
RZ 3705 (# 99715) 03/15/2008
Computer Science 18 pages

Research Report

Towards a Compiler for Business-IT Systems –
A Vision Statement Complemented with a Research Agenda

Jana Koehler, Thomas Gschwind, Jochen Küster, Hagen Völzer and Olaf Zimmermann

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

E-mail: koe@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

 1

Towards a Compiler for Business-IT Systems
- A Vision Statement complemented with a Research Agenda -

Jana Koehler
Thomas Gschwind Jochen Küster Hagen Völzer Olaf Zimmermann

IBM Zurich Research Laboratory

8803 Rüschlikon, Switzerland
Research Report RZ 3705

March 2008

Summary: Business information systems or enterprise applications have continuously evolved
into Business-IT systems over the last decades, directly linking and integrating Business Process
Management (BPM) with recent technology evolutions such as Service-Oriented Architecture
(SOA) concepts and Web services. Interestingly, many of these technological evolutions include
revivals of areas that have been in the focus of academic research in the past. For example,
business rules closely relate to expert systems, Semantic Web technology uses results from
description logics, attempts have been made to compose Web services using intelligent planning
techniques, and the analysis of business processes and Web service choreographies relies on
techniques originating from model checking and protocol verification.

As such, many of the problems that arise with these new technologies have been solved at least in
principle. Research in the BPM/SOA space, sometimes also called Service-Oriented Computing
(SOC), has tackled many of the problems and proposed a variety of solutions. However, if we try
to apply these “in principle” solutions, we are confronted with the failure of these solutions in
practice. Either a solution technique does not scale to the real-world requirements or it relies on
assumptions that are not satisfied by Business-IT systems. This failure of existing solutions is
limiting a successful application of these new technologies, in particular for smaller business
players.

As has been observed previously, research in this area is fragmented and does not follow a truly
interdisciplinary approach. To overcome the fragmentation of the area we propose the vision of a
compiler for Business-IT systems that takes business process specifications described at various
degrees of detail as input and compiles them into executable IT systems. As any classical
compiler, the parsing, analysis, optimization, code generation and linking phases are supported
and we describe a set of 10 research problems that we think must be solved in order to bring our
compiler vision to reality. We argue that our vision provides a unique technological basis and
foundation that enables a multi-disciplinary approach where existing techniques are combined
with novel solutions filling in technology gaps. We position our vision within the life cycle of
BPM and SOA applications to address the two interleaving trends of commoditization and
innovation of business processes.

 2

1. Introduction: Why a compiler?

Business processes are the set of activities including people, IT systems, and other machines
acting on information and raw materials that allow a business to produce goods and services and
deliver them to its customers. A business is a collection of business processes and thus (re-)
engineering business processes to be efficient is one of the primary functions of a company's
management. This is one of the most fundamental mechanisms that drives advances in our
society.

Business Process Management (BPM) is a structured way to manage the life cycle of business
processes including their modeling (analysis and design), execution, monitoring, and
optimization. Good tools exist that allow business processes to be analyzed and designed in an
iterative process. Creating a model for a process provides insights that allow the design of a
process to be improved, in particular if the modeling tool allows the process to be simulated.

Service-Oriented Architectures (SOA), which are often implemented as Web services, is an
architectural style that allows IT systems to be integrated in a standard way, which lends itself to
efficient implementation of business processes. SOA also enables efficient process re-engineering
since the use of standard programming models and interfaces makes it much simpler to change
the manner in which the components of business processes are integrated. Once a process is
implemented, it can be monitored, e.g., measured, and then further optimized to improve the
quality, notably the performance, or some other aspect of the process.

In spite of the progress that has been made recently in business process design and modeling on
the one hand, and their execution and monitoring on the other, there is a significant gap in the
overall BPM life cycle, which severely limits the ability of companies to realize the benefits of
BPM. No complete solution exists to automate the translation from business process models to
executable business processes. While partial solutions exist that allow some process models to be
mapped to implementations (workflows), scalable, automated approaches that allow the full
exploitation of the BPM life cycle to make rapid improvements in business processes do not exist.
Thus, many of the benefits of process modeling and SOA cannot be realized and effective BPM
remains a vision.

As has been observed previously, research in this area is fragmented and does not follow a truly
interdisciplinary approach. This lack of interdisciplinary research is seen as a major impediment
that limits added economic growth through deployment and use of services technology [32]:

“The subject of SOC1 is vast and enormously complex, spanning many concepts and technologies
that find their origins in diverse disciplines that are woven together in an intricate manner. In
addition, there is a need to merge technology with an understanding of business processes and
organizational structures, a combination of recognizing an enterprise's pain points and the
potential solutions that can be applied to correct them. The material in research spans an
immense and diverse spectrum of literature, in origin and in character. As a result research
activities at both worldwide as well as at European level are very fragmented. This necessitates

1 SOC stands for Service-Oriented Computing – a term that is also used to denote research in the area of
BPM and SOA. The still evolving terminology is a further indicator of the emerging nature of this new
research field.

 3

that a broader vision and perspective be established—one that permeates and transforms the
fundamental requirements of complex applications that require the use of the SOC paradigm.”

This report presents a concrete technological vision and foundation to overcome the
fragmentation of research in the BPM/SOA/SOC area. We propose the vision of a compiler for
Business-IT systems that takes business process specifications described in various degrees of
detail as input and compiles them into executable IT systems. This may sound rather adventurous,
however, recall how the first compiler pioneers were questioned when they suggested to
programmers that they should move from hand-written assembler to abstract programming
languages from which machine-generated code would then be produced. The emerging new
process-oriented programming languages are examples of languages that are input to such a
compiler. In particular, BPMN 2.0 [33] is a language that at the same time allows non-technical
users to describe business processes in a graphical notation, while technical users can enrich these
descriptions textually until the implementation of the business process is completely specified.
With its formally defined execution semantics, BPMN 2.0 is directly executable; however, a
direct execution means to follow an interpreter-based approach with all its shortcomings.

The envisioned compiler does not take a high-level business process model, magically adds all
the missing information pieces, and then compiles it into executable code. The need to go from an
analysis model to a design model in an iterative refinement process that involves human experts
does not disappear. The compiler enables human experts to more easily check and validate their
process model programs. The validation helps them in determining the sources of errors as well
as the information that is missing. Only once all the required information is available, the code
can be completely generated. The compiler approach also extends the Model-Driven Architecture
(MDA) vision; beyond model transformations that provide a mapping between models with
different abstractions, we combine code generation with powerful analytical techniques. Static
analysis is performed yielding detailed diagnostic information and structural representations
similar to the abstract syntax tree are used by the Business-IT systems compiler. This provides a
more complete understanding of the process models, which is the basis for error handling, correct
translation, and runtime execution.

As any classical compiler, a compiler for Business-IT systems works in five phases. While we
consider the parsing and lexical analysis phase as being solved by our previous and current work,
we explore in this report 10 specific research problems that address key problems for the
subsequent phases. The list below briefly summarizes the 10 problems. In the subsequent section,
they will be discussed in more detail.

1. Lexical analysis and parsing
We developed the Process Structure Tree (PST) as a unique decomposition of a
workflow graph into a tree of fragments that can be computed in linear time. The
PST plays the same role in the Business-IT systems compiler than the Abstract
Syntax Tree (AST) in a classical compiler.

2. Structural and semantic analysis
We developed a control-flow analysis for workflow graphs that exploits the PST and
demonstrates its usefulness, but which can still be significantly expanded in terms of
the analysis results it delivers as well as the scope of models to which it can be
applied.

 4

Problem 1: Clarify the role of orchestrations and choreographies in the compiler.
Process models describe the flow of tasks for one partner (orchestration) as well as
the communication between several partners (choreographies). Structural and
semantic analysis must be extended to choreographies and orchestration models.
Furthermore, it must be clarified which role choreography specifications play during
the compilation process.

Problem 2: Solve the flow separation problem for arbitrary process orchestrations.
Process orchestrations can contain specifications of normal as well as error-handling
flows. Both flows can be interwoven in an unstructured diagram, with their
separation being a difficult, not yet well-understood problem.

Problem 3: Transfer and extend data-flow analysis techniques from classical
compilers to Business-IT systems compilers.
Processes manipulate business data, which is captured as data flow in process
models. Successful techniques such as Concurrent Single Static Assignment (CSSA)
must be transferred to the Business-IT systems compiler.

Problem 4: Solve the temporal projection problem for arbitrary process
orchestrations.
Process models are commonly annotated with information about states and events.
This information is usually available at the level of a single task, but must be
propagated over process fragments, which can exhibit a complex structure including
cycles.

Problem 5: Develop scalable methods to verify the termination of a process
choreography returning detailed diagnostic information in case of failure.
Correctly specifying the interaction between partners that execute complex process
orchestrations in a choreography model is a challenging modeling task for humans. In
particular, determining whether the orchestration terminates is a fundamental analysis
technique that the compiler must provide in a scalable manner.

3. Translation and intermediate code generation
Problem 6: Define a translation from BPMN to BPEL and precisely characterize the
maximal set(s) of BPMN diagrams that are translatable to structured BPEL.
The Business Process Modeling Notation (BPMN) as well as the Business Process
Execution Language (BPEL) are the most relevant languages that the compiler must
handle today. The precise and efficient translation from the unstructured BPMN
language to the structured BPEL language is not yet completely solved and also
requires the semantics of both languages to be formally defined.

4. Optimization
Problem 7: Define execution optimization techniques for the Business-IT systems
compiler.
Until today, business processes are usually optimized with respect to their costs. No
optimization of a process with respect to the desired target platform happens
automatically as it is available in a classical compiler. It is an open question which

 5

optimizations should be applied when processes are compiled for a Service-Oriented
Architecture.

5. Final assembly, linking and further optimization
Problem 8: Redefine the Web service composition problem such that it is grounded in
realistic assumptions and delivers scalable solutions.
Web service composition is studied today mostly from a Semantic Web perspective
assuming that rich semantic annotations are available. A compiler, however, should
be able to perform the composition and linking of service components without
requiring such annotations by relying on a semantic analysis of their descriptions.

Problem 9: Redefine the adapter synthesis problem by taking into consideration
constraints that occur in business scenarios.
Incorrect choreographies have to be repaired. Often, this is achieved by not changing
the processes that are involved in the choreography, but by synthesizing an adapter
that allows the partners to successfully communicate with each other. Such an
adapter often must include comprehensive protocol mediation capabilities. So far, no
satisfying solutions have been found for this problem and we argue that it must be
reformulated under realistic constraints.

Problem 10: Demonstrate how IT architectural knowledge and decisions are used
within the compiler.
The target platform for the Business-IT systems compiler is a Service-Oriented
Architecture. Architectural decision making is increasingly done with tools that make
architectural decisions explicit and manage their consistency. These decisions can
thus become part of the compilation process, making it easier to compile processes
for different back end systems.

The positioning of these 10 problems within the various compilation phases makes it possible for
researchers to tackle them systematically, study their interrelationships, and solve the problems
under realistic boundary constraints. Our vision allows us to position problems in a consistent and
comprehensive framework that have previously been tackled in isolation. This can lead to
synergies between the various possible solution techniques and allows researchers to successfully
transfer techniques that were successful in one problem space to another.

Our vision provides researchers with continuity in the technological development, with compilers
tackling increasingly complex languages and architectures. A solution of the 10 research
problems has significant impact on the integrity, improved agility and higher automation within
BPM/SOA and Service-Oriented Computing.

A compiler significantly increases the quality of the produced solution and provides clearer
traceability. Approaches of manual translation are envisioned to be replaced by tool-supported
refinement steps guided by detailed diagnostic information. The optimization of Business-IT
systems with respect to their execution becomes possible, which can be expected to lead to
systems with greater flexibility making it easier for businesses to follow the life cycle of process
innovation.

 6

2. The Details of our Vision

The IT Infrastructure underlying a business is a critical success factor. Even when IT is
positioned as a commodity such as by Nicolas Carr in “IT doesn’t matter”, it is emphasized that a
disruptive new technology has arrived, which requires companies to master the economic forces
that the new technology is unleashing. In particular smaller companies are not so well positioned
in this situation. The new technology in the form of Business Process Management (BPM) and
Service-Oriented Architecture (SOA) is complex to use, still undergoing significant changes, and
it is difficult even for the expert to distinguish hype from mature technology development.

There is wide agreement that business processes are the central focus area of the new technology
wave. On the one hand, business processes are undergoing dramatic change made possible by the
technology. On the other hand, increasing needs in making business processes more flexible,
while retaining their integrity and compliance with legal regulations continue to drive technology
advances in this space. A recent prominent failure in process integrity led to the billion Euro loss
at Société Générale.

Based on the development of new standards, algorithms, and tools, it will be possible to create
well structured business process models that are free of errors and that can be simulated and
studied to determine their performance, policy compliance and other characteristics. The aim of
this vision is to contribute to these developments. We envision a compiler that enables users to
specify process models at different levels of abstraction. The compiler analyses these models,
provides detailed diagnostic information to the user helping them to correct and further refine the
models until they can be compiled into executable code.

The figure below reflects our current view of the driving forces behind the life cycle of business
processes. Two interleaved trends of commoditization and innovation have to be mastered that
involve the solution of many technical problems.

 7

Let us spend some space discussing this picture to explain why this is a challenge for most
businesses today and why underpinning business process innovation with compiler technology is
essential to master the innovation challenge.

Let us begin in the lower left corner with the As-Is Process box. This box describes the present
situation of a business. Any business has many processes implemented, many of them run today
in an IT-supported environment. As such they were derived from some As-Is design model and
deployed. Sometimes, the design model is simply the code. The As-Is design model is linked to
an As-Is analysis model. Here, we adopt the terminology from software modeling that
distinguishes between an analysis model (in our case, the business view on the processes) and the
design model (in our case, the implemented processes). The analysis model is usually an
abstraction from the design model, i.e., a common view of the business on the implemented
processes exists in many companies.2 The direct linkage between the business view on the
processes and their implementation constitutes the Business-IT system.

The As-Is processes implemented by the players in some industry represent the state of the art for
the Business-IT systems. Industries tend to develop a solid understanding of good and bad
practices and often develop best practice reference solutions. Very often, consulting firms also
specialize in helping businesses understanding and adopting these best practice processes. Today,
one can even see a trend beyond adoption. For example, in the financial industry one can see first
trends towards standardized processes that are closely linked to new regulations. This clearly
creates a trend of commoditization forcing companies to adopt the new regulation solutions. With
that we have arrived at the upper right corner of the picture.

The commoditization trend is pervasive in the economic model of the western society and it is as
such not surprising that it now reaches into business processes. However, in a profit-driven
economy, commoditization is not desirable as it erodes profit. Businesses are thus forced to
escape the commoditization trap, which they mostly approach by either adopting new
technologies or by inventing new business models. Both approaches directly lead to innovations
in the business processes. In the picture above, the new business processes resulting from the
innovation are shown as the To-Be processes, which have to both accommodate commoditization
requirements and to include innovation elements at the same time. The To-Be innovation must
also be evident with respect to the As-Is process and the best practice process, which is illustrated
in the picture with the reference to a delta analysis involving the three process models. The To-Be
process is usually (but not always) initiated at the analysis level, i.e., the business develops a need
for change and begins to define this change. The To-Be analysis model must be refined into a To-
Be design model and then taking through a business-driven development and IT-architectural
decision process that is very complex today. With the successful completion of the development,
the To-Be process becomes the new As-Is process. With that the trends of commoditization and
innovation repeat within the life cycle of business processes [17,18].

This report focuses on the technological underpinnings for business process innovation, i.e., the
adoption of best practice processes, their combination with innovative elements, and the
replacement of the As-Is process by the To-Be process. The report investigates these problems

2 By monitoring or mining the running processes or analyzing and abstracting the underlying design model
or code in some form, an analysis model can also be produced in an automatic or semi-automatic manner,
but this is not in the focus of this document.

 8

from a strict technology point of view and addresses a number of specific problems that are yet
unsolved, but have to be solved in order to support businesses in their innovation needs. Problems
of process abstraction, harvesting, and standardization are also interesting, but are outside the
scope of this vision as are a study of the economic or social effects of what has been discussed
above.

The vision of a compiler for Business-IT systems may sound rather adventurous, however, recall
how the first compiler pioneers were questioned when they suggested to programmers that they
should move from hand-written assembler to abstract programming languages from which
machine-generated code would then be produced.

The emerging new process-oriented programming languages such as the Business Process
Execution Language (BPEL) or the recent proposal by IBM, Oracle, and SAP for the Business
Process Modeling Notation 2.0 (BPMN) are examples of languages that are input to such a
compiler. In particular, BPMN 2.0 is a language that at the same time allows non-technical users
to describe business processes in a graphical notation, while technical users can enrich these
descriptions textually until the implementation of the business process is completely specified.
Due to its formally defined execution semantics and the fact that BPMN 2.0 fully subsumes
BPEL, it is also directly executable. However, directly executing BPMN diagrams corresponds to
a simple interpreting approach with all its limitations and thus, is not desirable.

The envisioned compiler does not take a high-level business process model, magically add all the
missing information pieces, and then compile it into executable code. The need to go from an
analysis model to a design model in an iterative refinement process that involves human experts
does not disappear. The compiler enables human experts to more easily check and validate their
process model programs. The validation helps them in determining the sources of errors as well
as the information that is missing. Only once all the required information is available from the
formal description of the system, the code can be completely generated. This also applies to a
classical compiler that can parse and analyze (and partially compile) an incomplete program that
is in an intermediate state. In particular, the analytical information that a compiler returns to the
users while there are developing the software, is extremely beneficial.

With the compiler approach, we also plan to go beyond the Model-Driven Architecture (MDA)
vision that proposes models at different levels of abstraction and model transformations to go
from a more abstract to a more refined model. Two problems prevent that MDA is fully workable
for BPM/SOA. If used at all, model transformations are written mostly in an ad-hoc manner in
industrial projects today. They rarely use powerful analytical techniques such as the static
analysis performed by compilers, nor do they exploit structural representations similar to the
abstract syntax tree that a compiler builds for a program. Furthermore, too many different models
result from the transformations with traceability between these models remaining an unsolved
problem so far.

A compiler can help in automating many manual steps and be expected to produce higher-quality
results than those that can be obtained by manual, unsupported refinement and implementation
steps. Our main goal is to understand how such a compiler for Business-IT systems works. At its
core, we see the compilation of business process models, which constitutes a well-defined
problem.

 9

In the following, we relate the principal functionalities of a programming language compiler to
the corresponding problems of compiling a business process model. Following Muchnik 1997,
“compilers are tools that generate efficient mappings from programs to machines.” Muchnik also
points out that languages, machines, and target architectures continue to change and that the
programs become ever more ambitious in their scale and complexity. In our understanding,
languages such as BPMN are the new forms of programs and SOA is a new type of architecture
that we have to tackle with compilers. A compiler-oriented approach helps solving the business
problems and addressing the technical challenges around BPM/SOA. For example, verifying the
compliance and integrity of a business with legal requirements must rely on a formal foundation.
Furthermore, agility in responding to innovation requires a higher degree of automation.

At a high-level, a compiler works in the following five phases:

1. Lexical analysis and parsing
2. Structural and semantic analysis
3. Translation and intermediate code generation
4. Optimization
5. Final assembly and linking and further optimization

The core of our vision is to develop fundamental techniques for a Business-IT systems compiler.
This includes contributions to the analysis, translation, optimization and assembly phases, while
we consider the parsing problem as solved as is explained below.

State-of-the-art and objectives: In the following, we review selected related work in the context of
the five phases. The review will not be a comprehensive survey of the state of the art. We focus
on where we stand in our research with respect to the compiler for Business-IT systems and point
by example to existing work in various fields of computer science that is relevant for the five
phases. Much other related work exists – it was not our goal to provide a comprehensive
overview.

2.1 Parsing

The parsing problem for business process models has not yet been widely recognized as an
important problem by the BPM community. The figure below shows a typical workflow graph
underlying any business process model. It includes activities ai, decisions di, merges mi, forks fi
and joins ji. Today, process-oriented tools treat such models as large, unstructured graphs. No
data structure such as the Abstract Syntax Tree (AST) used by compilers is available in these
tools.

 10

In our own research, we developed the Process Structure Tree (PST) [1], which we consider to be
the AST analogy for Business-IT systems compilers. The PST is a fundamental data structure for
all the subsequent phases of a compilation. The figure below shows the PST for the process
model above. By applying techniques from the analysis of program structure trees [5, 13] to
business process models a unique decomposition of process models into a tree of fragments can
be obtained.

In our current work, we improve and generalize the fragment-tree computation further by
combining methods from graph theory with those known from the theory of programs leading to
a refined PST [30] that is built with more fine-grained fragments in linear time. This is a
significant improvement compared to approaches that use graph grammars to parse the visual
language, which is exponential in most cases [34].
With this, we believe that the parsing problem for the Business-IT systems compiler is solved for
the near future. Additional improvements can be imagined, but it is more important to concentrate
on the other remaining phases and validate that the PST is indeed as powerful as the AST.

2.2. Structural and semantic analysis

So far, we have built two applications: a) a control-flow analysis [1] and b) an approach to the
structural comparison and difference analysis of process models [2]. Both demonstrated that the
PST is an essential prerequisite and a powerful data structure to implement various forms of
analyses. In the following, we shortly summarize our current insights into the analysis problem
and identify a set of concrete problems that we consider as being especially relevant and
interesting.

A business process model is also often referred to as a process orchestration. A process
orchestration (the control- or sequence flow) describes how a single business process is composed
out of process tasks and subprocesses. In a SOA realization, each task or subprocess is
implemented as a service, where services can also be complex computations encapsulating other
process orchestrations. In contrast to an orchestration, a process choreography describes the
communication and thus the dependencies between several process orchestrations. Note that the
distinction between orchestration and choreography is a “soft” one and usually depends on the
point of view of the modeler.

An example of a simple process orchestration and choreography specification in the Business
Process Modeling Notation (BPMN) is shown in the figure below, taken from the BPMN 1.1
specification [26]. The figure shows an abstract process Patient and a concrete process Doctor’s
office. The Doctor’s office process orchestration is a simple sequence of tasks. The dotted lines

 11

between the two processes represent an initial and incomplete description of the choreography by
showing the messages flowing between the two processes.3

Our compiler needs to be able to analyze orchestrations as well as choreographies. However, it is
not fully clear at which phase choreography information is relevant for the compilation. It is
clearly relevant in the assembly and linking phase when an entire Business-IT system is built, but
one can also imagine that the optimization of an orchestration can be specific to a given
choreography in order to better address the desired target architecture. This leads us to the
formulation of our first research problem:

1. Clarify the role of orchestrations and choreographies in the compiler.

Another fundamental question for the analysis is the detection of control- and data-flow errors. In
the context of a process orchestration, verification techniques have been widely used, e.g., [4]. To
the best of our knowledge, compiler techniques have not yet been considered so far.

Verification of business processes is an area that has a long tradition. Locating errors in business
processes is important in particular because of the side effects that processes have on data.
Processes that do no terminate correctly because of deadlocks or processes that exhibit
unintended execution traces due to a lack of synchronization often leave data in inconsistent
states [35]. Common approaches to process verification usually take a business process model,
translate it into a Petri-net or state-based encoding and then run a Petri-net analysis tool or model
checker on the encoding. Examples are the Woflan tool [3] or the application of SMV or Spin to
BPEL verification, e.g., [28, 29]. In principle, these approaches make it possible to detect errors
in business processes. However, there are severe limitations that prevented the adoption of the
proposed solutions in industrial tools:

• the encodings are of exponential size compared to the original process model,
• the verification tool does not give detailed enough diagnostic information in such a way

that it allows an end user to easily correct errors,
• the approaches often make restricting assumptions on the subclass of process models that

they can handle.

3 Note that the clarification and formal definition of the semantics of BPMN is another focus area of our
work. We contributed a formal definition of the execution semantics of BPMN to the submission by IBM,
Oracle, SAP for the BPMN 2.0 Request for Proposals by the OMG. However, developing the fundamental
techniques for a Business-IT compiler does not require BPMN as a prerequisite. Related well-defined
languages such as Petri nets or workflow graphs can also be assumed. Nevertheless, we plan to apply our
techniques to BPMN due to the growing practical relevance of the language.

 12

Consequently, the currently available solutions are only partially applicable in practice due to
their long runtimes, the lack of suitable diagnostic information, and the restrictions of the defined
encodings.

In our own work, we have followed a different approach. First, we analyzed hundreds of real-
world business processes and identified commonly occurring anti-patterns [6]. Second, we
developed the PST and showed how it can be used to speed up the verification of a process
orchestration model [1]. Each fragment in a PST can be analyzed in isolation because the tree
decomposition ensures that a process model is sound if each fragment is sound. Many fragments
exhibit a simplified structure and their soundness (or the presence of deadlocks or lack of
synchronization errors) can be verified by matching them against patterns and anti-patterns. Only
a small number of fragments remains, which requires the application of verification methods such
as model checking. Furthermore, the size of the fragments is usually small in practice, which
results in a significant state-space reduction. Consequently, the resulting combination of
verification techniques with structural analysis leads to a verification method that is low
polynomial in practice with worst-case instances only occurring rarely. As each error is local to a
fragment, this method also returns precise diagnostic information. The following figure
summarizes the approach.

Implementation of the work showed that the soundness of large business process models can be
completely analyzed in within a few seconds – as such, the technology can be made available to
users of modeling tools where they obtain instant feedback. Smart editing macros [7] can be
provided to users to help them correct the detected modeling errors easily. These macros take
advantage of the fine-grained diagnostic information and the PST to support users in
accomplishing complicated editing steps in a semi-automatic manner.

With these results, a major step forward has been made. Still, two problems remain. First, the
control-flow analysis must be extended to process orchestrations that are enriched with the
description of error-handling or compensation flow. Second, no sufficient data-flow analysis
techniques are yet available to analyze business processes. The next figure illustrates two more
problems that we want to look at in more detail.

 13

A repetitive process comprising task T1 followed by task T2 is executed. T1 changes the state of
some data object. During the execution of T1, some compensation event can occur that requires
task T3 to execute. When the compensation is finished, the process continues with T2. BPMN
allows business users to freely draw “normal” flows as well as error-handling flows within the
same process model. An error-handling flow can branch off in some task interrupting the normal
flow and then later merge back into the normal flow. For a process without cycles, it is relatively
easy to tell from the process model where normal and error-handling flows begin and end. For
processes with cycles, this is much more complicated and constitutes an unsolved problem that
we denote as the “flow separation problem”. A solution to this problem requires the definition of
the semantics of error-handling flows. Furthermore, an error-handling flow must always be
properly linked to a well-defined part of the normal flow, which is usually called the scope.
Computing the scope of an error handling flow from an unstructured process model is an open
problem. This leads us to the formulation of the second research problem:

2. Solve the flow separation problem for arbitrary process orchestrations.

Data-flow analysis for unstructured business process models is a largely unsolved problem. The
figure above shows some data object as an output of task T1. Large diagrams often refer to many
different types of data objects as the inputs and outputs of tasks. Furthermore, decision conditions
in the branching points of process flows often refer to data objects. Users who work with process
models are interested in answering many questions around data such as whether data input is
available for a task, whether data can be simultaneously accessed by tasks running in parallel in a
process, or whether certain decision conditions can ever become true given certain data. This
leads us to the formulation of the third research problem:

3. Transfer and extend data-flow analysis techniques from classical compilers to Business-
IT systems compilers.

An immediate candidate is Concurrent Single Static Assignment [31] that we have begun to
explore. Data-flow analysis is also a prerequisite to answer questions such as whether a
compensation flow really compensates for the effects of a failed normal flow, because the side
effects of the flows on the data must be investigated.

Recently, additional knowledge about the process behavior in the form of semantic annotations is
added to process models. These annotations take the form of formally specified pre- and
postconditions or simple attribute-value pairs. A tool should be able to reason about these
semantic annotations, for example to conclude what pre- and postconditions hold for a complex
process fragment containing cycles when the control flow is specified and the pre- and
postconditions of the individual tasks are known. This problem of computing the consequences of
a set of events has been studied as the so-called Temporal Projection problem in the area of
Artificial Intelligence (AI) planning [8] and regressing and progression techniques have been
developed. Unfortunately, AI plans exhibit a much simpler structure than process models, in
particular they are acyclic, i.e., the existing techniques are not directly applicable. A solution to
the temporal projection problem is important for the analysis of data flows as well as for the
composition of processes (and services). Thus, we formulate it as the fourth research problem:

4. Solve the temporal projection problem for arbitrary process orchestrations.

 14

With this, we have the research problems defined that we want to tackle with respect to process
orchestrations for the analysis phase.

For process choreographies, we are mostly interested in termination problems. Can two processes
successfully communicate with each other such that both terminate? If a process choreography is
fully specified, this question can be precisely answered. Even in the case of abstract models and
underspecified choreographies such as in our simple example above, interesting questions can be
asked and answered. For example, which flow constraints must the abstract Patient process
satisfy such that a successful communication is possible?

Previous work, notably the research on operating guidelines [9, 11-12] is trying to answer such
questions. The proposed analysis techniques are based on Petri-nets, but do not yet scale
sufficiently well. Similar to the case of process orchestrations, we are also interested in detailed
diagnostic information when verifying choreographies. This leads us to the formulation of our
fifth research problem:

5. Develop scalable methods to verify the termination of a process choreography returning
detailed diagnostic information in case of failure.

2.3. Translation and intermediate code generation

In the translation phase, we want to essentially tackle one especially challenging problem, namely
the translation from unstructured BPMN to structured BPEL. An example of relevant related
work is presented in [10]. It exploits a form of structural decomposition that resembles some
ideas similar to the PST, but is not as well-defined. With our contribution of the execution
semantics for BPMN 2.0, we also have developed initial insights into the classes of BPMN
diagrams that are translatable into structured BPEL that we want to work out further. This leads
us to the definition of our sixth research problem.

6. Define a translation from BPMN to BPEL and precisely characterize the maximal set of
BPMN diagrams that are translatable to structured BPEL.

2.4 Optimization

The optimization phase for the Business-IT systems compiler is a completely unaddressed
research area so far. Classical process optimization from BPM only focuses on cost minimization.
For the compiler, we are envisioning an optimization of processes with respect to their execution
on the planned target architecture, but not a cost optimization of the process itself. One advantage
of compilers is their ability to support multiple platforms. Different architectures, including
different styles of SOA, require and enable differences in the process implementation. Such
optimizations have for example been studied in the context of J2EE applications [14]. We have
some initial insights, but our main goal here is to clarify what can and should happen during the
optimization phase. This leads us to the definition of our seventh research problem.

7. Define execution optimization techniques for the Business-IT systems compiler.

2.5. Final assembly and linking and further optimization

 15

For the assembly and linking phase, two problem areas are within the focus of our interest. First,
we are interested in studying some well-defined synthesis problems. In the literature, two
instances of process synthesis problems have been investigated so far: First, the Web service
composition problem, which is mostly tried to be solved using AI planning techniques [15, 16].
Web service composition tries to assemble a process orchestration from a predefined set of
services. It is commonly assumed that the goal for the composition is explicitly given and that
services are annotated with pre- and postconditions. Unfortunately, both assumptions are not
really satisfied in the real world. In particular, business users usually have a rather implicit
understanding of their composition goals. We cannot expect these users to explicitly formulate
their goals in some formal language. Furthermore, the processes returned by the proposed
methods for service composition are very simple and resemble more those partially-ordered plans
as studied by the AI planning community than those processes modeled by BPMN diagrams.

The second problem is the adapter synthesis problem, which is attempted by combining model
checking techniques with more or less intelligent “guess” algorithms [19, 20]. Adapter synthesis
tries to resolve problems in a faulty choreography by generating an additional process that allows
existing partners to successfully communicate. The problem is inherently difficult in particular
due to the unconstrained formulation in which it is studied. Usually, the goal is to generate
“some” adapter without formulating any further constraints. As such an infinite search space is
opened up and the methods are inherently incomplete. In addition, the synthesized adapters must
be verified, because the synthesis algorithms can usually not be guaranteed to be correct. There is
thus a wide gap between the currently proposed techniques and the needs of a practically relevant
solution.

A first aim must therefore be to formulate practically relevant variants of the service composition
and adapter synthesis problem and then work out solutions to these problems that make realistic
assumptions, scale to real-world problems and are accepted by the commercial as well as the
academic world. This leads us to the formulation of our eighths and ninth research problems:

8. Redefine the Web service composition problem such that it is grounded in realistic
assumptions and delivers scalable solutions.

9. Redefine the adapter synthesis problem by taking into consideration constraints that

occur in business scenarios.

An initial goal for these two research problems is thus to identify realistic problem formulations.
For the web composition problem, this means to replace the assumptions of explicit goals and
pre- and postconditions by the information that is available in real-world use cases of service
composition. Furthermore, the composition methods must be embedded into an approach based
on iterative process modeling where a human user is involved, similar to what has been studied
by the AI planning community under the term of so-called mixed-initiative approaches. It also
seems to be a promising approach to combine such approaches with pattern-based authoring
methods similar in spirit to those known from the object-oriented software engineering
community [27], i.e. provide users with predefined composition problems and proven solutions in
the form of composition patterns that they “only” need to instantiate and apply to their problems.

The second problem area for the assembly and linking phase focuses on the architectural design
decisions that must be made when compiling business processes to IT systems. Today, these

 16

decisions are taken by IT architects mostly working with paper and pen. Decisions are not
formally represented in tools and no decision-making support is available. Consequently,
architectural decisions are not available in a form that they can really be used by the Business-IT
systems compiler. Recent work by others and us has shown that architecturally decision making
can be systematically supported and that decision alternatives, drivers and dependencies can be
explicitly captured in tools and injected into a code-generating process, [21-25]. By separating
and validating the architectural decisions, design flaws can be more easily detected and a
recompilation of a system for a different architecture is becoming more feasible. This leads us to
the definition of our tenth and last research problem:

10. Demonstrate how IT architectural knowledge and decisions are used within the compiler.

With this list of 10 specific research problems, the vision of a compiler for Business-IT systems is
broken down into a specific set of key problems. We believe that a solution of these problems
constitutes the essential cornerstones for such a compiler. The positioning of the problems within
the various compilation phases makes it possible to tackle them systematically, study their
interrelationships, and solve the problems under realistic boundary constraints.

We believe that the compiler vision is a key to overcome the most urgent problems in the BPM
and SOA space. Today, BPM and SOA applications are built from business process models that
were drawn in modeling tools that offer little analytical or pattern-based support. From the
process analysis models, design models are created by hand by manually translating and refining
the information contained in the analysis model. Usually, the direct linkage between analysis and
design gets lost during this step. Changes made at the design level are rarely reflected back at the
analysis level. Commonly, the business processes are modeled in isolation. Their
interdependencies and communication, their distributed side effects on shared data are rarely
captured in models, but remain hidden in hand-written code. Thus, building the applications is
expensive, resource-intensive, and often ad-hoc. The resulting BPM and SOA systems are hard to
test, to maintain, and to change.
A compiler significantly increases the quality of the produced solution and provides clearer
traceability. Approaches of manual translation are replaced by tool-supported refinement steps
guided by detailed diagnostic information. When embedding the compiler into a development
environment supporting version merging for process models in horizontal (distributed modeling)
and vertical scenarios (refinement), versions of the process models can be tagged, compared, and
merged. Alternative views on the processes for different purposes can be more easily provided.
The optimization of Business-IT systems with respect to their execution becomes possible, which
can be expected to lead to systems with greater flexibility making it easier for businesses to
follow the life cycle of process innovation.

3. Summary

None of the presented research problems is new. In fact, many research projects have been
initiated around them. However, as we tried to outline in the previous discussion, none of these
projects has been truly successful, because the developed solutions commonly fail in practice,
because they do either not scale to the size of real-world examples, they do not provide users with
the information that they need, or they rely on assumptions that do not hold in practice. However,
many of these research projects have delivered interesting partial solutions that are worth to be
preserved and integrated into a compiler for Business-IT systems. Consequently, many of these

 17

results have to be combined with novel “gap-closing” technology that still has to be developed
and placed within the vision of the compiler. In many cases, the gap is in fact quite wide,
requiring researchers to leave established solution approaches and develop much more than a
small delta of research results.

The 10 research problems have been defined at different levels of abstraction. Some are concrete,
while others first have to be addressed at the conceptual level before they can be refined into a
concrete set of problems. Furthermore, we introduced two comprehensive areas of research
around the two synthesis problems where we believe that they not only require a sophisticated
combination of various techniques developed in different fields of computer science, but where
we have the impression that these problems cover a large class of related subproblems. Solutions
to the concrete problems that we defined are a prerequisite for making progress on the synthesis
problems. We believe that this mix makes the proposed problems particularly interesting and
would enable researchers to drive progress in complementary strands of work.

We presented our initial thoughts on the Business-IT systems compiler to various researcher
groups and the feedback was very encouraging. It would be nice to make compiler experts excited
in the BPM/SOA compilation problem, which has not been widely recognized so far. The main
challenge, however, does not lie in understanding the state of the art in compiler theory, but in
applying the known techniques to the new problems and combining them with novel solutions.
Our current results have been built on combining results from compiler theory, graph theory, the
theory of programs, formal languages, Petri nets and software engineering.

Bibliography
[1] J. Vanhatalo, H. Völzer, F. Leymann: Faster and more focused control-flow analysis for business process models
though SESE decomposition, ICSOC-07. LNCS 4749, pages 43-55, 2007.
[2], J. Küster, C. Gerth, A. Foerster, G. Engels: Process Merging in Business-Driven Development. ZRL Research
Report RZ 3703, February 2008.
[3] H.M.W. Verbeek , T. Basten, W.M.P. van der Aalst: Diagnosing Workflow Processes using Woflan, The Computer
Journal, 44(4):246-279, British Computer Society, 2001.
[4] L. Baresi, E. Di Nitto (Eds.): Test and Analysis of Web Services, Springer, 2007.
[5] R. Johnson, D. Pearson, K. Pingali. The program structure tree: Computing
control regions in linear time. In Proceedings of the ACM SIGPLAN’94 Conference on
Programming Language Design and Implementation (PLDI), pages 171–185, 1994.
[6] J. Koehler, J. Vanhatalo: Process Anti-Patterns: How to Avoid the Common Traps of Business Process Modeling.
IBM Websphere Developer Technical Journal, Issues 10.2 and 10.4, February and April 2007.

 18

[7] J. Koehler, T. Gschwind, J. Küster, C. Pautasso, K. Ryndina, J. Vanhatalo, H. Völzer: Combining Quality
Assurance and Model Transformations in Business-Driven Development. International Workshop and Symposium on
Applications of Graph Transformation with Industrial Relevance, LNCS, forthcoming 2008.
[8] B. Nebel, C. Bäckström: On the Computational Complexity of Temporal Projection, Planning, and Plan Validation.
Artif. Intell. 66(1): 125-160,1994.
[9] P. Massuthe, W. Reisig, and K. Schmidt: An Operating Guideline Approach to the SOA. AMCT, 1(3):35-43, 2005.
[10] C. Ouyang, M. Dumas, A. H.M. ter Hofstede, W. M.P. van der Aalst: From BPMN Process Models to BPEL Web
Services, ICWS-06), pages 285-292, 2006.
[11] N. Lohmann, P. Massuthe, K. Wolf: Operating Guidelines for Finite-State Services. ICATPN-07, LNCS 4546,
pages 321-341 2007.
[12] P. Massuthe and K. Wolf: An Algorithm for Matching Nondeterministic Services with Operating Guidelines.
IJBPIM, 2(2):81-90, 2007.
[13] C. S. Ananian: The static single information form, Master’s thesis, MIT 1999.
[14] R. P. Sriganesh, G. Brose, and M. Silvermanohn: Mastering Enterprise JavaBeans 3.0, John Wiley, 2006.
[15] J. Rao, X. Su: A Survey of Automated Web Service Composition Methods, First International Workshop on
Semantic Web Services and Web Process Composition, LNCS 3387, pages 43-54, 2004.
[16]. J. Hoffmann, P. Bertoli, M. Pistore: Web Service Composition as Planning, Revisited: In Between Background
Theories and Initial State Uncertainty, AAAI-07, pages 1013-1018, 2007.
[17] M. Reichert, P. Dadam. ADEPT_Flex - Supporting Dynamic Changes of Workflows Without Losing Control. J.
Intell. Inf. Syst., 10(2):93-129, 1998.
[18] S. Rinderle, M. Reichert, P. Dadam. Disjoint and Overlapping Process Changes: Challenges, Solutions,
Applications, CoopIS-04, LNCS 3290, pages 101-120, 2004.
[19] P. Bertoli, J. Hoffmann, F. Lécué, M. Pistore: Integrating Discovery and Automated Composition: from Semantic
Requirements to Executable Code. ICWS-07, pages 815-822, 2007.
[20], A. Brogi, R. Popescu: Automated Generation of BPEL Adapters. ICSOC-06, LNCS 4294, pages 27-39, 2006.
[21] Kruchten P., Lago P., van Vliet H, Building up and reasoning about architectural knowledge. QoSA-06, LNCS
4214, pages 43-58, 2006.
[22] Jansen, A. and Bosch, J. 2005. Software Architecture as a Set of Architectural Design Decisions, Wicsa-05, IEEE
Computer Society, 2005.
[23] Tyree, J., Akerman, A., Architecture Decisions: Demystifying Architecture, IEEE Software 22(2): 19-27, 2005.
[24] O. Zimmermann, J. Koehler, F. Leymann: Architectural Decision Models as Micro-Methodology for Service-
Oriented Analysis and Design, SEMSOA CEUR-WS.org/Vol. 244, 2007.
[25] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann: Combining Pattern Languages and Architectural Decision
Models into a Comprehensive and Comprehensible Design Method, WICSA-08. IEEE Computer Society, 2008.
[26] Business Process Modeling Notation Specification1.1, OMG Final Adopted Specification, 2007.
[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.
[28] X. Fu, T. Bultan, J. Su: Analysis of interacting BPEL Web services. WWW-04, pages 621-630, ACM, 2004.
[29] M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese, F. Barbon, P. Bertoli, P. Traverso: ASTRO:
Supporting Composition and Execution of Web Services. ICSOC-05, LNCS 3826, pages 495-501, 2005.
[30] J. Vanhatalo, H. Völzer, J. Koehler: The Refined Process Structure Tree, forthcoming 2008.
[31] J. Lee, S. P. Midkiff, D. A. Padua: Concurrent Static Single Assignment Form and Constant Propagation for
Explicitly Parallel Programs. LCPC-97, LNCS 1366, pages 114-130, 1997.
[32] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, B. J. Krämer: Service-Oriented Computing: A Research
Roadmap. Dagstuhl Seminar Proceedings on Service-Oriented Computing, 2006.
[33] BPMN 2.0 Submission by IBM, Oracle, SAP for the BPMN 2.0 Request for Proposals by the OMG, 2008.
[34] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg: Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 2, 1999.
[35] F. Leymann, D. Roller: Production Workflow, Prentice Hall, 2000.

