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Abstract

We discuss the need of addressing, in a uniform
way, digital signatures with rich semantics, for en-
abling increased automation of signature processing.
We present a scheme for combining digital signatures
with the formal and extensible semantics of the Se-
mantic Web, as a standard layer in applications using
digital signatures. We introduce several constructions
and processes towards realizing this end, a new class
of attack against semantically enabled applications,
and measures of avoiding this attack class. Finally,
we simplify a few existing processes that use digital
signatures by expressing them in terms of semantic
signatures.

1. Introduction

As mathematical constructions, digital signatures
provide a mechanism for creating and verifying an
association between serialized content and an asym-
metric key pair. These associations are used to emulate
the signatures and stamps of the physical world. Ul-
timately, such signatures and stamps have a meaning
within a specific context, and subsequent actions within
that context are based upon this meaning.

In physical documents, the meaning of a signature
being created or verified is derived implicitly (by the
involved people) from the content of the document.
Asserting and deriving meaning is often aided by
additional qualifications of the signature, such as its
placement on the page. For example, the publication
clearance form for this paper has specified areas for the
authors and the clearing agents to provide additional
information about the place and date of the signature,
the intended conference and so forth. Other forms
require a handwritten assertion that the signer has
read and understood the document, in addition to the
signature itself. The fact that completion and signing
of such a form is a process performed by humans is not
problematic because it is one of many human processes

performed on the document.1 The fact that there exist
no uniform way of conveying meaning is also not a
major problem, as humans can adapt to interpreting
signatures in new ways.

In current digital signature schemes (that is, the
collection of technologies that gravitate around cryp-
tographic signatures), the meaning of a signature is
usually determined in two scales of granularity. At the
coarse scale, meaning is derived from a combination of
the application used, conventions concerning keys, and
static usage policies. For example, in an X.509 context,
it is understood that some keys are for negotiating
session keys with a server, some are for signing email,
some are for signing code, some are for signing (certi-
fying) other keys, et cetera. At the fine scale, meaning
is derived as with physical signatures: implicitly from
the meaning of the content, although generally without
additional qualifications, analogous to placement or
structured fields. As with physical signatures, current
digital signature technologies do not provide a uniform
way of conveying meaning.

In applications using digital signatures, processes
that require action based on the meaning of a signature
fall into one of three categories:

1) A process driven by a human. Such processes
are flexible but expensive and often error prone
in all but the simplest cases. An example of this
category is the signature of a PDF file performed
using the Adobe signing framework [1], which
allows the creator to enter a natural language
description of the reason for signing; verifying
the validity of the signature according to a policy
requires human inspection.

2) A process that is sufficiently common that a con-
crete instance has been specified, standardized,
and implemented. An example of this category is
the application of digital signatures to associate
an entity with a public key, that is certification.

1. While check clearing systems might seemingly provide a
counter-example, contested signatures will be reviewed by a human.
In any case, we endeavor to address the general case of signatures
which might be aided by machine processing, rather that specific
uses.



3) A process that, while not so common as a
process of the second category, is yet automated.
These tend to be implemented in an ad hoc and
incomplete fashion, lacking formal specification
(which makes sense) and standardization (which
does not). Examples of this category include the
myriad tools that check a signature of a file
before conditionally executing or installing it.

This paper is predicated upon the thesis that these
existing processes may be greatly enhanced, and their
pitfalls avoided, via the addition of a formal se-
mantics layer to traditional digital signatures, as part
of standards and application programming interfaces
(APIs). This particularly benefits automatic processing
of digitally signed content. We propose expressing the
meaning of a digital signature using Semantic Web
technologies, that is, standard and well established,
application-independent formalisms for representing
knowledge. Our core contribution is the definition of
a digital signature scheme based on this principle,
with constructs that bridge between the semantic and
the cryptographic world, building on top of traditional
digital signatures.

In the next section we further motivate our work, by
analyzing the three categories above, and the benefits
of extending the traditional digital signatures they
currently use with such formal semantics.

2. Foundational observations

Similar to Greenspun’s Tenth Rule,
“Any sufficiently complicated C or For-

tran program contains an ad hoc, informally-
specified bug-ridden slow implementation of
half of Common Lisp.”

any sufficiently complex application involving digital
signatures contains an ad hoc, poorly specified, ob-
scure, inextensible semantic specification.

In many realms, automatic processing is not cur-
rently the norm but is highly desirable. For instance,
signing a written document as its author may implicitly
mean that the author vouches for the correctness of the
information presented, for the appropriateness of the
views expressed, or for the originality of the document.
By contrast, signing the same document as the copy
editor raises the expectation that the signer vouches
for the existence of all sources and for the fact that
spelling and grammar mistakes have been removed.
This category of signature applications is increasingly
important in several areas such as integrity and au-
ditability of business processes, general compliance
checking and distributed command and control. In

these areas, complex rule sets must be applied to large
volumes of content. It is economically infeasible and
error prone to manually check that the rules are being
followed.

In realms where automatic processing is already
the norm, the semantic specifications were designed
to solve a specific problem rather than to provide a
general semantic framework (which would have been
out of scope). As such, they provide only sufficient
capability to solve the problem as initially conceived,
and tend not to be extensible. This has the effect that,
as one of the following evolves

• the need that the process addresses,
• understanding of the need, or
• understanding of the process,

the deployed code and configuration base inhibit evo-
lution of the process itself.

X.509, as an application of digital signatures, pro-
vides one of the best illustrations of this point. In
X.509 it would be desirable to clarify certain attributes,
to add information concerning identity evidence of-
fered by the key owner to the certificate authority, to
enable privacy features, or to expand to new domains
(see 3.1). The lack of extensible semantic support in
the X.509 standard means that these items can only be
added via convention outside the standard. Naturally
enough such non-standard conventions tend not to be
globally consistent, compatible with other conventions
or machine processable within the standard tooling for
the format.

More generally, in the domain of public key in-
frastructure, the addition of semantics to signatures
and automatic processing allows unification of various
mechanisms of certification. It may be desirable to
use hierarchical certification for some purposes, such
as filing tax forms or contacting a bank, and, at the
same time, use guerilla certification mechanisms for
speaking with friends. By adding semantics to signa-
tures, it is possible to use the same key for different
purposes with different policies. A typical user account
might have an X.509 certificate for signing email and
accessing corporate virtual private networks, a key to
log onto Lotus Notes, an ssh key for remotely access-
ing machines on a network, a PGP key for private
correspondence, a code signing key for development, et
cetera. One of the several reasons for this proliferation
of keys, and thus an increase in the pain of key
management, is that the only mechanism to separate
the different uses of the keys is to use different keys.
By providing semantic contextual information, we can
securely use the same key in different contexts with
separation provided by semantic differentiation. Use
of such a system automatically stops chosen protocol



attacks [2] by ensuring that a signature used in one
context cannot be applied in another.

Processes that are less common and well specified
than certification suffer similar problems. On the posi-
tive side, because they are less common, they are less
constrained by a deployed base. On the negative side,
because they are less common, they are not as well
studied or, generally, implemented.

In both categories, the switch to standard semantic
formalisms increases the number of people who under-
stand the format and the amount of documentation. For
example, there are many more people who understand
semantic web standards than the ad hoc semantics of
X.509. There are also many more tools that support
these standards, for editing, interpreting, validating and
transforming semantic content (in a similar way that
using XML as a data format allows developers to
readily use standard parsers and other tools).

Additionally, using standard semantics in signatures
allows native integration with other semantic con-
tent. In particular, one can referentially reuse exist-
ing knowledge representations (i.e. ontologies) toward
specification of meaning in signatures.

The remaining paper is structured as follows. In Sec-
tion 3 we further discuss elements of traditional digital
signatures and point out their limitations with respect
to semantic specification. In Section 4 we introduce
basic building blocks and additional considerations
necessary for achieving semantic signatures. In Section
5 we detail our semantic signature scheme. Section 6
outlines the realization of semantic certification using
our constructs. Section 7 details an example in the
compliance space, that further motivates our work in
a concrete setting. Section 8 concludes the paper.

3. Traditional and semantic digital signa-
tures

The core of digital signature schemes is asymmetric
cryptography: digital signatures are defined by a well
specified set of steps for producing and verifying sig-
natures using public/private key pairs. For a signature
scheme to be practical, it is also necessary to provide
means of associating these mathematical objects to
real-world entities such as users, and thus indirectly
associating the produced signatures to these entities.
Hence certification, and its associated processes, are
an integral part of a digital signature scheme, as well
as being an application of the digital signature scheme
in the core sense. The certification application has both
syntactic and semantic layers. The syntactic layer de-
termines how to parse a signed message into the fields
containing keys (or references to keys), information
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Figure 2: Semantic digital signatures

about the entities to whom the keys are associated,
and whatever other metadata the particular standard
supports. The most common semantic information is
specification of a mechanism by which one party can
attest to a binding between a key and information such
as an email address or directory name.

This definition of digital signatures is depicted in
Figure 1 (certification is shown as a special case, in
that it is both a layer in the overall functionality,
and an application of cryptographic signatures). We
contrast it to Figure 2, which shows the insertion of
a semantic layer above the traditional signature to
produce semantic signatures; with this construction,
certification becomes one of many possible policies
that can be formally specified as part of the scheme
and included in the signature.

Existing standards for certification include X.509
and PGP/GPG. In the following subsection, we ex-
amine X.509 in more detail. We have chosen to do
so due to its widespread deployment and relative rich,
if often under-specified, feature set. Conceptually, this
interpretation should apply to other digital signature
schemes. It should be noted that we do not expect that
this widely deployed standard be replaced with a new



version based on formal semantics, but we believe that
analysis of the problems of X.509 that stem from its
ad hoc semantics is directly relevant to other, future,
semantically enabled applications. As such, comments
concerning X.509 should not be taken as concrete
suggestions but are rather present to clarify general
principles with examples from a widely considered and
implemented standard.

3.1. Semantics of X.509

The X.509 standard has its lineage in the Interna-
tional Telecommunication Union, and as such, many of
its design choices stem from the telecommunications
context of the late 1980s (such as the assumption
of a global X.500 directory and the strong focus on
offline procedures). The PKIX workgroup of IETF is
chartered to address Internet-specific aspects of X.509
usage. X.509-related standards and RFCs are vast
and complex, probably due to this heavy historical
baggage, and in general implementing an X.509 ap-
plication is not a trivial matter (see [3] for a general
discussion of X.509 inadequacies).

Certification in X.509 provides a binding between a
public key and a subject expressed as a Distinguished
Name, which is a hierarchical description of an entry in
an X.500 directory (an extension mechanism, available
since X.509v3, allows a certificate authority (CA) to
bind the key to an Alternate Name such as an e-
mail address or a URI). Validation of a certificate
is hierarchical with a configurable collection of root
authorities. With respect to semantic specification, the
main problem of X.509 is that the precise meaning of
this binding and the process performed by the certifi-
cate authority to attest to the binding are not within
the scope of the base standard. For example,a bind-
ing between a key and the directory name “CN=Joe
Doakes, DC=Hadleyburg, DC=Acme, DC=com” does
not strictly imply that the owner of the key works for
Acme Corp in the Hadleyburg office, or is named Joe
Doakes. This is a practical manifestation of several
deep problems concerning the association of names
and the things to which the names refer [4].

An X.509 certificate has a well specified syntactic
structure with standard fields such as issuer, subject
and period of validity. In contrast to fields themselves,
the values taken by the fields are significantly less
well-specified. The issuer and subject fields, both of
type Distinguished Name, can be composed of a wide
variety of mostly optional-attributes (e.g. Country, Or-
ganizational Unit); assignment of values to these at-
tributes varies greatly between certification authorities.
For example, when issuing certificates to individuals

for private use, public CAs typically set the subject’s
country to the CA’s country (in general, CAs tend
to wedge in the attributes information meaningful to
them locally). There is no standard mechanism to
allow clarification as to what these attributes mean,
and it would be incorrect to assume any semantics
from them (as their primary purpose is to provide a
unique identifier for the certificate within a directory).

Profiling is another mechanism within the standard
that can be viewed as serving a semantic purpose.
Profiles of X.509 can be defined that place further
restrictions on the contents of the certificate (e.g.
what attributes are supported) and are intended for
use within a specific domain. IETF PKIX defined the
profile used in browsers, and others exist for banking,
certain governmental uses, etc. However, the certificate
itself does not indicate what profile it follows. This
information is typically implicit in the application
being used.

In addition to profiles, individual CAs define usage
possibilities, which are also not encoded in the certifi-
cate itself, but are derived from the certification path.
For example, Verisign defined certificate classes such
as:

• Class 1 for individuals to send e-mail
• Class 2 for organizations
• Class 3 for servers and software signing

An extension mechanism introduced in X.509v3 allows
vendors to place additional constraints on the certifi-
cate. An example constraint extension defined by IETF
PKIX is Key Usage, which indicates the purpose of
the key, with a value taken from a list of predefined
purposes (for example: signature, encipherement, cer-
tificate signing).

These different X.509 mechanisms – attributes, pro-
files, certificate classes and extensions – provide ad hoc
ways for introducing semantics in an X.509 applica-
tion. The result is a certificate that is not self-contained,
relying in poorly defined out of band mechanisms
for semantic validation. Overall, X.509 is semantically
underspecified and the underspecification is difficult to
fix.

3.2. Semantic certification

The semantic aspects of an X.509 certificate and
its associated processes can easily be expressed using
Semantic Web technologies. Doing so we see that the
advantages of semantic signatures discussed in Section
2 immediately apply to certification, for example:

• Vendors can clarify the manner in which they
use terms in a standard, extensible, machine-
processable fashion



• The terms exist in relationship to one another
• There are no problems with name space collision
• Developers have access to better tooling for the

format
In Section 6, we elaborate on the realization of se-
mantic certification (after having presented the details
of the semantic signature scheme we propose).

4. Basic building blocks and requirements
of semantic signatures

In this section we introduce the basic constructs and
considerations necessary for building semantic digital
signatures.

Further understanding of the paper requires basic
understanding of the Semantic Web, and in particular
of the Resource Description Framework (RDF), one of
its core technologies. RDF provides a mechanism for
making statements about resources, of the form (sub-
ject, predicate, object), with each of the elements of
this triple being a URI. Other key ingredients of the Se-
mantic Web are ontologies and reasoning. While RDF
serves as a means for representing explicit knowledge,
ontologies serve as a means for representing implicit
knowledge, by listing a universe of terms and their
relationships (hence knowledge is implicit with respect
to a particular problem), and reasoning serves as a
means for obtaining explicit knowledge from implicit
knowledge. Because the paper is intended for a security
conference, we have included as appendix a summary
of the technologies from the Semantic Web that are
relevant for our purposes. Note that, throughout the
paper, we use the notation #property as a shorthand
for properties defined in a formal ontology.

4.1. Binding of URIs

URIs [5] are at the core of the Semantic Web
approach. Perhaps the most important subclass of URIs
are Uniform Resource Locators (URLs), which provide
names for retrievable content and are one of the pillars
of the Web. URLs are fundamentally references; they
indicate how and where to get content rather than
actually being the content. Indeed, content behind a
particular URL may change over time. This poses a
problem when using digital signatures: at some point in
the signing process a reference is included in the signed
content, but typically it is the content itself which
needs to be signed. For example, signing a statement
saying "The content at http://en.wikipedia.org/wiki/Rsa
is accurate" is problematic because the content served
by the URL may change or be served differently

depending upon different circumstances. Permalinks
partially address the issue of evolving content. A
permalink is a reference generated by an application,
which uses it as a database key or as a query to retrieve
a specific portion or version of content. Permalinks are
application-specific: a permalink is meaningless if it is
not dereferenced by the same application that gener-
ated it. Moreover, the binding between the reference
and the content is not strong, so the application needs
to be trusted to return the right content for a given
permalink.

In order to bridge between the Semantic Web world
and the cryptographic world, we require URIs that
are strongly bound to the content they represent, in
an application-independent way. We thus introduce the
concept of BURI as a content Bound URI (respectively
BURL). BURIs are based on incorporating a crypto-
graphic digest of the content into the URI. We adopt
XML namespaces and allow two types of bindings: a
simple scheme and a dereferenced scheme. We note
that the semantic signatures work presented in this
paper is part of a larger effort [citation redacted for
review] whose goal is enabling evaluable trustworthi-
ness, hence trust, in web content, particularly HTML
content. As such many of our concerns stem from this
domain. This said, many of the concerns of HTML
documents extend to other formats such as simple text,
SVG, PDF, and GIF and JPEG images. Other formats
that are proprietary, unduly complex or incompletely
specified are by their nature difficult to sign: if one
cannot unequivocally state that which is to be signed,
it is not clear what a signature means even at the most
basic level.

Before detailing the two binding schemes, we point
out several practical concerns relevant to BURIs and
HTML content.

Granularity is a first consideration; it is often useful
to address a subsection of a document, as in citing
an example or removing non-local content (such as
advertising or other variable content). Additionally,
enabling smaller scale granularity reduces the need
for invalidating BURIs due to small changes in the
content: if a change is non-local then the BURI will
be valid, and a signature on it may still apply.

Alias URIs present a problem; it is common that
several URIs are used to refer to essentially the same
content2 but produce different BURIs in a strict sense.
We note that this is related to the problem of Different
URL Similar Text (DUST) [6], which has been studied
in the context of crawlers and annotation services.

Normalization, a necessary step prior to digest

2. Varying with banner advertisements or page counters.



calculation, is by far the most challenging problem.
For example, HTML normalization may be performed
either on the byte sequence returned by the server
or on the already parsed DOM representation of that
byte sequence. Referenced or lazily included content,
such as images or third-party text, are problematic: an
HTML document referencing an external image will
produce the same digest even if the image changes
(which is natural, but potentially contrary to the intent
of a signature on the BURI). This problem may be
mitigated recursively, by normalizing the content to
include digests of included content, but if this is done
unwisely, one risks taking a checksum of the entire
Web.

Languages embedded in content, such as Javascript
and XSLT, are problematic in several ways (closely
related to the normalization problem). The first is that
the languages may be used maliciously to alter content
based upon retrieving conditions. Even if the language
is available for inspection or directly included in the
content, rather than by reference, determination of the
code effect may be difficult or nearly impossible [7].
Potential attackers can also manipulate cache param-
eters and metadata of channels, such as HTTP, to
generate the illusion of benign code that is actually ma-
licious. For digital signatures to have any significance
on HTML content, the signing scheme should have a
what you see is what you sign (WYSIWYS) property;
in other words, there shouldn’t exist a semantic gap
between the sequence of bits upon which the digital
signature is computed, and the high level representa-
tion of this sequence that the user intends to sign. The
aforementioned attacks compromise this property. A
full discussion of trusted displays and trusted comput-
ing bases [8] is well outside the scope of this paper, but
it should be noted that trustworthy display of content
is extremely difficult. Even with a format as simple as
text, different fonts might lead to a byte sequence being
displayed “I will pay 1000€” in one place and “I will
pay 1000£” in another. However, for simple cases, the
problem may be addressed via normalization - by e.g.
discarding all formatting and script tags. Embedded
languages are further problematic as significant content
is now delivered via asynchronous channels, such as
is the practice with AJAX (Asynchronous JavaScript
and XML) so that the initial content may only be
a collection of pointers to the real content. Several
widespread web content generation frameworks, such
as DOJO, work in this fashion.

4.1.1. Simple Binding. In the simple form, we add a
cryptographic digest as the parameter to a URI:
http://www.w3.org/TR/uri-clarification?
{nsp}:sha256=e3b...855&xmlns:{nsp}=. . .

where the string {nsp} is an arbitrary name space
prefix, in the sense of XML, specifying the namespace
http://redacted.org/2008/01/aha/; by default we use
aha (which stands for ad hoc anchoring, a concept
outside of the scope of this paper). While XML names-
paces are not part of the URI specification, we want to
ensure that any URI can be transformed into a BURI
and hence need a layer of indirection.

The preceding BURL example indicates that the
content served by the URL
http://www.w3.org/TR/uri-clarification/

has the sha256 [9] checksum e3b...855.
Note that sha256 may be replaced by other cryp-

tographic checksums. In particular, we wish to allow
future algorithms, such as that which will be the winner
of the upcoming NIST competition[10]. We presume
that there will be an unambiguous, case insensitive
short name for this digest.

We note that this scheme is limited, as it does not
address fine granularity or normalization.

As a side benefit, using simple bindings eliminates
many caching and distribution problems; if a system is
provided the cryptographic checksum of some content
and it happens to have a document matching that
checksum, there is no need to retrieve the document.

4.1.2. Dereferenced Binding.. In order to enable sig-
natures on more general web content, we build a
dereferencing scheme atop the above trivial scheme.
With this mechanism, a number of aspects of the
referenced content (including its digest) are described
in a content binding document; this document, which
must be retrievable, is assigned a BURL that fol-
lows the simple scheme described above. Validating a
dereferenced BURL requires two passes: validating the
BURL (which requires retrieving the content binding
document) and validating the content binding docu-
ment (which in turn requires retrieving and validating
the actual referenced content).

The content binding document has a number of
components, some of which are optional:

• permalink – a permanent link for the referenced
content (or a specific version of the referenced
content), if one exists

• logical link – the standard link of the (mutable)
content (note that a logical link may be resolved
to a permalink, such as in Wikipedia)

• fragment selection method – the method used to
subselect portions of content (XPath, XPointer,...)

• fragment identifier – a subselection of the con-
tent that is being referred to

• content digest method – the identifier of a digest
method(sha1, sha256,...)



• content digest – the digest of the content re-
trieved from the permalink plus the fragment iden-
tifier (i.e. the digest of a portion of the document)

• normalization method – the identifier of a
method of normalizing the content prior to com-
puting the digest

• serialization – the identifier of how the content
should be serialized to a byte sequence.

For example, the following BURL
https://redacted.org/burls?
{nsp}:sha256=e3b...855&xmlns:{nsp}=. . .

serves a content binding document whose digest
is e3b...855 (calculated using the digest method in-
dicated in the BURL). This document contains the
following information3:

<burl>
<permalink>
http://en.wikipedia.org/w/index.php?
title=Currying&amp;oldid=118180680

</permalink>
<logical-link>http://en.wikipedia.org/wiki/Currying</logical-link>
<fragment-selection-method>html</fragment-selection-method>
<fragment-identifier>Scheme</fragment-identifier>
<content-digest-method>md5</content-digest-method>
<content-digest>68b...c940</content-digest>
<normalization-method>
https:///normalization/simplehtml_1.0

</normalization-method>
</burl>

An example HTML normalization method may
discard tags such as formatting information and
scripts, and replace images with simple BURLS, as in
<img src="lol.jpg" .../> with
<img src="lol.jpg" aha:sha256="e3b...855"
xmlns:aha="http://veracite.../aha/" .../>

4.2. Semantic Injection Attacks

RDF is a language for encoding information assem-
bled from (subject, predicate, object) statements. It is
most often used as a data format. The truth, accuracy
and context of the statements are not in the scope of the
language. The consequence is that the most straight-
forward encodings of information4, fail when applied
to complex semantics. The idea is best illustrated by
an example: the sentence “Bob does not know that
Alice signed the message M” does not imply that
“Alice signed the message M” yet the natural RDF
decomposition of the first sentence has a subgraph that
is identical to the RDF decomposition of the sentence
“Alice signed the message M”.

Any application that
• has complex semantics or,
• has simple semantics but need to process general

semantic input or,
• processes semantic input from potentially untrust-

worthy sources

3. We present this content binding in XML for illustration pur-
poses; XML is one possible data format, with many drawbacks as
is discussed later.

4. Indeed exemplary in texts and tutorials.

is thus potentially vulnerable to attacks in which deci-
sions are made, without contextual consideration, using
semantic data whose context changes its meaning.
We will call this a semantic-injection vulnerability,
drawing attention to the fact that the problem is in the
semantic layer. This distinguishes it from a semantic
query injection attack, or indeed any semantic/non-
semantic query/selection language attack, in which
the problem exists in the mixing of control and data
channels[11].

We note further that semantic injection concerns
apply not only to the semantic data but to the schemas
and ontologies that apply to the data. For example, a
schema that falsely asserts that #seen is a subproperty
of #signed, would potentially cause a reasoner to
conclude incorrectly that a document that was merely
seen by a person, was also signed by that person.

Insofar as we are engineering a security mechanism
in this paper, we do not want to place the burden
of addressing this danger upon the designers of the
ontologies that are used in the signatures (indeed, an
important security maxim is to place as much of the
security burden in the lower layers and do not assume
that crucial mechanisms are going to be implemented
at a high level). We thus need to address the problem
at a lower level, but we yet wish to retain the RDF
formalism and tooling.

Concretely, this means that in addition to the natural
RDF interpretation of signK(M) is the statement

K,#signed,M

together with some (secure) mechanism of identifying
this statement (and distinguishing it from other state-
ments).

Addressing this problem via a security statement
manager, that is, by disallowing statements introduced
via certain channels, does not seem to be a viable
solution: beyond limiting the semantic expressivity in
an absolute sense, it would create immediate concrete
problems by eliminating many extremely useful con-
structions, such as those needed by certificate author-
ities. It would further not protect against attacks in
ontologies other than signing. For example, “Bob does
not know whether the process is compliant” which has
“the process is compliant” as a subgraph.

An approach of stating that a statement is true, does
not work due to the fact that all of the statements are
in band. An attacker knowing of this mechanism could
create a message of the form “Bob does not know that
it is true that Alice signed the message M”.

We can, however, address this problem using reifica-
tion, an RDF mechanism by which statements can refer
to other statements [12], together with a secret URL



V . Then signK(M) may thus be securely represented
as

V,#attests, (K,#signed,M)

An attacker cannot maliciously introduce this state-
ment into our store via “Bob does not know that V
attests that Alice signed the message M” because the
V is secret.

To generalize this scheme, we can generate a family
of secrets Vn by appending a counter to V . Now for a
given semantic message M we can import signK(M)
as

Vn,#attests, S

for all base statements, that is those which appear
directly rather than via reification, S ∈M and

Vn,#concerns,RS

for all other S ∈ M , with the schema constraint that
#attests is a subproperty of #concerns.

This secure indirection layer allows meaningful ex-
pression and distinction of reified statements, thereby
avoiding semantic injection attacks while permitting
similarly structured valid semantic constructions such
as key certification.

4.3. Data Formats

There are two distinct problems related to data
formats.

The first is that signing a directed graph, roughly
the underlying data model of RDF, is potentially quite
difficult [13] due to the difficulty of graph equivalence
[14]. This difficulty would manifest itself if the verifier
were to start with a collection of RDF statements (a
graph), and need to know if a signature applies (thus
requiring a graph equivalence computation). For our
purposes, the verifier instead starts with a particular
serialization of a graph, verifies the core digital sig-
nature, and then transforms it into the reified model
“signer signed graph”.

The second, more pedestrian, difficulty is the end
representation. The most natural choice to format a
combination of RDF and the binding information is
XML. Unfortunately, XML is not a particularly easy
format to sign for a number of reasons. The most
problematic of these is that support for mixed-content
implies the need for a schema when parsing; even
with a schema, the map between the DOM model of
a document and its serialization may not be a strict
bijection due to white space.

XML Signature [15] is a W3C recommendation that
defines both an XML syntax for specifying parameters

URI ContentM1

URI ContentM2

Semantic

Content

Semantic Signature

URI ContentM0

BURL

BURL

BURL

Core Digital Signature

Figure 3: Compound message

for digital signatures (asymmetric algorithm, crypto-
graphic digest, et cetera) as well as a means of XML
canonicalization using XML Schema. The latter aspect
makes it a viable choice for canonically serializing that
data which will comprise a semantic digital signature.
Another possibility could be to replace the standard
XML serialization with a more data friendly represen-
tation such as a canonicalized list of SAX [16] calls.

5. Semantic digital signatures

Semantic signatures are defined by signing and
verification algorithms that make use of BURIs and
address the concerns stated in Sections 4.2 and 4.3.
For producing a semantic signature, this semantic
layer creates a message that follows a prescribed
data schema, and is the input to the underlying core
signature mechanism.

Generally, with digital signatures, there is the ques-
tion of whether the content signed is bundled with
the signature. For our purposes, we have addressed
this by using the BURI construction together with
a container format. The resulting compound message
has the structure depicted in Figure 3, in which the
content is optional. Each serialized base message is
labelled with a URI which will be referred to in the
semantic content via bound reference. In contrast to
traditional signatures, we have opted to allow multiple
content blocks for two reasons. Firstly, we can envision
settings in which semantic processing requires access
to different data sources within the content for seman-
tic processing. Secondly, nearly all container formats,
such as S/MIME, allow multiple blocks. Insofar as we
wish to use standards it does not make sense to limit
these standards. We mention explicitly that the content
required for indirected BURIs is assumed to come from
content blocks before being loaded over the network.



The semantic content has the following structure:
• semantic armor

– set A of assertions
– set of ontologies OA, from which the asser-

tions take their terms
– a list of content BURIs, indirectly content, to

which the statements apply
– identification of suggested W of world be-

liefs
– identification of suggested reasoner r

• semantic armor
wherein the semantic armor is merely a standard
statement that the content of the signature should be
interpreted as a semantic signature and not otherwise.
We have placed it at both the beginning and end to
prevent attacks that somehow might be based on parse
order.

5.1. Assertions

The assertions are a collection of RDF statements
encoding the meaning of the signature. They are bound
to the content to which the signature applies using the
BURI mechanism.

5.2. Ontologies

As with a standard Semantic Web application, on-
tologies determine the universe of terms used in the
statements and their relationships. In the case of se-
mantic signatures, the ontologies must be known to
the verifier to prevent semantic injection. Note that
ontologies (and their specific versions) would typically
be included via BURI.

5.3. List of content BURIs

We explicitly include a list of BURIs for the content
to which the signature applies, rather than implicitly
deriving it from the list of assertions, as a security
mechanism to ensure that the signers’ intentions apply
only to the desired content (rather than to incidentally
referenced content).

5.4. World Beliefs

World Beliefs are statements that are believed by the
verifier. These beliefs may be used in the verification
of signatures, determination of compliance or other
automated processes. One can think of these as a
generalization of the pool of certificate authorities that

a traditional signature scheme might have. Example
world beliefs are:

• a particular key, identified by BURI, may be used
to certify other keys (potentially with well-defined
specification of key capabilities),

• a particular key, identified by BURI, is associated
to a particular Distinguished Name,

• a particular condition needed for compliance has
been satisfied,

• a particular individual, identified by Distinguished
Name, is authorized to make the assertion that
another individual, identified by Distinguished
Name, works for the Acme Corporation in the
Hadleyburg office.

These are, in short, the initial assumptions that are
needed to seed belief.

While the signing party cannot set the verifier’s
world beliefs, the field W is a suggested set the signer
suggests is needed to make the signature meaningful.
This set can also be used to improve the speed with
which a statement is verified, by limiting semantic
queries in cases where the suggested world beliefs are
a subset of actual world beliefs. An example is a BURI
identifying a certificate authority’s root key included in
a certificate produced by that authority. It is naturally
important that the verifier does not simply accept the
suggestions of the signer.

5.5. Reasoner

We have included a field for the sort of reasoner
used in the semantic signature. As with world beliefs,
this field is used as a suggestion from signer to the
validator about what validation is appropriate or most
effective.

Beyond this there are a number of fundamental
questions about the nature of signatures and semantics:

• If I sign "A implies B and A" have I implicitly
signed B?

• If I sign "A implies B and C" and C obviously
implies A, have I implicitly signed B?

• If I sign a statement S and a reasoner, am I
implicitly signing all implications of the reasoner
applied to S?

• If I sign a statement S and a reasoner, am I
implicitly singing all implications of any correct
reasoner applied to S?

Which are not intended to be addressed with this field.

5.6. Signing and verification

5.6.1. Signing. Semantic signing prepares and com-
bines the data elements described in the previous



section. The signer:
1) Collects, cryptographically hashes and names a

content block or collection of content blocks,
as to generate a collection of BURIs (they are
BURIs rather than BURLs insofar as there is
no guarantee that content will be served by the
specified URI),

2) generates semantic statements concerning the
meaning of the signature. These statements are
cryptographically bound to the content by use of
the generated BURIs,

3) assembles the semantic statements together with
(bound) references to the ontologies in which
the statements take their meaning, and suggested
reasoner and world beliefs, placing them inside
the semantic armor,

4) passes this assembly to a traditional digital sig-
nature scheme.

The signature thus obtained is adjoined to the named
base content to form a compound message. If it is
the signer’s intention that the content be delivered via
alternate channels, such as downloading a BURL, the
content can simply be omitted.

5.6.2. Verification. Traditional public key verification
results in a binary result (valid, invalid) indicating
that a particular binding exists between a key and
content. Conceptually, semantic signatures result in
either invalid or a collection of reified statements
representing "X said Statement1, Statement2,..." that
concern and are cryptographically bound to a collec-
tion of content blocks.

As with traditional signatures, the verification pro-
cess resembles the signing process. The verifier:

1) Parses the compound message, cryptographically
hashes each base content message, and checks
to ensure that they match the BURIs. Failure to
match results in invalid,

2) verifies the signature on the semantic content,
using the underlying signature validation proce-
dure. Failure to validate results in invalid,

3) checks that the formatting of the semantic con-
tent complies to the syntax of semantic signature
specification. Failure to comply to the format
results in invalid,

4) ensures that the specified ontologies are known
and acceptable. An unknown ontology results in
invalid,

5) the following are returned to the semantic veri-
fier:

a) semantic content parsed into a collection
of statements together with the generated

security support statements for the semantic
content statements (Section 4.2)

b) the suggested world beliefs as a collection
of statements (these have no security sup-
port statements),

c) an identifier of the suggested reasoner.

6. Realization of semantic certification

In this section we examine the realization of cer-
tification with the concepts and constructs we have
introduced. A full ontology of X.509 is outside the
scope of this paper. We thus present an outline of the
semantic expressions of certification and explain how
it can be expanded. We define the following data as
expressed by BURIs:

• #certkey is the key of a trusted certificate au-
thority

• #dname is a Distinguished Name
• #key is a key associated to the Distinguished

Name
• A standard X.509 ontology defining prop-

erties #certifies, #associated, #key_for,
#all_associations, et cetera

The most basic semantic certification has
• Assertions:

– S0 := (#dname#associated#key)
– #certkey#certifies (S0),

• Ontology: bound reference to a standard X.509
ontology

• Reasoner: an X.509 reasoner
• List of BURIs: #dname, #key
• World beliefs:

(#certkey#key_for#all_associations)
which, through validation, gets transformed into the
statements:

• S1 := (#dname#associated#key))
• Vn #attests (#certkey#certifies S1)
• Vn #concerns (#dname#associated#key)

which the reasoner transforms into:
• Vm #attests (#dname#associated#key)

This illustrates a basic certification scenario. The ad-
vantages of using semantic signatures over an ad hoc
semantic specification are immediate. In particular,

• The terms in the system are meaningful and carry
relations to one another due to their definition in
a formal ontology.

• The system is extensible. For example, the email
certificate class can be represented as the assertion

– S2 := (#dname#associated#key)
– S3 := (S2 #key_for#email)



– #certkey#certifies S3

• We can similarly, standardly, and meaningfully
express such qualifiers as the conditions under
which the CA made the certification, new classes
and their relation to old classes, arbitrary restric-
tions (profiles), usage policies, et cetera.

7. Compliance Scenario

To illustrate further usage of semantic signatures, we
discuss a concrete example of compliance checking
from the pharmaceutical industry. The United States
Food and Drug Administration (FDA) guidelines dic-
tate that a certain collection of tests must be done on
a drug before it is vetted for human testing. When
requesting approval for a new drug, pharmaceutical
companies have to demonstrate they have followed
such guidelines, generally by submitting documenta-
tion of their processes in paper form. The FDA accepts
digital records and signatures in place of their physical
counterparts if the conditions specified by Title 21
Part 11 of the Code of Federal Regulations [17] are
met by the company’s systems and processes5. Among
these conditions, the regulation states that all signed
electronic records must contain information identifying
the signer, date and time of signature execution and
meaning of the signature (examples such as review,
approval, responsibility or authorship are cited in the
regulation, but this depends on the particular approval
being sought). Note that the regulation does not man-
date any particular format for this information. While
21 CFR Part 11 enables the use of digital signatures
when submitting paperwork for approval by the FDA,
the lack of formal semantics within digital signatures
means that determination of compliance is a human
matter.

Our scenario is based on the following simplified
policy, abstracted from FDA guidelines: in order to
ensure that the tests are done correctly, they must be
done by two different parties, a primary tester and a
verifying tester, each of who is authorized to perform
the tests.

Formalizing this, we need four different parties:
• A: Primary tester,
• B: Verification tester,
• C: Testing Certification Authority,
• D: Key Certification Authority.

We assume that the roles of A and B are not symmetric
as to allow richer semantics; the actual details are not
important for our purposes.

5. 21 CFR Part 11 is contested at many levels in the industry,
as the specification is too wide and open for interpretation; a new
regulation is underway.

We assume that each party x has a public/private key
pair K(x) that is used in compliance with 21 CFR Part
11; for our purposes, the use of the public or private
components of K(·) is contextually clear. We translate
compliance into a collection of signatures, assertions,
and rules as described in the following subsection.

7.1. Rules

• There is some drug Ψ,
• Evidence Σ demonstrates that drug Ψ satisfies test
T ,

• A, B, C, and D are distinct entities,
• K(A) signs “I produced evidence Σ that showsΨ

passes T ”,
• K(B) signs “I verified evidence Σ that showsΨ

passes T ”,
• K(C) signs “A is certified to run the primary

test”,
• K(C) signs “B is certified to run the verification

test”,
• for x ∈ {A,B,C}, K(D) signs “the key K(x)

is associated to the directory name x”
Note that the roles of C, the testing certification
authority, and D, the key certification authority, are a
matter of policy configuration (in other words, a world
belief).

7.2. Realization of scenario

Translating these rules into a semantic signature
scenario begins with the creation of an ontology for
the drug testing guideline being satisfied, and using
this ontology in union with a certification ontology.
An RDF graph representing the scenario in terms of
semantic signatures is shown in Figure 4. We have that
A semantically signs:

• Assertions:
– S4 := (#Σ #shows (#Ψ #satisfies T ))
– #A#primary S4

• Ontology: bound reference to standard certifica-
tion and drug testing ontologies

• Reasoner: a certification reasoner
• List of BURIs: #ψ, #T , #Σ
• World beliefs:

(#certkey#key_for#all_associations)
while B semantically signs a similar message with the
sole difference in assertions:

• Assertions:
– S4 := (#Σ #verifies (#Ψ #satisfies T ))
– #A#verifies S4
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Figure 4: Representation of scenario as an RDF graph
with signed statements.

C semantically signs two messages
• Assertions:

– #A#authorized #primary
– #B#authorized #verifies

Validation of the signatures results in a collection
of statements. Querying of these statements, bearing
in mind that statements must be reified against seman-
tic injection, directly translates back to the rules of
compliance [Section 7.1] thus providing demonstrable
proof of compliance.

7.3. Observations

In the area of compliance checking it is important to
audit signed artifacts and check who was involved in
which step (and signed what). It is important to know
in which capacity each person was involved in a given
process. Often this information needs to be encoded
explicitly inside the signature in such a way that it
can be taken into account in an expanded verification
process. There are obvious ad hoc ways for achieving
this in a particular situation, but we are interested
in approaching the problem in a more general sense,
accommodating the fact that it would be unrealistic to
assume that up-front agreement on an immutable set
of capacities could be achieved and that those would
be used by everybody (e.g. anywhere on the Internet)
without ambiguity and overlap.

Two further observations can be made related to
concrete applications. Firstly, that different parties
carry different obligations and they can have quite
important real-life consequences e.g. in a legal sense,
but they are often only implicitly conveyed. Secondly,

that in the physical world, signatures are relatively rare:
nobody expects the copy editor to sign off on physical
documents, and signatures are only required if certain
minimum obligations, that could become relevant in
legal disputes, apply. With digital signatures, the whole
signing process is automated and can be performed
on behalf of a user without any noticeable effort;
a typical IT user has information signed on many
occasions during a normal day of use. For instance
the simple step of accessing a corporate network over
a Virtual Private Network entails digital signatures,
and so of course does online shopping. The parallels
between the physical world and the real world end
when considering this explosion of signed instruments,
and further automation becomes a necessity.

8. Concluding remarks

We have presented a high-level view of a mechanism
for enriching digital signatures with formal semantics.
In doing so, we have presented a number of con-
structions that are of use in general applications using
semantic technologies. We have further introduced a
new class of attack against applications using RDF,
the basis of the Semantic Web. Full specification of
semantic digital signatures requires significant fur-
ther syntactic and programming interface development.
This engineering effort is underway as part of a general
effort to merge security mechanisms with semantics
toward automated compliance checking.
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Appendix

Semantic Web Summary

The Semantic Web [18] is an extension of the
existing World Wide Web, which allows adding rep-
resentations of formal knowledge in a format that

facilitates automatic reasoning and other meaningful
manipulations of web content by automatic software.

Early proponents argued that human-readable infor-
mation that currently forms the bulk of web content is
only suitable for some low-level processing tasks, such
as formatting and display, because the World Wide
Web was first designed with only human readers in
mind. By this argument more advanced applications
strictly required a major upgrade of the web’s core
infrastructure of the kind envisioned for the Semantic
Web.

The considerable and ever-growing volume of
human-readable (and, from the point of view of high-
level processing, initially unstructured) web content
has meanwhile allowed statistical methods, such as
those used in search engines, gain considerable trac-
tion. These for the most part do not require new
data formats and infrastructure, and hence attractive
applications that specifically depend on the World
Wide Web as a whole evolving into the Semantic Web
have become less apparent. This may be a major reason
why wide-scale adoption on a global footing is not
apparently imminent at this time.

However, the ingredient technologies are at a ma-
ture level and constitute open standards; for the time
being they can also be considered for use in single
applications that require knowledge representation, in
particular when this knowledge concerns web-based
resources. This appendix briefly discusses three core
ingredients, namely RDF, OWL (a loose acronym for
Web Ontology Language) , and reasoning. RDF serves
as a means for representing explicit knowledge, OWL
serves as a means for representing implicit knowledge
(implicit with respect to a particular problem), and
reasoning serves as a means for obtaining explicit
knowledge from implicit knowledge.

Resource Description Framework

The Resource Description Framework (RDF) pro-
vides a mechanism for representing knowledge about
web-based and other resources. Resources are identi-
fied by Uniform Resource Identifiers (URIs, [5]), and
can therefore comprise all information on the web
(with URIs indicating network locations) as well as
all other entities that can be assigned such unique
identifiers (e.g. encoding geographic locations inside
URIs is straightforward).

RDF is not concerned with what is stored behind
URIs (e.g. with the content of corresponding web
pages), but only with information about resources.
This metadata consists of a set of statements (mini-
sentences) of a single form, each comprising a subject,



predicate, and object, in the form of a URI each
(blank subjects and literal object values are out of
scope of this brief overview.) At a conceptual level,
RDF is attractively simple, because it solely relies on
statements in the uniform form of 3-tuples. Some of
this simplicity becomes less apparent when the RDF
graph is expressed in a concrete serial syntax, such as
XML in the case of RDF/XML serialization.

For making a statement about a resource, one can
formulate a triple that has the respective resource URI
as its subject. The semantics of what is represented
in this way depends on what predicate and object are
used. These resources are also represented by URIs,
which in turn and recursively can be described by
further statements. The union of all related statements
forms a directed graph, whose nodes correspond to all
subjects and objects and whose vertex labels corre-
spond to all predicates.

The transitive closure of all edges leading outwards
from a node corresponds to the entire meaning of the
entity named by the resource URI, as far as RDF
knowledge representation is concerned.

Ontologies

The knowledge representation mechanism adopted
for the Semantic Web accounts for the distributed na-
ture of the world wide web. In particular, since content
creation occurs potentially in parallel at many places,
times, and jurisdictions, it is in practice unavoidable
that equal concepts will be referred to under different
URIs by different authors (e.g. who may form seman-
tically equivalent names using different languages and
arriving at different URIs), and described in terms of
different relationships.

Adopting URIs for naming resources has therefore
two direct advantages. First, there are existing practices
for managing the entire name space of possible URIs
in non-overlapping administrative domains. (Domain
Names partly constitute URIs.) Second, there is a direct
mapping of URIs that represent web-based resources to
a suitable transfer protocol (HTTP Hypertext Transfer
Protocol).

OWL is a type language for expressing rules for
reasoning about RDF data. It encodes implicit assump-
tions that underlie the description of certain resources
e.g. in terms of their expected relationships and known
differences. Concepts are resources that characterize
common sets of individual resources according to
those properties. For the purpose of convenience and
reuse, concept definitions are grouped into ontologies.
(Unlike with object-oriented type systems, concept
membership of an individual resource is just one

property among others, and is dynamically inferred as
well.) Some ontologies of specialized concepts, such
as for describing publishing information [19] already
exist.

OWL offers three dialects with increasing expres-
siveness, and correspondingly increasing difficulty of
reasoning and hence computational cost. Expressive-
ness comes from a range of available concept-forming
primitives that allow the description of new concepts
in relation to existing ones according to Description
Logic (DL). For example, there are primitives for ex-
pressing disjointness between concepts, or cardinality
of individuals in certain relations to a concept. OWL
Lite allows a subset of concept-forming primitives
from DL and is suitable for building simple hierar-
chical taxonomies. OWL DL allows all DL concept-
forming primitives and is still computationally com-
plete and decidable. OWL Full further reduces the
constraints on the use of these primitives, but it implies
serious computational obstacles under state-of-the-art
theory and technology.

Reasoners

The underlying theoretic formalism of the Semantic
Web is Description Logic, which emerged from prede-
cessor systems such as frame-based systems by adding
more precise formal logic. In terms of expressivity and
decidability Description Logic corresponds to a subset
of First Order Logic [20].

By giving unique names to concepts (RDF) and by
expressing their differences in exact terms (OWL) logi-
cal reasoning can occur. The basic supported reasoning
task checks whether one concept subsumes another,
i.e. whether all individuals belonging to one concept
implicitly also belong to another. (Other supported
reasoning tasks, such as satisfiability, can be viewed
as specializations thereof.)

Conceptually, the inputs to reasoning are RDF state-
ments (vertices in a graph) and a set of ontologies
(OWL), and the output are additional and qualified
vertices. Unlike the initial ones, which can be consid-
ered unqualified because of the axiomatic nature of the
initial RDF statements, those added by reasoning are
qualified by what implicit knowledge was considered
by the reasoner.


