
RZ 3718 (# 99728) 10/08/08
Computer Science 10 pages

Research Report

Towards Separation of Duties for Services

Christopher Giblin1 and Satoshi Hada2

1IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

2Tokyo Research Laboratory, IBM Japan, Ltd.
1623-14 Shimotsuruma
Yamato-shi, Kanagawa-ken
242-8502 Japan

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Towards Separation of Duties for Services

Christopher Giblin1 and Satoshi Hada2

1 IBM Zurich Research Laboratory, Switzerland
2 IBM Tokyo Research Laboratory, Japan

Abstract. Separation of Duties is an essential security control for man-
aging the integrity of information technology systems and human pro-
cesses. Due in part to recent emphasis on regulatory compliance and cor-
porate governance, Separation of Duties has taken on fresh importance.
However, support for specifying and enforcing Separation of Duties con-
straints remains a missing feature for many of today’s access control
systems, sometimes leading implementers to embed such constraints in
application logic. We present the Separation of Duties and Entitlements
Analyzer, a system for defining Separation of Duties constraints across
multiple systems through a simple constraint model and use of standard
XACML policies. The ability to define meta-policies across systems in
a common language is a viable approach for managing certain integrity
concerns in a services environment.

1 Introduction

Environments organized according to the principles of service-oriented architec-
ture (SOA) offer standardized interfaces to loosely-coupled computing capabili-
ties inherent to an organization’s mission. An important goal of service-oriented
architectures is the composition of these services into new or augmented func-
tions. While abstraction and composition have obvious benefits, organizations
must at the same time assure that security goals, such as auditable authorization,
can be managed with equal flexibility and clarity.

Separation of Duties is an important security control which relates to autho-
rization of business tasks. Interesting challenges arise in dealing with Separation
of Duties since often it is required to constrain specific combinations of roles and
task executions, a capability not necessarily satisfied by many of today’s plat-
form security mechanisms. As Separation of Duties has historically dealt with
human actions, the types of services most immediately relevant are human-based
services as implemented by the IBM R©Human Task Manager [8], as proposed
by the BPEL4People/WS-HumanTask specification [6], and potentially as im-
plemented in RESTful services.

The Separation of Duties and Entitlements Analyzer project has addressed
implementing Separation of Duties authorization controls across multiple sys-
tems. At the project’s core are the abstractions of constraint, based on simple
conflict pairs, and authorization policy, based on the standard for authorization
policy, XACML [5]. Since the constraints are a form of policy about authoriza-
tion policy, they are sometimes referred to as meta-policies. The project has not

examined web services but rather web applications. Nevertheless, building blocks
have been developed which can be extended towards supporting services.

The remainder of this paper discusses the SoD and Entitlements Analyzer
and its potential application to services. Section 2 provides background on the
concept of Separation of Duties. Section 3 describes the architecture and key
features of the analyzer. Section 4 demonstrates the use SoD on an example
application scenario. Section 5 discusses experiences and insights gained from
the project. Section 6 presents conclusions and future work.

2 Separation of Duties

Separation of Duties (SoD) is a traditional security control predating information
systems and is particularly well-known in financial accounting. Some of its more
common forms are known by popular monikers such as ”four-eye-principle” or
”two-man rule”. The essential aim of SoD is to recognize potential conflicts
of interest in activities which could result in errors or fraud. Where potential
conflicts of interest arise, activities are structured such that different individuals
perform specific steps of the overall activity. As a simple example, in a purchasing
process, the person who requests a purchase usually is not the same person who
approves purchases. Distributing responsibilities reduces the impact that a single
individual can have, requiring collusion to perpetuate a fraud.

We distinguish here between two kinds of SoD enforcement mechanisms:
static separation of duty and dynamic separation of duty. One speaks of static
separation of duty, abbreviated SSoD, if policies are enforced during design time.
This is usually done by constraining the assignment of access rights or role as-
signments. Enforcement which depends on information available only at runtime
is called dynamic separation of duty, for short DSoD. An example of DSoD is
a system ensuring that a user attempting to execute a task, such as within a
workflow instance, does not violate SoD constraints given the history of users
who have previously executed tasks in that workflow instance. Most authors
cite Saltzer and Schroeder [1] as the first authors who mentioned the concept of
SoD, at that time under the name separation of privileges. Alternative names
for SSoD and DSoD are strong exclusion and weak exclusion [1].

A control is a planned measure or countermeasure designed to mitigate a
risk or assure the integrity of activities in pursuit of an organization’s goals [9].
With specific regards to computing technology, security controls are measures
taken ”to protect the confidentiality, integrity, and availability of the system
and its information” [7]. Security controls are commonly divided into two broad
categories: detective and preventative. Preventative controls prohibit an action
from happening while detective controls identify an action during or after the
fact. A control can be constrained in its effectiveness due to system, financial or
environmental limitations, prompting the deployment of one or more additional
controls to compensate the initial control weakness. Such additional controls,
whether preventative or detective, are termed compensating controls.

Separation of Duties controls can be preventative or detective. A component
prohibiting administrators from assigning conflicting roles and permissions is an
example of a preventative SoD control. However, some access control systems
do not provide a generic means for enforcing SoD constraints. In such cases,
log file analysis to identify SoD violations post facto represents a detective con-
trol. Managing SoD in complex environments often requires the combination of
preventative and detective controls.

3 SoD and Entitlements Analyzer

The Separation of Duties and Entitlements Analyzer is part of an ongoing project
at IBM R©Research focusing on enterprise authorization services. The project has
produced a framework built around the core concepts of system, constraint and
analyzer. A web-based console is the user interface for authoring constraints and
interacting with analysis and reporting components. Infrastructure components
provide a repository for storing system information and another repository for
storing SoD constraints. The console and framework are implemented together
as a Java R©Enterprise Edition application. Figure 1 illustrates the main archi-
tectural components.

Fig. 1. Architectural Overview

An instance of this work is publicly available at the IBM alphaWorks site
[2]. This version supports the specification and evaluation of SoD constraints for
IBMs Tivoli R©Access Manager and Tivoli Identity Manager TM

products.

3.1 Constraints

SoD constraints have a type, a unique identifier, version information, an associ-
ated system, and a set of conflicts. Each conflict pair represents a mutual exclu-
sion over a pair of entities. Entities can have an optional system identifier which
permits defining conflicts spanning two systems. Otherwise, entities are assumed
to belong to the system initially defined in the constraint. SoD constraints can

Fig. 2. SoDConstraint Model

also be defined for a specific context such as a session, period of time, or process
instance. Figure 2 presents a UML class diagram of the constraint model.

An optional cardinality can be defined over the set of conflicts indicating
the number of conflicts which must hold for a violation. For example, given a
constraint with four conflict pairs and a cardinality of two, the constraint is
violated if two or more of the conflicts exist during evaluation.

The framework currently recognizes two constraint types: group constraints
and permission constraints. In the case of a group constraint, the conflicting
entities are groups or roles which are mutually exclusive, that is, they contain
no common members. For example, a constraint could state no user should have
both an accounting and a purchasing role. Permission constraints express mutual
exclusion of access permissions where a permission is defined as a resource/action
pair. A permission constraint could state that no user can have, for instance, both
the approve and pay permissions on purchase orders.

The console provides two alternative forms for authoring SoD constraints:
matrix and list. The matrix representation is suitable for defining conflicts pair-
wise while the list is convenient for defining a group of conflicting entities. While
the matrix form is more expressive, the list is more convenient for simple con-
straints. In both cases, constraints are stored as a set of conflict pairs.

3.2 Analyzers

Analyzers perform analytic functions relating to authorization. Those analyzers
evaluating constraints on systems or policy include static SoD role and permis-
sion analyzers, a runtime DSoD enforcer and a log analyzer. Two other analyzers
operate on policy without constraints: the entitlements analyzer and accessor an-
alyzer. The entitlements analyzer reports on the resources accessible to a given
user while the accessor analyzer reports on all users who can access a given
resource. Figure 3 illustrates the analyzers in relation to their respective arti-
facts and constraints. The diagram also shows how policy analysis is actually
performed on XACML translated from the authorization systems of specific sys-
tems.

All analysis on authorization policy is performed on XACML [5] representa-
tions with the corresponding user registry defining the users, group assignments

Fig. 3. Analyzers and respective artifacts

and role assignments. In order for a system to be supported by the analysis plat-
form, an XACML translation of the system’s access control policy is required. For
example, when the policy analyzer evaluates a permission constraint over Tivoli
Access Manager, the native policy is retrieved from the Tivoli Access Manager in-
stallation and translated into XACML. The constraint is then evaluated against
the equivalent XACML policy. The details of the Access Manager-XACML pol-
icy translation are presented in [3]. By performing policy analysis on the XACML
standard, integrating other policy sources for analysis, such as the database and
portal shown in Figure 3, is a matter of providing the corresponding XACML
translation.

3.3 XACML Policy Analysis

Our approach to evaluate conflicting pairs of permissions on a given XACML
policy occurs in two steps. Step 1: For each permission, we compute the set
of subjects who has the permission. Step 2: We check whether the two subject
sets contain common subjects. If this is the case, the common subjects are in
conflict and represent a SoD violation.

Our algorithm for Step 1 works as follows. An XACML policy is a set of rules.
Each rule has a rule effect (i.e., permit or deny) and a target which represents
a set of tuples (subject, resource, action) applicable to the rule. In other words,
given a rule and a permission (a pair of resource and action), we can compute
the set of subjects which do or do not have the permission. We use the following
general data structure to represent such a set of subjects: (Permit, Deny, Type),
where Permit and Deny are a set of subjects. The possible vales of Type are
“PermitAny”,“DenyAny”, “NonAny”. “PermitAny” means that all subjects ex-
cluding the subjects in Deny have the permission. Similarly, “DenyAny” means
that all subjects excluding the subjects in Permit does not have the permis-
sion. “NonAny” means that the subjects in Permit and Deny does and does
not have the permission, respectively. Using this data structure, we describe

the algorithm as follows: For simplicity, we assume that (1) no rule uses con-
ditions, (2) the policy has no target, and (3) the rule combining algorithm is
“first-applicable”.

1. Input: an XACML policy and a permission.
2. Initialize (Permit = ∅, Deny = ∅, T ype = “NonAny”)
3. For each rule, do the following:

(a) Compute the set S of subjects who does or does not have the permission.
(b) If S is AnySubject, then do the following and break the for loop:

i. If the rule effect is permit, then set Type = “PermitAny”.
ii. Otherwise, set Type = “DenyAny”.

(c) Otherwise, do the following:
i. If the rule effect is permit, then remove the subjects in Deny from

S and add the remaining subjects to Permit.
ii. Otherwise, remove the subjects in Permit from S and add the re-

maining subjects to Deny.
4. Output: (Permit, Deny, Type)

Extension of the algorithm to the other XACML policy combination algo-
rithms is straightforward.

4 Sample Application

A sample purchase-order processing application is described in this section to
demonstrate the SoD analyzers. The sample application is implemented accord-
ing to the Representational State Transfer (REST) architectural style [4]. The
use of REST in this example does not imply advocacy for a particular architec-
tural style, rather is one scenario illustrating the application of SoD constraints.

4.1 Resources

In this sample application, the HTTP POST method is used to create resources;
PUT updates existing resources; GET retrieves resources. As REST applica-
tions do not maintain stateful communications, there is no notion of application
session. Roles are not hierarchical.

The processing steps, required roles, methods and URIs in the purchasing
process are summarized in the table below:

Task Role HTTP Method URI
Request purchase Employee POST, GET /purchase/request
Approve Purchase Manager PUT /purchase/request
Create Purchase Order Purchasing POST /purchase/order
Receive shipment Inventory POST, GET /purchase/order/invoice
Approve payment Accounting POST, GET /purchase/order/payment
Enact payment Accounting PUT, GET /purchase/order/payment

4.2 Runtime environment

As shown in Figure 4, the runtime environment consists of a server running the
purchasing application; Tivoli Access Manager, an authorization server; Web-
SEAL, a reverse proxy which enforces policy defined in Access Manager; the
Separation of Duties and Entitlements Analyzer for defining and analyzing SoD
constraints. In XACML terminology, the authorization server is a Policy Deci-
sion Point (PDP). The reverse proxy downloads policy from the authorization
server and functions both as a PDP and a Policy Enforcement Point (PEP).

Log files are produced by Access Manager, the reverse proxy and the HTTP-
based purchasing application, all of which can be processed by the log analyzer.
Somewhat uncharacteristic of REST applications is the authentication session
maintained by the reverse proxy. However, this session is not an application ses-
sion and is not maintained or perceived by the purchasing application. Rather it
is a configurable security construct supported by Access Manager. An interesting
capability of the WebSEAL reverse proxy is the ability to extend runtime au-
thorization decisions over a programmatic interface, and so add SoD constraint
enforcement. In the absence of the reverse proxy, this extension could feasibly
be implemented in the front-end web server of the purchasing application.

Fig. 4. Runtime environment

4.3 Static SoD Policies

The purchase order, shipment reception and payment tasks are to be kept strictly
distinct. This is accomplished through both group and permission SoD con-
straints. A single group constraint defines the required roles as mutually ex-
clusive. Likewise, a permission constraint defines those permissions required to
execute these tasks as mutually exclusive. For these group and permission con-
straints, the list representation is the more intuitive representation and is shown
in Figure 5.

4.4 Dynamic SoD Policies

Members of the Accounting role have permission to approve and enact payments,
but should not approve and enact payments for the same purchase order. In the

Fig. 5. Defining mutually exclusive roles in a list

example system, the runtime SoD component will enforce this constraint at the
session level. That is, no user can approve and enact payment in the same session.
Thus this constraint is defined as a conflict between approve and pay permissions
with context set to session. As a compensating control, dynamic SoD log analysis
on the web server logs is performed.

5 Discussion

The SoD platform presented here could feasibly be used in a services envi-
ronment. Many aspects would remained unchanged, namely the accessing of
user registries and authorization policies for performing analytics against meta-
policies. Extensions would involve developing translations of service authoriza-
tion constraints to XACML. As service descriptions are not annotated with
authorization policy, this usually will require deploying an adapter on systems
where authorization over service executions is performed, thus ”behind the scenes”
of a service. BPEL4People, on the other hand, defines user/group assignments
and activity permissions which could map naturally into the same concepts in
our platform. The SoD platform could be used to verifying consistent SoD across
multiple processes.

Enforcing SoD constraints during runtime as an extension to authorization
poses both performance and resource challenges. Dynamic SoD constraints are
stateful, monitoring long running instances such as sessions, processes and ob-
jects. For decision points with high volume, the amount of active state can
become quite large. Therefore DSoD constraints require a persistent store for
managing memory and surviving system restarts. This could mean that database
lookups would become unavoidable during decision computation, thereby in-
creasing decision response time.

Where back-end services support user applications, SoD can be most effec-
tively enforced at the service if the identity of the requesting user is propagated

to the service. This is contrary to current practice where applications often use
a dedicated user in accessing back-end services and databases.

Meta-policies can play an important role in maintaining integrity over ser-
vices for governance objectives. As such, SoD policies do not seem suitable as
WS-Policy assertions. SoD occurs at a level higher, taking as input user registries,
roles, authorization policy, and in a services environment, WS-Policy assertions
and BPEL4People activities and expressions. While many SoD use cases can
be captured in conflict pairs, more sophisticated scenarios do exist which re-
quire a more powerful constraint language. As environments continue to become
larger and more complex, while simultaneously meeting growing requirements
for transparency and auditability, the need for advanced authorization policy
analytics becomes inevitable.

6 Conclusions and Future Work

We have presented a system of services for the analysis of authorization policies
across multiple platforms and applications, with a particular focus on Separation
of Duties constraints. Centrally authored constraints are processed by compo-
nents called analyzers which implement preventive and detective controls at
various points in the runtime lifecycle. All policy-based analysis is performed on
authorization policies represented in the XACML standard. A sample scenario
based on REST services was presented to demonstrate a number of Separation
of Duties controls.

Future work includes extending the systems supported for policy analysis by
defining further translations of native authorization policy to XACML. Particu-
larly business process models involving human tasks and separation of duties are
of interest such as the BPEL4People/WS-HumanTask [6] proposal. In addition,
work continues on algorithms for analyzing very large user and role databases.

Acknowledgments

The research leading to these results has received funding from the European
Community’s Seventh Framework Program (FP/2007-2013) under grant agree-
ment no. 216917.

The work described in this paper was conceived and developed together with
our team colleagues, Günter Karjoth, Andreas Schade and Yukihiko Sohda. We
extend our gratitude to Michiharu Kudo and Andreas Wespi for their valuable
contributions. Finally, we thank Samuel Burri and Samuel Mueller for their
stimulating discussions.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this information with a trademark
symbol (R©or TM), these symbols indicate U.S. registered or common law trademarks owned by IBM
at the time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at ”Copyright
and trademark information” at www.ibm.com/legal/ copytrade.shtml.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

References

1. J. Saltzer and M. Schroeder: The Protection of Information in Computer Systems.
Proceedings of the IEEE, 63():1278-1308, September 1975

2. C. Giblin, S. Hada, G. Karjoth, A. Schade, Y. Sodha and E. Van Herreweghen:
Separation of Duties and Entitlement Analyzer for Tivoli Access Manager.
IBM alphaWorks, 2008. http://www.alphaworks.ibm.com/tech/sod4tam

3. G. Karjoth, A. Schade and E. Van Herreweghen: Implementing ACL-based Policies
in XACML. To appear in 24th Annual Computer Security Applications Conference,
December 8-12, 2008, Anaheim, California.

4. R. Fielding: Architectural Styles and The Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, 2000.

5. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0, 2005.
OASIS Committee Specification (T. Moses, editor).
http://www.oasis-open.org/committees/ documents.php?wg abbrev=xacml.

6. OASIS: WS-BPEL for People (BPEL4People). Proposed technical OASIS commit-
tee, 2008. http://xml.coverpages.org/bpel4people.html

7. National Institute of Standards and Technology, U.S. Department of Commerce:
Recommended Security Controls for Federal Information Systems, NIST Special
Publication 800-53, December, 2007.

8. M. Kloppmann, S. Liesche, G. Pfau, and M. Stockton: Human-based Web services,
IBM Developerworks, October, 2005.
http://www.ibm.com/developerworks/library/ws-soa-progmodel8/index.html

9. The Institute of Internal Auditors: Glossary. Viewed 2008.
http://www.theiia.org/guidance/standards-and-practices/professional-practices-
framework/standards/standards-for-the-professional-practice-of-internal-
auditing/?search=glossary

