
RZ 3710 (# 99720) 05/30/08
Computer Science 12 pages

Research Report

Fast Pattern Matching on the Cell Broadband EngineTM

Francesco Iorio

IBM Systems & Technology Group
Dublin Software Laboratory
Dublin, Ireland
francesco iorio@ie.ibm.com

Jan van Lunteren

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland
jvl@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Fast Pattern Matching on the Cell Broadband Engine™

Francesco Iorio
IBM Systems & Technology Group,

Dublin Software Laboratory,
Dublin, Ireland

francesco iorio@ie.ibm.com

Jan van Lunteren
IBM Research, Zurich Research Laboratory

Säumerstrasse 4, CH-8803
Rüschlikon, Switzerland

jvl@zurich.ibm.com

Abstract

Pattern-matching algorithms, which are essential to in-
trusion detection and virus scanning applications, typically
only make limited use of the Single Instruction Multiple
Data (SIMD) capabilities available in new generations of
general-purpose processors. This paper presents the ini-
tial results of a study to increase the SIMD exploitation
by pattern-matching schemes consisting of a novel vector-
ized state-machine implementation that is able to utilize the
vector-processing units in the Cell Broadband Engine al-
most fully for all its processing steps by storing most of the
data structure in the large internal register sets. The im-
plementation provides an extremely deterministic aggregate
processing rate of 6.7 Gb/s for a single vector unit, which
can be scaled up to 50 Gb/s for one Cell Broadband En-
gine and up to 100 Gb/s for a blade for small pattern sets.
It also supports configurations in which the scan rate can
be partially traded off for increasing the number of patterns
supported.

1 Introduction

After initially having been employed mainly in super-
computers, SIMD techniques have found a growing appli-
cation in general-purpose processors targeted at the desktop
in the past decade, with examples including IBM®’s VMX,
Intel®’s streaming SIMD extensions (SSE) and HP’s Mul-
timedia Acceleration eXtensions (MAX). These extensions
have typically been used to accelerate applications such as
video and image processing, that lend themselves very well
for vectorization.

1Cell Broadband Engine is a trademark of Sony Computer Entertain-
ment, Inc. in the United States, other countries, or both and is used un-
der license therefrom. IBM, PowerPC, and BladeCenter are registered
trademarks of International Business Machines Corporation in the United
States, other countries, or both. Intel is a trademark of Intel Corporation
in the United States, other countries, or both. Other company, product or
service names may be trademarks or service marks of others.

Pattern-matching functions also have become increas-
ingly important in recent years, in particular because of
their usage for intrusion detection and virus scanning ap-
plications. Many pattern-matching algorithms are based on
finite-state machines (FSMs). In parallel FSM implemen-
tations, several essential processing steps, such as branches
and memory accesses, depend on multiple independent in-
put streams and therefor typically can only be performed in
a serial fashion. Thus it is much more difficult to exploit the
available SIMD capabilities.

In view of the above observation, we started to inves-
tigate the question whether it is possible to devise an op-
timized state-machine implementation that is able to ex-
ploit SIMD capabilities to a much larger extent than con-
ventional implementations do. This effort has focused on
creating a parallel implementation of a novel type of pro-
grammable state machine, called B-FSM [1], on a Syner-
gistic Processing Element abbreviated as SPE, which is the
vector-processing unit in the Cell Broadband Engine jointly
developed by Sony, Toshiba and IBM.

In this paper, we present the first result of our work,
namely, a parallel B-FSM implementation that, to the best
of our knowledge, is the first to achieve a full vectoriza-
tion of all processing steps, including the memory accesses.
This resulted in very high utilization of the available execu-
tion units enabling high scan rates of several tens of gigabits
per second. We achieved this by letting the B-FSMs execute
directly out of the large SPE register sets. This initial im-
plementation therefor limits the size of the executed state
diagrams to a maximum of a few thousand B-FSM transi-
tion rules, for which the corresponding data structures fit en-
tirely into the SPE register sets. The B-FSM transition rules,
unlike conventional state transitions, also support wildcards
and priorities and therefor can express match functions in a
much more compact way. This appeared sufficient to sup-
port applications involving pattern sets with up to a few hun-
dred patterns, such as tokenizers, as well as applications in
which the pattern collection is constructed out of smaller
subsets, for which the corresponding data structures can be



swapped efficiently between the register sets and memory.
The paper is organized in the following way. Section 2

discusses related work on pattern-matching algorithms that
try to exploit SIMD capabilities. Section 3 provides a short
introduction of the Cell Broadband Engine and the SPEs.
Section 4 introduces the B-FSM algorithm, which forms
the core of our work. Section 5 describes the vectorized
implementation of the B-FSM algorithm. The performance
of this implementation is then evaluated in Section 6. Sec-
tion 7 concludes the paper.

2 Related Work

While pattern-matching algorithms have already been
studied for several decades, research in this field has been
intensified in recent years because of their application for
intrusion detection and other (network) security-related ap-
plications that have rapidly gained importance. This has re-
sulted in a large number of publications on a wide spectrum
of both hardware- and software-oriented schemes, with ca-
pabilities ranging from basic string-matching to complex
regular-expression support. A selection can be found in [2]-
[11].

Despite the large number of publications, very few ad-
dress the exploitation of SIMD capabilities. To our knowl-
edge, no FSM-based pattern-matching scheme has been
published to date that intends to or has been able to apply
an efficient vectorization of all processing steps, including
the memory accesses.

The work that is closest to ours, is probably the string-
matching scheme published by Scarpazza et al., which also
targets the Cell Broadband Engine [12]. Their scheme is
based on a data structure comprised of fully expanded state
tables that contain entries for all possible state and input
combinations and are stored in the SPE’s local store. Their
scheme has been limited to 5-bit-encoded input characters,
which only require 32-entry state tables for each state, so
that it can support a reasonable number of states, about
1500, in the 256 KB local store. Each SPE processes 16 in-
put streams in parallel, with the input interleaving being per-
formed by the PowerPC® core. The corresponding address
generation and state update operations are implemented in
a parallel fashion. The actual accesses to the state tables in
the local store, however, are performed in a serial fashion.
They report a processing rate of 5.11 Gb/s per SPE.

A key difference of our work compared with the method
by Scarpazza et al., is the compression that we apply by
exploiting the B-FSM algorithm, which has been reported
to improve the storage efficiency by a factor of 15 to 500
compared with conventional schemes [1]. This compres-
sion allows the creation of a substantially more compact
data structure, enabling an efficient exploitation of smaller
but faster memories, such as the SPE register set in our

initial implementation presented below. This compression
comes, however, at the cost of additional instructions as the
B-FSM algorithm involves slightly more complex process-
ing steps than the simpler state-table lookup operation of
the scheme by Scarpazza et al. These instructions, how-
ever, could be vectorized efficiently, requiring relatively few
extra cycles. The performance evaluation, which will be
presented in Section 6, revealed that the performance gain
we achieved thanks to the lower access latency to the vec-
tor register set clearly outweighed the additional instruction
cycles, resulting in an overall processing rate that is higher
than the one reported by Scarpazza.

Compared with our work, the scheme by Scarpazza et al.
is able to support a larger state transition diagram and, con-
sequently, a larger number of patterns. This is, however, for
a large part also due to the 5-bit input encoding applied in
their scheme. If the encoding were increased to a 7-bit en-
coding similar to our implementation (see Section 5), then
the state-table size would increase by a factor of four, al-
lowing only one fourth of approximately 1500 states to be
stored. This is less than 400 states and comes much closer
to what the B-FSM implementation is able to store in the
vector register set.

In summary, both schemes have their own specific merits
and, based on the characteristics of the match function, have
their own specific application domain in which they achieve
favorable performance results.

3 Overview of the Cell Broadband Engine

The Cell Broadband Engine [13] is a processor archi-
tecture designed in a joint venture between Sony, Toshiba
and IBM to overcome the traditional limitations in high-
throughput processing capability and the memory subsys-
tems’ incapability of sustaining the ever increasing pace of
the processors’ data-access demands. The solution to these
fundamental obstacles to scalability was implemented in an
architecture that encompasses several strategies to increase
the overall data-processing capabilities while obtaining a
better power efficiency.

The architecture consists of one 64-bit PowerPC core
(PowerPC Processor Element or PPE), which is the over-
all system controller and runs the operating system and ap-
plications, eight independent vector-processing units (Syn-
ergistic Processor Elements or SPE [14]), which are spe-
cialized in compute-intensive SIMD applications, a high-
bandwidth internal communication and data transfer net-
work (Element Interconnect Bus or EIB), and a high-
throughput memory controller (Memory Interface Con-
troller or MIC), plus additional I/O devices. This is illus-
trated in Fig. 1.

The PPE is an in-order-execution, dual-issue, dual-
threaded 64-bit variant of the PowerPC RISC processor



Figure 1. Cell Broadband Engine Overview.

family. It features 32 KB of Level 1 instruction cache,
32 KB of Level 1 data cache, plus an additional 512 KB
of Level 2 cache, and VMX SIMD vector-processing exten-
sions.

The Synergistic Processor Elements are very efficient
128-bit RISC vector processors dedicated to running pro-
cessing and data-intensive workloads. Each of the eight
SPEs in the Cell Broadband Engine features 256 KB of em-
bedded software-managed local memory store, and a large
(128-element) 128-bit vector register set. In addition, each
SPE embeds a powerful memory controller (Memory Flow
Controller or MFC), whose main feature is the capability
of performing asynchronous DMA data transfers between
the main system memory and the SPE local store. The SPE
processing core (SPU) has direct access only to its own lo-
cal store for both instructions and data, thus a careful inter-
leaving of data transfer and processing operations is crucial
and is enabled by an appropriate choice of data buffering
schemes.

To fully exploit the vast computing power of the Cell
Broadband Engine, four levels of processing parallelism
must be exploited when designing or porting algorithms:

1. Multi-core concurrent processing: each Cell Broad-
band Engine contains eight SPE cores, therefor
algorithm-level parallelization is essential to distribute
the computation on all resources available.

2. SIMD / vector processing: The SPEs are vector
processors designed to operate on multiple operands
with individual instructions. Accordingly, proper data
structures organization and full usage of the instruc-
tion set are required to obtain optimal instruction level
parallelism.

3. Pipeline optimization: Depending on the instruction
type, the latencies of SPE instructions differ. Therefor,
the best pipeline utilization depends on how data and

results dependencies are masked with further compu-
tation to avoid empty instruction slots (pipeline stalls).

4. Dual-issue optimization: the SPEs are equipped with
two execution pipelines, and are thus capable of exe-
cuting two instructions per clock cycle, depending on
the instruction types. Properly paired instructions can
be executed simultaneously, so optimal cycle per in-
struction figures depend on appropriate use of instruc-
tions to exploit both pipelines.

4 B-FSM Technology

This section provides an introduction to the B-FSM tech-
nology, which forms the core of our pattern-matching work.
It will focus on the various processing steps that are part of
the basic B-FSM operation and that are subject for vector-
ization. For a more general and detailed description of the
B-FSM technology and its application to pattern matching,
including a description of the compiler that converts pat-
terns into a B-FSM data structure, the reader is referred to
[1].

4.1 Transition Rules with Wildcards

The B-FSM engine is a fast programmable state machine
originally designed for hardware implementation. At the
core of the B-FSM technology is the concept of specify-
ing state transitions using so-called transition rules. Each
transition rule consist of a test part, containing exact-match
and/or wildcard conditions for the current state and input
values, and a result part, containing a next state and an op-
tional output vector.

The transition-rule concept is illustrated in Fig. 2 using
an example involving the simultaneous scanning of an in-
put stream for all occurrences of two character strings “test-
ing” and “pattern”. Fig. 2(a) shows a conventional state
transition diagram that can be constructed for this match
function using existing methods. An arrival in state S7 or
state S14 corresponds to the detection of the first or the sec-
ond pattern, respectively. Note that the diagram in Fig. 2(a)
is slightly simplified for illustrative purposes; the “default”
state transitions to state S0, which are taken if no other tran-
sition shown in the diagram can be used, have been omitted
for clarity.

Fig. 2(b) shows a set of transition rules that can be used
to describe the same match function and was derived as de-
scribed in [1]. In this example, the input is assumed to be
encoded as ASCII and the corresponding numerical values
are listed in hexadecimal notation after the characters. The
B-FSM implementation discussed below directly ‘executes’
this specification by searching in each cycle for the highest-
priority transition rule that matches the actual values of the



a

t

t

e

r

e

s

t

i

n

g

tt

t

t

t

e

p

t

t p

t

t
s

t

e

p

p

p

p

p

n

p p

p

p

p

p

pt

S8

S9

S10

S11

S12

S13

S1

S0

S2

S3

S4

S5

S6

S14S7

(“default” transitions to state S0 are not shown).

(a) State-transition diagram.

rule current state input → next state priority
R0 * * → S0 0
R1 * t [74h] → S1 1
R2 S1 e [65h] → S2 2
R3 S2 s [73h] → S3 2
R4 S3 t [74h] → S4 2
R5 S4 i [69h] → S5 2
R6 S5 n [6Eh] → S6 2
R7 S6 g [67h] → S7 2
R8 * p [70h] → S8 1
R9 S8 a [61h] → S9 2
R10 S9 t [74h] → S10 2
R11 S10 t [74h] → S11 2
R12 S11 e [65h] → S12 2
R13 S12 r [72h] → S13 2
R14 S13 n [6Eh] → S14 2
R15 S4 e [65h] → S2 2
R16 S10 e [65h] → S2 2
R17 S12 s [73h] → S3 2

(b) State-transition rules.

Figure 2. Example of a match function.

state register and input. It then uses the result part of that
rule to update the state register and, optionally, to generate
output. As can be seen from the example, wildcards allow
the use of a single transition rule to describe multiple state
transitions in the original state transition diagram (e.g., rules
R0, R1 and R8), enabling a more compact and flexible def-
inition of the match function.

4.2 Transition Rule Selection

The B-FSM engine searches for the highest-priority
matching transition rule in each clock cycle using a data
structure that is comprised of multiple equally-sized so-
called transition-rule tables, with each table corresponding
to a particular cluster of states and containing all the tran-
sition rules related to the states in that cluster. Within a
given cluster, all states are encoded using ‘local’ state vec-
tors that are only unique within that cluster. Consequently,
a state is identified ‘globally’ by the cluster identifier upon
which it is mapped (typically the address of the correspond-
ing transition-rule table is used for this) in combination with
its ‘local’ state vector within that cluster. This information
is contained in the B-FSM state register.

For each state a separate hash function is used to select
one of the transition rules that apply to that state, based on
the current input value. This hash function has been derived

from the Balanced Routing table (BART) search algorithm
[15], hence the name BART-based Finite-State Machine
(B-FSM). The hash function is defined by a mask vector
that specifies how the hash index bits are extracted from
the local state and input vectors according to the following
function:

index = (state and not mask) or (input and mask), (1)

where and, or, and not are bit-wise operators, and state
and input contain the current values of the local state and
input vectors. According to (1), each mask vector bit spec-
ifies whether a corresponding hash index bit is extracted
from the state vector (mask bit equals zero) or from the in-
put vector (mask bit equals one), enabling a very efficient
and fast implementation.

In addition to the local state vector of the next state, the
result part of each transition rule also stores the address of
the transition-rule table containing the transition rules for
that next state and the mask that specifies which hash func-
tion has to be used for selecting one of these transition rules
in the following cycle based on the next input value.

Despite the simplicity of the above hash function, the B-
FSM compiler is able to achieve a very efficient construc-
tion of the hash tables so that each transition rule occurs
only once and most tables are fully occupied. This results
in near-optimal storage efficiency for a wide range of appli-



state vector mask table
S0 00h 00h 0000h
S1 08h 00h 0000h
S2 01h 00h 0000h
S3 09h 00h 0000h
S4 04h 04h 0000h
S5 0Dh 00h 0000h
S6 0Ch 00h 0000h
S7 06h 00h 0000h
S8 0Bh 00h 0000h
S9 0Ah 00h 0000h
S10 03h 01h 0000h
S11 05h 00h 0000h
S12 07h 01h 0000h
S13 0Eh 00h 0000h
S14 02h 00h 0000h

(a) State encoding and masks.

input result part
7Fh

.. rule R0

75h
74h rule R1

73h
.. rule R0

71h
70h rule R8

6Fh
.. rule R0

00h

(b) Default-rule table.

index transition rule
7Fh

..
0Eh rule R14

0Dh rule R6

0Ch rule R7

0Bh rule R9

0Ah rule R10

09h rule R4

08h rule R2

07h rule R17

06h rule R13

05h rule R12

04h rule R15

03h rule R16

02h rule R11

01h rule R3

00h rule R5

(c) Transition-rule table.

Figure 3. Sample state encoding, default-rule table and transition-rule table contents.

cations and pattern sets. For example as reported in [1], a
collection of about 2,000 patterns involving a total of 32K
characters can be compiled into less than 128 KB for a small
array of B-FSMs. This represents one of the most compact
structures reported in the literature.

The compiler achieves this high storage efficiency by ex-
ploiting two optimization techniques. The first optimiza-
tion involves the separation of transition rules that involve a
wildcard condition for the current state (and hence are only
dependent on the input value) and storing the result parts
of these rules in a so-called default-rule table, which is be-
ing accessed based on the input value only. In this way, the
transition-rule tables described above will only store tran-
sition rules involving exact-match conditions for both the
current state and input. Only when no matching rule can be
found in the transition-rule memory, will a lookup be per-
formed on the default-rule table. The second optimization
involves an efficient approach for a combined state cluster-
ing, state encoding and hash function selection described in
more detail in [1].

Fig. 3 illustrates an example of the compilation results
for the transition rules shown in Fig. 2(b), while applying
the two optimizations mentioned above. Fig. 3(a) shows
the encoded state vectors and masks defining the hash func-
tions for all states S0 to S14. Fig. 3(b) shows the con-
tents of the default-rule table, assuming a 7-bit input value
(ASCII encoding) which results in a total of 128 table en-
tries, one for each input value. As can be verified in
Fig. 2(b), the default-rule table implements the search for
the highest-priority matching rule that has a wildcard con-
dition for the current state, by a lookup on the input value.
Fig. 3(c) shows the mapping of the remaining rules that in-
volve exact-match conditions on both the current state and

input on the transition-rule table.
The B-FSM operation based on the default-rule table and

transition-rule table will now be illustrated using the fol-
lowing example, in which it is assumed that the B-FSM is
in state S4. As can be seen in Fig. 2, transitions can be
made from state S4 to five possible next states: with an in-
put ‘i’ (69h) to state S5 according to rule R5; with an input
‘e’ (65h) to state S2 according to rule R15; with an input
‘t’ (74h) to state S1 according to rule R1; with an input ‘p’
(70h) to state S8 according to rule R8, and with any other in-
put to state S0 according to rule R0 (note that this transition
to S0 is not shown to keep the state diagram simple). These
five cases are handled by the B-FSM in the following way.
State S4 is encoded using a local state vector ‘04h’, and the
transition-rule selection for this state is performed using a
hash function defined by a mask ’04h’ (see Fig. 3(a)). If
the input equals ‘i’ (69h), then according to (1) a hash in-
dex value ‘00’ is calculated for the state vector ’04h’ and
mask ’04h’. At this index value, rule R5 is retrieved from
the current hash table, as shown in Fig. 3(c). The test part
of this rule matches both the current state and input val-
ues, and consequently, the next state S5 will be retrieved
from its result part. Similarly, if the input equals ‘e’ (65h),
then a hash index value ‘04h’ will be calculated, and the
matching rule R15 retrieved from the transition-rule table,
providing a next state S2. Any other input value will also
result in a hash index value equal to either ‘00h’ or ‘04h’,
but neither of the two rules will match the input value. Con-
sequently, the default-rule table will be accessed. For input
values equal to ‘t’ (74h) or ‘p’ (70h), a transition to state S1

or S8, respectively, will be made. For all other input values,
a transition to state S0 will take place.



struct { /* address generation */
unsigned int mask : 7; MemAddr = ((StateReg & (MaskRegˆ0x7F)) |
unsigned int table_addr; (InputVal & MaskReg));
unsigned int nxt_state : 7; MemAddr |= (TableAddrReg << 7);
unsigned int res_flag : 1;

} DefaultRuleMem[128];
/* rule selection */

struct { if ((TransRuleMem[MemAddr].cur_state == StateReg) &&
unsigned int cur_state : 7; (TransRuleMem[MemAddr].input_val == InputVal)) {
unsigned int input_val : 7; StateReg = TransRuleMem[MemAddr].nxt_state;
unsigned int mask : 7; TableAddrReg = TransRuleMem[MemAddr].table_addr;
unsigned int table_addr; MaskReg = TransRuleMem[MemAddr].mask;
unsigned int nxt_state : 7; ResultFlag = TransRuleMem[MemAddr].res_flag;
unsigned int res_flag : 1; }

} TransRuleMem[]; else {
StateReg = DefaultRuleMem[InputVal].nxt_state;

unsigned int StateReg = 0; TableAddrReg = DefaultRuleMem[InputVal].table_addr;
unsigned int TableAddrReg = 0; MaskReg = DefaultRuleMem[InputVal].mask;
unsigned int MaskReg = 0; ResultFlag = DefaultRuleMem[InputVal].res_flag;
unsigned int InputVal; }

(a) Variables. (b) B-FSM core loop.

Figure 4. Serial B-FSM implementation.

5 Vectorized B-FSM implementation

This section will present a vectorized implementation of
the B-FSM algorithm described above which is able to ex-
ploit the capabilities of the Cell Broadband Engine and of
other processors with similar SIMD capabilities. First, a se-
rial B-FSM implementation in C will be presented, which
will then be converted into a parallel SPE implementation
that can scan 16 independent input streams simultaneously
against a single set of patterns that is compiled into one B-
FSM data structure that completely fits into the SPE register
sets. The key aspect of the implementation, which enables
the vectorization of all B-FSM steps, is how the data struc-
ture is mapped onto the SPE vector registers.

5.1 Serial B-FSM implementation

Fig. 4 shows the B-FSM core loop in C that implements
the concepts described in Section 4. This code fragment
involves 7-bit state, mask, and input vectors. It covers the B-
FSM core loop, which consists of the following processing
steps: First a memory address is generated by calculating
a hash index according to (1), which forms the lower part
of the address, whereas the table address forms the upper
part. Next, the current values of the state register and input
vector are compared with the corresponding fields in the
transition rule contained at the location in the transition-rule
memory that corresponds to the memory address calculated.
If these two values match, then the next state, table address
and mask are taken from the result part of that transition
rule otherwise they are obtained by a lookup on the default-
rule table indexed by the current input value. This loop is
repeated for each new state and input value.

In this example, each transition rule includes a so-called

result flag, which is set if that transition involves a next state
that corresponds to a matching pattern found in the input
stream. Upon the detection of a set result flag, the match
function will perform a lookup on the table address and state
vector to determine the pattern identifier. This lookup, how-
ever, will not be discussed in this paper. For more details,
the reader is referred to [1]).

5.2 Data Structure

Each SPE contains a total of 128 vector registers, each
128 bits wide, corresponding to a total of 2 KB of storage.
Eighty of these registers will be used to store one default
rule table and two transition-rule tables, which can contain
a maximum of 3 × 128 = 384 transition rules. The re-
maining 48 registers are sufficient for performing the var-
ious B-FSMs operations, including input interleaving. For
this configuration, the table address field consists of a single
bit.

Each transition rule vector has six fields, as shown in
Fig. 4(a). Instead of storing the transition rules as an ‘ar-
ray of structures’, they are stored as a ‘structure of ar-
rays’, as is illustrated in Fig. 5 for the current state field:
A block of 16 consecutive vector registers is used to store
the 256 current-state fields of all the transition rules in the
two transition-rule tables. The input, mask, and next-state
fields are mapped in a similar way onto three other blocks
of 16 consecutive vector registers, hereby the single-bit
result-flag and table-address fields are packed at the most-
significant bit positions together with the 7-bit mask and
next-state fields, respectively. In this way, a total of 64 vec-
tor registers is used for storing the two transition-rule ta-
bles. The default-rule table is mapped in the same way. As
shown in Fig. 4(a), each default-table entry contains only



Figure 5. Sample data structure mapping.

#define SIMD_Lookup128(index, table, result)
lsb3_7 = spu_and(index, 0x1F);
tbl0_1 = spu_shuffle(table[0],table[1],lsb3_7);
tbl2_3 = spu_shuffle(table[2],table[3],lsb3_7);
tbl4_5 = spu_shuffle(table[4],table[5],lsb3_7);
tbl6_7 = spu_shuffle(table[6],table[7],lsb3_7);
bit2 = spu_cmpeq(spu_and(index,0x20),0x20);
tbl0_3 = spu_sel(tbl0_1,tbl2_3,bit2);
tbl4_7 = spu_sel(tbl4_5,tbl6_7,bit2);
bit1 = spu_cmpgt(index,0x3F);
result = spu_sel(tbl0_3,tbl4_7,bit1);

Figure 6. Selecting each of 16 bytes inde-
pendently from any of 128 byte locations in
8 vector registers.

four fields, which can be combined into two packed fields as
described above, so that the 128 default-table entries can be
mapped onto two blocks of 8 vector registers. The mapping
of the data structure on the SPE register set is illustrated in
more detail in Fig. 7.

5.3 Vectorized B-FSM Operation

Following the typical approach for vectorization, the cur-
rent state, mask and input values for all 16 B-FSMs are
mapped together onto three vector registers. Similarly, as
done with the transition-rule tables discussed above, the
single-bit table address of the current transition-rule table
is packed with the 7-bit current state value at the most sig-
nificant bit position.

The parallel implementation of the address generation
function, described in Fig. 4(b), is realized using a sin-
gle SPE instruction, spu sel, which performs a mask-
controlled bit selection from two vector registers, and thus
directly implements the index calculation according to (1).
By mapping the table-address bit at the most significant bit
position with the current state vector and forcing the cor-
responding bit of the mask vector to be ‘zero’, the addi-
tion/concatenation of the table address (see Fig. 4(b)) is per-
formed as part of the same instruction.

The parallel implementation of the rule selection func-
tion shown in Fig. 4(b) and described in Section 5.1, ex-
ploits the capabilities of the SPE spu shuffle instruc-
tion to vectorize the 16 independent accesses to the data
structure. This instruction allows each of the 16 bytes in the
target vector register to be selected independently, from any
of the 32 byte locations in two source vector registers, un-
der control of a third vector register. By combining multiple
spu shuffle instructions with spu sel and some com-
pare instructions, it is possible to increase the number of
source bytes from which the 16 target bytes can be selected.
Fig. 6 illustrates a code fragment that allows the 16 bytes to
be independently selected from 128 different byte locations
in a total of 8 vector registers. A graphic representation is

provided in Fig. 8.
With the data structure being organized as described in

Section 5.2, this flexible byte selection can now be used to
fetch the various fields of the selected transition rules (also
using a ‘16 out of 256 byte’ selection function) under con-
trol of the calculated addresses for all 16 B-FSMs in paral-
lel. In a similar way, the default rule table can be accessed
in parallel for all 16 B-FSMs (using a ‘16 out of 128 byte’
selection function, as shown in Fig. 6) under control of the
current input value (see Fig. 4(b)).

The 16 state and input fields of the transition rules se-
lected are grouped into two vector registers, and compared
against the vector registers containing the actual state and
input values by means of a simple compare instruction. The
compare-result vector is then used to control a spu sel
instruction that will select whether the state, mask, and ta-
ble address values will be updated from the transition rule
selected if it matches or from the default rule table entry
otherwise.

5.4 Input and Result Processing

Because of the parallel processing of 16 input streams
in vector form (16 elements of 8 bits each, forming a 128-
bit word) the input data must be interleaved, as each ele-
ment in the vector word represents an input datum sourced
from a different stream. If the PPE is used for the input-
data stream interleaving task and thus simultaneously serves
multiple SPEs, then there is a high probability for the in-
terleaving process to become a throughput bottleneck, as
the PPE would be required to perform data reads, shuffles,
and writes at a data rate sufficient to feed all 8 SPEs data
streams, while concurrently running OS facilities and net-
work processing. For this reason we implemented two ver-
sions of the B-FSM loop, one that performs data interleav-
ing directly on the SPE and one that assumes the input data
is pre-interleaved by an external process, as described in
relevant related literature [12]. Both implementations load
input data from the main memory by means of DMA trans-



Figure 7. SPE register allocation.



Figure 8. Flexible lookup.

fers to the SPE local store in blocks of 256 elements per
stream for a total of 256 × 16 = 4096 bytes. They exploit
a double buffering scheme to hide data transfer latency and
all DMA transfers are SPE-initiated. The first implemen-
tation, which includes data interleaving, uses DMA lists to
fetch blocks of 256 bytes from 16 different sources in the
main memory, as in this case the input data streams are as-
sumed to reside in separate memory locations. The sec-
ond implementation, which does not include data interleav-
ing, uses single DMA transfer commands to fetch blocks
of 4096 bytes of pre-interleaved contiguous data from the
main memory. The result flags generated by each B-FSM
processing step are stored in an appropriate memory area
in the SPE’s local store, and can be transferred to the main
memory for further use. This process incurs only in a very
minimal penalty: Note that our current implementation does
not move the results data to the main memory.

6 Performance Evaluation

6.1 Experimental Setup

The software was developed using the C language with
specific language extensions and exploiting the IBM Cell
SDK v2.1 gcc compiler and tools [16]. Experimentation
and performance measurements were performed on a IBM
BladeCenter® QS21 blade server running at 3.2 GHz [17].
Profiling information for tuning was collected using a com-
bination of the IBM Cell Broadband Engine Full System
Simulator and the IBM Assembly Visualizer for the Cell
Broadband Engine [18].

6.2 Experimental Results

The version of the B-FSM implementation that includes
input interleaving consists of two nested loops. The input
stream interleaving process resides outside of the B-FSM
core loop and processes 16 bytes from each plain input
stream into an interleaved block of 256 bytes, which cor-
respond to the 16 input elements for each of the 16 input
streams. This operation was measured to require 105 clock
cycles.

By using static pipeline analysis we could infer that the
B-FSM core loop, which operates on all 16 data streams in
parallel, consists of 57 instructions in the even and 44 in
the odd pipeline, requiring a total of 58 clock cycles, taking
into account dual issued instructions. This corresponds to
a theoretical peak performance of 3.65 (58/16) clock cycles
per individual state transition made by each of the 16 B-
FSMs.

Table 1 provides details on the performance measured
for a single SPE: the version without input interleaving
achieves a throughput of 6.7 Gb/s and has performance
characteristics close to the theoretical peak, as it consists
of the B-FSM core loop and only some minimal outer loop
structures. The version with input interleaving needs to per-
form the input processing outside of the core loop, thus in-
curring a penalty, resulting in a slightly reduced through-
put of 6.05 Gb/s. In both versions no loop unrolling of the
B-FSM core loop was performed because of limitations in
the current compiler register allocation policy that gener-
ates unwanted spills of values to memory, which degrades
the overall performance.

The input stream interleaving code, which is outside of
the core loop, runs entirely on the odd pipeline and takes a
total of 105 cycles to execute. As there are 13 unused odd



Table 1. Measured performance results for a single SPE.
With data stream Without data stream

interleaving interleaving
Avg. clock cycles per state transition 4.22 3.82
Throughput (M state transitions/sec.) 756.55 836.89
Throughput (Gb/s) 6.1 6.7
B-FSM core loop CPI 0.59 0.57
B-FSM core loop dual issue 68.5 75.8
B-FSM core loop stalls 0.0 0.0
Registers used 126 110

pipeline instruction slots per step in the core loop, the entire
input interleaving process could be optimized manually to
fit into the unused pipeline slots by employing a fully un-
rolled core loop (16 times), thus obtaining the full 6.7 Gb/s
throughput including stream interleaving.

An interesting property of the B-FSM implementation is
that all possible execution paths in the code take the same
number of cycles, rendering the above performance num-
bers deterministic and completely independent of the char-
acteristics of the input stream and the patterns.

All eight SPEs in the Cell Broadband Engine were op-
erating in parallel, each scanning a set of 16 input streams
at a rate of 6.7 Gb/s against the transition diagram stored
in its vector register set. As part of the experiments, vari-
ous configurations were tested that involved different allo-
cations of input streams to these eight SPEs, allowing the
aggregate scan rate and number of transitions (and patterns)
to be scaled in a flexible way. In one extreme configuration,
all 8 SPEs were operating on 8 different sets of 16 input
streams, corresponding to a total of 128 independent input
streams, scanning each set against a state diagram consist-
ing of up to 384 transition rules (256 regular rules and 128
default rules). This resulted in a total measured scan rate
of over 50 Gb/s. In the other extreme configuration, all 8
SPEs were operating on the same set of 16 input streams,
scanning these at a total scan rate of 6.7 Gb/s against a dis-
tributed state diagram that has up to 8× 384 = 3072 transi-
tion rules (2048 regular rules and 1024 default rules). Other
configurations allow other combinations of aggregate scan
rate (in steps of 6.7 Gb/s) and number of transition rules be-
tween these extremes, e.g., a scan rate of 13 Gb/s against up
to 1536 transition rules, a scan rate of 26 Gb/s against up to
768 transition rules, and so on.

Because the process is scalable, more than one processor
can be used in parallel. The QS21 Blade used in the exper-
iments has two Cell Broadband Engine processors, which
allowed a further scaling of the scan rate up to 100 Gb/s
(which was measured) or the supported number of transi-
tion rules to be increased up to a total of 6144.

An interesting feature is that the B-FSM data structure
in each SPE only uses a total of 80 vector registers, which

can be loaded from the SPE’s local store in 85 cycles. This
allows a rapid switching between different pattern sets for
which the corresponding compiled B-FSM data structures
have been pre-stored in the local store. With the local store
in each SPE being 256 KB, it allows 200 different B-FSM
data structures to be stored, which consist of up to 76K tran-
sitions rules per SPE and over 600K transition rules per Cell
Broadband Engine. This is, of course, particularly useful
for match applications for which the pattern set is organized
into several smaller subsets, against which the input streams
need to be scanned selectively.

Various pattern sets and input traces were used during
the experiments to verify the correct operation of the match
function. As already indicated in the introduction, it is im-
portant to note that the B-FSM transition rules mentioned
here are different from conventional state transitions, be-
cause they support wildcard conditions and priorities, al-
lowing a more compact representation of match functions.
As a result, the B-FSM compiler was able to compile a
few tens of patterns into the register set of each SPE, i.e.,
a few hundred patterns for all 8 SPEs. The actual number
of patterns that fit into the register sets depends on the pat-
tern characteristics which determine how well they can be
mapped onto a set of B-FSM transition rules. This topic,
however, is beyond the scope of this paper, but has been
addressed in [1]. Note that by means of a selective pattern-
distribution function as described in [1] the compiler is able
to improve the storage efficiency further for configurations
in which multiple SPEs operate on the same set of input
streams.

7 Conclusion

This paper has presented a novel parallel implementa-
tion of the B-FSM algorithm on the Cell Broadband Engine,
which, to our knowledge, is one of the first fully vectorized
implementations of a state machine involving parallel mem-
ory accesses. This was achieved by storing the main data
structures directly in the SPE register sets, and by a partic-
ular organization of these structures that made it possible to



parallelize the accesses from the 16 B-FSMs executed by
each SPE.

A key feature of this implementation is that the pro-
cessing rate is extremely deterministic and independent of
the input stream and the pattern characteristics. Each SPE
achieved an aggregate scan rate of 6.7 Gb/s for match func-
tions specified by up to a few hundred B-FSM transition
rules, which support wildcards and priorities. The aggre-
gate scan rate could be scaled to a measured value of over
50 Gb/s when using all 8 SPEs in the Cell Broadband En-
gine to simultaneously scan 128 independent streams, and
to over 100 Gb/s for a blade containing two Cell Broadband
Engines when scanning 256 independent streams. Alter-
natively, multiple SPEs could also be allocated to scan the
same set of input streams, enabling one to scale the number
of transition rules rather than the aggregate scan rate, which
resulted in an increase of the number of patterns supported.

The results also indicate that the additional complexity
the B-FSM algorithm incurs compared with conventional
schemes based on a ‘simple’ next-state table lookup, only
results in a relatively small number of extra instruction cy-
cles because of an effective parallel implementation of the
B-FSM core loop. Furthermore, these extra cycles are com-
pletely compensated by the higher storage efficiency ob-
tained in this way, which allows the efficient exploitation
of smaller and much faster memories (in this case the SPE
register sets) to realize very high processing rates. A fur-
ther advantage is that this also allows one to switch effi-
ciently between multiple match functions for which the B-
FSM data structures are stored in the local store.

The work presented here was the first result of an inves-
tigation into the efficient exploitation of SIMD capabilities
for pattern matching. Ongoing work is targeted at scaling
towards substantially larger pattern sets, thereby applying
the experience gained from this first implementation. A
second research topic is directed at extensions for regular
expressions, in particular storage-efficient support for char-
acter classes.

References

[1] J. van Lunteren, “High-performance pattern-matching
for intrusion detection,” Proc. IEEE INFOCOM,
Barcelona, Spain, April 2006.

[2] A.V. Aho and M.J. Corasick, “Efficient string match-
ing: An aid to bibliographic search,” Communications
of the ACM, vol. 18, no. 6, pp. 333-340, 1975.

[3] R.S. Boyer and J.S. Moore, “A fast string search-
ing algorithm,” Communications of the ACM, vol. 20,
no. 10, pp. 762-772, Oct. 1977.

[4] B. Commentz-Walter, “A string matching algorithm
fast on the average,” Proc. of the 6th Colloquium,
on Automata, Languages and Programming, pp. 118-
132, July 1979.

[5] S. Wu and U. Manber,“A fast algorithm for multi-
pattern searching,” Technical report TR-94-17, De-
partment of Computer Science, University of Arizona,
May 1994.

[6] C. Coit, S. Staniford, and J. McAlerney, “Towards
faster string matching for intrusion detection,” Proc. of
the DARPA Information Survivability Conference and
Exhibition, pp. 367-373, 2002.

[7] N. Tuck, T. Sherwood, B. Calder, and G. Varghese,
“Deterministic memory-efficient string matching al-
gorithms for intrusion detection,” Proc. IEEE Info-
com, vol. 4, pp. 2628-2639, March 2004.

[8] R. Sidhu and V.K. Prasanna, “Fast regular expres-
sion matching using FPGAs,” Proc. IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pp. 227-238, 2001.

[9] B.L. Hutchings, R. Franklin, and D. Carver, “As-
sisting network intrusion detection with recon-
figurable hardware,” Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pp. 111-120, April 2002.

[10] C.R. Clark and D.E. Schimmel, “Scalable pattern
matching for high speed networks,” Proc. IEEE Sym-
posium on Field-Programmable Custom Computing
Machines (FCCM), pp. 249-257, April 2004.

[11] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs
for efficient and high-speed NIDS pattern matching,”
Proc. IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM), pp. 21-23, April
2004.

[12] D.P. Scarpazza, O. Villa, and F. Petrini, “Peak-
performance DFA-based string matching on the Cell
processor,” Parallel and Distributed Processing Sym-
posium, IPDPS 2007, pp. 1-8, March 2007.

[13] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T.
R. Maeurer, and D. Shippy, “Introduction to the Cell
Multiprocessor,” IBM Journal of Research and Devel-
opment, pp. 589-604, July/September 2005.

[14] B. Flachs et al., “The Microarchitecture of the Stream-
ing Processor for a CELL Processor,” Proc. IEEE In-
ternational Solid-State Circuits Symposium, pp. 184-
185, February 2005.



[15] J. van Lunteren, “Searching very large routing tables
in wide embedded memory,” Proc. IEEE Globecom,
vol. 3, pp. 1615-1619, November 2001.

[16] http://www.ibm.com/developerworks/power/cell/

[17] http://www-03.ibm.com/systems/bladecenter/
hardware/servers/qs21/index.html

[18] http://w3.alphaworks.ibm.com/tech/asmvis


	Text1: 


