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Abstract. Business-driven development favors the construction of process mod-
els at different abstraction levels and by different people. As a consequence, there
is a demand for consolidating different versions of process models by merging
them. Process merging can be considered as a special case of model composition.
However, in order to be applicable by a business user, process merging has to
fulfill specific requirements such as user-friendliness and minimal manual inter-
vention. In this paper, we present our approach to process merging. It is based on
calculating differences and ordering them according to the underlying structure
of process models. This allows to resolve differences in a particular user-friendly
way by e.g. automating reconnection of inserted process elements.

1 Introduction

The field of business process modeling has a long standing tradition. Recently, new
requirements and opportunities have been identified which allow the tighter coupling
of business process models to its underlying IT implementation: In Business-Driven
Development (BDD) [13], business process models are iteratively refined, from high-
level business process models into models that can be directly implemented. Business
process models can therefore be used for creating a link between the business needs and
the IT implementation. As a consequence, business process models are a key artifact in
BDD and advanced techniques for consolidating different versions of a process model
are needed.

In general, such techniques for consolidating and merging process models have to
provide means for identifying differences between versions of process models and re-
solving these by merging parts of process models. Specific techniques for process merg-
ing heavily depend on the underlying modeling environment. Our approach is directed
towards a situation where no change log describing process model changes exists. This
is a common situation in process modeling tools such as the IBM WebSphere Business
Modeler [1]. In such a case, detection of differences between process models and their
user-friendly visualization represent key requirements for process merging.

Existing work on process change management has focused mainly on the ques-
tion of dynamic process changes where changes are made on already running pro-
cesses [3, 18]. Solutions include techniques for migrating process instances to a new
process schema and for identifying those cases where this is not possible. In these ap-
proaches, process changes are usually captured in a change log which is maintained by
the process-aware information system [4].



Merging of process models has similarities to model composition [7] in model-
driven development. It includes a structural and a behavioral aspect: With regards to
structure, new process model elements must be integrated into the process structure.
Here, one has to decide where in the hierarchy of a process model the new elements
shall reside. With regards to behavior, the new elements must be integrated into the
control or data flow of the existing business process model. Although this can be done
manually, this involves quite some overhead when applied for a large number of model
elements. In addition, often the new elements have certain ordering requirements that
should be ensured when inserting them into the flow.

In this paper, we present our approach to process merging which consists of de-
tection and resolution of differences. Detection makes use of the concept of correspon-
dences, well-known from model merging and model composition, but enriched with the
technique of Single-Entry-Single Exit fragments (SESE fragments) for detecting differ-
ent categories of differences. The result of the detection is a list of differences which
can be considered as a change log: Each difference is associated with a difference res-
olution operation that resolves this particular difference. The paper is structured as fol-
lows: Section 2 introduces process merging in BDD and describes the key requirements.
Then, in Section 3, we discuss the foundations for our approach, correspondences and
SESE fragments. In Section 4, we present our approach for difference detection and in
Section 5 our approach to difference resolution is described. A prototype realized as a
plug-in for IBM WebSphere Business Modeler is presented in Section 6. We conclude
with a discussion of related and future work.

2 A Process Merging Scenario in Business-Driven Development

Business-driven development provides a model-driven approach to business-IT align-
ment. We distinguish between analysis and design models of business processes [11]—
a distinction which is also made in object-oriented modeling. An analysis model de-
scribes what the process is doing. It shows the initial partitioning of the process into
subprocesses and actions with the main flow of control and, optionally, of data. It com-
pletely abstracts from IT-related aspects, but can be used for simulation and discussion
with business analysts. A design model contains a refined partitioning of the process
that reflects existing application systems and shows an IT-based flow of data and con-
trol and it describes how the process is realized using hardware, software, and people.

Within business-driven development, process models are the central modeling arti-
facts. In this context, business process models are manipulated in a team environment
and multiple versions of a shared process model need to be consolidated at some point in
time. A basic scenario is obtained when a process model V1 is copied and then changed
into a process model V2, possibly by another person. After completion, only some of
the changes shall be applied to the original model V1 to create a consolidated process
model. Figure 1 shows an example process model V1 that has been changed into a pro-
cess model V2.

Both models describe the handling of a claim request by an insurance company. V1

starts with an InitialNode followed by the actions ”Check Claim” and ”Record Claim”.
Then, in the Decision, it is decided whether the claim is covered by the insurance con-
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tract or not. In the case of a positive result the claim is settled. In the other case the claim
is rejected and closed, represented by the actions ”Reject Claim” and ”Close Claim”.
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Fig. 1. Versions V1 and V2 of a business process model

Although process models V1 and V2 are similar at the first sight, there are some
differences between the versions. The following differences can be detected:

– The positions of the actions ”Record Claim” and ”Check Claim” are changed.
– Action ”Close Claim” does not exist in V2.
– A new parallel structure (Fork and Join) is inserted in V2 together with two actions

”Pay Out” and ”Send Letter”.

Process merging typically depends on the modeling language as well as on con-
straints of the modeling environment. In our case, the modeling language is given by
the WebSphere Business Modeler which provides a language similar to UML 2.0 Activ-
ity Diagrams [15]. In our modeling environment, no syntax-directed editing of process
models is performed and, as a consequence, also no change log is available. As such,
in contrast to databases and existing approaches in process-aware information systems,
there is no information about the performed changes on a process model. In the fol-
lowing, we describe the key requirements that a solution to process merging should
fulfill:

– The solution must provide a technique to re-construct one possible change log
which represents the transformation steps for transforming one process model into
the other process model.

– The user should have the opportunity to select only some of the changes and apply it
to the original model in order to obtain a new third model which can be considered
as the merged process model.

– When applying changes, the user should not be restricted by prescribing a certain
order whenever possible.

– Dependencies between change operations should be made explicit and taken into
account when applying the changes. For example, when inserting a Fork, the cor-
responding Join should also be inserted in order to obtain a correct process model.
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– The solution should provide user-friendly resolution of changes in the way that it
reconnects inserted elements whenever possible and offers a possibility to perform
related changes together at one time.

– Instead of displaying a list of changes, the changes should be arranged to the struc-
ture of the process model.

3. Resolution of Differences

Apply 
Operation
Opi

Root Fragment
� Insert B (A,D)

� Parallel Fragment
� Delete C

� Move E (A,D)

Compute Position 
Parameters

1. Detection of Differences

and Construction of a Change Log

V1 V2
Editing Operations

Insert B

Delete C

…

Move E

Change Log 

Detection of Differences 
between V1 and V2 based on 

� Correspondences

� SESE Fragments

Root Fragment
� Insert B

� Parallel Fragment
� Delete C

� Move E

Calculate Hierarchical 
Change Log 

2. Ordering of Change 
Operations

Fig. 2. Overview of our process merging approach

Figure 2 provides an overview of the approach that we developed based on these re-
quirements: The first step is to detect differences between the two process models. This
detection makes use of SESE fragments for detecting related differences. In the sec-
ond step, the detected differences are ordered according to the structure of the process
models. For each difference, a resolution transformation is generated which resolves
the difference between the two models. The third step is then to resolve differences
between the process models in an iterative way, based on the modeler’s preferences.

3 Background: Correspondences and SESE Fragments

In this section, we first define business process models and introduce Single-Entry-
Single-Exit fragments. Then we introduce correspondences.

3.1 Process Models and SESE Fragments

For our process merging approach we use process models in a notation similar to ac-
tivity diagrams in UML. For the following discussions, we assume a business process
model V = (N, E) consisting of a finite set N of nodes and a relation E represent-
ing control flow. N is partitioned into sets of Actions and ControlNodes. ControlNodes
contain Decision and Merge, Fork and Join, InitialNodes and FinalNodes. Note that
we do not support data flow in our models. In addition, we assume that the following
constraints hold:

1. Actions have exactly one incoming and one outgoing edge.
2. Nodes are connected in such a way that each node is on a path from the InitialNode

to the FinalNode.
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3. Control flow splits and joins are modeled explicitly with the appropriate ControlN-
ode, e.g. Fork, Join, Decision, or Merge. ControlNodes have either exactly one
incoming and at least two outgoing edges (Fork, Decision) or at least two incoming
and exactly one outgoing edge (Join, Merge).

4. An InitialNode has no incoming edge and at most one outgoing edge and a FinalN-
ode has at most one incoming edge and no outgoing edge.

A process model can be decomposed into SESE fragments and then a process struc-
ture tree can be constructed [21]. SESE fragments have been used successfully for
checking soundness [20, 16] of process models but they are also beneficial for detection
of differences between process models. Formally, given a process model V = (N, E), a
SESE fragment F = (N′, E′) is a non-empty subgraph of V such that there exists edges
e, e′ ∈ E with E ∩ ((N \ N′) × N′) = {e} and E ∩ (N′ × (N \ N′)) = {e′} [21]. In
addition, a fragment which surrounds the entire process model is also considered as a
SESE fragment. To this unique fragment we refer to as root fragment.

A process model with N nodes can have O(N2) SESE fragments. We are interested
in so-called canonical fragments that are not overlapping [21]. Given a process model
V , we denote the set of canonical fragments of V with SESE(V). Figure 3 shows an
example of a SESE decomposition into canonical fragments.
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Fig. 3. Versions V1 and V2 decomposed into canonical SESE fragments

The canonical fragments of a process model V can be organized into a SESE tree,
denoted by SESETREE(V), according to the composition hierarchy of the fragments.
Fragments of SESE(V), which contain no other fragments, are leaf nodes in the tree
and the root of the tree is the root fragment.

3.2 Correspondences

Correspondences form one key technique in process merging because they provide the
link between elements in different process models. We assume process models V1 =
(N1, E1) and V2 = (N2, E2) and x ∈ V1 and y ∈ V2 as given. A correspondence is used
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to express that a model element x has a counterpart y with the same functionality in the
other version. In such a case, we introduce a 1-to-1 correspondence between them. In
the case that a model element x does not have a counterpart with the same functionality,
we speak of a 1-to-0 correspondence. In case that y does not have a counterpart, we
speak of a 0-to-1 correspondence. In addition, refinement of an element into a set of
elements would give rise to a 1-to-many correspondence and abstraction of a set of
elements into one element would give rise to a many-to-1 correspondence. The last two
types are not considered further in this paper.

We express a 1-to-1 correspondence by inserting the tuple (x, y) into the set of
correspondences Corr(V1, V2) ⊆ V1 × V2. We further introduce the set of elements in
V1 which do not have a counterpart and denote this set by Corr1−0(V1, V2). Similarly,
we denote the set of elements in V2 without counterparts as Corr0−1(V1, V2).

Correspondences can be computed in the process merging scenario in a straight-
forward way by first establishing 1-to-1 correspondences between all process model
elements when copying process model V1 to create V2. After changing V2, all 1-to-1
correspondences have to be inspected and 1-to-0 or 0-to-1 correspondences are created
if elements have been deleted or added. In addition, for new elements in V2, additional
0-to-1 correspondences have to be created. In a similar way, correspondences can also
be established for SESE fragments.
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Fig. 4. Correspondences between V1 and V2

Fig. 4 shows correspondences between versions V1 and V2 of the process model
introduced earlier in this paper. A dotted line represents 1-to-1 correspondences and
connects model elements with the same functionality between V1 and V2. Dotted model
elements have no counterpart with the same functionality in the other version. 1-to-0
correspondences are visualized by dotted elements in V1 and 0-to-1 correspondences
are visualized by dotted elements in V2.

4 Detection of Differences and Computation of a Change Log

In this section, we describe an approach to detect differences between process mod-
els, based on the existence of correspondences and SESE fragments. We first present a
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classification of possible difference types and then discuss how each type can be sys-
tematically detected.

4.1 Element and Control Flow Differences

When comparing the sets of elements in both process models, based on their correspon-
dences, one can define element differences as follows:

Definition 1 (Element difference). Given two business process models V1, V2 and sets
of correspondences Corr1−0(V1, V2) and Corr0−1(V1, V2), an element difference is de-
fined as an element x ∈ Corr1−0(V1, V2) ∪ Corr0−1(V1, V2).

In addition to element differences, different versions of process models can also be
constructed by exchanging the order of actions or by introducing or deleting control
nodes. For defining this, we assume predecessor and successor relations between ele-
ments of a process model that can be obtained from the control flow. This gives rise to
control flow differences as follows:

Definition 2 (Simple Control Flow Difference). Given two business process models
V1 and V2 and sets of correspondences Corr(V1, V2), a simple control flow difference
is defined as a tuple of elements (x, x′, y, y′) ∈ Corr(V1, V2)× Corr(V1, V2), such that

– x is predecessor of y in V1 and x′ is successor of y′ or unordered to y′ in V2, or
– y is successor of x in V1 and y′ is predecessor of x′ or unordered to x′ in V2, or
– x is unordered to y in V1 and x′ is predecessor or successor of y′ in V2.

We can distinguish between two types of simple control flow differences: Intra-
fragment control flow differences are those where elements belong to corresponding
SESE fragments. Inter-fragment control flow differences are those where elements have
been moved between SESE fragments. The detection of inter-fragment control flow dif-
ferences can be done by iterating over all 1-to-1 correspondences and checking whether
the surrounding SESE fragments are also in a 1-to-1 correspondence. If this is not the
case, then the element has been moved and is considered as an inter-fragment control
flow difference. The detection of intra-fragment control flow differences has to com-
pare all elements within a fragment with the elements in the corresponding fragment
and identify changes in the order of elements.

In contrast to simple control flow differences, complex control flow differences are
those that occur due to the insertion or deletion of SESE fragments:

Definition 3 (Complex Control Flow Difference). Given two business process models
V1 and V2 and a set of correspondences, a complex control flow difference is defined as
either a SESE fragment f1 ∈ SESE(V1) or a SESE fragment f2 ∈ SESE(V2) that does
not have a correspondence.

Complex control flow differences can be detected by identifying fragments in the
two process models that do not have corresponding fragments. For identifying these,
one has to iterate over all fragments and identify those without a counterpart. Note that
when copying process model V1 to create V2 also these correspondences between SESE
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fragments can be established. While editing V2 and changing it, it can happen that either
new fragments are created or existing fragments are deleted. For example, in Figure 3,
a Fork and Join have been added in V2 and thereby a new SESE fragment has been
created without a corresponding fragment in V1.

4.2 Change Operations derived from Differences

Based on the differences described above, we can define operations that resolve each
type of difference. Each difference in the sets of elements can be directly converted
into a suitable Insert or Delete operation. Each complex control flow difference can be
converted into a InsertFragment or DeleteFragment operation. A simple control flow
difference gives rise to either a Move operation within a fragment or between fragments.
An overview of the operations and their effect on a process model is given in Figure 5.
The benefit of using explicit operations for fragments such as InsertFragment is that
we can ensure that always a correct process model is created. For example, it cannot
happen that a Fork is inserted without its corresponding Join.

Effects on Process Model VChange Operation applied on V

Movement of element X between two succeeding elements A and B in 
process model V.

Move(V,X,A,B)

Deletion of an alternative region (Decision and Merge) from process model V.DeleteAlternativeFragment(V)

Deletion of a parallel region (Fork and Join) from process model V.DeleteParallelFragment(V)

Deletion of element X from process model V.Delete(V,X)

Insertion of an alternative fragment (Decision and Merge) between two 
succeeding elements A and B in process model V. Mapping M specifies the 
number and positions of branches in the alternative fragment.

InsertAlternativeFragment(V,A,B,M)

Insertion of a parallel fragment (Fork and Join) between two succeeding 
elements A and B in process model V. Mapping M specifies the number and 
positions of branches in the parallel fragment.

InsertParallelFragment(V,A,B,M)

Insertion of element X between two succeeding elements A and B in process 
model V.

Insert(V,X,A,B)

Fig. 5. Overview of change operations

In the case of versions V1 and V2 of the example introduced earlier in this paper, the
differences give rise to the following change operations:

– Move(V1,”Check Claim”, , )
– InsertParallelFragment(V1, , )
– Insert(V1, ”Pay Out”, , )
– Insert(V1, ”Send Letter”, , )
– Delete(V1, ”Close Claim”)

The Insert and Move operations given here are only incompletely specified. The
missing parameters comprise information where the underlying model element shall be
inserted or moved to in the process model V1. These parameters are computed later
based on unchanged model elements in order to achieve an arbitrary resolution of dif-
ferences.
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4.3 Definition of Hierarchical Change Log

A set of change operations contains all change operations for two business process
models V1 and V2 and is denoted by Changes(V1, V2). In the following, we assume that
Changes(V1, V2) contain the changes that have to be applied to V1 for obtaining V2.

In order to enable user-friendly resolution of changes, change operations can be
visualized according to the structure of the two process models. This structure of a pro-
cess model is given by the decomposition of a process model into its SESE fragments.
Given such a fragment decomposition, each operation can be associated to the fragment
in which it occurs. This enables the user to detect operations applicable to a certain area
of a process model and also allows to find dependencies between different operations.

In the following, we first define a joint SESE tree as a basis of such a hierarchical
change log. Given two SESE trees SESETREE(V1), SESETREE(V2) and correspondences
between their nodes, then the joint SESE tree is denoted as SESETREE(V1, V2). We also
assume a function father : V −→ V which maps a node v ∈ V to its father in the SESE
tree. The joint SESE tree can be constructed as follows:

– for a node v1 ∈ SESETREE(V1) that has a corresponding node v2 ∈ SESETREE(V2)
a node v3 is inserted into SESETREE(V1, V2) with father(v3) = father(v2).

– for a node v1 ∈ SESETREE(V1) that does not have a corresponding node, a node v3

is inserted into SESETREE(V1, V2) with father(v3) = father(v1),
– for a node v2 ∈ SESETREE(V2) that does not have a corresponding node, a node v3

is inserted into SESETREE(V1, V2) with father(v3) = father(v2).

The following definition introduces the concept of a hierarchical change log where
change operations are arranged according to the joint SESE tree:

Definition 4 (Hierarchical Change Log). Given two business process models
V1, V2, SESE trees SESETREE(V1), SESETREE(V2), and a set of change operations
Changes(V1, V2), a hierarchical change log for transforming V1 into V2 is the joint
SESE structure tree SESETREE(V1, V2) where the nodes are enriched with change oper-
ations as follows:

– if op = Insert then op is associated to the node representing the fragment in which
op takes place,

– if op = Delete then op is associated to the node representing the fragment in which
op takes place,

– if op = Move then op is associated to the node representing the fragment into which
the element is moved and to the node representing the fragment out of which the
element is moved.

– if op = InsertFragment or op = DeleteFragment, then op is associated to the node
in SESETREE(V1, V2) representing this fragment.

Given process models Vi, Vj and change operation op, we write Vi
op

=⇒ Vj if Vj is
obtained after applying op on Vi.
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Insert(V1, “Pay Out“, -,-) Insert(V1, “Send Letter“,-,-)

Delete(V1, “Close Claim“)

InsertParallelFragment(V1, -,-)

Fig. 6. Hierarchical change log of
example

Figure 6 shows a hierarchical change log for
the two versions V1 and V2 of a process model
introduced earlier in this paper. The Move oper-
ation is associated with the root fragment. The
InsertParallelFragment occurs in the alternative
fragment and is therefore associated to this frag-
ment. Within this parallel fragment, there are
two Insert operations. Using this hierarchical
change log, one can easily identify the areas of
the process model that have been manipulated.
The hierarchical change log also allows the user
to find dependencies between the insertion of the
parallel fragment and the insertions of actions into that parallel fragment.

In the next section, we elaborate on the resolution of differences using the change
operations introduced.

5 Resolution of Differences

In this section, we first explain how position parameters of change operations are com-
puted. Then we show how the change operations can be used for iteratively resolving
differences between two versions.

5.1 Computation of Position Parameters

According to our requirements, differences between two versions of a process models
should be resolvable in an arbitrary way. Whether two operations can be applied in an
arbitrary order depends on the positions parameters.

initial
node

A1 A2

action

A1 A3

V1

V2 A4 A2

Fig. 7. Simple example

Figure 7 shows a simple
example for illustrating why
position parameters need
to be chosen in a careful
way. In this example, two
actions A3 and A4 have
been inserted, leading to
insert(V1, A3,−,−) and insert(V1, A4,−,−). In order to ensure that the user can
choose both operations, we compute position parameters to be insert(V1, A3, A1, A2)
and insert(V1, A4, A1, A2). If either A3 or A4 were position parameters, this would
induce a dependency between them, requiring that one of them is applied before
the other one. In order to avoid such situations, we express position parameters
using fixpoints which are defined as follows:

Definition 5 (Fixpoint). Given two business process models V1 and V2 and a set
of correspondences Corr(V1, V2). Then a tuple (n1, n2) is a fixpoint if (n1, n2) ∈
Corr(V1, V2) and n1 and n2 are not affected by an operation in the change log.
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Given a change operation, the computation of fixpoints is divided into the calcula-
tion of a fixpoint predecessor and a fixpoint successor for the underlying model element
n of an insert or move operation within the fragment of n. In order to compute a fixpoint
predecessor for n, we start with the direct predecessors p of n in V2. If p is a fixpoint, i.e.
p is not affected by an operation in the change log, we have found the nearest fixpoint
predecessor of n. Otherwise, we examine the direct predecessor of p and so on until
we have found a fixpoint. The computation of a fixpoint successor of n is analog to the
computation of a predecessor, except that we examine the successors of n in control
flow order starting with the direct successor s of n.

Using fixpoints as position parameters also ensures that the insert and move op-
erations can always produce a model that is connected: As the elements specified as
position parameters are fixpoints, they exist in both process models and the newly in-
serted or moved element or fragment can be connected to these elements automatically.

Root Fragment
- Move(V1,”Check Claim”, ”Record Claim”, Decision)
- Alternative Fragment

- Branch
- InsertParallelFragment(V1, ”Settle Claim”, Merge)

- Branch
- Insert(V1, ”Pay Out”, , )

- Branch
- Insert(V1, ”Send Letter”, , )

- Branch
- Delete(V1, ”Close Claim”)

Fig. 8. Position parameters of operations

Figure 8 shows the hi-
erarchical change log with
computed position parame-
ters. For both insert opera-
tions (”Pay Out” and ”Send
Letter”) within the newly in-
serted parallel fragment, po-
sition parameters could not
be computed, because their
surrounding fragment is not
existing so far. In such a
case, we assume that the op-
eration is not yet applicable.
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insertParallelFragment(V1, ”Settle Claim”, Merge)

Fig. 9. Applying a change operation
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5.2 Application of Operations

The operations in the change log with position parameters are ready for application.
Figure 9 shows V1 and the application of the InsertParallelFragment operation, leading
to the insertion of the Fork and Join and the automated reconnection of control flow.
Alternatively, the user could have chosen any other operation of the change log that is
applicable.

Root Fragment
- Move(V ′1,”Check Claim”, ”Record Claim”, Decision)
- Alternative Fragment

- Branch
- ParallelFragment

- Branch
- Insert(V ′1, ”Pay Out”, Fork, Join )

- Branch
- Insert(V ′1, ”Send Letter”, Fork, Join)

- Branch
- Delete(V ′1, ”Close Claim”)

Fig. 10. Recomputed change log after applying an
operation

The application of an insert
or move operations increases
the set of fixpoints between two
process models because the un-
derlying model element of the
applied operation exists now in
both process models. By recom-
puting the position parameters
of the remaining operations we
can increase the number of ap-
plicable operations and refine
existing position parameters. In
the example, the position pa-
rameters of the Insert(V1,”Pay Out”,-,-) and Insert(V1,”Send Letter”,-,-) operations can
be computed after inserting the parallel fragment operation. This leads to a new change
log which is shown in Figure 10.

6 Tool Support

As proof of concept, we have implemented a prototype as an extension to the IBM
WebSphere Business Modeler (see Fig. 11). This prototype currently supports the fol-
lowing functionality [6]: copying of business process models, initial creation and update
of correspondences, decomposition of process models into SESE fragments and detec-
tion of differences between two versions of a process model. In addition, the prototype
provides several views that allow to visualize and resolve differences as well as to ma-
nipulate correspondences.

Fig. 11 shows versions V1 and V2 of the business process model introduced earlier
in this paper. The lower third of Fig. 11 illustrates the Difference View, which is di-
vided into three columns. The left and right hand columns show versions V1 and V2

of the process model in a tree view, which abstracts from control flow details of the
process and focuses only on model elements of the process. The middle column of the
difference view displays the hierarchical change log as introduced previously. Using
our prototype, differences between the two versions can be iteratively resolved using
the change operations introduced in this paper.

7 Related Work

Within the workflow community, the problem of migrating existing workflow instances
to a new schema [3, 17] has received considerable attention: Given a process schema

12



Fig. 11. Business Process Merging Prototype in the IBM WebSphere Business Modeler

change, it can be distinguished between process instances that can be migrated and
those that cannot be migrated [18]. Rinderle et al. [18] describe migration policies for
the situation that both the process instance as well as the process type has been changed.
They introduce a selection of change operations and examine when two changes are
commutative, disjoint or overlapping. Recent work by Weber et al. [22] provides a com-
prehensive overview of possible change patterns that can occur when process models or
process instances are modified. These change patterns are used for evaluating different
process-aware information systems [4] with respect to change support. Grossmann et
al. [8] show how two business processes can be integrated using model transformations
after relationships have been established. Both the change operations by Rinderle et
al. [18] and the change patterns for inserting, deleting and moving a process fragment
are similar to our change operations. In contrast to the existing work, we describe an
approach how to identify change operations in the case that no change log is available
and how to use SESE fragments for ordering discovered change operations.

Nejati et al. [14] present an approach to matching and merging of statecharts.
Matching comprises static matching of state names and behavioral matching based on
the semantics of states and transitions and computes a correspondence relation. This
correspondence relation is used for constructing a merged statechart by constructing
the union of individual statecharts, taking into account corresponding elements. We be-
lieve that merging statecharts could also benefit from the techniques presented in this
paper with regards to user-friendly visualization of differences.

In model-driven engineering, generic approaches for detecting model differences
and resolving them have been studied [2, 12, 9, 10]. Alanen und Porres [2] present an
algorithm that calculates differences of two models based on the assumption of unique
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identifiers. The computation of differences has similarities to our reconstruction of
change operations, however, in our work, we aim at difference resolution for process
models with minimal user interaction.

View integration has also been studied in the graph transformation domain. En-
gels et al. [5] specify views using graphs and use graph transformations for describing
behavior of operations. A system model can then be obtained by integrating different
views, based on view relations. Sabetzadeh and Easterbrook [19] propose an algebraic
framework for merging views. In their approach, independently modeled views are first
coupled using a connector view and then integrated based on the connector view. Al-
though process merging can be considered as a special case of view integration, we
believe that approaches fulfilling specific requirements as discussed in this paper are
needed for applicability in practice.

8 Conclusion and Future Work

User-friendly process merging is a key technique for practical business-driven develop-
ment. In this paper, we have first studied a basic scenario of process merging in BDD
and established key requirements. We have then introduced our approach which com-
prises detection and resolution of differences. The detection of differences is based on
correspondences between process models and also makes use of the concept of a SESE
fragment decomposition of process models. This SESE decomposition enables the vi-
sualization of differences according to the structure of process models. The resolution
of differences is performed in an iterative way, by applying change operations that au-
tomatically reconnect the control flow.

There are several directions for future work. The change operations are intended
to preserve well-formedness and soundness of the process model which needs to be
formally proven. Such a formal foundation would also enable us to reason about mini-
mality of the computed change operations. In addition, our approach can be adapted to
cover other process modeling languages. Future work will also include the elaboration
of our approach for merging process models in a distributed environment. In those sce-
narios, the concept of conflict becomes important because one resolution can turn the
other resolution non-applicable.

Acknowledgements: We would like to thank Jana Koehler and Olaf Zimmermann for their
valuable feedback on an earlier version of this paper.
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11. J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, and M. Wahler. The Role of Visual
Modeleling and Model Transformations in Business-Driven Development. In Proceedings of
the 5th International Workshop on Graph Transformations and Visual Modeling Techniques,
pages 1–12, 2006.

12. D. S. Kolovos, R. Paige, and F. Polack. Merging Models with the Epsilon Merging Language
(EML). In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, MoDELS 2006, volume
4199 of LNCS, pages 215–229. Springer, 2006.

13. T. Mitra. Business-driven development. IBM developerWorks article,
http://www.ibm.com/developerworks/webservices/library/ws-bdd, IBM, 2005.

14. S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching and Merg-
ing of Statecharts Specifications. In ICSE 2007, pages 54–64. IEEE Computer Society, 2007.

15. Object Management Group (OMG). UML 2.0 Superstructure Final Adopted Specification.
OMG document pts/03-08-02, August 2003.

16. F. Puhlmann and M. Weske. Investigations on Soundness Regarding Lazy Activities. In
S. Dustdar, J. Fiadeiro, and A. Sheth, editors, BPM 2006, volume 4102 of LNCS, pages
145–160. Springer, 2006.

17. M. Reichert and P. Dadam. ADEPTflex-Supporting Dynamic Changes of Workflows With-
out Losing Control. J. Intell. Inf. Syst., 10(2):93–129, 1998.

18. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In R. Meersman and Z. Tari, editors, CoopIS’04, volume
3290 of LNCS, pages 101–120. Springer, 2004.

19. M. Sabetzadeh and S. Easterbrook. An Algebraic Framework for Merging Incomplete and
Inconsistent Views. In 13th IEEE International Requirements Engineering Conference,
pages 306–318. IEEE Computer Society, September 2005.

20. W. M. P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

21. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In ICSOC 2007, volume 4749
of LNCS, pages 43–55. Springer, 2007.

22. B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support Features in
Process-Aware Information Systems. In J. Krogstie, A. L. Opdahl, and G. Sindre, editors,
CAiSE’07, volume 4495 of LNCS, pages 574–588. Springer, 2007.

15


