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Abstract

A large class of maximum-transition-run (MTR) block codes is presented that is based on a novel low-
complexity enumerative encoding scheme. This new class of MTR codes is obtained by a general design method
to construct capacity-efficient MTR codes with predetermined j and k constraints and reduced error propa-
gation at the decoder. Typically, these codes are designed to improve the distance properties of a generalized
partial-response detector trellis. Another way to use MTR codes consists in applying even/odd interleaving
to construct long high-rate PRML(G,I,M) modulation codes that satisfy tight global G = 2k and interleaved
I = k constraints. Furthermore, these (G,I) constrained codes satisfy the M = 2j constraint, i.e., they have
limited runs of alternating 2T magnets at the channel input.

Keywords

Modulation codes, enumerative encoding, MTR(j, k)-constraints, G, I and M constraints, reverse concate-
nation.

I. Introduction

In magnetic recording and optical storage, modulation constraints on the recorded binary
sequences are employed to facilitate timing recovery and ensure efficient operation of the detec-
tor [1]. A frequently used modulation constraint is the k constraint, which limits the maximum
number of consecutive zeros to k. In this report, we will focus on the maximum transition run
(MTR) constraint, which has been introduced by Moon and Brickner to provide coding gain for
extended partial response channels, which are based on partial-response maximum likelihood
(PRML) detection [2]. Typically, MTR codes satisfy two constraints, the k constraint and the
j constraint. Recall that the j constraint is dual to the k constraint, i.e., it limits the maximum
number of consecutive ones in a binary sequence to j.

The construction of MTR codes with a j constraint and no limitations on the k constraint
can be approached through Fibonacci codes, which were introduced by Kautz [3]. By applying
bit inversion to all codewords in a Fibonacci code, the j constraint is transformed into a k
constraint. Thus, for a pure j constraint or a pure k constraint, the Fibonacci codes and the bit-
flipped Fibonacci codes form a class of highly efficient enumerative modulation codes. However,
in the case of mixed MTR constraints, i.e., with finite values of j and k, the class of Fibonacci
codes does not achieve the desired constraints. For these mixed MTR constraints, a novel
enumerative encoding/decoding scheme is presented that is a generalization of the Fibonacci
codes and generates MTR modulation codes with predetermined j and k constraints.

In storage systems, user data is typically first encoded by an error-correcting code (ECC)
before it is passed through the modulation encoder, and therefore error propagation at the
modulation decoder is an important practical issue. For this reason, most practical modulation
block codes are relatively short. Some MTR codes presented are especially designed to have
reduced error propagation. In fact, error propagation to the left cannot be controlled because
of the carry propagation in the enumerative decoder; however, the maximum error propagation
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to the right (in bits) is a design parameter, which can be suitably selected in the construction
of the enumerative MTR codes proposed here.

In a reverse concatenation (RC) scheme, the order of the ECC encoder and the modulation
encoder is reversed, i.e., user data is first modulation-encoded before it is passed through the
ECC encoder. Hence, during read back, the ECC decoder operates before the modulation
decoder and, thus, there is no error propagation except for the extremely rare event that the
ECC decoder makes an error. For this reason, one can choose to use long modulation codes in
an RC scheme, which operate close to the capacity of the constraint selected. RC architectures
have been considered in various papers [4], [5], [6], [7] and, recently, have been implemented
in hard-disk drive products. For the RC framework, a design method for long, high-rate MTR
codes is presented and illustrated by numerous examples of capacity-efficient codes.

The report is organized as follows. In Section II, the new MTR scheme is introduced with its
enumerative encoder/decoder algorithms. In Section III, a design method for practical MTR
codes with efficient encoders/decoders is presented. Section IV illustrates the construction
of long, high-rate PRML(G, I,M) modulation codes for PRML recording schemes from long,
high-rate MTR codes. In Section V, the implementation aspects of MTR encoders/decoders
are discussed and compared to those of generalized Fibonacci codes.

II. Enumerative Encoding of MTR Codes

Suppose that finite j and k constraints are specified, where, without loss of essential generality,
one can assume j ≤ k (otherwise one applies bit inversion to all codewords, which interchanges
the j and the k constraints). For each N , a MTR block code of length N will be defined based on
a set of weights {(vn, wn)}, n = 1, 2, . . . , N , which will be called MTR-weights. The sequences
{vn} and {wn} will be called k-weights and j-weights, respectively. They are determined by
initial conditions and linear recursions, which reflect the k and the j constraints. The initial
MTR-weights are defined by

vn = 0 n = 1, 2, . . . , k + 1 (1)

wn = 2n−1 n = 1, 2, . . . , j + 1, (2)

and the two interlinked recursions are given by

vn+1 = vn−k + wn−k n ≥ k + 1 (3)

wn+1 = wn + wn−1 + . . . + wn−j − vn+1 + vn−j n ≥ j + 1. (4)

Note that the j-weights form a monotonically increasing sequence and the k-weights are mono-
tonically non-decreasing.

We start with the description of an encoder of a code of length N . First, we define the input
space U , which consists of all integers u in the half-open interval [LN , UN) with lower and upper
boundaries LN and UN given by

LN = vN−k + wN−k (5)

UN = wN + wN−1 + . . . + wN−j + vN−j. (6)

Thus, U = {u : LN ≤ u < UN}. There is an obvious way to map binary inputs u1, u2, . . . , uN

into integers u in the input space U , namely by adding the offset LN to the sum
∑N

i=1 ui2
N−i,

i.e., by the assignment u =
∑N

i=1 ui2
N−i + LN . Moreover, one needs to ensure that u does not
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exceed the upper bound UN by suitably restricting the binary inputs. In the remaining part of
this Section, we will not be concerned with this mapping, and we will assume that the input is
an integer u belonging to the input space U .

Given an input u ∈ U , the encoder computes the binary output sequence x1, x2, . . . , xN based
on the following algorithm:

For ` = 1 to N do:
if u ≥ vN−`+1 + wN−`+1

x` = 1, u = u− wN−`+1

else
x` = 0.

(7)

The encoding algorithm leads to a representation of the input as a weighted sum with binary
coefficients

u =
N∑

`=1

x`wN−`+1. (8)

The decoder is based on this weighted-sum representation. Given a codeword x1, x2, . . . , xN ,
the decoder first initializes the output to u = 0 and then performs the following N steps:

For n = 1 to N do: if xN−n+1 = 1 then u = u + wn . (9)

The code of length N , which consists of all output sequences x1, . . . , xN generated by inputs
u ∈ U , will be called a strict-sense enumerative maximum transition run code with parameters j
and k. The encoding and decoding algorithms (7) and (9) will be referred to as eMTR-encoder
and eMTR-decoder.

While maintaining the same encoding and decoding algorithms (7) and (9), one can weaken
the defining equations (1) – (6) for the MTR-weights and obtain a larger class of codes. Specifi-
cally, one requires the j-weights to be positive integers, while generalizing the initial conditions
and the two recursions for the MTR-weights to

vn ≥ 0 n = 1, 2, . . . , k + 1 (10)

wn ≤ 2n−1 n = 1, 2, . . . , j + 1 (11)

vn+1 ≥ vn−k + wn−k n = k + 1, . . . , N − 1 (12)

wn+1 ≤ wn + wn−1 + . . . + wn−j − vn+1 + vn−j n = j + 1, . . . , N − 1. (13)

Moreover, the lower and upper bounds of the input space can be chosen as

LN ≥ vN−k + wN−k (14)

UN ≤ wN + wN−1 + . . . + wN−j + vN−j. (15)

The resulting codes will be called enumerative maximum transition run (eMTR) codes and a
code with parameters (N, j, k) will be called an eMTR(j, k) code of length N . Note that for a
given set of parameters (N, j, k), there is exactly one strict-sense eMRT(j, k) code of length N ,
but there are many possible length-N eMTR(j, k) codes. The more general recursions and lower
and upper bounds (10) – (15) allow one to construct practical codes with tighter constraints at
the codeword boundaries and to design complexity-efficient encoders/decoders. This comes at
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the price of a slight reduction in the number of codewords compared with strict-sense eMRT
codes, which have the largest number of codewords for a given set of parameters (N, j, k).

Next, we will derive the basic properties of eMTR codes. In particular, we will show that
the codes satisfy the predetermined j and k constraints and that the encoding is indeed based
on codeword enumeration.

Proposition 1: eMTR(j, k) codes satisfy the j constraint.

Proof:
Case 1 (no j constraint violation at the left boundary):

As the input u lies in the input space U , one has u < UN , which by (15) implies

u < wN + wN−1 + . . . + wN−j + vN−j. (16)

Suppose that j + 1 or more consecutive components x1, x2, . . . , xj+1, . . . were one, which means
that in the first j + 1 steps in the encoding algorithm (7), one has

u ≥ vN + wN

u− wN ≥ vN−1 + wN−1

u− wN − wN−1 ≥ vN−2 + wN−2

...

u− wN − wN−1 . . .− wN−j+1 ≥ vN−j + wN−j.

The last inequality can be rewritten as

u ≥ vN−j + wN + wN−1 + . . . + wN−j+1 + wN−j,

and this is a contradiction to (16). Hence, there cannot be j + 1 consecutive ones and, thus,
the j constraint must be satisfied at the left boundary.
Case 2 (no j constraint violation inside a codeword):

Suppose xn = 0 and j + 1 or more components xn+1, xn+2, . . . , xj+1, . . . were one. Based on
(7), the condition xn = 0 translates into the inequality

u(n) < vN−n+1 + wN−n+1 (17)

for the input u = u(n) at step n in the algorithm, which also implies u(n+1) = u(n) for the input
at step n + 1. The run of j + 1 consecutive ones implies that at steps n + 1, n + 2, . . . , n + j + 1
in the algorithm, one has the following inequalities:

u(n+1) ≥ vN−n + wN−n

u(n+1) − wN−n ≥ vN−n−1 + wN−n−1

u(n+1) − wN−n − wN−n−1 ≥ vN−n−2 + wN−n−2

...

u(n+1) − wN−n − wN−n−1 . . .− wN−n−j+1 ≥ vN−n−j + wN−n−j.

Making use of (13), the last inequality can be rewritten as

u(n+1) ≥ vN−n−j + wN−n + wN−n−1 + . . . + wN−n−j+1 + wN−n−j (18)

≥ vN−n+1 + wN−n+1. (19)
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This last inequality (19) is a contradiction to (17) because u(n+1) = u(n). Hence, the j constraint
cannot be violated.

Proposition 2: eMTR(j, k) codes satisfy the k constraint.

Proof:
Case 1 (no k constraint violation at the left boundary):

If k + 1 or more consecutive components x1, x2, . . . , xk+1, . . . were zero, then there is no
weight-substraction in the first k + 1 steps in the encoding algorithm (7) and, thus,

u < vN−k + wN−k, (20)

which contradicts the fact that u ∈ U , in particular, vN−k + wN−k ≤ u. Hence, there cannot
be k + 1 consecutive zeros and, thus, the k constraint must be satisfied at the left boundary.
Case 2 (no k constraint violation inside a codeword):

Suppose xn = 1 and k + 1 or more components xn+1, xn+2, . . . , xk+1, . . . were zero. Based on
(7), the condition xn = 1 translates into the inequality

u(n) ≥ vN−n+1 + wN−n+1 (21)

for the input u = u(n) at step n in the algorithm. The input at step n + 1 is obtained by
subtracting the j-weight wN−n+1, i.e., u(n+1) = u(n) − wN−n+1. The consecutive run of k + 1
zeros implies that at steps n + 1, n + 2, . . . , n + k + 1 in the algorithm, one has the following
inequalities:

u(n+1) < vN−n + wN−n

u(n+2) = u(n+1) < vN−n−1 + wN−n−1

u(n+3) = u(n+1) < vN−n−2 + wN−n−2

...

u(n+k+1) = u(n+1) < vN−n−k + wN−n−k.

Making use of (12), the last inequality can be rewritten as u(n+1) < vN−n+1, which implies

u(n) < vN−n+1 + wN−n+1 (22)

and, thus, is a contradiction to (21). Hence, the k constraint cannot be violated.

The eMTR encoder/decoder can be described in terms of enumerative encoding techniques
[8]. However, in contrast to [8], the enumeration of codewords does not start at 0 but at the offset
LN . Enumerative encoding is a generic technique for the construction of an encoder/decoder
for some block code. To this end, one introduces the lexicographical order on the set of all
eMTR(j, k) codewords, which are a subset of all binary length-N sequences. The ordering is
chosen such that the leftmost bit x1 in a sequence x1, x2, . . . , xN is the most significant bit.

Proposition 3: (a) Enumerative encoding: The eMTR encoder specifies an order-preserving
one-to-one map from input space U onto the eMTR(j, k) code of length N .
(b) The length-N eMRT(j, k) code with lower and upper bounds LN and UN given by (14) and
(15) contains UN − LN codewords.
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Proof: Part (a): Let u and u′ be two input values in U and suppose u > u′. Let
x = [x1, . . . , xN ] and x′ = [x′1, . . . , x

′
N ] be the corresponding codewords generated by the eMTR

encoder. We will show that x > x′ with respect to the lexicographic ordering by running two
eMTR-encoders in parallel, one for the input u and the other for the input u′. Note that as
u 6= u′, the two codewords x and x′ must be distinct by (8).

Case 1: Suppose x1 6= x′1. As u > u′, it follows that in the first step of the encoding algorithm
one must have x1 = 1 and x′1 = 0, which implies x > x′.

Case 2: Suppose the first ` − 1 components of both codewords are the same and x` 6= x′`.
At the `-th step, the two encoders have as inputs u(`) = u −∑

i=1,...,`−1 xiwN−i+1 and u′(`) =

u′ − ∑
i=1,...,`−1 xiwN−i+1. As u > u′, clearly, u(`) > u′(`) and, at the `-th encoding step, the

outputs are x` = 1 and x′` = 0, which implies x > x′.
Part (b): Follows from (a) and the fact that the input space U has UN − LN elements.

III. Practical eMTR codes

Practical codes should maintain tight constraints across codeword boundaries and have simple
encoder/decoder implementations. For this reason, practical eMTR codes are based on the
generalized recursions (10) to (15).

The parameter j = j(n) in (13), which determines the j constraint, can be chosen to be
dependent on the location n. For instance, if j(n) = 4, then the encoder (7) generates a
codeword that satisfies x`x`+1x`+2x`+3x`+4 = 0, where ` = N − n + 1. Thus, an eMTR code
has a j-profile that may depend on the location n in a constrained codeword and thus satisfies
non-uniform modulation constraints, e.g., tighter constraints at the codeword boundaries or at
some other specified locations [7]. Similarly, the eMTR code has a k-profile that may depend
on the location n in a codeword.

Moreover, to achieve efficient encoding and decoding (see [9]), one chooses the MTR-weights
vn and wn to have a limited span S, i.e., in binary notation each MTR-weight has no more
than S non-zero most significant bits, with all lower bits being zero. More generally, the k-
weights vn have a span S(k) and the j-weights wn have a (possibly different) span S(j). The
finite span property ensures that while encoding/decoding codeword bit x`, the computations
at the `-th step can be done by one sliding-window S(j)-bit adder (or subtractor) with carry
and one sliding-window comparison that is max{S(j), S(k)} + 1 bits wide [7]. In the following,
we will always assume j ≤ k, which is not an essential restriction because the role of j and k are
interchanged by inverting all bits in a codeword. Moreover, one typically selects S(j) ≤ S(k).

Tighter constraints at the boundaries can be enforced by selecting appropriate initial condi-
tions and suitable lower and upper bounds for the input space. To obtain the tighter constraints
at the codeword ending, je < j and ke < k, the initial conditions of the recursions are modified
as follows:

vn =

{
0 n = 1, 2, . . . , ke + 1
1 n = ke + 2, . . . , k + 1.

(23)

wn =

{
2n−1 n = 1, 2, . . . , je + 1∑n−1

`=1 w` − vn n = je + 2, . . . , j + 1.
(24)

The MTR-weights are given by the two interlinked recursions

vn+1 = 2n−S(k)d2S(k)−n(vn−k + wn−k)e n = k + 1, . . . , N − 1 (25)

wn+1 = 2n−S(j)b2S(j)−n(
n∑

`=n−j

w` − vn+1 + vn−j)c n = j + 1, . . . , N − 1, (26)
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where wn = 0 for n ≤ 0 and where dte and btc denote the smallest integer, which is at least as
large as t, and the largest integer not exceeding t, respectively. By construction, the j-weights
have span S(j) and the k-weights have span S(k).

To impose tighter constraints jb < j and kb < k at the beginning of codewords, one defines
the upper and lower bounds on the input space as

LN = vN−kb
+ wN−kb

(27)

UN = wN + wN−1 + . . . + wN−jb
+ vN−jb

. (28)

The resulting code of length N contains UN −LN codewords. As mentioned in the preceding
section, the eMTR encoder is combined with an offset mapper to achieve the encoding of
K input bits u1, u2, . . . , uK into binary codewords x1, x2, . . . , xN of length N , where K =
blog2(UN −LN)c. Note that the offset mapper is essentially a binary S(j)-bit adder with carry,
which adds the S(j) most significant bits of the lower bound LN to the first S(j) bits of the
binary input sequence.

The interlinked recursions (25) – (26) do not make the best use of the allowed j-span for
codes with small j and large N . Slightly better weights can be obtained by decomposing each
j-weight wn into a suitable power of two and a “mantissa part” of span S(j). Instead of the
simple 2n−1 part above, one determines the best exponent for each j-weight. Namely, for n > j
one defines the exponent e(n + 1) of wn+1 as blog2(vn−j − vn−k − wn−k +

∑n
`=n−j w`)c. The

interlinked recursions (25) – (26) are then replaced by

w̃n+1 = vn−j − vn−k − wn−k +
n∑

`=n−j

w` n = j + 1 . . . , N − 1 (29)

e(n + 1) = blog2(w̃n+1)c n = j + 1, . . . , N − 1 (30)

wn+1 = 2e(n+1)+1−S(j)b2S(j)−e(n+1)−1(w̃n+1)c n = j + 1, . . . , N − 1 (31)

vn+1 = 2e(n+1)+1−S(k)d2S(k)−e(n+1)−1(vn−k + wn−k)e n = k + 1, . . . , N − 1. (32)

Examples of good eMTR codes are presented below. We recall that all these eMTR codes are
designed to be used with a 1/(1⊕D) precoder. To construct long eMTR codes, it is sufficient to
specify the spans S(j) and S(k), the length N , the constraints j, k, and the boundary constraints
jb, je and kb, ke. Given these parameters, the MTR-bases are fully determined either by the
simpler set of equations (23) – (28) or by the tighter ones, where (25) – (26) are replaced by
(29) – (32).

A. An eMTR(j = 2, k = 7) Code of Rate-16/19

In Table I, an eMTR code of length N = 19 with MTR-weights vn and wn is specified.
The table also displays the j and k profiles. The tight constraints at the codeword boundaries
ensure that the j = 2 and k = 7 constraints are maintained across codeword boundaries. The
lower and upper bound on the input space U are L19 = 8065 and U19 = 75482. Therefore, the
code contains 67417 codewords and gives raise to a rate-16/19 block code. The capacity of the
j = 2, k = 7 constraint is 0.873230 (rounded up to 6 decimal digits), which results in a rate
efficiency of 96.4357%. Note that there exists no length-19 (j = 2, k = 6) code of rate 16/19
[2].

The k-weights vn have no limitation on their span, and thus the encoder needs to perform
comparison operations that are up to N = 19 bits wide. However, the j-weights wn have a
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TABLE I
Weights and constraints profile of an eMTR(j = 2, k = 7) code of rate-16/19.

n 1 2 3 4 5 6 7 8 9 10
wn 1 2 3 6 11 19 35 64 118 216
vn 0 0 0 0 0 1 1 1 1 2
jn 1 1 2 2 2 2 2 2 2 2
kn 1 2 3 4 4 5 6 7 7 7

n 11 12 13 14 15 16 17 18 19
wn 396 720 1312 2400 4352 8000 14592 26624 48640
vn 3 6 11 20 36 65 119 218 399
jn 2 2 2 2 2 2 2 2 1
kn 7 7 7 7 7 7 7 7 3

span of S(j) = 7. This implies that a bit error in the detector will not propagate through more
than 7 bits to the right at the modulation decoder output. Such reduced error propagation is
a desirable property that helps to reduce the byte-error rate at the output of the modulation
decoder.

The code satisfies an additional constraint – known as the twins constraint (or t con-
straint) [10], that excludes quasi-catastrophic error propagation on a detector trellis for a
partial-response polynomial of the form (1 − D2)(1 − P (D)), where 1 − P (D) has no roots
on the unit circle. In particular, the j = 1 constraint at the codeword boundaries enforce a
twins constraint t = 19. By eliminating the two sequences y1 = 1001100110011001100 and
y2 = 0011001100110011001 from the code, one can enforce a t = 17 constraint. The two se-
quences correspond to the input values u1 = 62216 and u2 = 24824. Hence, an encoder for
this t = 17 constraint code is obtained from the eMTR encoder (7) by a simple modification,
viz., the omission of u1 and u2 from the input space. To encode that eMTR(2, 7) code with
t = 17 of rate-16/19, one can choose the input space to consist of all integers in the range
L19 ≤ u < L19 + 216 + 1, except for the values u1 and u2. By deleting further codewords,
the twins constraint can be slightly tightened further; however, at a price of a more complex
encoder/decoder.

B. An eMTR(j = 3, 4, k = 18) Code of Rate-16/17

An eMTR code of length N = 17 with MTR-weights vn and wn is specified in Table II. The
table also displays the j and k profile. The code satisfies a j = 3 constraint except for the
boundary where across codeword boundaries a j = 4 constraint is maintained. Furthermore,
the code ensures a k = 18 constraint. The lower and the upper bound on the input space U are
L17 = 100 and U17 = 65654, hence, the code contains 65554 codewords. Proceeding as in [10],
one can delete 17 codewords that either start in the first 15 bits with periodic patterns of period
4 of the form 00110011 . . ., 01100110 . . ., 11001100 . . ., and 10011001 . . . or end in the last 16
bits with one of these periodic patterns of period 4. The resulting code with 65537 codewords
satisfies a twins constraint with t = 14. This generalized eMTR(j = 3, 4, k = 18, t = 14) code
has a simple enumerative encoder/decoder.

Following [10], one can construct a look-ahead rate-16/17 sliding block code (see Fig. 9 in
[10]) based on the eMTR(j = 3, 4, k = 18, t = 14) code by applying the substitution Table X in
[10]. The resulting code satisfies the constraints j = 3, k = 12, t = 9 and has a rather simple
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TABLE II
Weights and constraints profile of an eMTR(j = 3, 4, k = 18) code of rate-16/17.

n 1 2 3 4 5 6 7 8 9
wn 1 2 4 7 14 27 52 100 193
vn 0 0 0 0 0 0 0 0 0
jn 1 2 2 3 3 3 3 3 3
kn 1 2 3 4 5 6 7 8 9

n 10 11 12 13 14 15 16 17
wn 372 716 1380 2660 5127 9883 19050 36720
vn 0 1 1 1 1 1 1 1
jn 3 3 3 3 3 3 3 2
kn 9 10 11 12 13 14 15 9

encoder/decoder.

C. Two eMTR(j = 3, k = 14) Codes of Length 68 and Rate-16/17

The k-weights of the first eMTR code of length N = 68 have a maximum span of S(k) = 15
and are given by

vn =





0 for n = 1, 2, . . . , 8
1 for n = 9, . . . , 15
2n−16 for n = 16, . . . , 68.

The j-weights {wn} of the first code are specified in Table III. From the representation
as integers of the form wn213−n, it is apparent that the j-weights have a maximum span of
S(j) = 12. By design, the code satisfies a j = 3 constraint and a k = 14 constraint within
codewords and across codeword boundaries. As S(j) = 12, error propagation is limited to at
most 12 bits to the right at the modulation decoder output. The input space U is determined
by the lower and upper bounds LN = 2 × 2N−12 and UN = 258 × 2N−12, where N = 68; thus,
the code contains 2N−4 codewords. The capacity of the (j = 3, k = 14) constraint is 0.9467;
thus, this rate-16/17 code has an efficiency of 99.41%.

A second eMTR(j = 3, k = 14) code of length 68 and rate-16/17 is obtained by choosing
a smaller j-span and using recursions (29) – (32) together with (23) – (24) and (27) – (28).
In particular, the following parameters uniquely determine the second eMTR(j = 3, k = 14)
code: S(j) = 10, S(k) = 16, kb = 7, ke = 7,jb = 1, je = 2 and N = 68. This code has an error
propagation of at most S(j) = 10 bits to the right, which is less than that of the first code.

D. Three eMTR(j = 4, k) Codes of Length 66 and Rate-32/33

The construction of the three j = 4 eMTR codes is based on (23) – (28). The codes are
uniquely determined by the following nine parameters, which are specified in Table IV: the
two spans S(j) and S(k), the length N , the constraints j, k, and the boundary constraints jb, je

and kb, ke. All codes have rate-64/66. The first two codes satisfy a k = 10 constraint, and the
third code satisfies a k = 11 constraint. Thus, the first two codes have an efficiency of 99.48%
whereas the third code has an efficiency of 99.46% since the capacities of the (j = 4, k = 10)
constraint and the (j = 4, k = 11) constraint are 0.9748 and 0.9750, respectively (see [11]).
The last code has the shortest j-span S(j) and, therefore, it is the most efficient one in terms
of complexity and has the least error propagation.
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TABLE III
Weights of an eMTR(j = 3, k = 14) code of length 68 and rate-16/17.

n 1 2 3 4 5 6 7 8 9 10 11 12
wn213−n 4096 4096 4096 3584 3584 3456 3328 3200 3072 2960 2852 2748
n 13 14 15 16 17 18 19 20 21 22 23 24
wn213−n 2649 2553 2460 2371 2285 2202 2122 2045 1970 1899 1830 1763
n 25 26 27 28 29 30 31 32 33 34 35 36
wn213−n 1699 1637 1577 1520 1464 1411 1359 1310 1262 1216 1172 1129
n 37 38 39 40 41 42 43 44 45 46 47 48
wn213−n 1088 1048 1010 973 937 903 870 838 807 778 749 722
n 49 50 51 52 53 54 55 56 57 58 59 60
wn213−n 695 670 645 621 598 576 555 534 515 496 478 460
n 61 62 63 64 65 66 67 68
wn213−n 443 427 411 396 381 367 353 340

TABLE IV
Parameters of three eMTR(j = 4, k) codes of length 66 and rate-32/33.

S(j) S(k) k kb ke j jb je N rate capacity
10 13 10 5 5 4 2 2 66 0.9697 0.9748
11 11 10 5 5 4 2 2 66 0.9697 0.9748
9 13 11 5 6 4 2 2 66 0.9697 0.9750

E. Long eMTR Codes with j = 7

The construction of long j = 7 eMTR codes is based on (23) – (28). The codes are uniquely
determined by the following parameters: the spans S(j), S(k), the length N , the constraints
j, k, and the boundary constraints jb, je and kb, ke. These parameters are specified in Table V
for various codes with k = 7 to 10. For all these codes, the maximum length N is given such

TABLE V
Parameters of long eMTR codes with j = 7 constraint and rate-(N − 1)/N .

S(j) S(k) k kb ke j jb je N rate capacity
13 13 7 3 4 7 3 4 129 0.9922 0.9942
12 17 7 3 4 7 3 4 130 0.9923 0.9942
11 11 8 4 4 7 3 4 168 0.9940 0.9957
11 11 9 4 5 7 3 4 202 0.9950 0.9964
10 14 9 4 5 7 3 4 200 0.9950 0.9964
9 11 10 5 5 7 3 4 210 0.9952 0.9968

that the codes have rate-(N − 1)/N . For comparison purposes, the capacity of the constraint
is also given with an accuracy of four decimal digits (see [11]). The first and the second code
satisfy the same constraints and both achieve essentially the same rate. The second code has a
smaller j-span S(j) at the cost of a larger k-span S(k). The smaller j-span results in less error
propagation at the decoder and also at a smaller encoding/decoding complexity despite the
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larger k-span value. Similar comments apply to the fourth, fifth and sixth codes.

F. Long eMTR Codes with j = 6

The construction of long j = 6 eMTR codes is based on (23) – (28). The codes are uniquely
determined by the following parameters: the spans S(j), S(k), the length N , the constraints j, k,
and the boundary constraints jb, je and kb, ke. These parameters are specified in Table VI for
various codes with k = 7, 8 and 9. The first two codes have rate-(N − 3)/N , whereas the last
four codes have rate-(N − 1)/N . The dimension of the codes is denoted by K, i.e., each code
has at least 2K codewords. Again, for comparison purposes, the capacity of the constraint is
given (with an accuracy of four decimal digits). The last code with S(j) = 9 is interesting from
a complexity and error-propagation point of view.

TABLE VI
Parameters of long eMTR codes with j = 6 constraint and rate-K/N .

S(j) S(k) k kb ke j jb je N K rate capacity
13 13 7 3 4 6 3 3 301 298 0.9900 0.9912
12 15 7 3 4 6 3 3 300 297 0.9900 0.9912
11 11 8 4 4 6 3 3 100 99 0.9900 0.9927
10 14 8 4 4 6 3 3 100 99 0.9900 0.9927
11 11 9 4 5 6 3 3 113 112 0.9912 0.9934
9 10 9 4 5 6 3 3 102 101 0.9902 0.9934

G. Long eMTR Codes with j = 5

The construction of the first six j = 5 eMTR codes in Table VII is based on (23) – (28).
These codes are uniquely determined by the following parameters: the spans S(j), S(k), the
length N , the constraints j, k, and the boundary constraints jb, je and kb, ke. The maximum
length N is given such that the first three codes have rate-(N − 3)/N , the fourth code has
rate-(N−2)/N , and the fifth and sixth codes have rate-(N−1)/N . The dimension of the codes
is denoted by K, i.e., each code has at least 2K codewords. Again, for comparison purposes,
the capacity of the constraint is given (with an accuracy of four decimal digits). Note that the
fourth code satisfies a k = 10 constraint within the codeword and a j = 11 constraint across
codeword boundaries. Similarly, the sixth code satisfies k = 18 within codewords and k = 19
at codeword boundaries.

TABLE VII
Parameters of long eMTR codes with j = 5 constraint and rate-K/N .

S(j) S(k) k kb ke j jb je N K rate capacity
12 12 9 4 5 5 2 3 207 204 0.9855 0.9873
11 11 10 5 5 5 2 3 204 201 0.9853 0.9877
10 12 10 5 5 5 2 3 201 198 0.9851 0.9877
10 15 10 5 6 5 2 3 136 134 0.9853 0.9879
10 15 14 7 7 5 2 3 64 63 0.9844 0.9880
10 14 18 9 10 5 2 3 65 64 0.9846 0.9881
9 13 12 6 6 5 2 3 136 134 0.9853 0.9880
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The last code in Table VII has a j-span of S(j) = 9, which is the smallest among all codes in
this table. To achieve this small j-span, it was necessary to base the construction of this code
on the tighter recursions (29) – (32).

IV. High-Rate PRML(G, I,M) Codes

In partial-response maximum-likelihood (PRML) based recording systems, one uses PRML(G,I)
modulation codes that satisfy (i) a global run-length constraint for synchronization purposes,
and (ii) a run-length constraint in the even and the odd interleave allowing the use of a short
path memory in the Viterbi detector without a substantial performance degradation [12]. We
recall that PRML(G,I) codes are used with a 1/(1 ⊕ D2) precoder and that the (G,I) con-
straints are defined prior to the precoder. Namely, the maximum number of consecutive zeros
in the coded binary sequences is limited to G, and the maximum number of consecutive zeros
in both the even and odd interleaves of the coded sequences is limited to I.

By using a length-N eMTR(j, k) code in both the even and odd interleaves, one obtains a
PRML(G, I) code of length 2N , with G = 2k and I = k [7]. The j constraint in each interleave
translates into the M constraint. This is a constraint that limits the runs of alternating 2T
magnets . . . + + − − + + − − . . . in the channel input sequences (i.e., after precoding) to
bM/2c + 1 = j + 1, where T denotes the symbol duration [13], [14]. In the context of anti-
whistle codes, an equivalent constraint is referred to as ka

4 constraint [14]. We will denote
PRML codes constructed from eMTR(j, k) codes, as PRML(G, I,M) codes to emphasize the
three constraints G = 2k, I = k and M = 2j. The M constraint is also known as VFO (variable-
frequency oscillator) constraint. It is a desirable constraint in tape-recording systems [15], which
employ a phase-locked loop (PLL) that acquires phase lock based on a long alternating 2T VFO
pattern. The VFO constraint ensures that there is no modulation-encoded data sequence, which
can be mistaken for a long VFO pattern.

In addition to the (G, I, M) constraints, the resulting PRML(G, I,M) codes satisfy further
constraints, which are known as k2 and kb

4 constraints [14]. The k2 constraint limits the length
of alternating channel input sequences . . . +−+− . . ., and the kb

4 constraint limits the length
of channel input sequences of period 4 of the form . . . + + +− + + +− . . . or their antipodal
version. Thus, PRML(G, I,M) codes derived from eMTR(j, k) codes satisfy k, k2, ka

4 and
kb

4 constraints, i.e., these PRML(G, I,M) codes limit the length of all periodic channel input
sequences of period 1, 2 and 4. The constraints are related by k = G+1, k2 = 2I+1, ka

4 = M+1
and kb

4 = 2I + 2.
The two-way interleaving construction based on eMTR(j, k) codes results in PRML(G, I, M)

codes of length 2N . Typically, these PRML codes are chosen to have even dimension, say
2(N −1), and the 2(N −1) input bits are split into an even and an odd bit stream of N −1 bits
each and then encoded by the eMTR encoders in both interleaves. By using a prefix encoder,
one can also allow an odd number of input bits for the PRML(G, I, M) code [16]. In this case,
prior to the eMTR encoding, the input bit stream is partitioned into two bit streams by the
prefix encoder and each of the two bit streams is encoded separately by the two eMTR encoders
in the even and the odd interleave. The corresponding eMTR codes must have the appropriate
number of codewords. For example, if the 2N−1-bit input stream is partitioned into two equal
parts, each eMTR code must have at least 2(2N−1)/2 codewords. Examples of such constructions
will be given below.
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A. Long High-Rate PRML(G = 14, I = 7, M) Codes

To construct PRML(G = 14, I = 7, M) codes from the eMTR codes with j = 7, as given in
Table V, one applies bit inversion to the eMTR codes, which transforms an eMTR(j = 7, k = κ)
into an eMTR(j = κ, k = 7) code with dual constraints. Because bit inversion is applied, the
M constraint of the PRML(G = 14, I = 7) codes is M = 2k, where k refers to the k constraint
of the underlying eMTR code in Table V. In this way, the six codes in Table V give raise to
six PRML(G = 14, I = 7,M) codes of rate (2N − 2)/2N with M constraints 14, 14, 16, 18, 18,
and 20, respectively.

By using a prefix encoder [16], one can construct a rate-207/208 PRML(G = 14, I = 7,M =
22), which in the even and the odd interleave uses the bit-inverted eMTR code specified in
Table VIII. The construction of this eMTR code is based on (23) – (28). Note that this
eMTR code has a fractional dimension K = 103.5, which means that it contains at least 2103.5

codewords.

TABLE VIII
Parameters of an eMTR(j = 7, k = 11) code of length 104 with at least 2103.5 codewords.

S(j) S(k) k kb ke j jb je N K rate capacity
9 12 11 5 6 7 3 4 104 103.5 0.9952 0.9970

B. Long High-Rate PRML(G = 12, I = 6, M) Codes

In a similar way as in the preceding subsection, one can construct PRML(G = 12, I = 6)
codes from the eMTR codes with j = 6 in Table VI. The resulting six codes are PRML(G =
12, I = 6,M) codes with M = 14, 14, 16, 16, 18 and 18 and rates 596/602, 594/600, 198/200,
198/200, 224/226 and 202/204, respectively.

The following five PRML(G = 12, I = 6,M) codes are derived from the interleaving construc-
tion in conjunction with a prefix encoder [16]. The even and odd interleaves of these PRML
codes are eMTR codes, which are determined by the parameters in Table IX and Equations
(23) – (28). The resulting PRML codes have length 2N and dimension 2K.

TABLE IX
Parameters of long eMTR codes with j = 6 constraint and at least 2K codewords.

S(j) S(k) k kb ke j jb je N K rate capacity
11 15 10 5 5 6 3 3 50 49.5 0.9900 0.9938
12 12 10 5 5 6 3 3 50 49.5 0.9900 0.9938
12 12 10 5 5 6 3 3 204 202.5 0.9926 0.9938
11 16 11 6 7 6 3 3 56 55.5 0.9911 0.9942
9 11 12 6 6 6 3 3 50 49.5 0.9900 0.9941

C. Long High-Rate PRML(G = 10, I = 5,M) Codes

Similarly, one can also construct PRML(G = 10, I = 5,M) codes from the eMTR codes with
j = 5 in Table VII. The resulting seven PRML(G = 10, I = 5,M) codes have rates 408/414,
402/408, 396/402, 268/272, 126/128, 128/130 and 268/272, and M -constraints 18, 20, 20, 22, 28,
38 and 24 respectively.
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Two further PRML(G = 10, I = 5, M) codes of length 2N = 200 and dimension 2N−3 = 197
are obtained from the interleaving construction in conjunction with a prefix encoder [16]. The
underlying eMTR(j = 5, k) codes of length 100 are uniquely determined by the eight leftmost
parameters in Table X. The codes contain more than 298.5 codewords. The first code satisfies a
uniform k = 11 constraint within codewords and a k = 12 constraint at the codeword boundary,
whereas the second code satisfies an overall k = 11 constraint.

TABLE X
Parameters of two long eMTR codes with j = 5 constraint and at least 2K codewords.

S(j) S(k) k kb ke j jb je N K rate capacity
11 11 11 6 6 5 2 3 100 98.5 0.9850 0.9880
10 15 11 5 6 5 2 3 100 98.5 0.9850 0.9879

V. Encoding of Fibonacci and eMTR Codes

The class of generalized Fibonacci codes can be considered to be a subclass of the class of
eMTR codes: it consists of those eMTR codes that have a k = ∞ constraint, i.e., with no k
constraint. More specifically, if one selects k = N in the generalized recursions (10), (11), (12)
and (13), then the k-weights {vn} are all zero and the resulting length-N eMTR(j, k = N) code
is a generalized Fibonacci code. In particular, the code is fully determined by the j-weights
{wn}. In this case, the eMTR encoder (7) and the eMTR decoder (9) are Fibonacci encoders
and decoders [3].

For a nontrivial k constraint, the eMTR codes are characterized by two set of weights, the
k-weights {vn} and j-weights {wn}, and the eMTR encoder/decoder algorithms are slightly
different from the Fibonacci encoders/decoders. The Fibonacci encoders/decoders only have
to store the j-weights, whereas the eMTR encoders/decoders need to store the j-weights and
the combined weights {vn + wn}, n = 1, 2, . . . , N . Thus, the memory requirement for eMTR
codes is about twice that for generalized Fibonacci codes. When working with the j-weights and
the combined weights, the operational complexity of the eMTR encoders/decoders is similar
to that of Fibonacci encoders/decoders. Both encoders and decoders can be implemented by
sliding-window algorithms of window length max{S(j), S(k)} [7]. In particular, for the typical
case where S(j) ≤ S(k), the encoding (7) of a codeword bit x` at the `-th step requires an
S(k)-bit-wide comparison and one subtraction of two S(j)-bit-wide numbers. At the decoder
(9), each processed bit needs one S(j)-bit-wide addition with carry.

There is an important structural difference between Fibonacci and eMTR encoders, namely,
the eMTR encoders need a preliminary offset mapper to account for the fact that the input
space is in the range LN ≤ u < UN , where the lower bound is strictly positive for a nontrivial k
constraint, i.e., for k < N . The complexity of this offset mapper amounts to one S(j)-bit-wide
addition with carry, which is a very minor increase in the operational complexity of the overall
eMTR encoder. Similarly, at the decoder side, a corresponding offset mapper is needed, which
subtracts the lower bound LN from the bit stream generated by the decoding algorithm (9).

VI. Conclusions

A novel class of MTR block codes has been presented that is characterized by two sets
of weights, the j-weights and the k-weights. These weights are determined by two recursion
formulae, which reflect the predetermined j and k constraints. These eMTR codes have efficient
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enumerative encoding/decoding algorithms with reduced error propagation at the decoder.
These encoders/decoders are very similar to the ones of generalized Fibonacci codes, except for
an additional simple offset mapper, which accounts for the fact that the enumeration does not
start at zero but at some positive offset. Numerous examples of long high-rate eMTR codes
illustrate the efficiency of these codes.

Two-way interleaving of bit-inverted eMTR(j, k) codes gives raise to PRML(G = 2j, I =
j, M = 2k) codes. Such long high-rate PRML(G, I, M) codes are suitable for reverse concate-
nation architectures with partial symbol interleaving in tape/optical recording and recording
systems for hard-disk drives.

Although the code examples presented are essentially limited to codes with uniform modula-
tion constraints, one can easily construct codes with nonuniform constraints as illustrated in [7]
for the class of generalized Fibonacci codes. For codes with uniform and nonuniform constraints,
the same general code design method applies. Another way to generalize the code construction
and to further reduce error propagation is to consider nonuniform j-span parameters as in the
construction of variable span Fibonacci codes [17].
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