D,τ,j), for all j ≤ i and
δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ Nn and y ∈ N,

(ā, y) ∈ rD̂i
α iff

there is a j ∈ [0, i + 1) such that y = τi − τj < d , ā ∈ γ(D,τ,j) ,

and ā ∈ β(D,τ,k), for all k ∈ [j + 1, i + 1) .

(ii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

Note that the definition of rD̂i
α only depends on the relation r

D̂i−1
α , if i > 0, and on the relations

in D̂i for which the corresponding predicates occur in the subformulae of β̂ or γ̂. Furthermore, the
definition of pD̂i

α only depends on rD̂i
α .

We now address the bounded future-time operator UI with I = [c, d) ∈ I and d ∈ N. Assume
that α = β UI γ. For all i ∈ N, let `i := max{j ∈ N | τi+j − τi < d}. We call `i the lookahead offset
at time point i. For convenience, let `−1 := 0. To instantiate the relation pD̂i

α , only the relations

pD̂i
δ , . . . , p

D̂i+`i
δ are relevant, where δ ∈ tsub(β) ∪ tsub(γ). The definition of pD̂i

α is based on the
auxiliary relations rD̂i

α and sD̂i
α , which we first show how to initialize and update.

We define rD̂i
α as the union of the sets Nr and Ur. Nr contains the tuples that are new in the

sense that they are obtained from data at the time points i+`i−1, . . . , i+`i; Ur contains the updated
data from the time points i, . . . , i + `i−1 − 1. Formally, we define

Nr :=
{
(ā, j) ∈ Nn+1

∣∣ `i−1 ≤ j ≤ `i, ā ∈ γ̂D̂i+j , and τi+j − τi ≥ c
}

Ur :=

{{
(ā, j) ∈ Nn+1

∣∣ (ā, j + 1) ∈ r
D̂i−1
α and τi+j − τi ≥ c

}
if i > 0,

∅ otherwise.

Intuitively, rD̂i
α stores the tuples satisfying the formula ♦I γ at the time point i, where each tuple

in rD̂i
α is augmented by the index relative to i where the tuple satisfies γ.

8 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

Similarly to rD̂i
α , the relation sD̂i

α is the union of a set Ns for the new elements and a set Us for
the updates. These two sets are defined as

Ns :=
{
(ā, j, j′) ∈ Nn+2

∣∣ `i−1 ≤ j ≤ j′ ≤ `i and ā ∈ β̂D̂i+k , for all k ∈ [j, j′ + 1)
}

and Us := ∅ if i = 0, and

Us :=
{
(ā, j, j′) ∈ Nn+2

∣∣ (ā, j + 1, j′ + 1) ∈ s
D̂i−1
α

}∪{
(ā, j, j′) ∈ Nn+2

∣∣ (ā, j + 1, `i−1) ∈ s
D̂i−1
α and (ā, `i−1, j

′) ∈ Ns

}

otherwise. Intuitively, sD̂i
α stores the tuples and the bounds of the interval (relative to i) in which

β is satisfied.
With the relations rD̂i

α and sD̂i
α at hand, we define

pD̂i
α :=

{
ā ∈ Nn

∣∣ (ā, j) ∈ rD̂i
α and (ā, 0, j′) ∈ sD̂i

α , for some j ≤ j′ + 1
}

.

Lemma 12. Let α = β UI γ. Assume that pD̂k
δ is regular and pD̂k

δ = δ(D,τ,k), for all k ≤ i + `i and
δ ∈ tsub(β) ∪ tsub(γ). Then the following properties hold:

(i) The relation rD̂i
α is regular and for all ā ∈ N and j ∈ N,

(ā, j) ∈ rD̂i
α iff ā ∈ γ(D,τ,i+j) and τi+j − τi ∈ I .

(ii) The relation sD̂i
α is regular and for all ā ∈ Nn and j, j′ ∈ N,

(ā, j, j′) ∈ sD̂i
α iff j ≤ j′, τi+j′ − τi < d, and ā ∈ β(D,τ,i+k), for all k ∈ [j, j′ + 1) .

(iii) The relation pD̂i
α is regular and pD̂i

α = α(D,τ,i).

Example 13. We illustrate the described transformations and constructions by revisiting the for-
mula

¤∀x.in(x) → ♦[0,6) out(x)

given in Example 5. We observe that the formula is defined over a signature S = (C,R, a), where R
contains the unary predicates in and out .

As a first step, let us remove some syntactic sugar. We obtain the formula

¤¬∃x.in(x) ∧ ¬(∃y.y ≈ y U[0,6) out(x)
)
.

In order to detect violations of this formula, we negate it to obtain ♦ θ with

θ := ∃x.in(x) ∧ ¬(∃y.y ≈ y U[0,6) out(x)
)
.

We extend the signature S according to Definition 6. Note that θ contains one temporal sub-
formula, namely α := ∃y.y ≈ y U[0,6) out(x). Hence, the extended signature Ŝ is obtained from S
by adding the auxiliary predicates pα, rα, and sα to R. According to Definition 7, we transform θ
into the first-order formula

θ̂ := ∃x.in(x) ∧ ¬pα(x).

For each time point i, we incrementally build the auxiliary relations pD̂i
α , rD̂i

α , and sD̂i
α such that

the auxiliary predicate pα is satisfied by exactly those elements that satisfy α at i.
To illustrate how the auxiliary relations are built, let us consider the temporal structure given

in Figure 1. Observe that to build the relations rD̂i
α , for i ≥ 0, we require the relations outDj with

i ≤ j ≤ `i. Recall that `i is the lookahead offset at time point i. For example, at i = 0 we have that
`0 = 3 because τ3 − τ0 < 6 and τ4 − τ0 = 6. Hence, to build rD̂0

α , we need to take into account the
relations outD0 , outD1 , outD2 , and outD3 . Moreover, as the subformula ∃y.y ≈ y is always true we do
not depend on any relations to build the relations sD̂i

α , for all i ≥ 0. For i = 0, we thus have rD̂0
α :=

Runtime Monitoring of Metric First-order Temporal Properties 9

-i:

τi:

inDi :

outDi :

index

time

0

1

{1}

∅

1

1

{2}

∅

2

3

∅
{2}

3

6

{3}

{1}

4

7

∅

∅

5

9

{4}

∅

6

13

∅
{4}

· · ·

· · ·

· · ·

· · ·

Fig. 1. Temporal structure used in Example 13.

{(1, 3), (2, 2)} and sD̂0
α =

(
N×{0}×{0})∪(

N×{0, 1}×{1})∪(
N×{0, 1, 2}×{2})∪(

N×{0, 1, 2, 3}×{3}). The
first component of a pair in rD̂i

α denotes an element occurring in a relation outDj , with i ≤ j ≤ `i.
The second component stores the difference j − i between the respective indices. For example, the
pair (1, 3) in rD̂0

α means that the element 1 occurs in outD3 . Similarly, while the first component
of a triple in sD̂i

α denotes the elements for which the subformula ∃y.y ≈ y is satisfied, the second
and the third components denote the bounds of the interval relative to i for which that element
satisfies the formula. Because the subformula ∃y.y ≈ y is satisfied by any a ∈ N, the relation sD̂0

α

contains all tuples (a, j, j′) with a ∈ N as their first as well as all j, j′ ∈ N with 0 ≤ j ≤ j′ ≤ `0 as
their second and third components. We obtain pD̂0

α := {1, 2} by projecting out the first component
of the tuples (a, j) ∈ rD̂0

α and (a, 0, j′) ∈ sD̂0
α for which the condition j ≤ j′ + 1 is satisfied.

We obtain rD̂1
α from rD̂0

α by updating the tuples already contained in rD̂0
α and by possibly

adding new tuples to rD̂1
α . Because `1 = 2, we must not take any further relations into account

and simply update the index component of the tuples that are already contained in rD̂0
α . We thus

get rD̂1
α := {(1, 2), (2, 1)}. Similarly, we obtain sD̂1

α by decreasing the relative indices of the tuples
already contained in sD̂0

α by one. Hence, we have that sD̂1
α :=

(
N×{0}×{0}) ∪ (

N×{0, 1}×{1}) ∪(
N×{0, 1, 2}×{2}) and pD̂1

α := {1, 2}.
In addition to updating those tuples already contained in rD̂1

α , to obtain rD̂2
α we must also

take tuples from additional relations into account. Particularly, because `2 = 2 also the tuples in
outD4 must be considered. As outD4 = ∅, no new elements are added though. As a result, we get
rD̂2
α := {(1, 1), (2, 0)} by decrementing the indices of the tuples stored in rD̂1

α . Moreover, we have
sD̂2
α := sD̂1

α and thus obtain pD̂2
α := {1, 2}.

For i = 3, we decrease the second component of the tuples in rD̂2
α to obtain rD̂3

α := {(1, 0)}.
Note that the tuple (2, 0) contained in rD̂2

α is not carried over to rD̂3
α because from the viewpoint

of i = 3 the element 2 occurs in the past. Moreover, we have that sD̂3
α := sD̂2

α and thus pD̂3
α := {1}.

Because 3 ∈ inD3 but 3 6∈ pD̂3
α , the formula ∀x.in(x) → ♦[0,6) out(x) is violated at i = 3.

3.5 Monitor and Correctness

Figure 2 presents the monitor M(φ). Without loss of generality, it assumes that each temporal
subformula occurs only once in φ. In the following, we outline its operation.

The monitor uses two counters i and q. The counter i is the index of the current element (Di, τi)
in the input sequence (D0, τ0), (D1, τ1), . . . , which is processed sequentially. Initially, i is 0 and it
is incremented at the end of each loop iteration (lines 4–16). The counter q ≤ i is the index of
the next time point q (possibly in the past, from the point of view of i) for which we evaluate ¬φ̂

over the structure D̂q. The evaluation is delayed until the relations p
D̂q
α for α ∈ tsub(φ) are all

10 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

1: i ← 0 % current index in input sequence (D0, τ0), (D1, τ1), . . .
2: q ← 0 % index of next query evaluation in sequence (D0, τ0), (D1, τ1), . . .
3: Q ← {(

(α, 0,waitfor(α)
) ∣∣ α temporal subformula of φ

}
4: loop
5: Carry over constants and relations of Di to D̂i.
6: for all (α, j, ∅) ∈ Q do % respect ordering of subformulae

7: Build relations for α in D̂j (e.g., build r
D̂j
α and p

D̂j
α if α = β SI γ).

8: Discard auxiliary relations for α in D̂j−1 if j−1 ≥ 0 (e.g., discard r
D̂j−1
α if α = βSI γ).

9: Discard relations p
D̂j

δ , where δ is a temporal subformula of α.

10: while all relations p
D̂q
α are built for α ∈ tsub(φ) do

11: Output valuations violating φ at time point q, i.e., output (¬φ̂)D̂q and q.
12: Discard structure D̂q−1 if q − 1 ≥ 0.
13: q ← q + 1
14: Q ← {(

α, i + 1,waitfor(α)
) ∣∣ α temporal subformula of φ

}∪{(
α, j,

⋃
θ∈update(S,τi+1−τi)

waitfor(θ)
) ∣∣ (α, j, S) ∈ Q and S 6= ∅}

15: i ← i + 1 % process next element in input sequence (Di+1, τi+1)
16: end loop

Fig. 2. Monitor M(φ)

instantiated (lines 10–13). Furthermore, the monitor uses the list5 Q to ensure that the auxiliary
relations of D̂0, D̂1, . . . are built at the right time: if (α, j, ∅) is an element of Q at the beginning of
a loop iteration, enough time has elapsed to build the relations for the temporal subformula α of
the structure D̂j . The monitor initializes Q in line 3. The function waitfor , defined below, extracts
the subformulae that cause a delay of the formula evaluation.

waitfor(θ) :=





waitfor(β) if θ = ¬β, θ = ∃x. β, or θ = I β,
waitfor(β) ∪ waitfor(γ) if θ = β ∧ γ or θ = β SI γ,
{θ} if θ = #I β or θ = β UI γ,
∅ otherwise.

The list Q is updated in line 14 before we increment i and start a new loop iteration. For the
update, we use the function update that is defined as follows for a formula set U and ∆ ∈ N:

update(U,∆) := {β | #I β ∈ U} ∪ {β U[max{0,c−∆},d−∆) γ |β U[c,d) γ ∈ U , with d−∆ > 0}∪
{β |β U[c,d) γ ∈ U or γ U[c,d) β ∈ U , with d−∆ ≤ 0}

The update adds a new tuple (α, i + 1,waitfor(α)) to Q, for each temporal subformula α of φ, and
it removes the tuples of the form (α, j, ∅) from Q. Moreover, for tuples (α, j, S) with S 6= ∅, the set
S is updated using the functions waitfor and update by taking into account the elapsed time to the
next time point, i.e. τi+1 − τi.

In lines 6–9, we build the relations for which enough time has elapsed, i.e., the auxiliary relations
for α in D̂j with (α, j, ∅) ∈ Q. Since a tuple (α′, j, ∅) does not occur before a tuple (α, j, ∅) in Q,
where α is a subformula of α′, the relations in D̂j for α are built before those for α′. To build the
relations, we use the incremental constructions described earlier in this section. We thus discard
certain relations after we have built the relations for α in D̂j to reduce space consumption. For

instance, if j > 0 and α = β SI γ, we discard the relation r
D̂j−1
α , and we discard r

D̂j−1
α and s

D̂j−1
α

when α = β UI γ.

5 We abuse notation by using set notation for lists. Moreover, we assume that Q is ordered in that (α, j, S) occurs
before (α′, j′, S′), whenever α is a proper subformula of α′, or α = α′ and j < j′.

Runtime Monitoring of Metric First-order Temporal Properties 11

In lines 10–13, the valuations violating φ at time point q are output together with q, for all q

where the relations p
D̂q
α of all immediate temporal subformulae α of φ have been built. After an

output, the remainder of the extended structure D̂q−1 is discarded and q is incremented by 1.

Theorem 14. The monitor M(φ) from Figure 2 has the following properties:
(i) Whenever M(φ) outputs (¬φ̂)D̂q , then (¬φ̂)D̂q = (¬φ)(D,τ,q). Furthermore, the set (¬φ̂)D̂q is

effectively constructable and finitely representable.
(ii) For every n ∈ N, M(φ) eventually sets the counter q to n in some loop iteration.

4 MFOTL Monitoring with Finite Relations

Throughout this section, we shall assume that all relations are finite. In this case, relational
databases provide an alternative to automata for implementing the monitor M(φ). When rep-
resenting relations as finite tables, however, we inherit standard problems from database theory.
For a restricted class of formulae, we provide solutions that build upon and extend the work [8,10,11]
from the area of temporal databases. Moreover, we analyze the space requirements of monitoring
such formulae.

Handling Finite Relations. A temporal database is a temporal structure (D, τ) over a signature
S = (C, R, a), where the domain |D| is infinitely countable and each relation rDi is finite, for each
r ∈ R and i ∈ N [8, 11]. Our constructions from §3.4 do not work when the auxiliary relations
are required to be finite. In particular, Lemmas 9–12 become invalid when replacing “regular” by
“finite.” The constructed relations are still regular but possibly infinite. In the following, we explain
why our constructions fail and sketch our solution. Further details are given in Appendix B.

Consider the formula p(x)∧¨I ¬q(x). The subformula ¨I ¬q(x) is problematic because, at each
time point, our monitor stores the elements that satisfy ¨I ¬q(x) in an auxiliary relation. This
relation is infinite when the relations for q are finite. However, the entire formula is unproblematic
since, at each time point, an element satisfying ¨I ¬q(x) must also be in the relation for the
predicate p, which is finite. To handle the subformula ¨I ¬q(x), we build on work from database
theory on domain independence (e.g., [14]), where a similar problem arises with queries containing
negation and quantification. A standard solution attempts to rewrite queries so that the quantified
variables range only over finitely many elements (see [2]). We generalize this solution for first-
order queries to mfotl formulae whereby we try to rewrite the given mfotl formula φ so that all
temporal subformulae and their direct subformulae have only finitely many satisfying valuations. For
instance, we rewrite p(x) ∧ ¨I ¬q(x) to the equivalent formula p(x) ∧ ¨I

(¬q(x) ∧ ♦I p(x)
)
, whose

temporal subformulae each have only finitely many satisfying elements. Hence, the transformed
formula can be handled by our monitor if the interval I is finite. Recall the requirement that
future-time operators are bounded.

After rewriting the formula φ, we check, based on the syntax of the result ψ, if each θ ∈ {α |α =
ψ, α is a temporal subformula of ψ, or α is a direct subformula of a temporal subformula of ψ} is
temporal domain independent. If ψ passes this check, we know that ψ can be handled by our mon-
itor for finite relations. Otherwise, no conclusions can be drawn. The notion of temporal domain
independence is a natural generalization of the standard notion of domain independence (see [2]).
For the ease of exposition, we omit its definition here and refer to Definition 18 in Appendix B.1.
Future-bounded temporal domain independent formulae have properties similar to first-order do-
main independent formulae. For instance, the set θ(D,τ,i) is finite, for a future-bounded formula θ,
a temporal database (D, τ), and i ∈ N. Moreover, the set θ(D,τ,i) contains only data tuples whose

12 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

elements are constants or which appear in a finite prefix of (D, τ). The length of the prefix depends
on i, τ , and α.

For the remainder of this section, let us assume that the given formula φ, all temporal subformu-
lae of φ, and all direct subformulae of temporal subformulae of φ are temporal domain independent.

Space Requirements. In the following, we analyze our monitor’s space requirements. First,
observe that the counters q and i of M(φ) grow arbitrarily large when processing the sequence
(D0, τ0), (D1, τ1), This problem can be partly overcome by replacing these two counters with a
single counter that stores i− q, i.e., the distance between the current time and the time when the
last evaluation of ¬φ̂ took place. Still, i − q can become arbitrarily large if φ contains a temporal
subformula of the form β UI γ and the number of time points with the same time stamp in (D, τ)
is unbounded, i.e., {j′ − j | τj = τj+1 = · · · = τj′ with j ≤ j′} is infinite. Note that tuples stored in
Q also contain indices of the sequence (D, τ). These indices must also be made relative to q.

A problem related to the above one is that the difference between time stamps can be arbitrarily
large. If φ contains a subformula of the form α = βS[c,∞) γ, the auxiliary relations rD̂0

α , rD̂1
α , . . . may

need to store tuples whose last component grows with each i. To overcome this problem, we slightly
modify the incremental construction of rD̂i

α for i > 0. Namely, the “age” of a tuple (ā, y) ∈ r
D̂i−1
α is

only increased when it is less than c. For this special case, we define

rD̂i
α :=

(
γ̂D̂i × {0}) ∪ {

(ā,min{c, z + τi − τi−1}) ∈ Nn+1
∣∣ ā ∈ β̂D̂i and (ā, z) ∈ r

D̂i−1
α

}
.

This new construction ensures that the size of the last component of the tuples in rD̂i
α is bounded.

Similar to Lemma 11, we can prove that this construction has the desired properties. In the follow-
ing, we assume that the monitor M(φ) uses this modified construction.

We can further optimize our construction of rD̂i
α by removing redundant tuples: whenever

(ā, y), (ā, y′) ∈ rD̂i
α with y < y′, we remove (ā, y) from rD̂i

α . Reducing the size of the auxiliary
relations together with other optimizations like formula rewriting [10] should substantially improve
the practical performance of the monitor. However, these optimizations are irrelevant for the fol-
lowing worst-case analysis and we therefore do not further discuss them here. More details on
optimizations are given in Appendix B.3.

We now analyze the sizes of the auxiliary relations stored by our monitor in each loop iteration.
We first introduce the following abstract notion for analyzing the resources consumed by monitors
in general. Let C be a class of temporal structures over the signature S = (C, R, a) and let pre(C)
denote the set of nonempty finite prefixes of the temporal structures in C.

Definition 15. Let f, g : pre(C) → N and s : N → N be functions. We write f Cs g if f(D̄, τ̄) <
s(g(D̄, τ̄)), for all (D̄, τ̄) ∈ pre(C).

In our context, the function f : pre(C) → Nmeasures the consumption of a particular resource (e.g.,
storage) of a monitor after it has processed the finite prefix (D̄, τ̄). The function g : pre(C) → N
measures the size of the prefix (D̄, τ̄). Intuitively, f Cs g means that, at any time point, the resource
consumption (measured by f) of the monitor is bounded by the function s : N → N with respect
to the size of the processed prefix (measured by g) of an input from C.

In our analysis of the monitor M(φ), we use the following concrete functions f and g. Let
(D̄, τ̄) ∈ pre(C) with D̄ = (D0, . . . , Di) and τ̄ = (τ0, . . . , τi).
– We define g(D̄, τ̄) := |adom(D̄)|, where adom(D̄) is the so-called active domain of (D̄, τ̄), i.e.,

adom(D̄) := {cD0 | c ∈ C} ∪⋃
0≤k≤i

⋃
r∈R{dj | (d1, . . . , da(r)) ∈ rDk and 1 ≤ j ≤ a(r)} .

Note that g only counts the number of elements of D̄ that are constants or that occur in some
of D̄’s relations. It ignores the sizes of these elements, the number of times an element appears
in D̄, and where an element occurs. Moreover, it ignores the time stamps in τ̄ .

Runtime Monitoring of Metric First-order Temporal Properties 13

– We define f(D̄, τ̄) to be the sum of the cardinalities of the relations for r ∈ R̂ stored by M(φ)
after the (i + 1)st loop iteration, having processed the input (D0, τ0), (D1, τ1), . . . , (Di, τi).

Observe that f Cs g is a desirable property of a monitor. Intuitively, it says that the amount of
data stored by the monitor does not depend on how long the monitor has been running but only
on the number of domain elements that appeared so far. Furthermore, the stored data is bounded
by the function s. We remark that the property of a (polynomially) bounded history encoding [8]
can be formalized as f Cs g, for some (polynomial) s : N→ N.

Theorem 16. Let C be a class of temporal databases. Assume that there is some ` ∈ N such that
max{j | τi = τi+1 = . . . = τi+j} < `, for all (D, τ) ∈ C and all i ∈ N. Then, we have that f Cs g,
where s : N→ N is a polynomial of degree max{a(r) | r ∈ R̂}.
The proof of Theorem 16 is given in Appendix B.4.

Note that if such a bound ` on the sequence τ of time stamps does not exist, we cannot guarantee
any upper bound on f . To see this, consider the formula φ = (p(x) U[0,1) q(x)) ∧ (p′(x) U[0,2) q′(x))
and a temporal database (D, τ), where the relations for p, p′, q, and q′ are all singletons and equal.
We have that g(D̄, τ̄) = 1, for all finite prefixes (D̄, τ̄) of (D, τ). However, if τ contains a sequence
τi, . . . , τi+j with τi = τi+1 = · · · = τi+j−1 = 1− τi+j , we have that f(D̄, τ̄) ≥ j, for the prefix (D̄, τ̄)
with D̄ = (D0, . . . , Di+j) and τ̄ = (τ0, . . . , τi+j). The reason for this is that our monitor stores

at least the nonempty relations pD̂i

p(x)U[0,1)q(x), . . . , p
D̂i+j−1

p(x)U[0,1)q(x) at the end of the (i + j + 1)st loop

iteration. If we can choose j arbitrarily large, we can exceed s(g(D̄, τ̄)), for any s : N→ N.
In [31], Toman describes the use of two-sorted first-order logic (2-fol) to query temporal

databases. In this work, he presents a data-expiration technique to remove irrelevant data with
respect to the given property. Note that our incremental constructions in §3.4 can also be seen as a
data-expiration technique, since the constructions remove irrelevant data. A monitoring approach
using 2-fol based on Toman’s work is bounded by a function with a stack of exponentials [31].
The height of the stack is given by the quantifier depth of the given 2-fol formula. The polynomial
upper bound of the presented mfotl monitor suggest that mfotl is better suited for monitoring
than 2-fol whenever the property that needs to be monitored is expressible as mfotl formula
that can be handled by the monitor M(φ).

Finally, we remark that it is open whether Theorem 16 can be carried over to temporal structures
with possibly infinite relations and automatic representations. To begin with, it is not clear how
to define the function g that measures the size of the automatic representations. In particular, g
should be independent of the length of the prefix. Moreover, establishing tight upper bounds on the
size of automata for automatic structures is difficult and only a few results for specific automatic
structures exist (see [19]).

5 Conclusion and Future Work

We have presented an automata-based monitoring approach for an expressive fragment of a metric
first-order temporal logic. The use of automata substantially generalizes both the kinds of structures
and the class of formulae that can be monitored. Moreover, it eliminates the limitations that arise
in databases, where relations must be finite. An interesting question here is to what extent the use
of automatic structures can be carried over to other monitoring approaches, thereby solving the
problems they have with infinite relations.

One direction for future work is to explore whether our approach can be used to monitor
temporal first-order logics that have an interval-based semantics instead of a point-based semantics,
or a combined interval and point-based semantics, which is useful for modeling state and event

14 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

predicates. Another direction is to conduct a refined complexity analysis for our algorithm with
automatic structures and to validate our results by implementation and testing. In particular, we
plan to design and evaluate data structures and algorithms for efficiently incrementally updating
relations, which is at the heart of our monitoring algorithm.

References

1. Proceedings of the 1st to 8th Workshop on Runtime Verification, 2001–2008.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

3. B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185, 1985.

4. R. Alur and T. Henzinger. Logics and models of real time: A survey. In Proceedings of the REX Workshop on
Real Time: Theory in Practice, volume 600 of Lect. Notes in Comput. Sci., pages 74–106, 1991.

5. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In Proceedings of the 5th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), volume 2937
of Lect. Notes in Comput. Sci., pages 44–57, 2004.

6. A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In Proceedings of the 26th Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 4337 of Lect. Notes
in Comput. Sci., pages 260–272, 2006.

7. A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and interpretations. Theory
Comput. Syst., 37(6):641–674, 2004.

8. J. Chomicki. Efficient checking of temporal integrity constraints using bounded history encoding. ACM Trans.
Database Syst., 20(2):149–186, 1995.

9. J. Chomicki and D. Niwiński. On the feasibility of checking temporal integrity constraints. J. Comput. Syst.
Sci., 51(3):523–535, 1995.

10. J. Chomicki and D. Toman. Implementing temporal integrity constraints using an active DBMS. IEEE Trans.
on Knowl. and Data Eng., 7(4):566–582, 1995.

11. J. Chomicki, D. Toman, and M. H. Böhlen. Querying ATSQL databases with temporal logic. ACM Trans.
Database Syst., 26(2):145–178, 2001.

12. B. D’Angelo, S. Sankaranarayanan, C. Snchez, W. Robinson, B. Finkbeiner, H. B. Sipma, S. Mehrotra, and
Z. Manna. LOLA: Runtime monitoring of synchronous systems. In Proceedings of the 12th International Sym-
posium on Temporal Representation and Reasoning (TIME), pages 166–174, 2005.

13. N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Checking traces for regulatory conformance. In 8th Workshop on
Runtime Verification (RV), Lect. Notes in Comput. Sci., 2008.

14. R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985, 1982.

15. C. Giblin, A. Y. Liu, S. Müller, B. Pfitzmann, and X. Zhou. Regulations expressed as logical models (REALM).
In Proceedings of the 18th Annual Conference on Legal Knowledge and Information Systems (JURIX), volume
134 of Frontiers in Artificial Intelligence and Applications, pages 37–48, 2005.

16. K. Havelund and G. Rosu. Efficient monitoring of safety properties. Int. J. Softw. Tools Technol. Transf.,
6(2):158–173, 2004.

17. J. H̊akansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from temporal logic specifications.
Int. J. Softw. Tools Technol. Transf., 4(4):456–471, 2003.

18. B. Khoussainov and A. Nerode. Automatic presentations of structures. In Proceedings of the International
Workshop on Logical and Computational Complexity (LCC), volume 960 of Lect. Notes in Comput. Sci., pages
367–392, 1995.

19. F. Klaedtke. On the automata size for Presburger arithmetic. In Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 110–119, 2004.

20. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4):255–299, 1990.

21. K. J. Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime verification of timed LTL using disjunctive
normalized equation systems. Electr. Notes Theor. Comput. Sci., 89(2), 2003.

22. O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Proceedings of the Conference on Logic of
Programs, volume 193 of Lect. Notes in Comput. Sci., pages 196–218, 1985.

23. U. W. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on temporal logic. Inf. Syst.,
12(3):255–269, 1987.

24. O. Maler, D. Nickovic, and A. Pnueli. From MITL to timed automata. In Proceedings of the 4th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), volume 4202 of Lect. Notes in
Comput. Sci., pages 274–289, 2006.

Runtime Monitoring of Metric First-order Temporal Properties 15

25. D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog systems. In Proceedings of the
5th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), volume 4763 of
Lect. Notes in Comput. Sci., pages 304–319, 2007.

26. M. Roger and J. Goubault-Larrecq. Log auditing through model-checking. In Proceedings of the 14th IEEE
Computer Security Foundations Workshop (CSFW), pages 220–234, 2001.

27. G. Rosu and K. Havelund. Rewriting-based techniques for runtime verification. Autom. Softw. Eng., 12(2):151–
197, 2005.

28. A. P. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Trans. Knowl. Data Eng., 7(3):471–486,
1995.

29. O. Sokolsky, U. Sammapun, I. Lee, and J. Kim. Run-time checking of dynamic properties. Electr. Notes Theor.
Comput. Sci., 144(4):91–108, 2006.

30. P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifications. Electr. Notes Theor.
Comput. Sci., 113:145–162, 2005.

31. D. Toman. Logical data expiration. In J. Chomicki, R. van der Meyden, and G. Saake, editors, Logics for
Emerging Applications of Databases, pages 203–238. Springer, 2003.

16 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

A Details for Monitoring Temporal Automatic Structures

In this section, we provide additional details to §3.

A.1 Basic Arithmetic in Automatic Structures

We now show that under the restrictions made in §3.1, we can define different basic arithmetic
relations in the first-order logic over an automatic structure in D.

We start by showing that the elements in |D| can be linearly ordered by a regular relation. Let
L ⊆ Σ∗ be the regular language that represents the domain |D|, where Σ is some finite alphabet.
Without loss of generality, we assume a linear order ≺alph on Σ. We lift ≺alph to linearly order the
elements in Σ∗. For w, w′ ∈ Σ∗, we define w ≺∗ w′ iff |w| < |w′|, or |w| = |w′| and w ≺lex w′, where
|u| denotes the length of a word u ∈ Σ∗ and ≺lex is the lexicographical ordering on Σ∗ with respect
to the ordering ≺alph on the alphabet Σ.

It is easy to see that ≺∗ can be recognized by an automaton by reading the letters of w and w′

synchronously. More formally, the language O := {w ⊗ w′ |w ≺∗ w′} is regular. Here, u ⊗ v is the
convolution of the words u, v ∈ Σ∗. See [7], for further details. O ∩ L is a regular language, which
we can use to order the elements in |D|. For a, b ∈ |D|, we define a <∗ b iff u ≺∗ v, where u and v
represent a and b, respectively. Recall that we assume that the domain representation is injective,
i.e., every element in |D| has a unique representative in L.

Obviously, the ordering <∗ is regular and (|D|, <∗) is isomorphic to (N, <). In the following, we
assume that |D| = N and <∗=<.

We already have seen that we can define the relation succ := {(x, y) ∈ N2 | y = x + 1} in
FO(N, <). For d ∈ N, the formula

∃z0. . . .∃zd. x ≈ z0 ∧ y ≈ zd ∧
∧

0≤i<d

succ(zi, zi+1)

defines the relation {(x, y) ∈ N2 |x + d = y}. From these relations, it follows that the relations
{(x, y) ∈ N2 |x− y = d}, {(x, y) ∈ N2 |x− y ≤ d}, and {(x, y) ∈ N2 | |x− y| ≤ d} are all regular.

A.2 Proof Details of §3
In this subsection, we provide the omitted proofs from §3. We start with Lemmas 11 and 12, which
establish the correctness of the constructions for the temporal operators SI and UI , respectively.
Then, we provide the proof of Theorem 14, which establishes the correctness of the monitor M(φ)
presented in Fig. 2.

Throughout this section, v0 denotes any valuation. Moreover, we use Lemma 8 without explicitly
referring to it.

Proof of Lemma 11. Property (ii) follows immediately from (i) and the definition of pD̂i
α . We

prove (i) by induction over i.

Base case i = 0: The set rD̂0
α is regular, since it can be defined by the formula

ψ(x̄, y) := γ̂(x̄) ∧ ¬∃z. succ(z, y) .

Note that, by assumption, the relations for the predicates in γ̂ are regular.
The equivalence for i = 0 follows directly from the definition of rD̂0

α . Note that τi− τi < d, since
in the definition of the syntax of mfotl, we require that I 6= ∅. Hence, d > 0.

Runtime Monitoring of Metric First-order Temporal Properties 17

Step case i > 0: We first show that rD̂i
α is regular. Similar to the base case, it follows that the set

S := γ̂D̂i×{0} is regular. The set T := {(ā, y) ∈ Nn+1 | y < d, ā ∈ β̂D̂i , and (ā, y′) ∈ r
D̂i−1
α , for y′ =

y − τi + τi−1} is also regular. It can be expressed by the first-order formula
ψ(x̄, y) := y ≺ d ∧ β̂(x̄) ∧ ∃y′. ψ′(x̄, y′) ∧ y′ + (τi − τi−1) ≈ y ,

where ψ′ is the formula that defines r
D̂i−1
α , which is regular by the induction hypothesis. Note that

d and τi− τi−1 are constant values and not variables. Since rD̂i
α is defined as the union of S and T ,

we conclude that rD̂i
α is regular.

Now, we show the step case for the other claim.

(⇒) If the tuple (ā, y) is in S, then the claim is obviously true. Assume that (ā, y) ∈ T . By

definition, there is a tuple (ā, y′) in r
D̂i−1
α such that y′ = y− τi + τi−1. By the induction hypothesis,

we have that
∃j ∈ [0, i) : y′ = τi−1 − τj < d, (D, τ, v0[x̄/ā], j) |= γ, and

∀k ∈ [j + 1, i) : (D, τ, v0[x̄/ā], k) |= β .

It follows that y = y′+τi−τi−1 = τi−τj . From the assumption, we conclude that (D, τ, v0[x̄/ā], k) |=
β, for all k with j < k ≤ i.

(⇐) If j = i, it follows that y = 0. From the assumption and the definition of rD̂i
α , it follows that

(ā, 0) ∈ rD̂i
α . Assume that j < i. By the induction hypothesis, (ā, y′) ∈ r

D̂i−1
α with y′ = y−(τi−τi−1).

From the definition of rD̂i
α and the assumption, we conclude that (ā, y) ∈ rD̂i

α .

Proof of Lemma 12. Property (iii) follows immediately from (i), (ii), and the definition of pD̂i
α .

Let us first prove (i), which we do by induction over i.

Base case i = 0: We first show that rD̂i
α is regular. It suffices to show that the set Nr is regular.

The regularity of Nr can be seen as follows. For j ∈ N with `i−1 ≤ j ≤ `i, we define N j
r := ∅ if

τi+j−τi < c, and N j
r := γ̂D̂i+j ×{j} otherwise. Obviously, N j

r is regular. Since Nr =
⋃

`i−1≤j≤`i
N j

r ,
we conclude that Nr is regular.

Note that by definition of `i we have τ`i − τj < d, for every j ≤ `i. The equivalence follows
directly from the definition of Nr.

Step case i > 0: We first show that rD̂i
α is regular. It suffices to show that the sets Nr and Ur are

regular. The regularity of Nr can be shown as in the base case. The regularity of Ur can be seen
as follows. The set H := {j ∈ N | `i−1 ≤ j ≤ `i and τi+j − τj ≥ c} is regular, since it is finite. The
set Ur can be defined by the formula h(z) ∧ ∃z′. succ(z, z′) ∧ r(x̄, z′), where h denotes the formula

that defines H and r denotes the formula that defines the set r
D̂i−1
α , which is regular by induction

hypothesis.
If j ≥ `i−1, the equivalence follows, similar to the base case, directly from the definition of `i.

In the following, assume j < `i−1.

(⇒) We have that (ā, j) ∈ Ur. By definition, (ā, j + 1) ∈ r
D̂i−1
α and τi+j − τi ≥ c. By the induction

hypothesis, ā ∈ γ̂D̂i−1+j+1 and τi−1+j+1 − τi−1 ∈ I. Since the difference of the time stamps from
i−1 to i+j and from i to i+j decreases, we have that τi+j−τi < d. We are done since τi+j−τi ≥ c
by the definition of Ur.

(⇐) From the definition of `i it follows that τi−1+j+1 − τi−1 < d. Hence, ā ∈ γ̂D̂i−1+j+1 and

τi−1+j+1 − τi−1 ∈ I. By the induction hypothesis, (ā, j + 1) ∈ r
D̂i−1
α . From the definition of Ur, we

conclude that (ā, j) ∈ rD̂i
α .

18 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

Let us now prove (ii), which we do again by induction over i.

Base case i = 0: We first show that sD̂i
α is regular. It suffices to show that the set Ns is regular. To

see that Ns is regular, let N j,j′
s :=

⋂
j≤k≤j′ β̂

D̂i+k , for j, j′ ∈ N with `i−1 ≤ j ≤ j′ ≤ `i. Obviously,

N j,j′
s is regular and Ns =

⋃
`i−1≤j≤j′≤`i

(N j,j′
s × {(j, j′)}). We conclude that Ns is regular.

Note that by the definition of `i we have τ`i − τj′ < d, for every j′ ≤ `i. The equivalence follows
directly from the definition of Ns.

Step case i > 0: We first show that rD̂i
α is regular. It suffices to show that the sets Ns and Us are

regular. The regularity of Ns can be shown as in the base case. The regularity of Us can be seen as
follows. The formula

(∃y′. ∃z′. succ(y, y′) ∧ succ(z, z′) ∧ s(x̄, y′, z′)
)∨(∃y′. ∃z′. succ(y, y′) ∧ z′ ≈ `′ ∧ s(x̄, y′, z′) ∧ n(x̄, z′, z)

)

defines Ur, where n is the formula that defines the set Ns and s is the formula that defines sD̂i−1
α ,

which is regular by the induction hypothesis. Note that `i−1 is a constant.
If j′ ≥ `i−1, the equivalence follows, similar to the base case, directly from the definition of `i.

For j < `i−1, it suffices to prove that (ā, j, j′) ∈ Us iff j ≤ j′, τi+j′ − τi ≤ d, and ā ∈ γ̂D̂i+k , for all
k ∈ [j, j′ + 1) The proof is similar as for (i). We omit it.

Correctness of the Monitor M(φ). For the proof of Theorem 14, we index the program variable
Q of the monitor M(φ) from Figure 2 by the counter i. That means, Qi denotes the list when we
enter (line 4) the (i + 1)st loop iteration. Analogously, we index the program variable q with i: qi

is the value when the enter the (i + 1)st loop iteration.

Proof (Theorem 14). In the following, assume that (D0, τ0), (D1, τ1), . . . is the input sequence of
the monitor M(φ) and φ ∈ MFOTL is a future-bounded input formula. Moreover, let T be the set
of temporal subformulae of φ.

We start with some observations about the monitoring algorithm M(φ). Let α ∈ T and i, j ∈ N.
(1) If (α, j, S), (α, j, S′) ∈ Qi then S = S′. This follows immediately from the initialization (line 3)

and the update (line 14) of the list Q.
(2) We have that (α, i,waitfor(α)) ∈ Qi. This directly follows from the initialization of Q (line 3)

and the update of Q (line 14).
(3) If (α, j, S) ∈ Qi then there is an integer i′ ≥ i such that (α, j, ∅) ∈ Qi′ . This follows from the

update of Q (line 14) (in particular, from the application of the functions waitfor and update),
and because the sequence of time stamps τ is monotonically increasing and it makes progress.
Note that we only remove a tuple (α, j, S) from Qi if S = ∅ and after the relations for α in D̂j

have been built (lines 7 and 14).
From (2) and (3), it follows that for every α ∈ T and j ∈ N, we eventually execute line 7, where
we build the relations for α in the structure D̂j . From (1), it follows that line 7 is executed at most
once for α ∈ T and j ∈ N. It follows that for each q ∈ N, we execute line 9 exactly once in a run
of M(φ).

Furthermore, observe that the relations p
D̂j
α , for α ∈ tsub(φ) are only discarded at line 12 of the

monitoring algorithm. We conclude that for every value of the counter q, the condition of the while
loop (line 10) will eventually become true in some loop iteration. Hence, the counter q will always
eventually be increased by 1. We conclude that the second property (ii) of the theorem holds.

Runtime Monitoring of Metric First-order Temporal Properties 19

We now turn to the property (i) of the theorem. We need the following definition of the temporal
rank of a formula θ:

rank(θ) :=





rank(θ′) if θ = ¬θ′ or θ = ∃x. θ′,
max{rank(θ′), rank(θ′′)} if θ = θ′ ∧ θ′′,
1 + rank(θ′) if θ = I θ′ or θ = #I θ′

1 + max{rank(θ′), rank(θ′′)} if θ = θ′ SI θ′′ or θ = θ′ UI θ′′,
0 otherwise.

For the remainder of the proof, let us assume that (α, j, ∅) ∈ Qi. The fact that qi ≤ j holds
at the beginning of the (i + 1)st loop iteration is easily established by an induction over i. In the
following, we prove by induction over rank(α) that for the construction of the relations of α in D̂j ,
the necessary relations (according to the incremental constructions given in §3.4) have been built
earlier and have not yet been discarded. From the lemmas in §3.4 about these constructions, it

follows that p
D̂j
α = p

(D,τ,j)
α and p

D̂j
α is regular. From this, we then conclude that the monitor M(φ)

has the property (i) of the theorem.

Base Case: rank(α) = 1. We make a case split on α’s main connective.

– α = I β: We have that tsub(β) = ∅. Hence, the construction of the relation p
D̂j
α requires no

auxiliary relations. Moreover, if j > 0, the atomic relations rD̂j−1 with r ∈ R have not been
discarded. This follows from the fact that qi ≤ j and that a relation rD̂j−1 is only discarded in
line 12. Observe that in line 12, we discard D̂q−1 and not D̂q.

– α = βSI γ: We have that tsub(β)∪ tsub(γ) = ∅. Similarly to the above case, the atomic relations

rD̂j for r ∈ R have not been discarded. Moreover, for j > 0 the auxiliary relation r
D̂j−1
α has been

built earlier and has not been discarded. The fact that it has been built earlier follows from the
ordering of the tuples in the list Q and the fact that there is an i′ ≤ i such that (α, j−1, ∅) ∈ Qi′ .
The latter fact easily follows from an induction over i by using the initialization and the updates
of the list Q.

– α = #I β: Since tsub(β) = ∅, we only have to check that a relation rD̂j+1 with r ∈ R is
available. Because of the initialization and the update of the list Q, we have that j + 1 = i and
(α, j, ∅) ∈ Qj+1. Thus, the relation rD̂j+1 is available.

– α = β UI γ: Let I be the interval [c, d). Since tsub(β) ∪ tsub(γ) = ∅, it suffices to check that
for all r ∈ R and k < max{k′ ∈ N | τj+k′ − τj < d}, the relation rD̂j+k is available. This follows
from the initialization and the updates of the list Q. As in the case for the since operator, we

conclude that the relations r
D̂j−1
α and s

D̂j−1
α are available.

Step Case: rank(α) > 1. We make again a case split on the main connective of α.

– α = I β: For j = 0, there is nothing to prove since p
D̂j
α = ∅. Let j > 0. As in the corresponding

case of the base case, we have that the relations rD̂j−1 with r ∈ R are available.
Let δ ∈ tsub(β). There is an i′ ≤ i such that (δ, j − 1, ∅) ∈ Qi′ . This fact easily follows from an
induction over i by using the initialization and the updates of the list Q. Due to the ordering

of the list Q and the induction hypothesis, we have that p
D̂j−1

δ has been built earlier. It has not
yet been discarded because this only happens in line 9 or line 12, i.e., after the relation p

Dj
α has

been built. Note that qi ≤ j.
– α = β SI γ: This case uses a similar argumentation as the corresponding case of the base case

for the relations rD̂j with r ∈ R and r
D̂j−1
α . For the relations p

D̂j

δ with δ ∈ tsub(β)∪ tsub(γ), we
use a similar argumentation as in the case for the previous operator.

20 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

– α = #I β: As in the corresponding case of the base case, the relations rD̂j+1 with r ∈ R are
available. Let δ ∈ tsub(β). There is an i′ ≤ i such that (δ, j +1, ∅) ∈ Qi′ . This fact easily follows
from an induction over i by using the induction hypothesis on δ and by using the initialization
and the updates of the list Q.

– α = β UI γ: Let I be the interval [c, d) and let `j := max{k′ ∈ N | τj+k′ − τj < d}. Recall that
`j is the lookahead offset at time point j. As in the corresponding case of the base case, the
relations rD̂j+k with r ∈ R and k ≤ `j are available. Moreover, when j > 0 we conclude as in

the base case that the relations r
D̂j−1
α and s

D̂j−1
α are available.

Let δ ∈ tsub(β)∪tsub(γ). By the induction hypothesis, we have that the relations when building
the relations for δ of D̂j+k with k ≤ `j are available. It suffices to show that for all k ≤ `j ,
there is an i′ ≤ i such that (δ, j + k, ∅) ∈ Qi′ . This follows easily from the initialization and the
updates of the list Q. a

B Details for MFOTL Monitoring with Finite Relations

In this section, we provide additional details for §4. Recall that a temporal database is a temporal
structure (D, τ) over a signature S = (C,R, a), where the domain |D| is infinitely countable and
each relation rDi is finite, for each r ∈ R and i ∈ N [8, 11]. We point out that the relations for ≈
and ≺ are infinite.

B.1 Non-Strict Operators and Temporal Domain Independence

For reasons to become clear later, we now also provide strict versions of the binary temporal
operators SI and UI . The semantics of their strict counterparts U̇I and ṠI are defined as follows.

Definition 17. Let (D, τ) be a temporal structure over a signature S, with D = (D0, D1, . . .) and
τ = (τ0, τ1, . . .), β and γ formulae over S, v a valuation, and i ∈ N. We define:

(D, τ, v, i) |= (β ṠI γ) iff for some j < i, τi − τj ∈ I, (D, τ, v, j) |= γ,
and (D, τ, v, k) |= β, for all k ∈ [j + 1, i + 1)

(D, τ, v, i) |= (β U̇I γ) iff for some j > i, τj − τi ∈ I, (D, τ, v, j) |= γ,
and (D, τ, v, k) |= β, for all k ∈ [i, j)

In addition, we need the dual temporal operators RI (release) and TI (trigger), which are
defined as β RI γ := ¬(¬β UI ¬γ) and β TI γ := ¬(¬β SI ¬γ). Moreover, we need the strict
versions of the derived operators ¤I , ♦I , ¥I , ¨I , RI , and TI , which are derived from ṠI and U̇I

analogously to their non-strict counterparts. We decorate them with a dot to distinguish them
from the non-strict versions, e.g., we write ¥̇Iφ. We now define MFOTL+ to be the set of formulae
obtained from Definition 2 and the operators ṠI and U̇I , where the (strict) derived temporal
operators ♦̇I , ˙̈

I , ¤̇I , ¥̇I , ṘI , and Ṫ I , the (non-strict) derived temporal operators ♦I , ¨I , ¤I , ¥I ,RI

and TI , the derived Boolean connectives ∨,→, and ↔, and the universal quantifier ∀ are treated
as primitives. Note that in the metric case, the strict and the non-strict versions of the operators
since and until cannot be derived from each other.

The following function returns the set of direct subformulae of a temporal formula. For a formula
α ∈ MFOTL+, we define

dstf (α) :=





{β} if α = ⊗β, where⊗ is an unary temporal operator,
{β, γ} if α = β ⊕ γ, where⊕ is a binary temporal operator,
∅ otherwise.

Runtime Monitoring of Metric First-order Temporal Properties 21

We say that i ∈ N is minimal for q ∈ N, the temporal database (D, τ) with D = (D0, D1, . . .),
and the bounded formula θ if for all valuations v, we have that

(D, τ, v, q) |= θ iff (D′, τ, v, q) |= θ ,

where D′ = (D′
0, D

′
1, . . .) with D′

j = Dj , for all j ≤ i. Since, at any time point, θ can only refer to
time points finitely far into the future and τ makes progress, there is always a minimal i, for every
given q, (D, τ), and θ. The active domain of D̄ = (D1, . . . , Di) is

adom(D̄) := {cD0 | c ∈ C} ∪⋃
0≤k≤i

⋃
r∈R{dj | (d1, . . . , da(r)) ∈ rDk and 1 ≤ j ≤ a(r)} .

We write |=U to denote the relation |=, as defined in Definition 2, but quantification is relativized
to the set U ⊆ |D|. In the following, let v0 be an arbitrary valuation.

Definition 18. Let θ be a future-bounded formula with the free variables given by the vector x̄ =
(x1, . . . , xn). Moreover, let T be the set of temporal subformulae of θ.

(i) The formula θ is temporal domain independent if for all temporal databases (D, τ), all i, q ∈ N
with q ≤ i, and all U, U′ ⊆ |D|, we have that

{
d̄ ∈ Un

∣∣ (D, τ, v0[x̄/d̄], q) |=U θ
}

=
{
d̄ ∈ U′n

∣∣ (D, τ, v0[x̄/d̄], q) |=U′ θ
}

,

whenever adom(D̄) ⊆ U, U′ with D̄ = (D1, . . . , Dq, . . . , Di) and i is minimal for q, (D, τ),
and θ.

(ii) The formula θ is temporal subformula domain independent (tsf domain independent, for
short) if (1) is θ temporal domain independent, (2) each α ∈ T is temporal domain indepen-
dent, and (3) each δ ∈ dstf (α) is temporal subformula independent, for all α ∈ T .

As noted by Chomicki [8], the semantics of the temporal operators may influence tsf domain
independence. For example, by using the strict temporal operator Ṡ [0,∞) a larger set of properties
can be specified for which the formulae are tsf domain independent formulae [8]. To illustrate this,
consider the formula p(x, y)Ṡ [0,∞)q(x), which is tsf domain independent. Now consider the logically
equivalent formula [0,∞)(p(x, y) S[0,∞) q(x))∧ p(x, y), which is not tsf domain independent. This
can be seen as follows. Assume that (D, τ, v0[x/a], 0) |= q(x), for some temporal database (D, τ) and
a ∈ |D|. Then (D, τ, v0[(x, y)/(a, b)], 0) |= p(x, y)S[0,∞)q(x), for any b ∈ |D|. Hence, p(x, y)S[0,∞)q(x)
is not temporal domain independent, which follows from the following lemma.

Lemma 19. Let θ be a future-bounded formula, (D, τ) a temporal database, and q ∈ N. If θ is
temporal domain independent, then θ(D,τ,q) is finite.

Proof. Let i ∈ N be minimal for q, (D, τ), and θ. Let D̄ = (D0, . . . , Dq, . . . , Di). We have that
{
d̄ ∈ |D|n ∣∣ (D, τ, v0[x̄/d̄], q) |= θ

}
=

{
d̄ ∈ adom(D̄)n

∣∣ (D, τ, v0[x̄/d̄], q) |=adom(D̄) θ
}

.

Since adom(D̄) is finite, we are done. a

B.2 Monitorable MFOTL Formulae

In this subsection, we describe a procedure that analyzes mfotl formulae and attempts to rewrite
them such that they can be monitored by our monitoring approach. Throughout this section, let
(D, τ) be a temporal database over the signature S = (C, R, a), where we assume that |D| = N and
< is the standard ordering.

By definition, at every time point the interpretations of a bounded tsf domain independent
formula φ ∈ MFOTL+, all its temporal subformulae α, and all direct subformulae of temporal
subformulae δ ∈ dstf (α), for all α, are finite. Under this condition, φ can be monitored with
our monitoring approach for temporal databases. However, even for a first-order formula it is

22 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

undecidable whether it is domain independent [2]. In the following, we present a procedure based
on rewriting that identifies a subset of the class of tsf domain independent formulae, which we
name tsf safe-range formulae. Our procedure extends the one for non-metric first-order temporal
logic [11] in two ways. First, we extend the procedure to the metric temporal logic mfotl. Second,
we improve the procedure to recognize a larger set of formulae by defining additional rewrite rules
for the strict dual temporal operators ṘI and Ṫ I , with I ∈ I. We remark that our procedure
presumes that dedicated incremental update constructions have been defined for all primitive and
derived temporal operators. The constructions are similar to those for SI and UI given in §3.4.

Overview. We now outline the main steps required to check whether a formula φ ∈ MFOTL+ can
be monitored with our method.
1. Normalization. In the first step, we transform φ into a logically equivalent formula φ′ ∈ MFOTL+,

where all quantified variables have unique names, some syntactic sugar is unfolded, double nega-
tions are removed, and negations are pushed towards the leaves of the subformulae by applying
rewrite rules.

2. Safe-range check. We then check if the sets of free and range restricted variables in φ′ coincide
and if for all subformulae of the form ∃x. ψ, where the variable x occurs free in ψ, it holds that x
is range restricted in ψ. If this is the case, φ′ is safe-range and we proceed to step 3. Otherwise,
φ′ is rejected.

3. Propagation of range restrictions. Next, we transform φ′ into a logically equivalent formula
φ′′ ∈ MFOTL+ by propagating all range restrictions towards all subformulae of φ′ by applying
rewrite rules.

4. tsf safe-range check. In the final step, we check if all temporal subformulae of φ′′, and all their
direct subformulae are safe-range. If this is the case, φ′′ is tsf safe-range. Otherwise, φ′′ is
not tsf safe-range and is rejected. Finally, we check that all future-time operators in φ′′ are
bounded. If this is also the case, φ′′ and can be monitored.

In the following, we describe these steps in detail.

Normalization. In the following, let fv(θ) denote the set of free variables of the formula θ. In
the first step, the input formula φ ∈ MFOTL+ is transformed into the logically equivalent formula
sr(φ) defined in Definition 20.

Definition 20. We denote as sr(φ) the formula obtained from φ ∈ MFOTL+

(1) by renaming the quantified variables using unique names;
(2) by replacing the occurrences of subformulae of the form ∀x. β, β → γ, and β ↔ γ by ¬∃x.¬α,

¬α ∨ β, and (¬α ∨ β) ∧ (¬β ∨ α), respectively;
(3) by pushing down negations and removing double negations by applying the following rules as

long as possible:
(a) ¬¬α 7→ α
(b) ∃x.α 7→ α, if x 6∈ fv(α)
(c) ¬(α ∨ β) 7→ ¬α ∧ ¬β and ¬(α ∧ β) 7→ ¬α ∨ ¬β
(d) ¬♦̇Iα 7→ ¤̇I¬α, ¬¤̇Iα 7→ ♦̇I¬α, ¬ ˙̈

Iα 7→ ¥̇I¬α, and ¬¥̇Iα 7→ ˙̈
I¬α

(e) ¬♦Iα 7→ ¤I¬α, ¬¤Iα 7→ ♦I¬α, ¬¨Iα 7→ ¥I¬α, and ¬¥Iα 7→ ¨I ¬α
(f) ¬#I α 7→ #I ¬α
(g) ¬(βṠIγ) 7→ ¬βṪ I¬γ and ¬(βU̇Iγ) 7→ ¬βṘI¬γ
(h) ¬(βṪ Iγ) 7→ ¬βṠI¬γ and ¬(βṘIγ) 7→ ¬βU̇I¬γ
(i) ¬(β SI γ) 7→ ¬β TI ¬γ and ¬(β UI γ) 7→ ¬β RI ¬γ
(j) ¬(β TI γ) 7→ ¬β SI ¬γ and ¬(β RI γ) 7→ ¬β UI ¬γ

Runtime Monitoring of Metric First-order Temporal Properties 23

It is easy to see that sr(φ) is logically equivalent to φ, since every step preserves logical equivalence.
Moreover, observe that the rewrite rules are terminating. Finally, note that the Boolean connective
¬ cannot be moved over an existential quantifier ∃.
Lemma 21. Let φ ∈ MFOTL+ be a formula, v a valuation, and i ∈ N. It holds that (D, τ, v, i) |= φ
iff (D, τ, v, i) |= sr(φ).

Safe-range Check. For α ∈ MFOTL+, we define rr(α) as follows, where x, x′ range over V and c
over C.

rr(α) :=





{x} if α = x ≈ c, c ≈ x,

or α = x ≺ c if c′ ∈ C for all c′D < cD,

{ti | ti ∈ V ∧ 1 ≤ i ≤ a(r)}, if α = r(t1, . . . , ta(r)),
∅ if α = ¬β, α = c ≺ x, α = x ≈ x′, α = x ≺ x′,

or α = x ≺ c if c′ 6∈ C for some c′D < cD,

rr(β) \ {x} if α = ∃x. β and x ∈ rr(β),
rr(β) if α = ⊗β with ⊗ ∈ { I , ˙̈

I , ¨I , ¥̇I , ¥I}
∪ {#I , ♦̇I , ♦I , ¤̇I , ¤I},

rr(β) ∪ rr(γ) if α = β ∧ γ, α = βṠIγ, or α = βU̇Iγ,

rr(β) ∩ rr(γ) if α = β ∨ γ, α = βṪ Iγ, or α = βṘIγ,

rr(γ) if α = β SI γ, α = β UI γ, α = β TI γ,

or α = β RI γ.

Note that rr is only applied to formulae sr(φ), where φ ∈ MFOTL+. In particular, this means that
universal quantifiers and Boolean connectives like → have been replaced according to Definition 20.

Definition 22. The formula α is called safe-range if rr(α) = fv(α) and for every subformula of α
of the form ∃x.β, it holds that x ∈ fv(β) implies x ∈ rr(β).

Because of the following lemma, we do not check whether φ is safe-range but we check whether
the normalized formula sr(φ) is safe-range.

Lemma 23. Let φ ∈ MFOTL+ be safe-range. Then, sr(φ) is also safe-range.

Proof. Follows directly from Definition 2 and Definition 20. Note that rr(¬β) = ∅ for any β ∈
MFOTL+. Hence, pulling the negation inwards increases the chances that a formula becomes safe-
range. a

Because of their less favorable properties in terms of restricting the ranges of free variables
and because of brevity, in the following we refrain from presenting rewrite rules for the non-strict
operators SI , UI , TI , and RI . An extension to the non-strict versions is straightforward.

Propagation of Range Restrictions. We now describe how range restrictions can be propagated
towards the subformulae of a safe-range formula.To this end, the following logical equivalences allow
us to move range-restricting subformulae between the left- and right-hand sides of the ṠI and U̇I

operators and to move a range-restricting formula into the scope of a temporal connective.

Lemma 24. Let α, β, γ ∈ MFOTL+. The following logical equivalences hold:

1. αU̇Iβ ≡ αU̇I(˙̈
Iα ∧ β)

24 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

1. α ∧ (β ∨ γ) 7→ (α ∧ β) ∨ (α ∧ γ) (push range restriction into ∨)

2. α ∧ (βṘIγ) 7→ α ∧ ((β ∧ ¨I α)ṘI(γ ∧ ¨I α) (push range restriction into ṘI)

3. α ∧ (βṪ Iγ) 7→ α ∧ ((β ∧ ♦I α)Ṫ I(γ ∧ ♦I α) (push range restriction into Ṫ I)
4. α ∧ ∃x.β 7→ α ∧ ∃x.(α ∧ β) (push range restriction into ∃)
5. α ∧ ¬β 7→ α ∧ ¬(α ∧ β) (push range restriction into ¬)

6. (α ∧ γ)ṠIβ 7→ (α ∧ γ)ṠI(♦̇Iα ∧ β) (distribute from left to right in ṠI)

7. (α ∧ γ)U̇Iβ 7→ (α ∧ γ)U̇I(˙̈
Iα ∧ β) (distribute from left to right in U̇I)

8. βṠI(α ∧ γ) 7→ (˙̈
Iα ∧ β)ṠI(α ∧ γ) (distribute from right to left in ṠI)

9. βU̇I(α ∧ γ) 7→ (♦̇Iα ∧ β)U̇I(α ∧ γ) (distribute from right to left in U̇I)

10. α ∧ (βṠIγ) 7→ α ∧ ((♦I α ∧ β)ṠIγ) (push into ṠI , left side)

11. α ∧ (βU̇Iγ) 7→ α ∧ ((¨I α ∧ β)U̇Iγ) (push into U̇I , left side)

12. α ∧ (γṠIβ) 7→ α ∧ (γṠI(♦̇Iα ∧ β) (push into ṠI , right side)

13. α ∧ (γU̇Iβ) 7→ α ∧ (γU̇I(˙̈
Iα ∧ β) (push into U̇I , right side)

14. α ∧ ˙̈
Iβ 7→ α ∧ ˙̈

I(♦̇Iα ∧ β) (push into ˙̈
I)

15. α ∧ ♦̇Iβ 7→ α ∧ ♦̇I(˙̈
Iα ∧ β) (push into ♦̇I)

16. α ∧ ¥̇Iβ 7→ α ∧ ¥̇I(♦̇Iα ∧ β) (push into ¥̇I)

17. α ∧ ¤̇Iβ 7→ α ∧ ¤̇I(˙̈
Iα ∧ β) (push into ¤̇I)

18. α ∧ ¨I β 7→ α ∧ ¨I(♦I α ∧ β) (push into ¨I)
19. α ∧ ♦I β 7→ α ∧ ♦I(¨I α ∧ β) (push into ♦I)
20. α ∧¥I β 7→ α ∧¥I(♦I α ∧ β) (push into ¥I)
21. α ∧¤I β 7→ α ∧¤I(¨I α ∧ β) (push into ¤I)
22. α ∧ I β 7→ α ∧ I(#I α ∧ β) (push into I)
23. α ∧#I β 7→ α ∧#I(I α ∧ β) (push into #I)

Fig. 3. Rewrite rules for ra. The above rules are used when x is a variable that is range restricted in the subformula
α (i.e., x ∈ rr(α)) and free but not range restricted in the subformula β (i.e., x ∈ fv(β) \ rr(β)).

2. αU̇Iβ ≡ (α ∧ ♦̇Iβ)U̇Iβ
3. αṠIβ ≡ αṠI(♦̇Iα ∧ β)
4. αṠIβ ≡ (α ∧ ˙̈

Iβ)ṠIβ
5. α ∧ (βU̇Iγ) ≡ α ∧ (βU̇I(˙̈

Iα ∧ γ))
6. α ∧ (βU̇Iγ) ≡ α ∧ ((β ∧ ¨I α)U̇Iγ)
7. α ∧ (βṠIγ) ≡ α ∧ (βṠI(♦̇Iα ∧ γ))
8. α ∧ (βṠIγ) ≡ α ∧ ((β ∧ ♦I α)ṠIγ)

Proof. Follows directly from Definitions 2 and 17. Note that the equivalences 6. and 8. make use of
the non-strict operators ¨I and ♦I . a
Definition 25. Let φ be a safe-range formula. We denote as ra(φ) the result of applying the rules
of commutativity and associativity, and the rules stated in Fig. 3, starting from the top-most main
connective.

Note that some of the rewrite rules given in Fig. 3 may lead to formulae that cannot be monitored.
For example, consider rule 6, which describes how to rewrite a formula of the form (α ∧ γ)ṠIβ
into the logically equivalent formula (α ∧ γ)ṠI(♦̇Iα ∧ β). If we have I = [c, d), where d ∈ N, there
is no problem and the rewritten formula can be handled using our monitor. If, however, we have
I = [c,∞), the rewritten formula, while preserving logical equivalence, is not bounded any more
and thus cannot be monitored by our approach. Generally speaking, whenever a formula containing
an unbounded past operator (i.e., I = [0,∞)) is rewritten, the rewrite rules in Fig. 3 may generate
a logically equivalent formula that is no longer bounded. Because of this, the rules 6, 10, 12, 14,
16, 18, and 20 require that I = [c, d), where d ∈ N.

Lemma 26. Let φ ∈ MFOTL+ be a safe-range formula, v a valuation, and i ∈ N. We have that

(D, τ, v, i) |= φ iff (D, τ, v, i) |= ra(sr(φ)) .

Runtime Monitoring of Metric First-order Temporal Properties 25

Proof. Follows from Definitions 2 and 17, Lemma 24 and standard equivalences for first-order logic.
a

TSF Safe-range Check. A safe-range formula θ ∈ MFOTL+ is tsf safe-range if each temporal
subformula α of θ and each direct subformula δ ∈ dstf (α) is safe-range.

For a safe-range formula φ ∈ MFOTL+, we check if if ra(φ) is tsf safe-range. This can be done
by examining if each temporal subformula α of ra(φ) and each direct subformula δ ∈ dstf (α) is
safe-range and bounded.

Lemma 27. Let φ be a bounded formula in MFOTL+. If φ is tsf safe-range then it is tsf domain
independent.

Proof. Assume that δ ∈ MFOTL+ is bounded. It is straightforward to see by induction over the
formula structure that if δ is safe-range, then only finitely many valuations satisfy δ. Hence, δ is
temporal domain independent. a

B.3 Optimizations

In the following, we present details of the optimizations for the auxiliary relations as briefly sketched
in §4.

Deletion of redundant data tuples. To minimize the size of the relations, we can optimize our
incremental structure construction by removing redundant data tuples from auxiliary relations.
For example, consider the formula α = β S[0,∞) γ and assume that ā satisfies γ and β at all time
points. In this case, the relation for rα in D̂i stores the tuples (ā, y), with y = τi − τj for all j ≤ i.
However, it suffices to store only one of these tuples.

More generally, for α = βSI γ, we can optimize the construction as follows. If (ā, y), (ā, y′) ∈ rD̂i
α

with y, y′ ∈ I and y > y′, then we can remove (ā, y) from rD̂i
α . This follows by an easy inductive

argument. Since y, y′ ∈ I, both tuples satisfy the condition of our construction so that ā is put
into the relation pD̂i

α . Moreover, if the updated version of (ā, y) is in r
D̂i+1
α , then also the updated

version of (ā, y′) is in r
D̂i+1
α , and we have that y + τi+1 − τi > y′ + τi+1 − τi. Again, both updated

tuples satisfy the condition such that ā is put into the relation p
D̂i+1
α .

Similar optimizations apply to the case where α = β UI γ. There the relation sD̂i
α may contain

redundant elements. Namely, if (ā, j1, j
′
1), (ā, j2, j

′
2) ∈ sD̂i

α with [j1, j
′
1) ([j2, j

′
2) then we can remove

(ā, j1, j
′
1) from sD̂i

α . After removing such elements, sD̂i
α only contains tuples where the intervals

given by the last coordinates of an element in sD̂i
α is maximal. When filtering out these elements,

we need to adjust the update of sD̂i
α slightly, since we can no longer ignore elements of the form

(ā, 0, j′) ∈ s
D̂i−1
α . Note that the optimization has removed the element (ā, 1, j′) from s

D̂i−1
α .

Assume that I = [c, d). Another optimization is to remove a tuple (ā, j, j′) in sD̂i
α if τi+j′+1−τi ≥

c and j′ < `i. Here, `i is the lookahead offset at time instant i, i.e., `i := max{j ∈ N | τi+j− τi < d}.
Note that the semantics of the UI operator requires that ā has to satisfy γ at the time instant
i + j′. Since this time instant is too close at time instant i, the timing constraint given by the I is
violated. We remark that we cannot remove the element (ā, j, j′) if j′ = `i since we might need the
information that ā satisfies β in the time instants i+ j, . . . , i+ `i when updating the relation for sα.

Finally, we can use the relation rD̂i
α to eliminate elements in sD̂i

α . Namely, we can eliminate
(ā, j, j′) in sD̂i

α if j′ < `i and when there is no (ā, k) ∈ rD̂i
α with j ≤ k and k − 1 ≤ j′.

26 D. Basin, F. Klaedtke, S. Müller, B. Pfitzmann

Dedicated constructions for derived operators. Another kind of optimization is to tune the above
definitions for the auxiliary predicates for certain kinds of formulae. For instance, if α = ♦I γ (i.e.,
α = true UI γ) then we do not need the auxiliary relations for sα at all. Furthermore, some of the
tuples can be removed from rD̂i

α . Namely, if (ā, j) and (ā, j′) are in rD̂i
α , with j < j′, then (ā, j) can

be removed from rD̂i
α . This can be seen by an argument similar to the one we gave when optimizing

relations that handle the operator SI .

Algebraic optimization. The rewriting techniques given for past-only first-order temporal logic
in [10] can be extended to mfotl. Thereby, we can reduce the number of auxiliary relations cre-
ated from an input formula and also minimize their arity. For example, by rewriting the formula
∃x.#I β to #I ∃x.β we reduce the arity of the auxiliary relation pDi

#I ∃x.β by one. Similarly, by rewrit-
ing the formula #I I β to β we can minimize the number of auxiliary relations created. Under
certain conditions, formulae containing nested metric operators with different intervals can also be
rewritten. For example, if c ≥ d′, the formula ♦[c,d) ¨[c′,d′) p(x) can be rewritten to ♦[c−d′,d−c′) p(x).

Context-based optimization. We can also reduce the number of tuples stored in the auxiliary rela-
tions by analyzing the contexts in which the relations are used and by then restricting the definitions
of the auxiliary relations with appropriate magic conditions as described in [10]. For example, for
a formula x ≺ 10 ∧ (q(x) ∨ β(x) UI γ(x)), we can adapt the definitions of the auxiliary relations
rD̂i

β(x)UIγ(x) and sD̂i

β(x)UIγ(x) such that only those elements that satisfy the condition x ≺ 10 are
stored. Note that the availability of future operators in mfotl requires slight modifications of the
definitions used in [10].

B.4 Proof Details of Theorem 16

Recall that φ is a tsf domain independent formula (see Definition 18) and (D, τ) a temporal
database over the signature S = (C, R, a), i.e., all relations for r ∈ R are finite.

Lemma 28. Let α be a temporal subformula of φ or a direct subformula of a temporal subformula

of φ. Assume that M(φ) constructs the relation p
D̂j
α in the (i + 1)st loop iteration on the input

(D, τ). Then, α(D̂,τ,j) ⊆ adom(D̄)n, where D̄ = (D0, . . . , Di) and n is the number of free variables
of α.

Proof. Since φ is tsf domain independent, we have that α is temporal domain independent. From
the correctness of the monitor M(φ) follows that i is minimal for j, (D, τ), and α. Similar as in
Lemma 19, we show that α(D,τ,j) ⊆ adom(D̄)n. a

Proof (Theorem 16). Throughout the proof, we assume that the monitor M(φ) processes the tem-
poral structure (D, τ) from the class C. Let us first make the following observation. If q = 0, the
monitor stores in the (i+1)st iteration at most the relations rD̂q , rD̂q+1 , . . . , rD̂i , for r ∈ R̂. If q > 0,
the monitor might additionally store the relations rD̂q−1 , for r ∈ R̂. Without loss of generality, we
assume that q > 0. We now proceed as follows. (1) We establish an upper bound on i− q. (2) We
establish an upper bound on the cardinalities of the relations rD̂j with q − 1 ≤ j ≤ i.

Let us start with (1). Recall that ` is the bound on the number of equal time stamps in the
sequence τ . Namely, we have that max{j | τk = τk+1 = · · · = τk+j} < `, for all k ∈ N. The bound of
i− q depends on ` and the future-time operators that occur in φ. First, observe that since there are
at most ` equal time stamps in τ , the monitor postpones the evaluation of a formula p(x)U[c,d) q(x)
at the time point i by at most ` ·d time steps. Furthermore, note that a formula of the form #I p(x)

Runtime Monitoring of Metric First-order Temporal Properties 27

is postponed by one time step. Taking the nesting of subformulae with temporal operators into
account, we define

maxwaitfor(θ) :=





maxwaitfor(β) if θ = ¬β, θ = ∃x. β, or θ = I β,
max{maxwaitfor(β),maxwaitfor(γ)} if θ = β ∧ γ or θ = β SI γ,
1 + maxwaitfor(β) if θ = #I β,
`d + max{maxwaitfor(β),maxwaitfor(γ)} if θ = β U[c,d) γ,
0 otherwise.

From the initialization of the list Q and the updates of Q in each loop iteration, it follows by
induction that i− q ≤ maxwaitfor(φ).

Let us now turn to (2). We define m as max{a(r) | r ∈ R} and k as the maximum of 1 +
maxwaitfor(φ) and the maximal upper bound of an interval of a since operator in φ, where we set
the maximum of the upper bound of an interval [c,∞) in a since operator to c.

Assume that the monitor constructs a relation rD̂j for r ∈ R̂ at time point i, i.e., in the (i+1)st
loop iteration. In the following, we give an upper bound on the cardinality of rD̂j . First note that
the data elements d ∈ |D| that occur in rD̂j also occur in adom(D̄), where D̄ = (D0, . . . , Di) and
τ̄ = (τ0, . . . , τi). This follows from Lemma 28.

– r ∈ R or r = pα, where α is a temporal formula: We have that |rD̂j | ≤ |adom(D̄)|m.
– r = rα, where α has the form β SI γ: Recall that in this case rD̂j consists of tuples of the form

(ā, y) with y ≤ k. Note that y ≤ k holds because our optimized construction for the temporal
operator S[c,∞). We have that |rD̂j | ≤ |adom(D̄)|m · k.

– r = rα, where α has the form β UI γ: Recall that in this case rD̂j consists of tuples of the form
(ā, j) with j ≤ k. We have that |rD̂j | ≤ |adom(D̄)|m · k.

– r = sα, where α has the form β UI γ: Recall that in this case rD̂j consists of tuples of the form
(ā, j, j′) with j, j′ ≤ k. We have that |rD̂j | ≤ |adom(D̄)|m · k2.

We conclude that |rD̂j | ≤ |adom(D̄)|m · k2, for all r ∈ R̂.
Form this and the upper bound on i− q, we obtain that f(D̄, τ̄) ≤ |adom(D̄)|m · |R̂| ·k3. Since k

only depends on ` and φ, we have that f Cs g, for s(x) := c · xm with the constant c := |R̂| · k3. a

