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TABLE I 
LTO-4 PRODUCT CODEWORD LAYOUT  

 0 1 . . . 458 459 460 . . . 479
0 0 1 . . . 458 459    

1 460 461 . . . 918 919  C1  
§       Parity  

52       Bytes  

53 24380 24381 . . . 24838 24839    

54         
§  C2 Parity Bytes     
63         
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Abstract—Reverse concatenation (RC) architectures, which 
recently have been deployed in hard-disk-drive (HDD) products, 
offer crucial advantages in coding such as (i) avoiding error 
propagation through the modulation decoder, (ii) allowing the 
use of efficient high-rate modulation codes, and (iii) passing of 
soft information from the detector to the decoder, which 
facilitates parity-post processing and iterative coding schemes. In 
HDDs, error-correcting codes essentially consist of a single high-
rate Reed–Solomon code, whereas in tape recording, large 
product codes are used that require a new RC architecture. Such 
a novel RC architecture for product codes is presented and 
illustrated by an example based on the Linear Tape Open 
Standard, Generation 4 (LTO-4). Compared with the rate-16/17 
modulation code of the LTO-4 standard, the proposed RC 
scheme has a modulation scheme of rate 0.9951, i.e., achieves 
5.7% improvement in rate while maintaining the same inter-
leaved I = 11 modulation constraint, but at the cost of a slight 
weakening of the G-constraint. 

I. INTRODUCTION 
Recently, reverse concatenation (RC) architectures have 

received increased attention, and read channel chips based on 
RC have already been implemented by the hard-disk-drive 
(HDD) industry. Reverse concatenation was introduced in [1]. 
In a RC scheme, the order of the error-correcting code (ECC) 
encoder and modulation encoder is reversed, i.e., the data is 
first passed through a modulation encoder and then ECC-
encoded using a systematic encoder for the error-correcting 
code. The ECC parity symbols are either encoded using a 
second modulation code [1] or inserted into the data symbol 
stream at the bit [2] or symbol level [3]. There are three major 
benefits that make RC attractive:  

• There is no error propagation through the modulation 
decoder.  

• As error propagation is no issue, the first modulation code 
can be taken to be very long, allowing the use of capacity-
efficient and high-rate modulation codes, thereby 
achieving code rate gains. 

• In the read-back path, the ECC decoding block comes 
immediately after the channel detection block, i.e., soft 
information can be passed from the detector to the 
decoder on a bit-by-bit basis. This creates the appropriate 
framework for using novel ECC techniques that are based 
on turbo and LDPC codes and hold the promise of large 
performance improvements. Furthermore, in this frame-

work, parity post-processing schemes can easily be 
implemented.  

These three benefits could also be exploited in the frame-
work of tape recording or optical recording. However, the ECC 
used in HDDs has a different structure than the one used in 
tape recording. In HDDs, ECC is essentially based on a single 
high-rate Reed–Solomon (RS) code. Data storage systems, 
which use removable media and typically record mass data, 
such as tape drives and optical disks, rely on strong ECCs to 
ensure bit error rates below 10–17. In particular, tape drives and 
CD devices employ powerful and complexity-efficient ECC, 
which are based on code concatenation of an outer C2 and an 
inner C1 code.  This requires a new RC architecture for ECC 
based on product or concatenated codes, which will be 
presented in this paper.   

II. CONCATENATED CODES 
The product code specified in the LTO-4 standard [4] is a 

particular instance of a concatenated coding scheme [5], where 
both the inner and outer codes are RS-based codes of length 
480 and 64, respectively (see Table I). A codeword is a 64 × 
480 array of bytes, i.e., it contains 30,720 bytes, with 54×460= 
24,840 data bytes, resulting in a code rate of 0.8086. More 
specifically, the outer C2 code is an [N2 = 64, K2 = 54, d2 = 11] 
RS code over the Galois field GF(28), where N2 denotes the 
length, K2 the dimension, and d2 the minimum Hamming 
distance of the code. The inner C1 code is obtained by 
even/odd interleaving of an [240,230,11] RS code over GF(28).  

 



One can envision other concatenated ECC schemes in 
which, for example, C2 is a RS code and C1 is an LDPC or 
turbo code.  

III. ECC AND MODULATION CODES 

A. Forward Concatenation 
In magnetic and optical recording, modulation codes are 

used to enable timing recovery from the read-back signal and 
to allow short path memories in the detector without substantial 
performance loss as well as to eliminate other undesirable 
patterns. Thus, in the write path prior to writing ECC-encoded 
data onto the medium, the data is passed through a modulation 
encoder as shown in Fig. 1.  

A scheme in which the user data is first encoded by ECC 
and then passed through a modulation encoder will be called a 

forward concatenation (FC) scheme. To improve ECC 
performance, there is a long block interleaver in the LTO-4 
write path, denoted as Interleaving & Track Assignment block. 
This block buffers 64 consecutive product codewords, thereby 
accumulating a total of 64×64 = 4096 rows. These 4096 rows 
are assigned to the 16 tracks in a predefined order. For each 
track there is a rate-16/17 modulation encoder, which encodes 
the assigned rows and guarantees the predetermined 
modulation constraints, namely, a global G = 13 and an inter-
leaved I = 11 constraint. Thus, prior to precoding, the maxi-
mum length of zeros in the coded sequences is limited to G and 
the maximum length of zeros in both the even and odd 
interleaves of the coded sequences is limited to I. 

B. Reverse Concatenation 
RC has been proposed for one-dimensional ECC architec-

tures, in which the ECC typically consists of a single code such 
as an RS or an LDPC code. The RC schemes known, such as 
[1]-[3],[6], have not addressed the particular issues that arise 
from ECC, which is based on concatenated or product codes. 
The output of the inner code is mapped to the tracks/channels, 
and thus all rows should satisfy a predetermined modulation 
constraint. Accordingly, one is faced with the following 
problem, which is illustrated by the LTO-4 product code (see 
Table I): Putting the modulation encoder in front of a 
systematic ECC encoder will result in only K2 rows that meet 
the modulation constraint except for the C1-parity part. The 
remaining N2 – K2 rows, which consist of C2-parity bytes, do 
not meet the modulation constraint. The C1-parity part poses a 
minor problem because it can be treated separately as in the 
case of one-dimensional ECC. However, for the C2-parity part, 
no efficient solution has been proposed. Thus, a substantial 
number of rows would not satisfy a modulation constraint and 

hence would need further processing. If one were to follow a 
one-dimensional RC strategy, these rows would need to be 
passed through a second modulation encoder or be dealt with 
using a parity-insertion strategy. Both techniques would result 
in undesired features: i) A second modulation code would lead 
to error propagation and would not allow soft information to be 
passed from the channel detector to the ECC decoder on a bit-
by-bit basis, and ii) partial symbol interleaving would lead to 
very bad performance in the case of a dead track because entire 
faulty rows would be subdivided and spread into other rows, 
causing many errors in many rows.  

IV. REVERSE CONCATENATION FOR PRODUCT-CODE-
BASED ECC 

The new RC architecture is motivated by the observation 
that these problems can be overcome if the following condition 
holds: After modulation encoding with a first modulation code 
and outer C2 encoding, a pre-determined modulation constraint 
is enforced in all rows. If this condition is met, the problem of 
designing a RC scheme for a product code or, more general, a 
concatenated code will be reduced to designing an RC scheme 
with a (one-dimensional) single error-correcting code. After the 
C2 encoder, the C1 code would play the role of the one-
dimensional ECC. Thus, one would encode the rows using C1 
and either employ a second modulation code or use partial 
symbol interleaving to meet the modulation constraints for the 
C1-parity part. 

We will show that this condition can be achieved by 
reorganizing the unencoded user data array such that its size is 
based on the length rather than the dimension of the outer code 
C2, by introducing a formatting block before the C2 encoder, 
and by modifying the C2-encoding procedure.  

A. LTO-based RC Scheme 
A suitable RC architecture for ECC based on product codes 

is illustrated in Fig. 2. This scheme will be explained by an 
example with LTO-4-like ECC/modulation parameters. A 
generalization of this scheme will be treated in the next 
subsection.  

User data reorganization: In contrast to the usual encoding 
of the C2 code of length N2, where the user data is organized in 
K2 rows, where K2 is the dimension of C2, the proposed 
unencoded user data array consists of N2 rows, which are 
generated by a serial/parallel block. An example of such an 
unencoded user data array is given in Table II, which is a 
modification of the subdata set array of the LTO-4 standard; 
specifically, it contains 952 user bytes more than the LTO-4 
subdata set does. Each row of the unencoder user data array is 
passed through a first modulation encoder (denoted as Mod 
Enc 1 in Fig. 2) and thus satisfies a modulation constraint at the 
input of the formatting block. At this point, the modulated user 
data array still contains N2 rows, which are by a few bytes 
longer because of Mod Enc 1. For the LTO-4-like scheme, 
Mod Enc 1 is derived from a rate-223/224 modulation code 
with a global G = 14 and interleaved I = 7 constraint. This 
interleaved Fibonacci code was constructed based on tech-
niques described in [6]. The first modulation code transforms 
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. 
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Figure 1.  Forward concatenation architecture in LTO-4. 



TABLE II 
2D UNENCODED DATA LAYOUT FOR REVERSE CONCATENATION  

 
 0 1 2 . . . 402 

0 0 1 2 . . . 402 
1 403 404 405 . . . 805 
§      
52      
53 21359 21360 21361 . . . 21761
54      
§      
63 25389 25390 25391 . . . 25791

 

the unencoded user data array of size 64×403 into the modu-
lated user data array of size 64×405. 

Formatting block: The formatting block transforms the 
modulated user data array of size 64×405 into an array that has 
N2 – K2 “empty” components in each column. These N2 – K2 
empty locations are the positions at which the parity symbols 
of the C2 code will be introduced. In the design phase of the 
formatting block, a parity pattern array is determined. Given 
the parity pattern array, the formatting block interleaves the 
empty cells into the modulated user data array row-by-row, 
thereby extending the length of the rows by some L bytes. This 
interleaving operation is similar to partial symbol interleaving 
[3],[6]; in particular, it weakens the modulation constraint of 
the first modulation code. In the above example, the insertion 
of unmodulated 8-bit parity symbols will weaken the global 
and interleaved constraints from (G,I) = (14,7) to (G,I) = 
(22,11).   

To find a parity pattern array, the dimensions of the modu-
lated user data array must satisfy a Diophantine equation, 
namely,  

                   K1 × (N2 - K2) = N2 × L (1) 

where L is the number of C2-parity symbols per row and K1 is 
the dimension of the C1 code on a C2-symbol basis (that is, the 
dimension of the C1 code must be expressed in C2-symbol 

units, e.g., in bytes). This Diophantine equation might necessi-
tate an adjustment of the parameters of the C1 code. In the 
LTO-4-based example above, K1 = 480 satisfies the equation 
with L = 75 C2-parity bytes positions in each row. Further-
more, the parity bytes should be separated by a predetermined 
minimum amount to prevent a destruction of the modulation 
constraint of the first modulation code. In the example, a 
spacing by at least two byte locations is sufficient to obtain a 
(G,I) = (22,11) constraint. As there are 64 rows in each parity 
pattern array, there is a total of 64×75 = 4800 C2-parity bytes 
per parity pattern array. The insertion locations for these 4800 
C2-parity bytes are specified by the following 10 linear 
equations modulo N2 = 64, which relate the column indices x to 
the row indices y:  

                          y ≡ x + ci (mod N2) ,   (2) 

where ci ∈{0, 6, 13, 19, 26, 32, 38, 45, 51, 58} and 0 ≤ x < 480. 
The parity pattern was selected such that each column contains 
N2 – K2 = 10 parity locations. Moreover, the offsets ci have 
been selected to obtain an essentially even partition of the 
interval [0, N2 – 1]. This results in an essentially even 
distribution of the L parity locations along each row and thus 
guarantees the (G,I) = (22,11) constraint after parity insertion.   

Column-dependent C2 encoding: The C2 code is typically 
an RS code, but other codes are also possible. However, the 
code should be a maximum-distance separable code, which has 
the useful property that every set of K2 components forms an 
information set [7]. In other words, every set of K2 components 
uniquely determines the remaining N2 – K2 parity symbols. At 
the input of the C2 encoder, every column contains K2 modu-
lated data bytes and N2 – K2 empty parity locations. In each 
column, the C2 encoder determines the N2 – K2 parity bytes 
from the K2 modulated data bytes and inserts them at the empty 
parity locations. The output of the C2 encoder is a C2-encoded 
array of size N2×K1. Moreover, the C2-encoded array satisfies a 
predetermined modulation constraint along each row.  Thus, 
the C2-encoded array, at the output of the column-dependent 
C2 encoder, meets the desired condition mentioned at the 
beginning of Section IV.   

Note that — despite the column-dependency of the encoder 
— each column is a codeword of the same C2 code. Thus, 
during read-back, the error-correction algorithm is the same for 

S/P

Format 
Block 

for Parity 
Insertion

Mod Enc 1
0

1

N2-1

C2 
Encoder

(column-
by-column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc 1

Mod Enc 1

...

0

1

N2-1

...

Symbol Interleaver

Symbol Interleaver

S/P

Format 
Block 

for Parity 
Insertion

Mod Enc 1
0

1

N2-1

C2 
Encoder

(column-
by-column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc 1

Mod Enc 1

...

0

1

N2-1

...

Symbol Interleaver

Symbol Interleaver

 
 

Figure 2. Reverse concatenation architecture for ECC based on product codes. 



all columns, which is desirable from a complexity point of 
view. 

C1 encoding and final modulation coding: The rows of the 
C2-encoded array are passed through an encoder for the C1 
code. The resulting C1-parity bytes are either processed by a 
second modulation encoder [1] or partially interleaved (bit- or 
byte-wise) into the data stream of the C1 encoder, as shown in 
Fig. 2 [2],[3]. In the above LTO-4-based example, the C1 code 
of dimension K1 = 480 and length N1 = 500 is obtained as an 
even/odd-interleaved RS code of dimension 240 and length 250 
over GF(28). Instead of placing the 20 parity bytes at the end of 
each row, they are interleaved into the modulated byte stream. 
In each row, the 20 insertion points for the C1-parity bytes are 
chosen such that they lie evenly between the last 21 C2-parity 
bytes. In this way, all parity bytes in a row are surrounded by at 
least two modulated bytes. This property is crucial to guarantee 
an (G,I) = (22,11) constraint after parity insertion provided that 
the first modulation code satisfy a (G,I) = (14,7) constraint 
before parity insertion.  

In the LTO-based RC scheme, each row contains 403×8 = 
3224 data bits as well as 16 additional bits from the first 
modulation code. Thus, the rate of the RC modulation scheme 
is 0.9951, whereas the rate of the LTO-4 modulation code is 
16/17. Hence, the RC scheme has a 5.73% higher rate than 
LTO-4 does. Moreover, the RC scheme satisfies the same I = 
11 constraint as LTO-4, but with G = 22 has a weaker con-
straint than the G = 13 in LTO-4.  

B. Generalized RC Scheme 
The Diophantine equation (1) imposes limitations on the 

choice of the parameters of the C1 and C2 code, which can 
make it impossible to meet specific ECC design targets. Thus, 
it is desirable to have a more general RC scheme with fewer 
limitations. The generalized RC scheme is based on the same 
design principles as the LTO-based RC scheme, namely:   
1. The primary modulation code supports sparse parity 

insertions at all locations. 
2. The format block shifts the bytes in each row to match a 

suitable parity insertion pattern.  
3. C2 encoding is performed column-by-column with vary-

ing parity locations.  
4. C1 encoding generates parity bytes at the end of each 

row. 

5. The C1-parity bytes are “modulation encoded” by apply-
ing partial symbol interleaving. 

The new feature of this scheme is that the parity insertion 
pattern will be used to insert both parity symbols and uncon-
strained user symbols, i.e., symbols that are not encoded by the 
first modulation encoder (see Fig. 3). The insertion of the un-
constrained data bytes has to take place before the C2 encoder 
because the C2 encoder needs these bytes for computing the 
parity bytes. The unconstrained data bytes are generated by a 
de-multiplexer. The de-multiplexer splits the user data into a 
part consisting of U bytes per row that is processed by the first 
modulation encoder, and a second part consisting of D bytes 
per row that is processed by the insertion block before the C2 
encoder. On each row, the first modulation encoder encodes 
the U bytes (together with a few optional padding bits) into M 
bytes and, thereby, enforces a tight modulation constraint, 
which supports partial symbol interleaving. The corresponding 
Diophantine equation for the number of “empty” locations in 
each data array is 

                 (M+L) × (N2 - K2) = N2 × (L - D) , (3) 

where L is the number of “empty” locations per row and 
K1 = L + M is the dimension of the C1 code.  Note that (3) 
offers more design flexibility than (1) does. 

The generalized RC scheme is illustrated by the following 
example. The RC scheme uses as C2 code an RS code with 
parameters [N2 = 96, K2 = 81, d2 = 16] over the Galois field 
GF(28). Each data array contains N2 × (U + D) = 96 × 399 = 
38,304 bytes of user data, which are split into N2 × U = 96 × 
394 = 37,824 bytes that are encoded by the first modulation 
encoder and N2 × D = 96 × 5=480 bytes that are processed by 
the insertion block before the C2 encoder. Thus, the unencoded 
user data array has size N2 × U = 96 × 394. Each row of this 
array is encoded by a rate-197/200 interleaved Fibonacci code 
with global G = 10 and interleaved I = 5 constraint. Applying 
the rate-197/200 modulation encoder 16 times per row, each 
row of the unencoded subdata set with its 8 × 394 = 3152 bits 
is mapped into a row of the modulated user data array of size 
N2 × M = 96 × 400. 

The formatting block transforms the modulated user data 
array into an array, which has N2 – K2 + 1 = 16 “empty” com-
ponents in each column. One of these 16 empty locations will 
be filled by an unconstrained data byte, and N2 – K2 empty 
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Figure 3.  Generalized reverse concatenation architecture for ECC based on product codes.  



locations will be filled with C2-parity bytes. To meet the 
Diophantine equation (3) with M = 400, the number of “empty” 
locations per row must be L = 80, resulting in K1 = 
L + M = 480 for the dimension of the C1 code in terms of 
bytes.  As there are 96 rows in each parity pattern array, there 
is a total of 96 × 80 = 7680 empty locations per parity pattern 
array. The 7680 insertion locations are specified by the follow-
ing 16 linear equations (modulo 96), which relate the column 
indices x to the row indices y: 

                      y ≡ x + ci  (mod 96), (4) 

where ci = 6i for i = 0, 1, 2, ..., 15 and 0 ≤ x < 480.  
The unconstrained N2 × D = 96 × 5 = 480 data bytes are 

inserted into all of the 480 empty locations in the first six rows 
of the array, i.e., at locations specified by the above equations 
subject to the additional condition 0 ≤ y < 6 on the row index. 
Note that per column exactly one unconstrained data byte is 
inserted and that there remain N2 – K2 = 15 empty locations to 
be filled with C2-parity bytes.  

At the input of the C2 encoder, every column contains 
K2 = 81 modulated or unconstrained data bytes and N2 – K2 = 
15 empty parity locations. In each column, the C2 encoder 
determines the N2 – K2 = 15 parity bytes from these K2 = 81 
bytes and inserts them at the empty parity locations. The output 
of the C2 encoder is a C2-encoded array of size N2 × K1 = 96 × 
480, which is shown in Table III, where the locations of the 
C2-parity bytes are denoted by ‘p’ and the previously inserted 
unconstrained data bytes are denoted by ‘d’. Note that one 
needs at most six different column-dependent C2 encoders 
because the parity pattern repeats every sixth column. The 
insertion of parity and unconstrained data bytes weakens the 
I = 5 and G = 10 modulation constraints of the first modulation 
code along each row to I = 9 and G = 18 after C2 encoding. 
Finally, the C1 code and the partial symbol interleaving 
scheme are selected as in the LTO-based RC scheme described 
above.  As a result, the overall scheme enforces in an I = 9 and 
G = 18 constraint throughout all rows.  

V. CONCLUSION 
A novel RC architecture for concatenated codes has been 

presented that is based on (i) a reorganization of the unencoded 
data array, (ii) a formatting block to perform interleaving of a 
suitably generated C2-parity pattern, (iii) column-dependent 
C2 encoding, and (iv) modulation coding of the C1-parity 
symbols based on a systematic modulation encoder. 

The new RC architecture has been illustrated using a LTO-
4-like example. Compared with the rate-16/17 code of the 
LTO-4 standard, the new RC scheme has a modulation scheme 
of rate 0.9951, which is a 5.7% improvement in rate, while 
maintaining the same I = 11 constraint and weakening the G-
constraint from 13 to 22. The additional flexibility of a more 
general RC scheme was illustrated by a second example. 

Moreover, the RC scheme presented supports the use of 
LDPC or turbo codes for the inner C1 code, which hold the 
promise of large performance improvements. In particular, the 
C1/C2-based ECC structure is an ideal setting for LDPC or 
turbo codes because the typical error floor issue that comes 
along with these codes is resolved by the outer C2 RS code, 
which can reduce the error rates to the desired 10–17 level.  
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TABLE III 
2D C2-ENCODED DATA LAYOUT FOR REVERSE CONCATENATION  

 
 0 1 2 3 4 5 6 7 . . . 479 

0 d      d    
1  d      d . . .  
2   d        
3    d       
4     d      
5      d    d 
6 p      p    
7  p      p   
8   p        
9    p       
10     p      
11      p    p 
12 p      p    
13  p      p   
§          § 
95      p   . . . p 


