
RZ 3713 (# 99723) 07/21/2008
Computer Science 10 pages

Research Report

Implementing ACL-based Policies in XACML

Günter Karjoth, Andreas Schade and Els Van Herreweghen

IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Implementing ACL-based Policies in XACML

Günter Karjoth, Andreas Schade and Els Van Herreweghen
IBM Research

Zurich Research Laboratory

Abstract

XACML is commonly used as a policy exchange mechanism,
decision engines are available, and verification tools are
under development. However, no support for legacy ac-
cess control systems exists yet. To explore the feasibility
to support legacy systems, we designed and implemented a
mapping of the IBM R© Tivoli R© Access Manager policy lan-
guage into XACML. Although the Tivoli Access Manager
policy language, being ACL-based, is simpler in general, it
turned out to be a non-trivial task to encode the interplay
of the Tivoli Access Manager policy elements and decision
logic within XACML. To achieve this task, we had to come
up with a novel use of XACML features.

1 Introduction

The extensible access control markup language
(XACML), an OASIS standard formally ratified in 2005,
defines both a policy language and an access control
decision request/response language, both given in XML
[4]. It also includes a high-level architecture defining the
roles of and the data flow between the entities involved
to make an authorization decision. Authorizations are
expressed in form of positive or negative rules, possibly
subject to a condition. Rules are combined into policies
and policies may be combined into policy sets. Different
combining algorithms allow to express logical operators on
the results, supporting federated administration of policies
about the same resource.

Recently XACML has received considerable attention
from academia as well as from industry. At Burton Group’s
2007 Catalyst Conference North America1, eight XACML
vendors showed fundamental interoperability in two usage
scenarios: policy exchange and authorization decision pro-
cessing.

Whereas interest in and adoption of XACML continues
to increase across the industry, not all application areas of

1http://www.oasis-open.org/news/
xacml-interop-2007-press-release.pdf

XACML are yet clearly identified. XACML as a policy ex-
change mechanism is already commonly used. Decision en-
gines are currently developed [8] but XACML policy edit-
ing tools are missing. A number of tools, Margrave [3]
for example, have been developed for the verification of
XACML policies. In [12], XACML policies are derived
from business process models. However, to gain wide mar-
ket penetration, XACML has also to support existing legacy
access control systems.

IBM Tivoli Access Manager (AM) is a system for (1)
centrally managing policy to govern access to resources
over geographically dispersed intranets and extranets and
(2) providing authorization services to applications [6]. Ap-
plications that are part of the Tivoli Access Manager family
include WebSEAL (for Internet resources), Access Man-
ager for Business Integration (for MQSeries queues and
applications), and Access Manager for Operating Systems
(for system resources). Third-party applications can use
Tivoli Access Manager’s authorization service by calling its
standard-based Authorization API [11].

AM performs authorization checks (i.e., access control
decisions) on protected URL-addressable objects, including
“dynamic URLs” generated by applications, based on the
user’s credentials. Policies are defined over an object space.
ACL inheritance allows to manage these policies efficiently.
Access control lists (ACLs) attached to resources assign
permissions to users and groups and control their reach-
ability. Predefined or customer-defined conditions, called
protected object policies (POPs) respectively authorization
rules (ARules), may further restrict access or give additional
instructions to the resource manager.

To study the feasibility to support such legacy systems,
we designed and implemented a mapping of the AM pol-
icy language into XACML. Although AM’s language, being
ACL-based, is simpler in general, it turned out to be a non-
trivial task to encode the interplay of AM’s data structure
and decision logic within XACML. To achieve this task, we
had to come up with a novel use of XACML features.

This paper describes the translation of AM policies into
equivalent XACML policies; ie., for a given query an
XACML decision engine would return the same result as

the AM decision engine would do. We show that XACML is
able to express Tivoli Access Manager policies wit a few ex-
ceptions. First, authorization rules have to be constrained to
have XACML condition expressions as counterparts. Next,
dynamic URL mapping cannot be expressed in XACML.
Further, the XACML model for decision evaluation restricts
input to a single action in a request.

In the remainder of this paper, we briefly describe the
Tivoli Access Manager authorization model in Section 2
and that of XACML in Section 3. In Section 4, we out-
line the encoding of the AM policy elements ACL, POP
and ARule. The complete translation algorithm is given in
Section 5, where we show how we have captured the spe-
cial effects of permission inheritance and accessibility. Sec-
tion 6 describes the implementation of the AM to XACML
translator and discusses software requirements to support
general XACML policies. We conclude in Section 7.

2 Tivoli Access Manager Policy Semantics

In this section, we describe the part of AM, which is rele-
vant for the translation into XACML. A detailed and formal
description of Tivoli Access Manager’s underlying access
control model is given in [6].

ACL2

ACL1

AuthRule1

POP1

POP2
/Departments/Code/Tiger

/Departments/Docs

/Departments/Mgmt

/

ACL3
/Mgmt/Manuals /Departments/Code

Figure 1. Object space populated with ACLs,
POPs, and ARule.

To control access, AM deploys access control lists
(ACL), protected object policies (POP), and authorization
rules (ARule). An ACL grants authorizations to subjects,
which are single users or groups. Groups are sets of indi-
vidual users and cannot be nested but a user may belong
to several groups. Besides users and groups, there are two
additional ACL entries: any-other matches any authen-
ticated user and unauthenticated matches any unau-
thenticated user. A POP is a set of predefined conditions
evaluated on attribute-value pairs. POPs impose restrictions
on the request or denote information to be passed back to the

calling resource manager. For example, a POP may limit
access to a specific time period or may instruct the resource
manager to enforce a certain audit level.

Objects are denoted by strings whose syntax and struc-
ture are similar to absolute filenames in a hierarchical file
system. The slash character (‘/’) is used to delimit, from
left to right, hierarchical components of the object’s name.
Thus, the strings /Mgmt and /Mgmt/Manuals are exam-
ples of object names given in Figure 1. AM’s object space
is open; i.e., any object without a specific policy is subject
to the policy attached to its nearest ancestor in the object
hierarchy.

Tivoli Access Manager gathers resources that require
protection along with the associated policy into a domain.
Resources within a domain are represented by objects that
span a hierarchical portrayal of its members called protected
object space. In Fig. 1, the object space is given as a tree.
To control access, ACLs, POPs, and authorization rules are
attached to objects. If an object does not have an ACL, POP,
or ARule explicity attached then it inherits that policy from
an object higher up in the hierarchy. A policy attached to an
object defines a region; that object is called container object.
A region is a subtree whose root is the the container object
together with all descendents that do not have a policy at-
tached to themselves. For example, the region defined by
ACL1 consists of the objects /, /Mgmt, /Departments
and /Departments/Docs (see the dashed polygon in
Fig. 1).

An object within a region is accessible if either it is the
container object of that region or the user (explicitly or im-
plicitly) has the Traverse right on the container object. An
object is accessible if all regions above are accessible. Thus,
in checking for a primary authorization corresponding to an
access query for an object, Traverse authorizations on par-
ent objects must be checked as auxiliary (or secondary) au-
thorizations.

In summary, to determine whether an access request
is permitted, Tivoli Access Manager checks whether (1)
the ACL of the container node grants the required permis-
sion(s), (2) all regions on the path to the root are accessible
(the Traverse permission is granted), and (3) evaluates the
POP, and (4) the ARule. If any of the ACL, POP, or ARule
evaluation fails, the request is denied access. For example,
the object /Departments/Code/Tiger is controlled
by two ACLs and one POP. Access is granted if the region
spawned by ACL ACL1 is accessible, ACL ACL2 grants
the necessary permission, and the evaluation of POP POP2
does not fail.

3 XACML Policies

Each XACML policy contains exactly one Policy or Pol-
icySet root XML element. A PolicySet is a container that

can hold other Policies or PolicySets, as well as references
to policies found in remote locations. A Policy represents
a single access control policy, expressed through a set of
Rules with Permit or Deny effect. A Policy or PolicySet
may hence contain multiple policies or rules, each of which
may evaluate to different access control decisions. There-
fore, XACML has a collection of Combining Algorithms to
reconcile the decisions made by these rules. Each algorithm
represents a different way of combining multiple decisions
into a single result. There are Policy Combining Algorithms
(used by PolicySet) and Rule Combining Algorithms (used
by Policy). An example of these is the Deny Overrides al-
gorithm, which says that no matter what, if any evaluation
returns Deny, or no evaluation permits, then the final re-
sult is also Deny. Thus, this combiner can be regarded as a
logical conjunction of permits. There are seven Combining
Algorithms to build up increasingly complex policies.

A Target is basically a set of simplified conditions
for Subject, Resource and Action. These conditions use
boolean functions to compare values found in a request with
those included in the Target. If all the conditions of a Target
are satisfied, then its associated PolicySet, Policy, or Rule
applies to the request.

Once a Policy has been found and verified to apply to a
given request, its Rules are evaluated. Rules have an Effect
– a value of Permit or Deny that is associated with success-
ful evaluation of the Rule. Rules may also have a condition.
If this condition evaluates to true then the Rule’s Effect is
returned. Evaluation of a Condition can also result in an er-
ror (Indeterminate) or discovery that the Condition doesn’t
apply to the request (NotApplicable). Conditions can be
quite complex, built from an arbitrary nesting of functions
and attributes.

Attributes are named values of known types that may in-
clude an issuer identifier or an issue date and time. Specifi-
cally, attributes are characteristics of the Subject, Resource,
Action, or Environment in which the access request is made.
A user’s name, its security clearance, the file the user want
to access, and the time of day are all attribute values. When
a request is sent from a Policy Enforcement Point (PEP) to
a Policy Decision Point (PDP), that request is formed al-
most exclusively of attributes, and their actual values will
be compared to attribute values in a policy to make the ac-
cess decisions.

In summary, authorizations are expressed in XACML by
access rules which specify the subject, resource and action
elements of an authorization. These elements may define
the applicable subjects, resources, and actions specifically,
or may be wildcard elements, which match all specific el-
ements in the corresponding category. For example, a rule
expressing authorization of a user Alice to read a data object
“Manuals” can be defined by (using some simplifications in
the XML syntax):

<Rule Effect="Permit">
<Target>

<Subject "Alice">
<Resource "Manuals">
<Action "read">

</Target>
</Rule>

Groups of Rules can be combined via logical algorithms
into Policies, and groups of policies can be similarly com-
bined into Policy sets. Thus, the overall access control pol-
icy data structure in XACML typically comprises multiple
Policy sets, each specifying the logical algorithms to be ap-
plied by the decision logic to Policies, and, within those
Policies, Rules, which apply to particular combinations of
subject/resource/action elements. In operation, the decision
logic compares the subject/resource/action triple in an ac-
cess query to the targets in the data structure to identify the
applicable policy sets, policies and rules, and then evaluates
these accordingly. This evaluation yields a permit or deny
decision in response to the access request.

4 Translating Tivoli Access Manager Policy
Elements

In Tivoli Access Manager (AM), accessibility of a re-
source depends on the permissions assigned by the ACL
controlling the region of the resource, the reachability of
that region, a protected object policy, and an authorization
rule. In particular, the AM access decision function grants
the request of a user to perform a given action on a given
resource if all of the following conditions are fulfilled:

1. the user has the required permissions on the resource
as determined by the user’s permissions according to
the ACL applying to the resource itself;

2. the user can access the resource’s region, as deter-
mined by Traverse permissions in the ACLs applying
to the nodes between the resource and the root;

3. all the conditions as expressed in the POP applying to
the resource are fulfilled;

4. all the authorization rules applying to the resource
evaluate to true.

In the remainder of this section, we explain in detail the
structure of above AM policy elements, how they are inter-
preted by the AM access decision function, and how they
can be expressed in XACML.

Having an XACML policy for each of the above items,
the overall policy for a particular resource can be modeled
by an XACML PolicySet that combines the four subpolicies
in a deny-overrides mode (see Figure 2). This policy
set contains a target the matches with the particular resource
being modeled.

Figure 2. Structure of a Resource policy.

4.1 Access Control Lists

Authorizations are granted to subjects, which can be sin-
gle users or groups. Groups are sets of users and cannot
be nested but a user may belong to several groups. Users
are the principals of the secure domain that can be authenti-
cated. If the user is authenticated, his credential will include
group memberships which may extend his permission set.
Tivoli Access Manager maintains information about users
and groups in a user registry.

The ACL applying to a resource determines the per-
missions of a user (authenticated or unauthenticated, with
possible group memberships) to perform certain actions on
that resource. An ACL has four entry types: user en-
tries, group entries, and the special entries any-other
and unauthenticated. The any-other entry con-
tains default permissions of all authenticated users while
the unauthenticated entry contains the permissions of
unauthenticated users. The ACL shown in Figure 3 gives,
for example, user Alice the read (r) and write (w) permis-
sion, whereas user Bob has just the read permission. The
absence of a permission is indicated by the symbol ’-’.
Note that the Traverse (T) permission is only assigned to
entries any-other and unauthenticated; its partic-
ular importance to control accessibility of nodes in the ob-
ject space is described in Section 4.2.

user Alice -rw
user Bob -r-
group Admin --w
group Physician -r-
any-other Tr-
unauthenticated T--

Figure 3. Content of ACL ACL3.

For a given client, determined by its user identifier and
a possibly empty set of group identifiers, the set of permis-
sions granted by a specific ACL is determined by perform-
ing a sequence of attempted matches against ACL entry
types. First, it checks whether the user identifier matches
one of the ACL’s user entries. If so, it returns the asso-
ciated set of permissions. Otherwise, if any of the user’s

group credentials match any of the ACL’s group entries,
the algorithm returns the union of all permissions the user
holds via matching group entries. If there is neither a
user nor a group match but the user is authenticated, the
permissions of the any-other entry are returned (or an
empty permission set if this entry is absent). If the user
is unauthenticated, the algorithm returns the permissions of
the unauthenticated entry after computing a bitwise
“and” operation against the any-other entry. The lat-
ter operation ensures that unauthenticated users do not have
more permissions than those matched by the any-other
entry. Above evaluation scheme on ACLs is similar to
schemes found in Posix or DCE [9].

Note that Bob shall not be able to write (w) even when
his credentials contain the group id Admin. Also, an au-
thenticated user (not Alice or Bob) belonging to the group
Physician but not to Admin shall not be able to write
even if an authenticated user (not Alice or Bob) not be-
longing to any of these groups can. The latter examples
show that there is the possibility to express negative per-
missions for particular users due to the “pre-emptiveness”
of the evaluation algorithm.

ACL Policy. We translate an ACL into an XACML pol-
icy with a first-applicable algorithm for combining
rules. That is, the effect (Deny or Permit) of the first rule
target match determines the result of the policy. Further,
we generate two rules for each ACL Entry. For the respec-
tive subject, the first rule grants the assigned permissions
whereas the second rule denies any (other) permission. As
each rule shall be evaluated in the order in which it is listed
in the policy, the second rule will deny access if the sub-
ject does not have the required permission in the preceed-
ing rule. Whereas the rules for user entries are next to each
other, positive group rules preceed negative group rules to
implement the union semantics of groups. Finally, a catch
rule at the end of the rule set assures that access will be de-
nied for every requestor not addressed in the ACL, imple-
menting the closed world semantics of Tivoli Access Man-
ager.

To incorporate the special entries any-other and
unauthenticated, we impose the convention that there
are two special subjects. If a requestor is unauthenticated it
shall be denoted by the user Unauthenticated. By def-
inition, every user is member of the group Any-other ex-
cept user Unauthenticated who is not member of any
group. The structure of a XACML Policy for ACL is given
in Figure 4). Criss-cross lines indicate negative rules.

Below XACML policy definition describes the autho-
rizations given by the ACL of Fig. 3, using a short-hand
notation for the XACML Target elements.

<Policy
RuleCombiningAlgId="first-applicable">

Figure 4. Structure of an ACL.

<Rule Effect="Permit"> Alice,(r,w) </Rule>
<Rule Effect="Deny"> Alice </Rule>
<Rule Effect="Permit"> Bob,w </Rule>
<Rule Effect="Deny"> Bob </Rule>
<Rule Effect="Permit"> Admin,w </Rule>
<Rule Effect="Permit"> Physician,r </Rule>
<Rule Effect="Deny"> Admin </Rule>
<Rule Effect="Deny"> Physician </Rule>
<Rule Effect="Permit"> Any-other,(T,r) </Rule>
<Rule Effect="Permit"> Unauthenticated,T </Rule>
<Rule Effect="Deny"/>

</Policy>

The Deny rules for Alice and Bob ensure that, after a suc-
cessful user id match, no other matches are attempted. All
the user rules of course precede all the group rules. Each of
the user Deny rules follows its corresponding permit rule.
The Deny rules for Admin and Physician ensure that
the granting of a request based on the Any-other rule can
occur only if none of the requester’s credentials matched a
user id or group name. As a request can match multiple
group rules and the requester should be granted access if
any of his group credentials give the right permission, all
the group Permit rules precede all the group Deny rules.
The Any-other rule follows any group rule such that per-
missions based on the any-other ACL entry will only
be granted if no specific user or group match occurred. The
Unauthenticated rule can be at any position except the
last.

Note that if there is an ACL entry without permissions,
for example ’user Charles ---’, only the negative rule
would be generated.

4.2 Traverse Permission

In Tivoli Access Manager, it is not sufficient that the re-
quester holds the necessary permissions on the object but
the object must also be accessible for the requester. It is the
Traverse (‘T’) permission that controls who can traverse a
particular node to access nodes lower in the tree of the ob-
ject space. Checking object accessibility thus includes the

search for all ACLs attached to ancestors on the path to the
root,2 and, on each level, to check whether the Traverse per-
mission is granted. Let us call the ACL attached to the node
to be the primary ACL and the ACL(s) on the path to be the
secondary ACLs.

To illustrate this particular evaluation strategy, let us con-
sider the accessibility of node /Mgmt/Manuals in Fig-
ure 2. ACL3 is defined in Figure 3 and the content of ACL1
is given below:

user Alice -rw
group Admin T-w
group Physician -r-
any-other Tr-

If we assume that Alice is member of group Physician,
Bob is member of group Admin, and Charles is not mem-
ber of group Physician, then we get following effective
permissions:

Alice ---
Bob -r-
Charles Tr-

According to ACLs ACL1 and ACL3, user Alice has suf-
ficient permissions to write on node /Mgmt/Manuals
(ACL3) but does not have the Traverse permission on node
/ (ACL1). Even if Alice would be member of group
Admin she cannot access any node below the root because
of the preemption after evaluation of her user entry in ACL1.
The same holds for unauthenticated users as there is no
unauthenticated entry in ACL1.

Traverse Permission PolicySet. Evaluating a request of
Alice to read a resource requires the checking of two ac-
cess rights – whether the primary ACL grants the read ac-
tion and the secondary ACLs grant the Traverse action.
However, XACML does only allow to check for one of the
two actions [4, XACML Context Request]. The challenge
is therefore to enforce the checking of Traverse permissions
in parallel to the evaluation of an access request for another
action.

The crucial observation is the fact that it is not neces-
sary to explicitly match against the Traverse permission. It
is sufficient to have a check that fails if the requester does
not hold the Traverse permission in any secondary ACL.
Our solution is to shift up the evaluation of secondary ACLs
from rules to policies. Each secondary ACL lists the com-
bination of users and groups that hold the Traverse action.
First, we can safely remove all actions in the secondary

2The ACL attached to the requested object is not considered.

ACL except Traverse. Next, we translate each ACL into an
XACML secondary policy as described in Section 4.1. In
the policy, we remove all action elements such that the pol-
icy permits any action only if it would permit a Traverse ac-
tion. Thus, it is sufficient to check whether there is a match-
ing user or group entry, which is implemented by rules with
a Subject element only. The set of all secondary ACL poli-
cies is aggregated into a policy set with deny-overrides.

Figure 5. Structure of a Traverse policy.

To access node ‘/Mgmt/Manuals’, a requester is re-
quired to have Traverse permission on node ‘/’, which is
controlled by ACL ACL1. Following above approach, an
equivalent check is encoded in XACML by below Policy.

<Policy RuleCombiningAlgId="first-applicable">
<Rule Effect="Deny"> Alice </Rule>
<Rule Effect="Permit"> Admin </Rule>
<Rule Effect="Deny"> Physician </Rule>
<Rule Effect="Permit"> Any-other </Rule>
<Rule Effect="Deny"/>

</Policy>

Note that the structure of above XACML policy for ACL
ACL1 follows the approach given in Section 4.1 except that
if a User or Group Entry holds the Traverse permission then
only a Permit rule is created with the Subject as its only
element else only a Deny rule is created.

Finally, accessibility of a node is encoded by a
PolicySet, where each policy contains the information
on subjects with Traverse permissions at a particular node
on the path to the root. The number of policies in the pol-
icy set is the number of ACLs on the path from the node
to the root without the node itself. These policies are com-
bined with the deny-overrides algorithm: if one of the
nodes cannot be traversed (one of the policies evaluates to a
Deny), the requested access is denied.

Figure 5 shows the structure of the Traverse Policy-
Set, “anding” the results of the policies for the secondary
ACLs. In our example, the accessibility to the region of
node /Mgmt/Manuals is only controlled by ACL ACL1
attached to the root; therefore, the PolicySet contains only
one Policy holding the Traverse information of ACL1.

4.3 Protected Object Policies

A protected object policy (POP) is a set of predefined
attributes whose values either additionally restrict access
• to a specific time period or weekday,
• to an IP address range or to minimal authentication lev-

els for certain IP addresses,
or impose additional provisional actions (see also [7]) on
• warning,
• audit levels,
• quality of protection: none, integrity, privacy.

A provisional action is passed back to the resource man-
ager3 along with the answer. Conditions imposed by a POP
apply to all principals.

Although Tivoli Access Manager provides these POP at-
tributes, it only enforces the warning mode, audit level,
and time-of-day access. WebSEAL, a resource manager
for Web-based information and included with Tivoli Access
Manager, uses POPs to enforce quality of protection4 (qop)
and to restrict certain IP addresses (or IP address ranges) to
access any resource in the secure domain (ipauth).

POP attribute Value
audit-level Deny
ipauth 9.0.0.0, 255.0.0.0, 1
ipauth anyothernw Forbidden
qop Integrity
tod-access mon,tue,wed:0800-1800
warning No

Table 1. Attributes of a POP

To illustrate the policies that can be expressed by POPs,
we consider an example given in Table 1. The audit-level
attribute Deny instructs the authorization service to log all
unsuccessful requests. The ipauth attribute specify that
any request coming from an IP address ”9.*.*.*” has
to have an authentication level of at least 1. The qop at-
tribute demands the use of integrity checking mechanism
such as MACs to ensure that the data of the request has not
changed. The tod-access setting specifies that access can
only be granted on Mondays, Tuesdays and Wednesdays be-
tween 8 a.m. and 6 p.m. Finally, the value of the warning
attribute switches off the warning mode that would allow
bypassing of the access decisions for testing purposes.

POP PolicySet. To encode POPs in XACML, we observe
that each POP attribute is a parameter of (provides input for)

3In the XACML model, it corresponds to a Policy Enforcement Point
(PEP)

4The required level of data protection, determined by a combination
of authentication, integrity, and privacy conditions, when performing an
operation on an object.

a predefined condition or provision. For example, the eval-
uation of the tod-access part of the POP shown in Table 1
includes the evaluation of the following condition:

date() IsIn tod-access

where function date() returns the current date and time. For
above example, this condition would return true if the cur-
rent time is Mon May 26 14:45:42 CEST 2008.

Attributes warning, tod-access, and ipauth
correspond to XACML conditions, and attributes
audit-level and qop correspond to XACML obliga-
tions. For reasons of simplicity, we implement each of the
POP attributes as a policy and combine them in a PolicySet
(representing the collection of POP constraints) using a
deny-overrides policy combining algorithm (see Figure 6).
This structure also works for policies with obligations
because the XACML PDP combines obligations of policies
with the same effect [4, Sect. 7.14].

Figure 6. Structure of a POP.

Each policy consists of a Permit rule, which tests the
condition, and a Deny rule triggered only if the condi-
tion failed. We now show the details of each of the poli-
cies. The TIME IN RANGE policy consists of one Permit
rule testing the time condition, and a Deny rule which is
triggered only if the condition does not hold. Checking
the time interval is easily expressed by XACML built-in
functions where current time is evaluated by selecting the
environment:current-time environment attribute,
which must either be present in the decision request or its
value must be supplied by the PDP.

<Policy PolicyId="POP_TIME_IN_RANGE"
RuleCombiningAlgId="first-applicable">
<Rule Effect="Permit" RuleId="Details_POPrule1">
<Condition>
<Apply FunctionId="time-in-range">

<Apply FunctionId="time-one-and-only">
<EnvironmentAttributeDesignator

AttributeId="current-time"
DataType="time"
MustBePresent="true" />

</Apply>
<AttributeValue DataType="time">

08:00:00
</AttributeValue>
<AttributeValue DataType="time">

18:00:00
</AttributeValue>

</Apply>
</Condition>

</Rule>
<Rule Effect="Deny"/>

</Policy>

In the DAY OF WEEK policy, there is an environment vari-
able called day-of-week, whose value we assume to be
present in the XACML Request Context or otherwise sup-
plied by the PDP. Note that checking whether the value
of the existing environment:current-date envi-
ronment attribute indicates a particular weekday would ei-
ther require a complicated XACML condition expression or
the definition of a non-standard function.

<Policy PolicyId="DAY-OF-WEEK"
RuleCombiningAlgId="first-applicable">
<Rule Effect="Permit" RuleId="Details_POPrule2">
<Condition>
<Apply FunctionId="any-of">
<Function FunctionId="string-equal" />
<Apply FunctionId="string-one-and-only">
<EnvironmentAttributeDesignator

AttributeId="day-of-week"
DataType="string"
MustBePresent="true" />

</Apply>
<Apply FunctionId="string-bag">
<AttributeValue DataType="string">

Mon
</AttributeValue>
<AttributeValue DataType="string">

Tue
</AttributeValue>
<AttributeValue DataType="string">

Wed
</AttributeValue>

</Apply>
</Apply>

</Condition>
</Rule>
<Rule Effect="Deny" />

</Policy>

For space limitation, we do not show the XACML condi-
tion to encode the POP attribute ipauth. IP addresses are
represented as bit strings and regular expressions are used
to matching addresses. This makes reading cumbersome
but allows for finer-grained condition creation on the net-
work address. Catch rules are used as well to handle the
case where the network address matches but the authlevel
did not satisfy the condition.

POP attributes that represent provisions are encoded as
XACML obligations, which are operations that must be per-
formed by the PEP in conjunction with an authorization de-
cision. Obligations may have associated arguments, whose
values are interpreted by the PEP. An example policy is
given below.

<Policy PolicyId="QoP"
RuleCombiningAlgId="first-applicable">

<Rule Effect="Permit" \>
<Obligations>

<Obligation
ObligationId="QoP"
FulfillOn="Permit">

<AttributeAssignment
AttributeId="QoP"
DataType="string" >
Integrity
</AttributeAssignment>

</Obligation>
</Obligations>

</Policy>

The obligation in above policy instructs the PEP to use a
particular QoP mechanism, namely integrity checks. Audit
level and Warning attributes are implemented in a similar
way.

4.4 Authorization Rules

Like POPs, an authorization rule when attached to a pro-
tected object imposes conditions that must be met before
access is permitted. These conditions are based on data sup-
plied to the authorization engine within the user credential,
from the resource manager application, from the encom-
passing business environment, or from trusted third parties
[10, Chapter 10].

In Tivoli Access Manager, the eXtensible Stylesheet
Language (XSL) is used to specify rules and XML is the
language used for the data that forms input to the rules. For
example, below XSLT template checks whether the sum of
the requested amount and of the current credit card balance
is lower than the credit card limit and that the requester’s
member status is ’100k’.

<xsl:if
test="(AmountReqd + JohnSmith/CreditCard/Balance)

< JohnSmith/CreditCard/Limit
and JohnSmith/MilagePlus/MemberStatus = ’100k’">

!TRUE!
</xsl:if>

Authorization PolicySet. The main difference between
an authorization rule and a POP attribute is the fact that the
latter represents a predefined condition. Thus, authorization
rules have the the same XACML policy structure. As XSLT
programs are more general than the XACML condition lan-
guage, the translation must be restricted to the subset of
XSLT expressions that can be implemented in XACML. Of
course, new functions and data types can always be added
to XACML if needed.

Above XSLT contains four variables, /AmountReqd,
JohnSmith/CreditCard/Balance,
JohnSmith/CreditCard/Limit, and
/JohnSmith/MilagePlus/MemberStatus whose
values must be retrieved for evaluation. In the XACML
condition below we assume that they are of types string and
integer and are contained in the XACML request context.

<Policy RuleCombiningAlgId="first-applicable">
<Rule Effect="Permit" >
<Condition>
<Apply FunctionId="and">
<Apply FunctionId="integer-less-than">
<Apply FunctionId="integer-plus">
<EnvironmentAttributeDesignator
AttributeId="/AmountReqd" />

<EnvironmentAttributeDesignator
AttributeId="JohnSmith/CreditCard/Balance" />

</Apply>
<EnvironmentAttributeDesignator
AttributeId="JohnSmith/CreditCard/Limit" />

</Apply>
<Apply FunctionId="string-equal">
<EnvironmentAttributeDesignator

AttributeId="/JohnSmith/MilagePlus/MemberStatus" />
<AttributeValue DataType="string">

100k
</AttributeValue>

</Apply>
</Apply>

</Condition>
</Rule>
<Rule Effect="Deny"/>

</Policy>

If an AM rule evaluation fails, the decision engine returns
“access denied” with a reason code, a string defined by
the administrator at rule creation. In XACML, the ab-
sence of matching attributes in the request context leads to a
XACML response context where the Decision element con-
tains the “Indeterminate” value, accompanied with a sta-
tus code of missing-attribute. Because it is recom-
mended that the resource manager reacts on the failure rea-
son we regard both behaviors to be equivalent.

5 Sparse Object Space

Tivoli Access Manager’s object space constitutes a set of
hierarchical objects. However, not all resources in the “real
world” correspond to an object in the object space. ACLs,
POPs, and ARules are assigned only to those nodes in the
hierarchy where the policy changes. Any object without ex-
plicitly attached ACL (POP, ARule) inherits the policy of its
nearest object with an explicitly set ACL (POP, ARule). In
other words, objects without explicit ACL, POP, or ARule
assigned inherit their ACL (POP, ARule) policy from the
closest preceeding container object in the hierarchy.

Tivoli Access Manager’s ACL inheritance can be mod-
eled in XACML by requiring that the PolicySets are ordered
with respect to their targets; i.e., PolicySets with longer re-
source names in the target come first. The Rule combin-
ing algorithm first-applicable assures that (only)
the PolicySet whose resource name constitutes the longest
matching prefix w.r.t. the requested resource will be eval-
uated. Figure 7 illustrates the structure of the generated
XACML policy. For each node in that AM PolicySet, the
node Resource PolicySet consists of ACL Policy, Traverse

PolicySet, POP PolicySet, and ARules PolicySet as defined
in Section 4. If any of these policies fails then access to the
corresponding resource should be denied.

Figure 7. Structure of an AM policy.

ACL assignment is implemented by the target defini-
tion of the overall policy. Below XACML target defi-
nition matches any object (resource) that is below object
/Mgmt/Manuals/.
<Target>
<Resources>
<Resource>
<ResourceMatch MatchId="anyURI-regexp-match">
<AttributeValue DataType="string">

ˆ/Mgmt/Manuals/.+$
</AttributeValue>
<ResourceAttributeDesignator DataType="anyURI"

AttributeId="resource-id" />
</ResourceMatch>

<Resource/>
<Resources/>

</Target>

To model Tivoli Access Manager’s inheritance of ACLs,
POPs, and ARules, we create a hierarchical representation
of the object space, pruning all the leaf nodes which do not
have an ACL, POP or ARule explicitly attached. Next, we
attach to each node of the tree a ’wildcard’ child node rep-
resenting all possible children in addition to its explict chil-
dren already defined. We then inherit ACLs throughout this
tree; i.e. each of the nodes without an ACL explicitly at-
tached inherits the ACL of its nearest ancestor that has an
ACL explicitly attached. We repeat this step also for POPs
and ARules. Finally, the nodes in this policy-enhanced tree
are then linearized in a depth-first manner such that all chil-
dren precede their parents, and that a wildcard node always
comes after all its siblings. Below we show this lineariza-
tion for the tree of Figure 1.

/Departments/Code/Tiger ACL2, POP2
ˆ/Departments/Code/Tiger/.+$ ACL2, POP2
/Departments/Code ACL2, POP1
ˆ/Departments/Code/.+$ ACL2, POP1
/Departments/Docs ACL1, POP1, ARule1
ˆ/Departments/Docs/.+$ ACL2, POP1, ARule1
/Departments ACL1, POP1

ˆ/Departments/.+$ ACL1, POP1
/Mgmt/Manuals ACL3
ˆ/Mgmt/Manuals/.+$ ACL3
/ ACL1
ˆ/.+$ ACL1

To determine the access rights on a specific resource,
it is now sufficient to locate the first node whose name
matches the resource name and to evaluate the correspond-
ing Resource PolicySet. An XACML representation for
the full object space can thus be constructed as a ’first-
applicable’ PolicySet of individual PolicySets each repre-
senting one of the resources and ordered as described above.
For example, the resource /Departments/CodeA, a
sibling of (the explicit) nodes /Departments/Code
and /Departments/Docs would be matched by target
ˆ/Departments/.+$.

Above mapping follows the Hierarchical Resource Pro-
file of XACML v2.0 [1], which treats nodes in a hierarchical
resource as individual resources and makes no assumption
about the accessibility of descendent nodes. The profile
takes also into consideration that a node’s position within
the hierarchy may be part of the node’s identity, denoted
by the separator character ‘/’, and that node identities do
not terminate with the ‘/’ character. To state policies for
a particular resource, it also recommends a regular match
function on URIs. However, using the resource as the only
element of policy (set) targets and their specific ordering for
a First-applicable evaluation is not given.

6 Implementation

We have implemented the AM to XACML policy trans-
lator as a Java R© program. It uses the AM Java Administra-
tion API to extract the AM policy elements from the Tivoli
Access Manager policy database. Exploiting the Eclipse
Meta Format EMF, we have created a Java XACML library,
generated from the XACML schema definition, to program-
matically represent the appropriate XACML terms.

The size of the generated XACML policy file reaches
double digit megabytes for even moderate AM policies.
With XACML v2.0, policy (set) references for ACL, POP,
and ARule policies can be used to avoid duplication. When
implemented, it drastically reduced the file size by 75 %.
In retrospective, policy references correspond to the AM
concept of templates – definitions for ACLs, POPs, and
ARules. Thus, an administrator has to define first a template
and then assign the template to resources. A change to the
template effects all nodes where the template is attached.

Compared to the time needed for retrieval of the policy
information (in the seconds range) from the Tivoli Access
Manager installation, the generation of the XACML policy
takes only a small fraction.

7 Conclusions

We described a mapping of the IBM Tivoli Access Man-
ager policy language (AM) into XACML. Our effort was
motivated by the idea to make XACML support available
for a powerful and widely used legacy access control sys-
tem. To encode the interplay of AM’s policy elements and
decision logic within XACML, we came up with the use of
wildcards to link the check for multiple access rights. To
this end, the generated XACML policy clearly reflects the
AM policy elements and the associated evaluation logic.

There are some AM functions for which we did not find
an equivalent representation in XACML. For example, it is
possible to ask for the possession of several permissions in
a single AM access request – the read and write permission
for example. CORBAsec has a similar feature called ‘Re-
quiredRights’ [5]. However, XACML allows only to spec-
ify a single action in a request context. Of course, there
is always the possibility to query for each element and to
combine the results but for the price of a big performance
penalty.

Besides AM, we implemented a translator from the
IBM WebSphere R© Portal authorization language PAC to
XACML [2]. This makes us confident that many other
legacy access control systems could also be supported in
XACML by following our approach.

Having a legacy policy available in XACML is already a
big advantage and offers many opportunities. The ultimate
goal, however, is to be able to transfer modifications in the
XACML policy back into the legacy system. This requires
a mapping in the opposite direction. The XACML norma-
tive specifications, however, include not only negative per-
missions and conditions but also powerful rule and policy
combinators. Thus, XACML policies can have a multitude
of different forms that make the translation of an arbitrary
XACML policy very hard if not impossible even if the target
policy language is as expressive.

Acknowledgments

We would like to thank Craig Forster and Michiharu
Kudo for their insights into the usage of XACML. Chris
Giblin implemented the XACML library.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other
countries, or both. If these and other IBM trademarked terms are marked
on their first occurrence in this information with a trademark symbol (R©
or TM), these symbols indicate U.S. registered or common law trade-
marks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web
at “Copyright and trademark information” at www.ibm.com/legal/
copytrade.shtml.

Java is a trademark of Sun Microsystems, Inc. in the United States,
other countries, or both. Other company, product, or service names may
be trademarks or service marks of others.

References

[1] A. Anderson (Ed.). Hierarchical Resource Profile of XACML v2.0.
OASIS Standard, Feb. 2005. docs.oasis-open.org/
access_control-hier-profile-2.0-spec-os.pdf,

[2] S. Burri. PAC to XACML – translating IBM WebSphere Portal
Server’s access control model to standard model XACML.
Semesterarbeit, ETH Zurich, 2007. www.infsec.ethz.ch/
people/burrisa/PACtoXACML.pdf.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M.C. Tschantz.
Verification and change impact-analysis of access-control policies.
In 27th International Conference on Software Engineering
ICSE ’05, pages 196–205. ACM Press, 2005.

[4] S. Godik and T. Moses (Eds.). eXtensible Access Control Markup
Language (XACML). Version 2.0, OASIS Standard, Feb. 2005.

[5] G. Karjoth. Authorization in CORBA security. Journal of Computer
Security, 8(2/3):89–108, 2000.

[6] G. Karjoth. Access control with IBM Tivoli Access Manager. ACM
Transactions on Information and System Security, 6(2):232–257,
2003.

[7] M. Kudo and S. Hada. XML document security based on
provisional authorization. In ACM Conference on Computer and
Communications Security, pages 87–96. ACM Press, 2000.

[8] A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: A fast and
scalable XACML policy evaluation engine. In Measurement and
Modeling of Computer Systems (SIGMETRICS 2008). ACM Press,
2008.

[9] J. Pato. DCE Access Control Lists (ACL’s). OSF DCE
Specifications, 1990.

[10] IBM Tivoli Access Manager – Administrator’s Guide, 2008. Version
6.1.
publib.boulder.ibm.com/infocenter/tivihelp/
v2r1/topic/com.ibm.itame.doc/am61_admin.pdf.

[11] The Open Group. Authorization (AZN) API. Open Group
Technical Standard C908, Jan. 2000.

[12] C. Wolter, A. Schaad, and C. Meinel. Deriving XACML policies
from business process models. In M. Weske, M.-S. Hacid, and
C. Godart, editors, Web Information Systems Engineering (WISE
2007), Lecture Notes in Computer Science #4832, pages 142–153.
Springer, 2007.

