
RZ 3706 (# 99716) 04/04/08
Electrical Engineering 5 pages

Research Report

Reverse Concatenation of Product and Modulation Codes

Thomas Mittelholzer and Evangelos Eleftheriou

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

TABLE I
LTO-4 PRODUCT CODEWORD LAYOUT

 0 1 . . . 458 459 460 . . . 479
0 0 1 . . . 458 459

1 460 461 . . . 918 919 C1
§ Parity

52 Bytes

53 24380 24381 . . . 24838 24839

54
§ C2 Parity Bytes
63

Reverse Concatenation of
Product and Modulation Codes

Thomas Mittelholzer and Evangelos Eleftheriou
IBM Zurich Research Laboratory

8803 Rüschlikon, Switzerland
e-mail: {tmi, ele}@ zurich.ibm.com

Abstract—Reverse concatenation (RC) architectures, which
recently have been deployed in hard-disk-drive (HDD) products,
offer crucial advantages in coding such as (i) avoiding error
propagation through the modulation decoder, (ii) allowing the
use of efficient high-rate modulation codes, and (iii) passing of
soft information from the detector to the decoder, which
facilitates parity-post processing and iterative coding schemes. In
HDDs, error-correcting codes essentially consist of a single high-
rate Reed–Solomon code, whereas in tape recording, large
product codes are used that require a new RC architecture. Such
a novel RC architecture for product codes is presented and
illustrated by an example based on the Linear Tape Open
Standard, Generation 4 (LTO-4). Compared with the rate-16/17
modulation code of the LTO-4 standard, the proposed RC
scheme has a modulation scheme of rate 0.9951, i.e., achieves
5.7% improvement in rate while maintaining the same inter-
leaved I = 11 modulation constraint, but at the cost of a slight
weakening of the G-constraint.

I. INTRODUCTION
Recently, reverse concatenation (RC) architectures have

received increased attention, and read channel chips based on
RC have already been implemented by the hard-disk-drive
(HDD) industry. Reverse concatenation was introduced in [1].
In a RC scheme, the order of the error-correcting code (ECC)
encoder and modulation encoder is reversed, i.e., the data is
first passed through a modulation encoder and then ECC-
encoded using a systematic encoder for the error-correcting
code. The ECC parity symbols are either encoded using a
second modulation code [1] or inserted into the data symbol
stream at the bit [2] or symbol level [3]. There are three major
benefits that make RC attractive:

• There is no error propagation through the modulation
decoder.

• As error propagation is no issue, the first modulation code
can be taken to be very long, allowing the use of capacity-
efficient and high-rate modulation codes, thereby
achieving code rate gains.

• In the read-back path, the ECC decoding block comes
immediately after the channel detection block, i.e., soft
information can be passed from the detector to the
decoder on a bit-by-bit basis. This creates the appropriate
framework for using novel ECC techniques that are based
on turbo and LDPC codes and hold the promise of large
performance improvements. Furthermore, in this frame-

work, parity post-processing schemes can easily be
implemented.

These three benefits could also be exploited in the frame-
work of tape recording or optical recording. However, the ECC
used in HDDs has a different structure than the one used in
tape recording. In HDDs, ECC is essentially based on a single
high-rate Reed–Solomon (RS) code. Data storage systems,
which use removable media and typically record mass data,
such as tape drives and optical disks, rely on strong ECCs to
ensure bit error rates below 10–17. In particular, tape drives and
CD devices employ powerful and complexity-efficient ECC,
which are based on code concatenation of an outer C2 and an
inner C1 code. This requires a new RC architecture for ECC
based on product or concatenated codes, which will be
presented in this paper.

II. CONCATENATED CODES
The product code specified in the LTO-4 standard [4] is a

particular instance of a concatenated coding scheme [5], where
both the inner and outer codes are RS-based codes of length
480 and 64, respectively (see Table I). A codeword is a 64 ×
480 array of bytes, i.e., it contains 30,720 bytes, with 54×460=
24,840 data bytes, resulting in a code rate of 0.8086. More
specifically, the outer C2 code is an [N2 = 64, K2 = 54, d2 = 11]
RS code over the Galois field GF(28), where N2 denotes the
length, K2 the dimension, and d2 the minimum Hamming
distance of the code. The inner C1 code is obtained by
even/odd interleaving of an [240,230,11] RS code over GF(28).

One can envision other concatenated ECC schemes in
which, for example, C2 is a RS code and C1 is an LDPC or
turbo code.

III. ECC AND MODULATION CODES

A. Forward Concatenation
In magnetic and optical recording, modulation codes are

used to enable timing recovery from the read-back signal and
to allow short path memories in the detector without substantial
performance loss as well as to eliminate other undesirable
patterns. Thus, in the write path prior to writing ECC-encoded
data onto the medium, the data is passed through a modulation
encoder as shown in Fig. 1.

A scheme in which the user data is first encoded by ECC
and then passed through a modulation encoder will be called a

forward concatenation (FC) scheme. To improve ECC
performance, there is a long block interleaver in the LTO-4
write path, denoted as Interleaving & Track Assignment block.
This block buffers 64 consecutive product codewords, thereby
accumulating a total of 64×64 = 4096 rows. These 4096 rows
are assigned to the 16 tracks in a predefined order. For each
track there is a rate-16/17 modulation encoder, which encodes
the assigned rows and guarantees the predetermined
modulation constraints, namely, a global G = 13 and an inter-
leaved I = 11 constraint. Thus, prior to precoding, the maxi-
mum length of zeros in the coded sequences is limited to G and
the maximum length of zeros in both the even and odd
interleaves of the coded sequences is limited to I.

B. Reverse Concatenation
RC has been proposed for one-dimensional ECC architec-

tures, in which the ECC typically consists of a single code such
as an RS or an LDPC code. The RC schemes known, such as
[1]-[3],[6], have not addressed the particular issues that arise
from ECC, which is based on concatenated or product codes.
The output of the inner code is mapped to the tracks/channels,
and thus all rows should satisfy a predetermined modulation
constraint. Accordingly, one is faced with the following
problem, which is illustrated by the LTO-4 product code (see
Table I): Putting the modulation encoder in front of a
systematic ECC encoder will result in only K2 rows that meet
the modulation constraint except for the C1-parity part. The
remaining N2 – K2 rows, which consist of C2-parity bytes, do
not meet the modulation constraint. The C1-parity part poses a
minor problem because it can be treated separately as in the
case of one-dimensional ECC. However, for the C2-parity part,
no efficient solution has been proposed. Thus, a substantial
number of rows would not satisfy a modulation constraint and

hence would need further processing. If one were to follow a
one-dimensional RC strategy, these rows would need to be
passed through a second modulation encoder or be dealt with
using a parity-insertion strategy. Both techniques would result
in undesired features: i) A second modulation code would lead
to error propagation and would not allow soft information to be
passed from the channel detector to the ECC decoder on a bit-
by-bit basis, and ii) partial symbol interleaving would lead to
very bad performance in the case of a dead track because entire
faulty rows would be subdivided and spread into other rows,
causing many errors in many rows.

IV. REVERSE CONCATENATION FOR PRODUCT-CODE-
BASED ECC

The new RC architecture is motivated by the observation
that these problems can be overcome if the following condition
holds: After modulation encoding with a first modulation code
and outer C2 encoding, a pre-determined modulation constraint
is enforced in all rows. If this condition is met, the problem of
designing a RC scheme for a product code or, more general, a
concatenated code will be reduced to designing an RC scheme
with a (one-dimensional) single error-correcting code. After the
C2 encoder, the C1 code would play the role of the one-
dimensional ECC. Thus, one would encode the rows using C1
and either employ a second modulation code or use partial
symbol interleaving to meet the modulation constraints for the
C1-parity part.

We will show that this condition can be achieved by
reorganizing the unencoded user data array such that its size is
based on the length rather than the dimension of the outer code
C2, by introducing a formatting block before the C2 encoder,
and by modifying the C2-encoding procedure.

A. LTO-based RC Scheme
A suitable RC architecture for ECC based on product codes

is illustrated in Fig. 2. This scheme will be explained by an
example with LTO-4-like ECC/modulation parameters. A
generalization of this scheme will be treated in the next
subsection.

User data reorganization: In contrast to the usual encoding
of the C2 code of length N2, where the user data is organized in
K2 rows, where K2 is the dimension of C2, the proposed
unencoded user data array consists of N2 rows, which are
generated by a serial/parallel block. An example of such an
unencoded user data array is given in Table II, which is a
modification of the subdata set array of the LTO-4 standard;
specifically, it contains 952 user bytes more than the LTO-4
subdata set does. Each row of the unencoder user data array is
passed through a first modulation encoder (denoted as Mod
Enc 1 in Fig. 2) and thus satisfies a modulation constraint at the
input of the formatting block. At this point, the modulated user
data array still contains N2 rows, which are by a few bytes
longer because of Mod Enc 1. For the LTO-4-like scheme,
Mod Enc 1 is derived from a rate-223/224 modulation code
with a global G = 14 and interleaved I = 7 constraint. This
interleaved Fibonacci code was constructed based on tech-
niques described in [6]. The first modulation code transforms

.
:

Track 0

ECC Mod. Encoder

Mod. Encoder

Interleaving
 & Track
Assignment

.
:

Mod. Encoder
Track 1

Track 15

Figure 1. Forward concatenation architecture in LTO-4.

TABLE II
2D UNENCODED DATA LAYOUT FOR REVERSE CONCATENATION

 0 1 2 . . . 402

0 0 1 2 . . . 402
1 403 404 405 . . . 805
§
52
53 21359 21360 21361 . . . 21761
54
§
63 25389 25390 25391 . . . 25791

the unencoded user data array of size 64×403 into the modu-
lated user data array of size 64×405.

Formatting block: The formatting block transforms the
modulated user data array of size 64×405 into an array that has
N2 – K2 “empty” components in each column. These N2 – K2
empty locations are the positions at which the parity symbols
of the C2 code will be introduced. In the design phase of the
formatting block, a parity pattern array is determined. Given
the parity pattern array, the formatting block interleaves the
empty cells into the modulated user data array row-by-row,
thereby extending the length of the rows by some L bytes. This
interleaving operation is similar to partial symbol interleaving
[3],[6]; in particular, it weakens the modulation constraint of
the first modulation code. In the above example, the insertion
of unmodulated 8-bit parity symbols will weaken the global
and interleaved constraints from (G,I) = (14,7) to (G,I) =
(22,11).

To find a parity pattern array, the dimensions of the modu-
lated user data array must satisfy a Diophantine equation,
namely,

 K1 × (N2 - K2) = N2 × L (1)

where L is the number of C2-parity symbols per row and K1 is
the dimension of the C1 code on a C2-symbol basis (that is, the
dimension of the C1 code must be expressed in C2-symbol

units, e.g., in bytes). This Diophantine equation might necessi-
tate an adjustment of the parameters of the C1 code. In the
LTO-4-based example above, K1 = 480 satisfies the equation
with L = 75 C2-parity bytes positions in each row. Further-
more, the parity bytes should be separated by a predetermined
minimum amount to prevent a destruction of the modulation
constraint of the first modulation code. In the example, a
spacing by at least two byte locations is sufficient to obtain a
(G,I) = (22,11) constraint. As there are 64 rows in each parity
pattern array, there is a total of 64×75 = 4800 C2-parity bytes
per parity pattern array. The insertion locations for these 4800
C2-parity bytes are specified by the following 10 linear
equations modulo N2 = 64, which relate the column indices x to
the row indices y:

 y ≡ x + ci (mod N2) , (2)

where ci ∈{0, 6, 13, 19, 26, 32, 38, 45, 51, 58} and 0 ≤ x < 480.
The parity pattern was selected such that each column contains
N2 – K2 = 10 parity locations. Moreover, the offsets ci have
been selected to obtain an essentially even partition of the
interval [0, N2 – 1]. This results in an essentially even
distribution of the L parity locations along each row and thus
guarantees the (G,I) = (22,11) constraint after parity insertion.

Column-dependent C2 encoding: The C2 code is typically
an RS code, but other codes are also possible. However, the
code should be a maximum-distance separable code, which has
the useful property that every set of K2 components forms an
information set [7]. In other words, every set of K2 components
uniquely determines the remaining N2 – K2 parity symbols. At
the input of the C2 encoder, every column contains K2 modu-
lated data bytes and N2 – K2 empty parity locations. In each
column, the C2 encoder determines the N2 – K2 parity bytes
from the K2 modulated data bytes and inserts them at the empty
parity locations. The output of the C2 encoder is a C2-encoded
array of size N2×K1. Moreover, the C2-encoded array satisfies a
predetermined modulation constraint along each row. Thus,
the C2-encoded array, at the output of the column-dependent
C2 encoder, meets the desired condition mentioned at the
beginning of Section IV.

Note that — despite the column-dependency of the encoder
— each column is a codeword of the same C2 code. Thus,
during read-back, the error-correction algorithm is the same for

S/P

Format
Block

for Parity
Insertion

Mod Enc 1
0

1

N2-1

C2
Encoder

(column-
by-column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc 1

Mod Enc 1

...

0

1

N2-1

...

Symbol Interleaver

Symbol Interleaver

S/P

Format
Block

for Parity
Insertion

Mod Enc 1
0

1

N2-1

C2
Encoder

(column-
by-column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc 1

Mod Enc 1

...

0

1

N2-1

...

Symbol Interleaver

Symbol Interleaver

Figure 2. Reverse concatenation architecture for ECC based on product codes.

all columns, which is desirable from a complexity point of
view.

C1 encoding and final modulation coding: The rows of the
C2-encoded array are passed through an encoder for the C1
code. The resulting C1-parity bytes are either processed by a
second modulation encoder [1] or partially interleaved (bit- or
byte-wise) into the data stream of the C1 encoder, as shown in
Fig. 2 [2],[3]. In the above LTO-4-based example, the C1 code
of dimension K1 = 480 and length N1 = 500 is obtained as an
even/odd-interleaved RS code of dimension 240 and length 250
over GF(28). Instead of placing the 20 parity bytes at the end of
each row, they are interleaved into the modulated byte stream.
In each row, the 20 insertion points for the C1-parity bytes are
chosen such that they lie evenly between the last 21 C2-parity
bytes. In this way, all parity bytes in a row are surrounded by at
least two modulated bytes. This property is crucial to guarantee
an (G,I) = (22,11) constraint after parity insertion provided that
the first modulation code satisfy a (G,I) = (14,7) constraint
before parity insertion.

In the LTO-based RC scheme, each row contains 403×8 =
3224 data bits as well as 16 additional bits from the first
modulation code. Thus, the rate of the RC modulation scheme
is 0.9951, whereas the rate of the LTO-4 modulation code is
16/17. Hence, the RC scheme has a 5.73% higher rate than
LTO-4 does. Moreover, the RC scheme satisfies the same I =
11 constraint as LTO-4, but with G = 22 has a weaker con-
straint than the G = 13 in LTO-4.

B. Generalized RC Scheme
The Diophantine equation (1) imposes limitations on the

choice of the parameters of the C1 and C2 code, which can
make it impossible to meet specific ECC design targets. Thus,
it is desirable to have a more general RC scheme with fewer
limitations. The generalized RC scheme is based on the same
design principles as the LTO-based RC scheme, namely:
1. The primary modulation code supports sparse parity

insertions at all locations.
2. The format block shifts the bytes in each row to match a

suitable parity insertion pattern.
3. C2 encoding is performed column-by-column with vary-

ing parity locations.
4. C1 encoding generates parity bytes at the end of each

row.

5. The C1-parity bytes are “modulation encoded” by apply-
ing partial symbol interleaving.

The new feature of this scheme is that the parity insertion
pattern will be used to insert both parity symbols and uncon-
strained user symbols, i.e., symbols that are not encoded by the
first modulation encoder (see Fig. 3). The insertion of the un-
constrained data bytes has to take place before the C2 encoder
because the C2 encoder needs these bytes for computing the
parity bytes. The unconstrained data bytes are generated by a
de-multiplexer. The de-multiplexer splits the user data into a
part consisting of U bytes per row that is processed by the first
modulation encoder, and a second part consisting of D bytes
per row that is processed by the insertion block before the C2
encoder. On each row, the first modulation encoder encodes
the U bytes (together with a few optional padding bits) into M
bytes and, thereby, enforces a tight modulation constraint,
which supports partial symbol interleaving. The corresponding
Diophantine equation for the number of “empty” locations in
each data array is

 (M+L) × (N2 - K2) = N2 × (L - D) , (3)

where L is the number of “empty” locations per row and
K1 = L + M is the dimension of the C1 code. Note that (3)
offers more design flexibility than (1) does.

The generalized RC scheme is illustrated by the following
example. The RC scheme uses as C2 code an RS code with
parameters [N2 = 96, K2 = 81, d2 = 16] over the Galois field
GF(28). Each data array contains N2 × (U + D) = 96 × 399 =
38,304 bytes of user data, which are split into N2 × U = 96 ×
394 = 37,824 bytes that are encoded by the first modulation
encoder and N2 × D = 96 × 5=480 bytes that are processed by
the insertion block before the C2 encoder. Thus, the unencoded
user data array has size N2 × U = 96 × 394. Each row of this
array is encoded by a rate-197/200 interleaved Fibonacci code
with global G = 10 and interleaved I = 5 constraint. Applying
the rate-197/200 modulation encoder 16 times per row, each
row of the unencoded subdata set with its 8 × 394 = 3152 bits
is mapped into a row of the modulated user data array of size
N2 × M = 96 × 400.

The formatting block transforms the modulated user data
array into an array, which has N2 – K2 + 1 = 16 “empty” com-
ponents in each column. One of these 16 empty locations will
be filled by an unconstrained data byte, and N2 – K2 empty

D
E
M
U
X

Format
Block

for
Parity

Insertion

Mod Enc
0
1

N2-1

C2
Encoder

(column-
by-

column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc

Mod Enc

...

0
1

N2-1

...

unconstrained data bytes

...

Insertion
of

Uncon-
strained

Data
Bytes

Symbol Interleaver

Symbol Interleaver

D
E
M
U
X

Format
Block

for
Parity

Insertion

Mod Enc
0
1

N2-1

C2
Encoder

(column-
by-

column)

C1 Enc

Symbol Interleaver

... ...

...

...

C1 Enc

C1 Enc

Mod Enc

Mod Enc

...

0
1

N2-1

...

unconstrained data bytes

...

Insertion
of

Uncon-
strained

Data
Bytes

Symbol Interleaver

Symbol Interleaver

Figure 3. Generalized reverse concatenation architecture for ECC based on product codes.

locations will be filled with C2-parity bytes. To meet the
Diophantine equation (3) with M = 400, the number of “empty”
locations per row must be L = 80, resulting in K1 =
L + M = 480 for the dimension of the C1 code in terms of
bytes. As there are 96 rows in each parity pattern array, there
is a total of 96 × 80 = 7680 empty locations per parity pattern
array. The 7680 insertion locations are specified by the follow-
ing 16 linear equations (modulo 96), which relate the column
indices x to the row indices y:

 y ≡ x + ci (mod 96), (4)

where ci = 6i for i = 0, 1, 2, ..., 15 and 0 ≤ x < 480.
The unconstrained N2 × D = 96 × 5 = 480 data bytes are

inserted into all of the 480 empty locations in the first six rows
of the array, i.e., at locations specified by the above equations
subject to the additional condition 0 ≤ y < 6 on the row index.
Note that per column exactly one unconstrained data byte is
inserted and that there remain N2 – K2 = 15 empty locations to
be filled with C2-parity bytes.

At the input of the C2 encoder, every column contains
K2 = 81 modulated or unconstrained data bytes and N2 – K2 =
15 empty parity locations. In each column, the C2 encoder
determines the N2 – K2 = 15 parity bytes from these K2 = 81
bytes and inserts them at the empty parity locations. The output
of the C2 encoder is a C2-encoded array of size N2 × K1 = 96 ×
480, which is shown in Table III, where the locations of the
C2-parity bytes are denoted by ‘p’ and the previously inserted
unconstrained data bytes are denoted by ‘d’. Note that one
needs at most six different column-dependent C2 encoders
because the parity pattern repeats every sixth column. The
insertion of parity and unconstrained data bytes weakens the
I = 5 and G = 10 modulation constraints of the first modulation
code along each row to I = 9 and G = 18 after C2 encoding.
Finally, the C1 code and the partial symbol interleaving
scheme are selected as in the LTO-based RC scheme described
above. As a result, the overall scheme enforces in an I = 9 and
G = 18 constraint throughout all rows.

V. CONCLUSION
A novel RC architecture for concatenated codes has been

presented that is based on (i) a reorganization of the unencoded
data array, (ii) a formatting block to perform interleaving of a
suitably generated C2-parity pattern, (iii) column-dependent
C2 encoding, and (iv) modulation coding of the C1-parity
symbols based on a systematic modulation encoder.

The new RC architecture has been illustrated using a LTO-
4-like example. Compared with the rate-16/17 code of the
LTO-4 standard, the new RC scheme has a modulation scheme
of rate 0.9951, which is a 5.7% improvement in rate, while
maintaining the same I = 11 constraint and weakening the G-
constraint from 13 to 22. The additional flexibility of a more
general RC scheme was illustrated by a second example.

Moreover, the RC scheme presented supports the use of
LDPC or turbo codes for the inner C1 code, which hold the
promise of large performance improvements. In particular, the
C1/C2-based ECC structure is an ideal setting for LDPC or
turbo codes because the typical error floor issue that comes
along with these codes is resolved by the outer C2 RS code,
which can reduce the error rates to the desired 10–17 level.

REFERENCES
[1] W.G. Bliss, “Circuitry for performing error correction calculations on

baseband encoded data to eliminate error propagation,” IBM Tech. Discl.
Bull., vol. 23, pp. 4633-4634, Mar. 1981.

[2] A.J. van Wijngaarden and K.A.S. Immink, “Maximum runlength-limited
codes with error control capabilities,” IEEE J. Select. Areas Commun.,
vol. 19, pp. 602-611, Apr. 2001.

[3] M. Blaum, R. Cideciyan, E. Eleftheriou, K. Lakovic, T. Mittelholzer,
and B. Wilson, “High-rate modulation codes for reverse concatenation,''
IEEE Trans. Magn., vol. 43, no. 2, part 2, pp. 740-743, Feb. 2007.

[4] Linear Tape Open Standard, Ultrium Generation 4, 16-Channel Format
Specification Document U-416, Revision D, December 25, 2006.

[5] I. Dumer, Concatenated Codes and Their Multilevel Generalizations,
Chapter 23 in Handbook of Coding Theory, Vol. II, Eds.: V.S. Pless and
W.C. Huffman, Elsevier 1998.

[6] M. Blaum, R. Cideciyan, E. Eleftheriou, K. Lakovic, T. Mittelholzer,
and B. Wilson, “Enumerative encoding with non-uniform modulation
constraints,” Proc. IEEE Intl Symp. on Information Theory, Nice,
France, June 2007, pp. 1831-1835.

[7] V.S. Pless, W.C. Huffman, and R.A. Brualdi, An Introduction to
Algebraic Codes, Chapter 1 in Handbook of Coding Theory, Vol. I, Eds.:
V.S. Pless and W.C. Huffman, Elsevier 1998.

TABLE III
2D C2-ENCODED DATA LAYOUT FOR REVERSE CONCATENATION

 0 1 2 3 4 5 6 7 . . . 479

0 d d
1 d d . . .
2 d
3 d
4 d
5 d d
6 p p
7 p p
8 p
9 p
10 p
11 p p
12 p p
13 p p
§ §
95 p . . . p

