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Abstract

Cryptographic keys must be protected from exposure. In real-world applications, they are often
guarded by cryptographic tokens that employ sophisticated hardware-security measures. Several
logical attacks on the key management operations of cryptographic tokens have been reported in the
past, which allowed to expose keys merely by exploiting the token API in unexpected ways.

This paper proposes a novel, provably secure, cryptographic token interface that supports mul-
tiple users, implements symmetric cryptosystems and public-key schemes, and provides operations
for key generation, encryption, authentication, and key wrapping. The token interface allows only
the most important operations found in real-world token APIs; while flexible to be of practical use,
it is restricted enough so that it does not expose any key to a user without sufficient privileges. An
emulation of the security policy in the industry-standard PKCS #11 interface is demonstrated.

1 Introduction

Cryptographic tokens or hardware security modules (HSM) are an important part of many security
infrastructures that use cryptography. They protect cryptographic keys in hostile environments using
physical tamper-protection measures. Cryptographic tokens store keys and use them for cryptographic
operations, but the keys typically never leave the physical security perimeter established by the secure
hardware. These tokens are used because they can be controlled better than the hosts who invoke
operations on them. HSMs exist in many environments today, ranging from smartcards and the Trusted
Platform Module [23] found in many personal computers, to high-security HSMs used by the finance
industry such as IBM’s 4764 cryptoprocessor [18]. Two prominent token interfaces used in industry are
PKCS #11 [22] and IBM CCA [18].

A cryptographic token acts as an auxiliary device for an application running on a host computer; it
performs various cryptographic tasks, such as key generation, key derivation, encryption, decryption,
signing, signature verification and so on. Tokens also enforce a security policy on the stored keys and
other cryptographic objects. When an application invokes a command of the token, the operation may
access inputs supplied by the application as well as objects stored by the token. The application may
not always receive all results of the operation, as, for example, when a key is generated and stored only
in the token. The security policy of the token interface defines which operations are permitted to whom.
Tokens usually have at least two security levels, one for the payload application, which has restricted
privileges, and one for the administrator, who may access all keys in the token.

Designing a secure cryptographic token interface is a challenging problem that has not been solved
today [2]. One has to find a balance between flexibility on the one hand, for satisfying the demands of
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the application programmers, and a restrictive policy on the other hand, for guaranteeing a meaningful
notion of security. Many attacks on token interfaces have been reported in the literature over the recent
years [3, 10, 14, 1], which illustrate this problem. By exploiting an interface in unexpected ways, these
attacks typically allow an adversary to undermine the (intended) security policy of a token. They are
dangerous because an adversary only needs logical access to the token, and completely bypasses the
physical protection.

In this paper, we introduce a cryptographic token interface that supports multiple users and provides
operations for key generation, encryption, authentication, and key wrapping. Our token model defines
an access control list (ACL) for every key. We show how to implement our token securely from a set of
cryptographic primitives and prove that it respects the security policy expressed by the ACL.

Our abstract token interface has the following features. It is the first formal model of a token inter-
face with an explicit security policy, and it defines security in a strong and cryptographically sound way.
It supports common key-management operations and cryptographic functions, including encryption and
key wrapping, which may interact in unexpected ways and were a common source of problems in ear-
lier token interfaces. It models multiple users and goes beyond most previous token interfaces, which
distinguish only between two user roles (user and administrator).

We intend this model to give a basis for developing future cryptographic token interfaces or for
selecting a subset of features in existing interfaces, such that they have a clearly defined security policy
and offer provable cryptographic security. As a starting point, we identify a safe subset of PKCS #11 in
this paper.

Approach. In existing token interfaces, seemingly benign operations may sometimes have unexpected
consequences. One problematic function is key wrapping, whose goal is to encrypt a target key under
a wrapping key for export and transport to another token or re-import at a later time. But some inter-
faces allow an unprivileged user to request that a privileged key be wrapped and exported under a key
accessible to the user, so that the user may obtain the cleartext of the privileged key [14].

Key wrapping is also dangerous if the token does not bind the attributes of a target key in a secure
way to the wrapping. An attack may exploit this vulnerability by re-importing the key with different
attributes, which subsequently allow an unprivileged user to execute privileged operations.

Token interfaces typically support operations for deriving a new (symmetric) key from a parent
key. Keys in tokens often form a hierarchy constructed like this, where knowledge of one key implies
knowledge of all keys below in the hierarchy.

In our interface, we model such dependencies explicitly. We say that a key l depends on another
key k when revealing k discloses also the value of l to an adversary; a dependency may exist because l
was wrapped under k or l was derived from k, for example. By storing a history of all operations in the
token, we are able to keep track of all dependencies and avoid unexpected consequences of an operation.

Our token interface models separate privileges for most cryptographic operations offered by the
token. We enforce a separation on the usage of keys and distinguish between key derivation, encryption,
authentication, and key wrapping tasks; every key may only be used for one of the four tasks.

We also require that no key used to import keys through the unwrapping operation has ever been
disclosed to a user. This is necessary to maintain the security policy of the token because an adversary
might modify the attributes of a key otherwise. It also prevents so-called key-conjuring attacks, whereby
an attacker creates a spurious key in the token without invoking an operation to create the key [10, 14, 2].
Such keys are dangerous because they may not satisfy the security policy of the token.

When defined formally, key wrapping differs from ordinary encryption because its purpose is to
encrypt keys that may also be used in further encryptions. The standard security notion of encryption
does not foresee that. Hence, we require that our (symmetric) key wrapping scheme is secure for key-
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dependent messages, a concept that has only recently been introduced [13, 9].
The security policy of our token interface is complex because it takes into account the interaction

of the users with the token and because users may modify the privileges associated to a key. But the
security policy satisfies some easily stated invariants: For example, when a user never had the privilege
to read a certain key, then that user cannot break any encryption with the key or forge a signature under
the key; or, when a key has been flagged as “not extractable,” no user may obtain the cryptographic
value of the key afterwards.

Organization of the Paper. Section 2 describes the problem and previous work. We base our token
implementation on a set of cryptographic primitives presented in Section 3. Section 4 introduces our
token interface and Section 5 defines its security and analyzes it. Section 6 describes how our multi-
user token model can be mapped to the industry-standard PKCS #11 interface. The papers concludes in
Section 7.

2 Background and Related Work

IBM’s Common Cryptographic Architecture (CCA) [19, 18] is a token interface primarily used by banks
for securing ATM networks and financial transactions; it is provided by the IBM 4764 cryptoprocessor
and its predecessors. CCA defines a control vector for every key that models key usage and other
attributes, and introduced a method for binding the control vector securely to a wrapped key.

The PKCS #11 standard by RSA [22] defines a generic cryptographic token interface that is imple-
mented by many products in software and in hardware. It is widely used today and available on a variety
of platforms. HSMs providing a PKCS #11 interface are often used in heterogeneous environments for
building public-key infrastructures (PKIs), securing network links using TLS, running VPNs and so on.

Attacks on cryptographic token interface have been pioneered by Anderson, Bond, Clulow and
others [3, 10, 14, 1], and mostly address tokens used by the finance industry. These attacks have triggered
other researchers to study token interfaces with formal methods. A number of efforts have since analyzed
parts of CCA and PKCS #11 using model checkers, theorem provers, and other tools [24, 15, 16]. These
works either discover new attacks in existing interfaces automatically or demonstrate the absence of
attacks for certain (usually small) configurations.

The recent paper of Delaune et al. [16] comes closest to our approach. They formalize a subset
of PKCS #11’s key management commands and also focus on the subtle interactions of key wrapping
functions with key import, encryption, decryption, and attribute manipulation. With the help of a model
checker, they discover a number of new unsafe aspects in PKCS #11, i.e., initial configurations and
sequences of commands that lead to unexpected consequences.

Every tool-supported analysis starts from an abstract model of the token interface, usually derived
from its specification. These abstract models are similar to our token model. However, there are two
differences between those abstractions and our work:

1. Our goal is constructive as opposed to analytic. These formalizations take an existing token
interface and isolate a part of it with all its idiosyncrasies. In contrast, our design is not bound to
the details of existing designs.

2. Our model uses the notions of modern cryptography to express the security requirements, whereas
the formal-model approaches rely on a Dolev-Yao abstraction [17] of cryptography.

On a higher level, though, the goals of all these works is the same: To lay a foundation for the design of
future token interfaces with provable security guarantees.
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Encryption schemes that remain secure when keys or key-dependent messages are encrypted have
recently been formalized and new constructions were proposed by several of authors [9, 5]. Because
the attributes attached to a wrapped key must be protected from modification, our wrapping scheme
also implements authenticated encryption with associated data [8]. Key wrapping with deterministic
algorithms was formalized by Rogaway and Shrimpton [21], but we take the liberty to require a stronger
notion of wrapping with randomization.

3 Cryptographic Primitives

This section describes the cryptographic primitives that are used by the token and by users.
Let κ be the security parameter. Let Uκ denote the uniform distribution on bit-strings of length κ.

The keys used for encryption, authentication, and so on in symmetric cryptosystems are called secret
keys and are κ-bit strings drawn according to Uκ. All public keys and private keys used for public-key
or asymmetric cryptosystems are also represented as κ-bit strings for simplicity; public key/private key
pairs are generated by a randomized algorithm PKG and the same key pair may be used for encryption
and for signatures. All algorithms are public.

Let F : {0, 1}κ × {0, 1}d → {0, 1}κ be a pseudo-random function family. Functions in the family
are distinguished by a seed, which acts as a secret key. We write Fs(t) for evaluating F with seed s on
input t ∈ {0, 1}d.

Let SENC denote a symmetric encryption scheme with the following two algorithms: an encryption
algorithm SE(k, m) that takes as input a secret key k and a message m and outputs a ciphertext c,
and a decryption algorithm SD(k, c) that takes as input a secret key k and ciphertext c and outputs the
decryption of c using k. If the decryption fails, then SD(k, c) outputs ⊥. The correctness condition of
the symmetric encryption scheme requires that SD(k, SE(k, m)) = m for all m and k.

Let PENC denote a public-key encryption scheme, consisting of an encryption algorithm PE(l, m)
that takes as input a public key l and a message m and outputs a ciphertext c, and a decryption algo-
rithm PD(k, c) that takes as input a private key k and ciphertext c and outputs the decryption of c using
k. Again, if the decryption fails, then PD(k, c) outputs ⊥. The correctness condition of the public-
key encryption scheme requires that PD(l, PE(k, m)) = m for all m and for all pairs (l, k) that are
generated by PKG.

Define SAUTH to be a symmetric message authentication scheme consisting of the following two
algorithms: a signing algorithm SS(k, m) that takes as input a key k and a message m and outputs
a signature σ, and a verification algorithm SV(k, m, σ) that takes as input a key k, a message m
and a purported signature σ, and outputs either accept or ⊥. The correctness condition requires that
SV(k, m, SS(k, m)) = accept for all m and k.

Define PAUTH to be a public-key authentication scheme (also called a digital signature scheme),
consisting of a signing algorithm PS(k, m) that takes as input a private key k and a message m and
outputs a signature σ, and a verification algorithm PV(l,m, σ) that takes as input a public key l, a
message m and a purported signature σ, and outputs either accept or ⊥. The correctness condition
requires that PV(l,m, PS(k, m)) = accept for all m and for all pairs (l, k) generated by PKG.

A key-wrapping scheme is essentially a labeled authenticated encryption scheme that allows for the
encryption of secret keys and private keys. A label is simply a bit-string included with the ciphertext in
an unmodifiable way. Let WRAP denote a symmetric key-wrapping scheme with the following two al-
gorithms: a wrapping algorithm W(k, l, `) that takes as input a secret key k, a key l that is either a secret
key or a private key, and a label `, and outputs a wrapping w, and an unwrapping algorithm U(k, w, `)
that takes as input a secret key k, a wrapping w, and a label ` and outputs the unwrapping of w with
label ` using k. If the unwrapping fails, then U(k, w, `) outputs ⊥. The correctness condition requires

4



that U(k, W(k, l, `), `) = l for all k, l, and `.
Let d be a dummy message; for simplicity, we assume that messages are bit strings of length κ,

just like all keys. We say that an algorithm is efficient if it runs in probabilistic polynomial time in the
security parameter κ. A function ε(κ) : N → R is negligible if for all c > 0 there exists κc > 0 such
that for all κ > κc, it holds ε(κ) < 1

κc .
Our set of cryptographic primitives P consists of F, SENC, PENC, SAUTH, PAUTH, and WRAP.

Definition of Security. We define the joint security of a set of primitives through the following three-
phase experiment between a challenger CP and an adversary AP; both are efficient algorithms.

Let K denote the set of key identifiers used by the primitives. Some k ∈ K represents only an
identifier or a handle of a key, its cryptographic value is denoted by k and not part of k. We often
refer to k as a “key” even when its value k is not available. The challenger CP keeps track of two
set S, A ⊆ K, which denote the secret keys and the asymmetric keys (public and private keys) that have
been generated in the experiment, respectively. The sets S and A are empty initially.

Initialization phase: CP picks a bit b at random.

Query phase: The adversary interacts with the challenger through a number of queries.

Throughout the query phase, CP imposes the following restriction: AP must use a particular
symmetric key only in queries relating to one of the four schemes; for example, a key used once
in a symmetric encryption or decryption query must not be used for key derivation, signing,
verifying, wrapping, or unwrapping queries. Analogously, AP must use the public and the private
keys of a particular key pair only with either encryption and decryption queries or with signing
and verification queries.

For any k ∈ K, the adversary AP may invoke the following query:

1. A key creation query for k: If k 6∈ S∪A, then CP adds k to S, sets its cryptographic value k
to a random string drawn from Uκ, and responds with done. Otherwise, CP responds with ⊥.

For any l,k ∈ K, the adversary AP may invoke the following query:

2. A key-pair creation query for (l,k): If l,k 6∈ S ∪ A, then CP adds l and k to A, runs
PKG and sets the cryptographic values (l, k) to the output of PKG. Otherwise, CP responds
with ⊥.
For key pairs created like this, we say that k corresponds to l and vice versa.

Adversary AP may invoke the following queries:

3. A key derivation query from a base key k ∈ S to a derived key l ∈ K: If l ∈ S ∪ A, then
CP responds with ⊥. If b = 0, then CP sets the cryptographic value l to Fk(l); otherwise, CP
sets l to a random string drawn from Uκ. Then CP adds l to S and responds with done.

4. An encryption query E(k,m) for k ∈ S or a public key k ∈ A: If b = 0, then CP responds
with SE(k, m) if k ∈ S and with PE(k, m) if k ∈ A. Otherwise, if b = 1, then CP responds
with SE(k, d) if k ∈ S and with PE(k, d) if k ∈ A.

5. A decryption query D(k, c) for k ∈ S or a private key k ∈ A: If c was never returned by
CP as the response to some encryption query with first argument equal to k ∈ S (or l ∈ A
that corresponds to k ∈ A), then CP responds with SD(k, c) if k ∈ S and with PD(k, c) if
k ∈ A. Otherwise, CP responds with ⊥.
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6. A signing query S(k,m) for k ∈ S or a private key k ∈ A: CP responds with SS(k, m) if
k ∈ S and with PS(k, m) if k ∈ A.

7. A verification query V(k,m, σ) for k ∈ S or a public key k ∈ A: CP responds with
SV(k, m, σ) if k ∈ S and with PV(k, m, σ) if k ∈ A.

8. A wrapping query W(k, l, `) for k ∈ S and for a symmetric key l ∈ S or a private key l ∈ A:
If b = 0, then CP computes a value w as W(k, l, `). Otherwise, if b = 1, then CP computes
w as W(k, d, `). Finally, CP responds with (w, `).

9. An unwrapping query U(k, w, `) for k ∈ S: If b = 0 and (w, `) was never returned by CP
as the response to a wrapping query with first argument equal to k, then CP responds with
U(k, w, `). Otherwise, CP responds with ⊥.

Final phase: AP does one of the following:

1. AP outputs a bit b∗. Let the advantage α of AP be defined as
∣∣Pr[b∗ = b]− 1

2

∣∣.
2. AP outputs a triple (k,m∗, σ∗) for k ∈ S or for a public key k ∈ A, such that σ∗ was

never returned by CP as the response to a signing query with m∗ and with k ∈ S or with
the private key l ∈ A that corresponds to k ∈ A. Let the advantage α of AP be defined
as the probability that algorithm SV(k, σ∗,m∗) outputs accept if k ∈ S or that algorithm
PV(k, σ∗,m∗) outputs accept if k ∈ A.

Definition 1 (Secure cryptographic primitives). We say that P = {F, SENC, PENC, SAUTH,
PAUTH, WRAP} is a secure set of cryptographic primitives if for all efficient adversaries AP the
advantage α is negligible.

Note that each one of our primitives individually implements the standard security notion for its
task: F implements an adaptively secure pseudo-random function family; SENC and PENC imple-
ment indistinguishability of encryptions under adaptive chosen-ciphertext attacks for symmetric [20]
and public-key cryptosystems [7], respectively; SAUTH is a strong existentially unforgeable message-
authentication code (MAC) and PAUTH is a strong existentially unforgeable signature scheme, un-
der adaptive chosen-message attack; WRAP implements an authenticated symmetric-key encryption
scheme with key-dependent messages, secure against adaptive-chosen ciphertext attacks [8, 9]. In par-
ticular, WRAP provides not only secrecy but also ciphertext integrity [8] because the unwrapping query
always rejects if b = 1. This formalization is an “all-in-one” definition of authenticated encryption, as
noted by Rogaway and Shrimpton [21].

Our security notion ensures that encryption and wrapping schemes do not interfere; this has been
a common source of token API problems in the past. Our primitives can be implemented easily in the
random oracle model; a suitable cryptosystem that allows key-dependent messages has been described
by Backes et al. [5].

4 Token Model

4.1 Structure

We first describe the structure of a cryptographic token. The token stores several keys together with
different attributes and performs cryptographic operations with the keys. We do not consider other
objects stored by a token, such as data objects, since our focus is keys and their management. The token
uses a set P of secure cryptographic primitives according to Section 3.
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There are multiple users in the system who may access the token. We denote the set of users by U;
there is a special element any ∈ U that denotes any user in the system. Before a user may interact
with the token, the user must log in to the token and may authenticate itself. The user remains logged
in until another login operation occurs. When the user does not authenticate itself during login, we
assume that user any is logged in. For simplicity, we assume that a trusted entity configures U during
the initialization of the token and that U does not change afterwards.

The token internally stores a history of all its interactions with the environment in a log L. The log
contains a tuple for every operation that successfully completed; the tuple denotes the user who executed
the operation, the operation itself, the input value, and the return value of the operation.

More precisely, let O denote the set of operations that can be performed by the token. When the
token receives a request to perform an operation o ∈ O on input x from a user u ∈ U that is logged in, the
token first checks if the operation is permitted. If so, the token executes the operation, possibly updates
its state, and computes a return value y. Then it gives y to the user. An operation may either succeed
or fail; for all operations that succeed, the token updates its history by appending (u, o, x, y) to L. We
often state a condition on the existence of some entry in the log for an operation o and input x with
short-hand notation like (·, o, x, ·) ∈ L; it means that there exist u ∈ U and y such that (u, o, x, y) ∈ L.

In Section 4.2, we shall describe the key objects in detail and specify their attributes that also include
access control information. In Section 4.3, we shall describe the functionalities that can be performed
on these keys using the token.

4.2 Key Objects and Attributes

We denote the set of key identifiers by K and use the same convention as introduced before, where k ∈ K
merely denotes a handle for a key and k ∈ {0, 1}κ denotes its cryptographic value. Let G ⊆ K denote
the set of keys that have been generated through create or derive operations (as defined in Section 4.3);
initially G is empty.

The set K denotes the secret keys used by symmetric cryptographic primitives as well as the public
keys and private keys used by public-key cryptosystems and digital signature schemes.

We introduce a relation between keys that is defined in terms of two operations wrap and derive,
which are described more precisely in Section 4.3. The operation wrap(k, l) encrypts a target key l with
a wrapping key k and outputs the resulting ciphertext. The operation derive(k, l) derives a new secret
key l in a reproducible way from a parent key k.

These operations create dependencies among the keys because the secrecy of the wrapped target key
depends on the secrecy of the wrapping key and the secrecy of a derived key depends similarly on the
parent key.

Definition 2 (Depends on). We say that a key l depends on a key k whenever one of the following
conditions hold:

1. l = k; or

2. the token successfully executed an operation wrap(k, l); or

3. the token successfully executed an operation derive(k, l); or

4. there exists a key j such that l depends on j and j depends on k.

The token also provides an operation read(k) that outputs the cryptographic value of k to the user
(see Section 4.3). In our token model, we keep track of those users who may know the cryptographic
value of k because they have executed read for some key on which k depends (note this includes in
particular executing read for k itself).
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Definition 3 (Reader). We say that a user u is a reader of a key k whenever there exists a key l ∈ G
such that k depends on l and the token successfully executed an operation read(l) with u logged in.

Keys have one (or more) owners and several other attributes associated with them. These attributes
are of three types: simple attributes that denote basic information, an access control list that specifies the
privileges for every user on the key, and derived attributes that are computed from the simple attributes,
the access control list, and the log. The simple attributes and the access control list of a key can be
modified.

Let 〈k〉 denote a representation of k and all its attributes; note that k does not include the crypto-
graphic value k.

To simplify the notation, assume that a public key/private key pair (k, l) may be used for all asym-
metric cryptographic schemes, in particular for public-key encryption and for digital signature schemes.

We now describe the simple attributes, the access control list, and the derived attributes of a key k.
We refer to some attribute a of k with k.a.

Simple Attributes. The simple attributes of a key can be manipulated directly by users who have
sufficient privileges. They are:

k.type ∈ {public, private, secret}: This attribute describes the type of k and can be public, private or
secret. This attribute can only be read by users but not modified.

k.unextractable ∈ {false, true}: This is a boolean flag that is set to true if k must not be revealed to any
user even if encrypted with a key. This value can only be set by an owner of k; it may only be set
to true once and not modified further once it is true.

k.pub ∈ G: When k is of type private, this attribute denotes the corresponding public key. If k is of
another type, the attribute is not defined. The attribute is set when the key is created and cannot
be modified.

k.priv ∈ G: When k is of type public, this attribute denotes the corresponding private key. If k is of
another type, the attribute is not defined. The attribute is set when the key is created and cannot
be modified.

Note that for a public key/private key pair (k, l) stored by the token, it holds k.priv.pub = k and
l.pub.priv = l at all times.

Practical token interfaces for key management use many other attributes, such as the algorithm and
scheme for which a key is intended, the state of the key in its lifecycle and related time information, and
data about validity of the key and related certificates [6]. We do not consider these attributes here for
simplicity.

Access Control List. The access control list attribute k.acl represents the access privileges on k for
all users. The universe P of all privileges with respect to keys is described below. The access control
list is a set containing tuples of the form (u, p), where u ∈ U and p ∈ P. Privileges in P are:

admin: Denotes if a user may modify the attributes of the key.

read: Denotes if a user may read the cryptographic value of the key.

derive: Denotes if a user may derive another key from the key.

encrypt: Denotes if a user may encrypt with the key.
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decrypt: Denotes if a user may decrypt with the key.

sign: Denotes if a user may sign or authenticate with the key.

verify: Denotes if a user may verify a signature or an authentication value with the key.

wrap: Denotes if a user may wrap another key with this key and export it.

unwrap: Denotes if a user may unwrap a ciphertext with this key and thereby import a wrapped key
into the state of the token.

Derived Attributes. The following attributes are derived from the other attributes:

k.owner ⊆ U: This attribute is derived from the access control list and denotes the set of users who
may modify the attributes of k. These users are called the owners of k. Formally,

k.owner =
{
u ∈ U

∣∣ (u, admin) ∈ k.acl
}
.

k.dependent ⊆ G: This attribute denotes the set of keys whose secrecy depends on the secrecy of k.
When k is a secret key or a private key, the set k.dependent consists of all keys that depend on k
according to Definition 2. When k is a public key, no other key depends on it and k.dependent =
∅. Note that the token can easily compute k.dependent from L.

k.readers ⊆ U: This attribute denotes the set of all users u ∈ U who are readers of k according to
Definition 3. Note that the token can easily compute this from k.dependent and from L.

4.3 Operations

In this section, we describe the operations that a user can execute with the token. The operations are
grouped into key-management operations that create and delete keys or manipulate their attributes, and
into cryptographic operations that use keys for protecting data or other keys. The operations for con-
fidentiality protection (encryption and decryption) are applicable to both secret-key cryptosystems and
public-key cryptosystems. Analogously, the operations for protecting authenticity and integrity (signa-
tures and verification) are applicable to both secret-key authentication schemes (i.e., MACs) and public-
key authentication schemes (i.e., digital signatures).

All operations are described with respect to a user u who is logged in to the token. In most cases, the
token checks some preconditions before executing an operation. If all conditions are satisfied, the token
executes the operation and returns some value; otherwise, the operation fails. An operation also fails if
some specified key does not exist. For every operation o with input x and return value y that succeeds,
the token adds the tuple (u, o, x, y) to the log L. We assume that the user or another entity that invokes
an operation of the token learns whether the operation succeeded or failed.

We define a function usage on a key k from G and on L; it denotes the set of all cryptographic
operations from O for which the key has been used according to the log. Formally,

usage(k, L) =
{
o ∈ O

∣∣ ∃ v, x, y : (v, o,k, y) ∈ L or (v, o, (k, · · · ), y) ∈ L
}

\
{

create, read, delete, getattr, setattr
}
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Key-management operations. We first present the operations that manipulate keys and their at-
tributes.

create(k, type, [l]): This operation creates a new secret key or a new public key/private key pair. It
takes as inputs an identifier k ∈ K \ G, a key type from {public, private, secret}, and optionally
a second key identifier l ∈ K \G.

If type = public, the operation fails.

If type = secret, the token generates the cryptographic value k as a random string drawn from Uκ,
creates a new key object, and stores the object in the token memory. It sets k.type to secret, k.acl
to {(u, admin)}, and k.unextractable to false. It adds k to G and returns k.

If type = private, the token runs PKG and obtains a public key l and a corresponding private
key k; then it creates two new key objects accordingly and stores them in the token memory. It
sets l.type to public, l.priv to k, l.acl to {(u, admin)}, and l.unextractable to false. Furthermore,
it sets k.type to private, k.pub to l, k.acl to {(u, admin)}, and k.unextractable to false. It adds k
and l to G and returns (k, l).

read(k): This operation returns the cryptographic value of a key to the user. It takes a key k ∈ G as
input.

The operation verifies the following condition:

1. k.type = public; or

2. for all l ∈ k.dependent, it holds (u, read) ∈ l.acl.

If the condition is true, the operation returns the cryptographic value k. Otherwise, the operation
fails.

delete(k): This operation deletes k, its cryptographic value, and all its attributes. It takes a key k ∈ G
as input. If (u, admin) ∈ k.acl, then the token removes the key object identified by k from its
memory and destroys k. Otherwise, the operation fails.

getattr(k): This operation takes a key k ∈ G as input and returns a list of all its attributes.

setattr(k, A): This operation takes a key k ∈ G and a list of attributes A as input, and replaces the
attributes of k with those in A. Recall that the attributes of a key also include the access control
list.

Let unextractable′ and acl′ denote the new values of the unextractable and acl attributes in A,
respectively. The token verifies the following condition:

1. (u, admin) ∈ k.acl; and

2. ¬k.unextractable or unextractable′; and

3. if unextractable′, then there is no v ∈ U such that (v, admin) ∈ acl′ or (v, read) ∈ acl′; and

4. if k.type = public and (v, admin) ∈ acl′ for some v, then for the corresponding private
key l = k.priv, it holds (v, admin) ∈ l.acl; and

5. for all v such that (v, read) ∈ acl′ and for all l ∈ k.dependent, it holds (v, read) ∈ l.acl;
and

6. if (any, p) ∈ k.acl′ for some p ∈ P, then (u, p) ∈ k.acl′ for all u ∈ U.
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If the condition is true, then the token replaces all modifiable attributes of k with those in A and
returns attributes updated. Otherwise, the operation fails.

The second clause makes sure that if k.unextractable is already true, it cannot be set to false. The
fifth clause ensures that a privilege to read k does not compromise the secrecy of any key l that
depends on k, by requiring that l already has the corresponding read privilege.

Cryptographic operations. We now present the operations that use keys in cryptographic operations
such as encryption and integrity protection.

derive(k, l): This operation derives a new secret key l ∈ K \ G from a secret key k ∈ G. The token
verifies the following:

1. k.type = secret; and

2. (u, derive) ∈ k.acl; and

3. usage(k, L) ⊆ {derive}.

If the condition is true, the token computes the cryptographic value l = Fk(l) using the pseudo-
random function. The token creates a new key object, and stores it in the token memory. It
sets l.type to secret, l.acl to k.acl, and l.unextractable to k.unextractable and returns l. If the
condition is false, the operation fails.

Note that the attributes of a derived key l are the same as those of k.

encrypt(k,m): This operation encrypts m under k; it takes a key k ∈ G and a plaintext bit string m as
input. The token verifies the following:

1. k.type = secret or k.type = public; and

2. (u, encrypt) ∈ k.acl; and

3. usage(k, L) ⊆ {encrypt, decrypt}.

If the condition is true, then the token computes c = SE(k, m) if k.type = secret, or c =
PE(k, m) if k.type = public, and returns c; otherwise, the operation fails.

The third clause of the condition ensures that k has not been used for any cryptographic operations
by the token other than encrypt and decrypt.

decrypt(k, c): This operation decrypts c with k. It takes a key k ∈ G and a ciphertext bitstring c as
input. The token verifies the following:

1. k.type = secret or k.type = private; and

2. (u, decrypt) ∈ k.acl; and

3. usage(k, L) ⊆ {encrypt, decrypt}.

If the condition is true, then the token computes d = SD(k, c) if k.type = secret, or d = PD(k, c)
if k.type = private, and returns d; otherwise, the operation fails.

sign(k,m): This operation authenticates m with k and returns a digital signature or an authentication
tag. It takes a key k ∈ G and a message bitstring m as input. The token verifies the following:

1. k.type = secret or k.type = private; and
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2. (u, sign) ∈ k.acl; and

3. usage(k, L) ⊆ {sign, verify}.

When the condition is true, the token computes t = SS(k, m) if k.type = secret, or t = PS(k, m)
if k.type = private, and returns t; otherwise, the operation fails.

verify(k,m, σ): This operation verifies σ on m under k. It takes a key k ∈ G, a message bitstring m,
and a purported signature or authentication tag σ as input. The token verifies the following:

1. k.type = secret or k.type = public; and

2. (u, verify) ∈ k.acl; and

3. usage(k, L) ⊆ {sign, verify}.

If the condition is true, then the token computes v = SV(k, m, σ) if k.type = secret, or v =
PV(k, m, σ) if k.type = public, and returns v; otherwise, the operation fails.

wrap(k, l): This operation takes a wrapping key k ∈ G and a target key l ∈ G as input; it wraps l
together with its cryptographic value under k and outputs the resulting ciphertext, which is called
a wrapping. The token verifies the following:

1. k.type = secret; and

2. (u, wrap) ∈ k.acl; and

3. for all v ∈ k.readers and for all j ∈ l.dependent, it holds (v, read) ∈ j.acl; and

4. k /∈ l.dependent; and

5. ¬l.unextractable; and

6. l.type = private or l.type = secret; and

7. usage(k, L) ⊆ {wrap, unwrap}.

If the condition is true, the token computes the wrapping (w, `) = W(k, l, 〈l〉) using the wrapping
algorithm and returns (w, `). Otherwise, the operation fails.

unwrap(k, w, `): This operation takes a wrapping key k ∈ G and a wrapping (w, `) as input; it unwraps
the key with k and label ` to obtain a key and stores it in the token memory. The token verifies
the following:

1. k.type = secret; and

2. (u, unwrap) ∈ k.acl; and

3. k.readers = ∅; and

4. usage(k, L) ⊆ {wrap, unwrap}.

If the condition is true, the token parses ` as the representation 〈l′〉 of the attributes for some
key l′; otherwise, the operation fails.

The token then checks if there is already a key with identifier l′ in the token memory. If yes,
the token verifies that the attributes of the two keys are equal. If they match, the operation is
complete; otherwise, the operation fails.

If no key l′ is present in the token memory, then the token computes l′ = U(k, w, `). If l′ =
⊥, indicating that U failed, then the operation fails. Otherwise, the token creates a new key
object l′ with cryptographic value l′, extracts the ACL attribute value acl′ from 〈l′〉, and verifies
the following condition:
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1. if l′.type = public and (v, admin) ∈ acl′ for some v, then for the corresponding private
key l = l′.priv, it holds (v, admin) ∈ l.acl; and

2. for all v such that (v, read) ∈ acl′ and for all l ∈ l′.dependent, it holds (v, read) ∈ l.acl.

If the condition is true, the token stores the key object in its memory, sets the attribute values
l′.unextractable = false and l′.acl = acl′, and returns l′.

Note that a key imported through unwrapping is never unextractable.

Remarks. The cryptographic operations provided by the token are implemented by primitives P. As
every primitive satisfies the usual correctness condition from the literature according to Section 3, the
token inherits these from the primitives. Hence, when an operation encrypt(k,m) returns c, for example,
a user with the corresponding privilege may call decrypt(k, c) and will obtain m.

It is easy to verify that the depends on relation on G forms a directed acyclic graph (DAG). With
the derive operation alone, it is not possible to create circular dependencies among keys. Furthermore,
suppose a key j depends on a key l. Then it is not possible to make l dependent on j by wrapping j
with l because the fourth clause in the pre-condition of the wrap operation rules this out.

The fifth clause in the pre-condition for the setattr operation requires that when the read privilege is
assigned to some user for a key, all dependent keys must already have that privilege. Further invocations
of setattr may be needed to achieve this, but because the depends on relation forms a DAG, these
operations can be carried out beforehand.

Keys may be exported from the token through the wrap operation and imported again through un-
wrap. If an imported key still exists, unwrapping succeeds only if the attributes of the key have not
changed. Otherwise, that is, when the key has been deleted meanwhile, unwrapping resets acl to the
value from the time when the key was wrapped. Since ACL changes underly some conditions (as
checked in the setattr operation), the token has to verify two of these conditions on acl′ during unwrap.

When a key k is deleted from the token, the entries in the log are unaffected. This means that k and
all entries in the log relating to it matter for computing the dependent and readers attributes of all keys.
Removing these entries from the log could undermine the token security policy. Moreover, a deleted
key might come into existence again through an unwrap operation.

4.4 Design Rationale

Our token model represents a compromise between the flexibility of the cryptographic interfaces used
in practice and the goal of providing provable security guarantees. We explain some of our choices here.

We assume that every k ∈ G has a unique cryptographic value except with negligible probability;
in order to enforce this, the token provides no operations for importing, duplicating or renaming keys.
All keys are created randomly by the token or derived from another key by a pseudo-random function.
This assumption considerably simplifies the safety checks performed by the operations.

For most operations, there exists a corresponding privilege in P; only the admin privilege applies to
multiple operations. A user may only execute an operation if the access control list allows it.

Our conditions involving the usage of a key ensure that every key is used for a single cryptographic
purpose: key creation (derive), data confidentiality (encrypt and decrypt), data authenticity (sign and
verify), and key transport (wrap and unwrap). A key is not a priori typed for a particular purpose, as
is the case in other key management systems. But once a key has been used for some goal, it must not
be used for another one. This reflects the established good practice [6] and also simplifies the security
analysis in our model.

The wrap and unwrap operations serve two purposes in practice: to transport keys between multiple
tokens that share the wrapping key and to store keys in a trusted manner on external storage because the
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token memory is bounded. In our model that contains only one token, we use the latter motivation for
key wrapping exclusively; but this covers all interesting facets of the problem.

We do not consider wrapping with public keys here; but this could be added easily as mentioned in
Section 7.

In order to guarantee the safety of the token operations, it is important that every key imported
through an unwrap operation was created by the token and previously exported by the wrap opera-
tion. For this purpose, wrap authenticates its payload during export. This approach works only if the
(un-)wrapping key k remains a secret of the token and is not known to any user, which is enforced by
the condition that k.readers = ∅ in the unwrap operation. Otherwise, if k was known to some user,
and since the wrapping mechanism is public, the user might create a fake wrapping and import a key
value and attributes that violate the consistency rules of the token. This is an example of so-called
key-conjuring attacks that have been found in practical cryptographic token interfaces [10, 14, 2].

Keys with the unextractable attribute must remain on the token forever, and cannot be read or
wrapped; also its ACL can no longer be modified. We provide this policy to model similar functionality
in PKCS #11. The token implements two mechanisms to support this: First, the conditions for the se-
tattr operation enforce that no user has read or admin privilege for an unextractable key. Second, keys
marked unextractable cannot hence be deleted (because no user has admin privilege for an unextractable
key). This is necessary since a user who unwraps a key may thereby reset its attributes to their earlier
values, as mentioned before. Otherwise, if unwrapping of a (now) unextractable key were allowed, an
adversary could reset the unextractable attribute and undermine the security policy.

We note that when a key k is marked unextractable, no other key l on which k depends is marked
unextractable. But because no user may any longer have read privilege for k, key l may neither be read
nor be wrapped with a key that has been read. Hence, when k was derived from l, for example, it would
be possible for a user to obtain a wrapping of key l.

5 Token Security

This section presents the cryptographic security notion implemented by the token and shows that our
implementation is secure.

5.1 Definition of Security

We define the security of a token through an experiment consisting of three phases, run between a chal-
lenger C and an adversary A. Both are efficient algorithms. The challenger runs a token T implemented
according to Section 4. During a few critical operations, C modifies the implementation of T for the ex-
periment, but mostly C accesses T as black box. The challenger offers all token operations to A through
the interface described below.

Recall that the set K denotes the set of all key identifiers, and the sets S ⊆ K and A ⊆ K denote the
set of secret keys and asymmetric keys (public and private keys) that have been generated, respectively.
We assume the challenger maintains S and A.

Initialization phase: The challenger picks a bit b at random. A picks a set of users U; it sends U to C.
The challenger initializes T with U.

Query phase: The adversary can make queries to C for any u ∈ U and k, l ∈ K according to the
following list:
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1. (u, create, secret,k) for some k /∈ S ∪ A. The challenger executes the create(k, secret)
operation of T with u logged in. If the operation is successful, C responds with k and adds
k to S. Otherwise, C responds with ⊥.

2. (u, create, private, (l,k)) for some keys l,k /∈ S ∪ A. The challenger executes opera-
tion create(k, private, l) of T with u logged in. If the operation is successful, C responds
with (l,k) and adds l and k to A. Otherwise, C responds with ⊥.

3. (u, derive,k, l) for keys k ∈ S and l /∈ S∪A. If b = 0, then C executes operation derive(k, l)
of T with u logged in. If b = 1, then C also executes operation derive(k, l) of T with u
logged in, but modifies it such that the cryptographic value l of l is a random string drawn
from Uκ (and not the output of Fk(l)). In both cases, C responds with l if the operation is
successful (and adds l to S) and with ⊥ otherwise.

In parallel A can also make the following queries for any u ∈ U and any k ∈ S ∪ A:

4. (u, read,k): C executes operation read(k) of T with u logged in; if the operation succeeds,
then C responds with the return value of the token, and otherwise C responds with ⊥.

5. (u, delete,k): C executes operation delete(k) of the token with u logged in; if the operation
succeeds, then C responds with the return value of the token, and otherwise C responds
with ⊥.

6. (u, getattr,k): C executes operation getattr(k) of the token with u logged in; if the operation
succeeds, then C responds with the return value of the token, and otherwise C responds
with ⊥.

7. (u, setattr,k, A): C examines the new value acl′ of the ACL in A, and checks if (u, read) ∈
acl′ for a symmetric or a private key k ∈ S ∪ A and any user u. If yes, C responds with ⊥.
Otherwise, C executes operation setattr(k, A) of the token with u logged in; if the operation
succeeds, then C responds with the return value of the token, and otherwise C responds
with ⊥.

8. (u, encrypt,k,m): C does the following. If b = 0, it runs operation encrypt(k,m) of the
token with u logged in; otherwise, if b = 1, it runs operation encrypt(k, d) of the token with
u logged in. If the operation succeeds, then C responds with the return value of the token,
and otherwise C responds with ⊥.

9. (u, decrypt, (k, c)): C does the following. If c was never a response from C to A to a query
of the form (v, encrypt,k,m) for k ∈ S (or l ∈ A that corresponds to k ∈ A) for some
v ∈ U and message m, then C runs operation decrypt(k, c) of the token with u logged in
and sends the return value to A. Otherwise, C responds with ⊥.

10. (u, sign,k,m): C executes operation sign(k,m) of the token with u logged in; if the opera-
tion succeeds, then C responds with the return value of the token, and otherwise C responds
with ⊥.

11. (u, verify,k,m, σ): C executes operation verify(k,m, σ) of the token with u logged in; if
the operation succeeds, then C responds with the return value of the token, and otherwise C
responds with ⊥.

12. (u, wrap,k, l): C first runs operation wrap(k, l) of the token with u logged in. If the opera-
tion fails, then C responds with ⊥. Otherwise, if b = 0, then C takes (w, `) to be the return
value from the wrap operation; if b = 1, then C computes ` = 〈l〉 and w = W(k, d, `).
Finally, C responds with (w, `) to A.

15



13. (u, unwrap,k, w, `): C does the following. If b = 0 and (w, `) was never a response from C
to A to a query of the form (v, wrap,k, l) for some v ∈ U and some l ∈ S ∪ A, then C runs
operation unwrap(k, w, `) of the token with u logged in, and sends the return value to A. If
b = 1, C always responds with ⊥.

Final phase: A does one of the following:

1. A outputs a bit b∗. Let the advantage α of A be defined as
∣∣Pr[b∗ = b]− 1

2

∣∣.
2. A outputs a triple (k,m∗, σ∗) for k ∈ S or a public key k ∈ A such that σ∗ was never

returned by C as the response to a query (u, sign,k,m∗) for k ∈ S or (u, sign, l,m∗) for
private key l ∈ A that corresponds to k ∈ A, for any u ∈ U . Let the advantage α of A be
the probability that query verify(k, m∗, σ∗) to the token outputs accept.

Definition 4 (Secure token). We say that a cryptographic token is secure if for all efficient adversariesA
the advantage α is negligible.

Remarks. The security of the cryptographic operations of the token (encryption, authentication, and
wrapping) depends on the condition that A obtains no cryptographic value for any key. According to
the check by the setattr query, the adversary may never add the read privilege to the ACL of any key. A
secure token ensures that without this privilege, in particular, no key can become known to the adversary,
and, more generally, that all cryptographic operations are secure.

The adversary may try to break the security of the token in two different ways, corresponding the
outputs of A in the final phase:

1. by distinguishing legitimately outputs of the key derivation function from uniformly random keys,
or distinguishing legitimate encryptions from encryptions of a dummy message, or distinguishing
legitimate wrappings from wrappings of a dummy message; or

2. by contradicting the integrity of the authentication operations through a forged signature.

Analogous to the formalization of the cryptographic primitives, the wrap operation of the token is re-
quired to authenticate its payload and to provide ciphertext integrity. The reason is that if A succeeds in
forging a wrapping (w∗, `∗) that was not computed by wrap, and includes (w∗, `∗) in an unwrap query
to C such that the unwrap operation by the token succeeds, the challenger trivially discloses b.

5.2 Analysis

Theorem 1. The cryptographic token according to Section 4 is a secure token.

Proof. We show the security of our token by reducing it to the security of the underlying cryptographic
primitives according to Definition 1. In other words, given an adversary A that succeeds in the se-
curity game of the token (described in Section 5.1) with non-negligible probability, we construct an
adversary AP, that succeeds in the security game of the primitives (described in Section 3), also with
non-negligible probability.

Adversary AP interacts with a primitives-game challenger CP as an adversary and simulates to A
an interaction with C such that A cannot distinguish this interaction with AP from an interaction with C
according to the token security game.

We now describe the interaction of CP with AP and the interaction of AP with A simulating C with
the token. AP works by running a token T and replacing the cryptographic primitives in the token with
challenger CP. More precisely, whenever the simulated token calls one of the cryptographic primitives,
AP queries CP to obtain the response.
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Initialization phase: CP picks a bit b at random. AP acts as a challenger C in the game with A and
maintains the set of generated symmetric keys S and public/private keys A. Initially, S and A are
empty. When A picks a set of users U and sends U to AP, then AP initializes T with U. AP will
simulate the responses to A without knowing the value of any of the keys in S ∪ A.

Query phase: A may make any of the queries described in the query phase of the token security game
according to Definition 4. For most queries, AP performs exactly the same operations to com-
pute its responses as C does in the token security game (except for replacing the cryptographic
primitives with calls to CP). Only for certain queries, AP behaves differently, as described next:

1. (u, read,k): AP executes operation read(k) of T with u logged in; if the operation succeeds
and k ∈ S or k ∈ A is a private key, then AP responds with FAIL to A and aborts the
simulation. Otherwise, AP responds with the return value of T to A.

2. (u, unwrap,k, w, `): AP does the following. If (w, `) was never a response from AP to A
to a query of the form (v, wrap,k, l) for some v ∈ U and some l ∈ S ∪ A, then AP runs
operation unwrap(k, w, `) of T with u logged in. If the operation succeeds and returns a
key l′ 6= ⊥, then AP proceeds to the final phase in the primitives game, outputs the bit 0 to
CP, and halts. Otherwise, if the unwrap operation fails, AP responds with ⊥ to A.

Final phase: Finally, A may do one of the following:

1. A outputs a bit b∗. In this case, AP outputs b∗ to challenger CP.

2. A outputs a triple (k,m∗, σ∗) for k ∈ S or a public key k ∈ A such that σ∗ was never
returned by AP as the response to a query (u, sign,k,m∗) for any u ∈ U and any k ∈ S, or
as the response to a query (u, sign, l,m∗) with private key l ∈ A that corresponds to k ∈ A.
In this case, AP outputs triple (k,m∗, σ∗) to challenger CP.

This completes the description of adversary AP. We now analyze its advantage in the primitives
game.

We first note that AP never responds with FAIL to A and aborts the simulation. This holds because
AP responds with FAIL only when operation read(k) of T with u ∈ U logged in succeeds for some
k ∈ S or private key k ∈ A. According to the specification of T , in particular the condition that T
verifies during the read operation, this happens only if (u, read) ∈ k.acl.

There are two ways in which the ACL of k.acl may be modified:

1. With a setattr query: But this is not possible because AP explicitly rejects any value for k.acl that
contains (u, read) for all k ∈ S and k ∈ A that are private keys.

2. Through a successful unwrap query that creates key k in the token such that k.acl contains
(u, read). But this is not possible, as we show by contradiction. Recall that the attributes of
an unwrapped key are taken from the label ` of the wrapping. Regardless of whether k ever ex-
isted in T before, the unwrap query in this case is invoked with a value ` that was never part of a
response from AP to a wrap query. Since the unwrap operation of T succeeded and added k to
the token memory, AP would have output 0 to CP and halted.

Therefore, AP never outputs FAIL in the simulation.
Inspecting the conditions on the queries to CP invoked by AP, it is easy to see that AP respects all

rules of the primitives game and simulates the token game perfectly. It follows that the probability of
success of AP in the primitives game is at least the probability of success of A in the main security
game. This proves the theorem.
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6 Emulation of PKCS #11

In this section, we briefly discuss how our token model can emulate the key management functions in
the RSA PKCS #11 standard [22] in a way that respects our security policy. Because PKCS #11 allows
some attacks through the interface (consult the paper of Delaune et al. [16] for examples), we have to
omit some operations and restrict others. The goal is thus to identify a subset of PKCS #11 features that
is safe according to our token model.

We begin with the attributes of PKCS #11, then address the cryptographic operations and key-
management functions of PKCS #11, and finally examine the security features of PKCS #11 and show
that they are achieved by our emulation.

PKCS #11 distinguishes between ordinary users, who all have the same permissions for accessing
keys, and a security officer or SO user with additional privileges. It is therefore sufficient to consider
only two users and a set U = {user, SO} in our emulation.

Attributes. Key objects in PKCS #11 may be persistent token objects or volatile session objects; we
only address token objects. For most of their attributes, there is a straightforward one-to-one corre-
spondence between PKCS #11 and our token model. For example, the CKA ID and CKA KEY TYPE
attributes in PKCS #11 are emulated by our key identifier k and the k.type attribute, respectively, and
serve the same purpose. However, in contrast to PKCS #11, the value of CKA ID cannot be modified in
our emulation once it has been assigned.

Keys in PKCS #11 have several attributes that govern their cryptographic usage, like CKA DERIVE,
CKA ENCRYPT, CKA DECRYPT, and so on. They determine if the key may be used for the corre-
sponding cryptographic operation. Our token model includes the same privileges (with the exception of
CKA SIGN RECOVER and CKA VERIFY RECOVER) and the emulation maintains them in a one-
to-one way in the ACL attribute; that is, a key k has CKA ENCRYPT set in PKCS #11 if and only if
{user, encrypt} ∈ k.acl in our token, and so on. Our emulation does not permit a key to be used in
multiple cryptographic primitives according to the usage conditions.

The CKA SENSITIVE attribute in PKCS #11 denotes whether a key k is sensitive in the sense that
its cryptographic value must not be read by any user, i.e., the key “cannot be revealed in plaintext off
the token” [22]. We model this by removing the read privilege for user from k.acl and by restricting
the admin privilege to user SO whenever CKA SENSITIVE is true.

The CKA EXTRACTABLE attribute denotes if the cryptographic value of k can be extracted and
may ever leave the token (in plaintext or wrapped), i.e., an unextractable key “cannot be revealed off the
token even when encrypted” [22]. We model this by the attribute k.unextractable with the inverse value
of CKA EXTRACTABLE.

Keys in PKCS #11 have two further attributes CKA ALWAYS SENSITIVE and CKA NEVER EX-
TRACTABLE that denote if a key has always been sensitive and if a key has never been extractable,
respectively. Their goal is to give information about the past of a key. Since our token model is richer,
we know more about the history and emulate them with slightly different semantics from the readers of
a key:

• We let the CKA ALWAYS SENSITIVE attribute of k be true whenever k.readers = ∅.

• We let the CKA NEVER EXTRACTABLE attribute of k be true whenever k.unextractable and
k.readers = ∅.

We will discuss these choices shortly. Note that a literal implementation, reflecting the past values of
CKA SENSITIVE and CKA EXTRACTABLE, could alternatively be modeled with the help of the log.
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The CKA TRUSTED attribute is not provided by our emulation, as it relates to wrapping under
public keys and our model does not contain that. The attribute CKA LOCAL in PKCS #11 is always true
because no key can be generated outside of our token. The key life-cycle attributes CKA START DATE
and CKA END DATE are not relevant for our token security policy and therefore omitted.

Functions. Only the functions of PKCS #11 dealing with object management, key management, and
cryptographic operations are relevant here and provided by the emulation; all others are omitted.

For object management, PKCS #11 provides functions C CreateObject, C DestroyObject, C Get-
AttributeValue and C SetAttributeValue. The C CreateObject function creates a key (and other objects)
and sets its value to one supplied in the call; it is not provided by our emulation. The other three functions
are implemented in our model by the delete, getattr and setattr operations, respectively. Reading key
attributes containing cryptographic values with C GetAttributeValue is mapped to the read operation.
The functions for reading and modifying attribute values are restricted according to the conditions in
our model.

The C CreateObject function is missing because our model does not allow to create keys with user-
specified values. Instead, all keys are generated randomly or derived from another key on the token;
they cannot be biased by a user. This restriction is critical for maintaining our security policy because
user-supplied key values might be abused; in particular, they might compromise the security of other
keys in the token since the token cannot accurately determine the users who have read the value of a
particular key. PKCS #11 also implements a C CopyObject function to duplicate a key object and to
modify its attributes; our emulation does not provide it for the same reason.

We now turn to the cryptographic functions in PKCS #11. All keys in our emulation must be gener-
ated through one of the functions C GenerateKey, C GenerateKeyPair, and C DeriveKey; they are pro-
vided by the token operations create(k, secret), create(k, private, l), and derive(k, l), respectively. The
functions C Encrypt, C Decrypt, C Sign, C Verify, C WrapKey, and C UnwrapKey are implemented
in the token by operations encrypt, decrypt, sign, verify, wrap, and unwrap, respectively.

Security. We now discuss some elements of the PKCS #11 security policy and how our emulation
achieves them.

A sensitive key must not be read by any user. This is enforced directly by the missing read and
admin privilege for user in the ACL. Our implementation of the CKA ALWAYS SENSITIVE attribute
matches the intention behind marking a key “sensitive,” because the key has never been read by a user.

An unextractable key must not be wrapped or read by any user, and cannot be made extractable
ever again. Our model achieves this because when an owner of a key k sets k.unextractable to true,
there must not be any admin or read privilege left in the ACL. This ensures that the key can never
be read in future and also k.acl can no longer be modified. Furthermore, the wrap operation fails
if k.unextractable = true. Our implementation of the CKA NEVER EXTRACTABLE attribute is a
slight departure from the idea of non-extractable keys because such a key in our emulation may have
been wrapped under a key that has not been read by any user. But assuming that the token uses a
secure wrapping scheme, the original intention behind marking a key “not extractable” is implemented
correctly because our token ensures that the wrapping key can no longer become known to a user.

When deriving a key l from a key k in PKCS #11, if k has CKA NEVER EXTRACTABLE set to
false, then so does l; if k has CKA NEVER EXTRACTABLE set to true, then the value of CKA NE-
VER EXTRACTABLE for l is the opposite value of CKA EXTRACTABLE for k.

When deriving l from k in our token, the token sets the attributes of l to those of k. Because l
depends on k and therefore inherits its readers attribute, the value of the emulated CKA NEVER EX-
TRACTABLE attribute of k is propagated to the CKA NEVER EXTRACTABLE attribute of l. This
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corresponds to the functionality of PKCS #11, as a simple case analysis shows.
PKCS #11 specifies that when a wrapping is unwrapped to obtain a key k, then CKA EXTRACTA-

BLE is set to true and CKA NEVER EXTRACTABLE is set to false. But in our emulation we obtain
again the attributes of the wrapped key from the time when it was wrapped. Since k had been wrapped
in the first place, however, it must be that k.unextractable is false. Hence, the emulated CKA NE-
VER EXTRACTABLE attribute of k after unwrapping is also false, consistent with its value according
to PKCS #11.

7 Conclusion

This paper has introduced the first model of a cryptographic token interface supporting multiple users
(i.e., more than two), support for encryption, integrity, and access control lists, and a security policy
expressed in terms of a cryptographic notion. We hope that our model lays the foundation for the design
of future cryptographic interfaces in the industry, which will not allow interface attacks by design.

For simplicity, in our work we did not address key wrapping with public keys; this is an important
feature of PKCS #11, for example, available in cryptographic token interfaces used in many PKI appli-
cations. We sketch how this may be done. One needs a public-key cryptosystem secure against adaptive
chosen-ciphertext attacks that is secure for key-dependent messages. Such systems have very recently
been proposed in the random oracle model [4] and in the standard model [11, 12]. One also needs a se-
cure digital signature scheme that works with the same keys as the public-key cryptosystem. Combining
the two in the standard way such that the resulting scheme provides confidentiality and integrity yields
a suitable public-key wrapping scheme.

An important extension of this work lies in formally verifying our approach with automated tools,
such as model checkers and theorem provers.

In practice, a security infrastructure usually contains many distributed cryptographic tokens, and a
central administrator synchronizes all relevant data among them. Future work should therefore address
multiple tokens that share a common set of keys. In our model with only one token, attribute changes
are instantaneous and the abstraction of the log can be implemented efficiently. Distributed tokens are
not automatically synchronized; the way to a secure distributed token infrastructure lies in considering
communication between tokens and extending or refining our one-token security policy.
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