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Abstract

Separation of Duties (SoD) is a well-established
security principle that aims to prevent fraud and errors
by distributing tasks and associated privileges for
business processes among multiple users. Li and Wang
recently proposed an algebra (SoDA) for specifying
SoD requirements, which is both expressive in the
requirements it formalizes and abstract in that it is not
bound to any specific workflow model. In this paper,
we both generalize SoDA and map it to enforcement
mechanisms. First, we increase SoDA’s expressiveness
by extending its semantics to multisets. This better suits
policy enforcement over workflows, where users may
execute multiple tasks. Second, we further generalize
SoDA to allow for changing role assignments. This lifts
the strong restriction that authorizations do not change
during workflow execution. Finally, we map SoDA
terms to CSP processes. Since CSP has an operational
semantics, this mapping provides the critical link be-
tween abstract specifications of SoD requirements by
SoDA terms and runtime-enforcement mechanisms.

1. Introduction

Most information security mechanisms protect re-
sources from external threats. However, threats often
reside within organizations [13] where authorized users
may intentionally or accidentally misuse information
systems. Examples are the scandals [7] that led to
regulations such as the Sarbanes-Oxley Act [1]. These
regulations require companies to document their pro-
cesses, to identify conflicts of interests, to adopt coun-
termeasures, and to audit and control those activities.

Separation of Duties (SoD)is a well-established
extension to access control that aims to ensure the
integrity of data, in particular the prevention of fraud
and errors [4,5,16,27,28]. The main idea behind SoD
is to split critical processes into multiple actions and

to ensure that no single user can execute all of them.
Therefore, at least two users must be involved in the
process and fraud would require their collusion.

Existing specification formalisms and enforcement
mechanisms for SoD are limited in the kinds of con-
straints they can handle. Moreover, they are typically
bound to specific workflow models. The SoD algebra
(SoDA) of Li and Wang [19] constitutes an excep-
tion. It allows the modeling of SoD constraints at a
high level of abstraction, combining quantification and
qualification requirements. As an example, consider
the SoD policyP that requires a user other thanBob
that acts in the role of aManager and two additional
users, each acting as anAccountant. Using SoDA,P
can be modeled by the term

(Manager ⊓ ¬{Bob}) ⊗ Accountant ⊗ Accountant .

The above constraint specifies both the number and
kinds of users who must take part in the workflow, in-
dependent of the details of the workflow itself. Separat-
ing concerns in this way allows business processes and
security requirements to be developed independently.
This is beneficial as business and security knowledge
usually resides with different people.

Previous research on SoDA focused on requirements
specification, complexity questions, and enforcement
for a restricted class of terms. However, no general
mapping existed from SoDA terms onto workflows
or to dynamic enforcement mechanisms. This is the
problem that we tackle in this paper.

We proceed by constructing formal models of work-
flows, access control enforcement, and separation of
duty constraints, as well as their combination. We spec-
ify them using the process algebra Communicating Se-
quential Processes (CSP). First, we model a workflow
as a CSP processW . Afterwards we define the pro-
cessRBAC that describes an enforcement mechanism
for Role-Based Access Control (RBAC) [9]. Given a
SoDA termφ, we then define a mapping fromφ to



theSoD enforcement processesSODφ that engages in
all workflow executions corresponding to a satisfying
assignment ofφ. Finally, we combineW , RBAC, and
SODφ, resulting in anSoD secure (workflow) process.
CSP’s operational semantics allows us to translate
these processes, together or separately, to programs
that serve as enforcement monitors forW , RBAC,
and SODφ. The main focus of this paper, however,
is on specifying these processes and their properties,
rather than on their efficient implementation.

Contributions: We extend the original SoDA seman-
tics [19] to multisets of users and interpret SoDA
terms over workflow traces, allowing for changing role
assignments (or, equivalently, sessions). The resulting
semantics is well-suited for policy enforcement over
workflows, where users may execute multiple tasks and
authorizations may change during workflow execution.
We further bridge the gap between the specification of
high-level SoD constraints and their enforcement in
a workflow environment by defining a mapping from
SoDA terms to CSP processes. We provide a correct-
ness proof for this mapping, establishing that every
execution accepted by an SoD enforcement process
complies with its corresponding SoD policy.

Organization:In Section 2, we provide background on
CSP and multisets. In Section 3, we describe our mod-
eling of workflows and access control enforcement.
We define SoDA’s syntax and describe our multiset
semantics in Section 4. In Section 5, we present our
trace semantics for SoDA and define a mapping from
SoDA terms to CSP processes. Furthermore, we relate
our two semantics to Li and Wang’s. We discuss related
work in Section 6 and conclude in Section 7. Proofs
and a summary of Li and Wang’s SoDA semantics
follow in the Appendix.

2. Background

2.1. Communicating sequential processes

In this paper, we make use of Hoare’s process
algebraCommunicating Sequential Processes (CSP)
[14]. We provide here a brief introduction to CSP,
highlighting the main concepts employed in our work.
For a more detailed introduction to CSP, see [26].

CSP provides a language for describing concurrently
executing processes that communicate with each other.
CSP processes are built from several sets of symbols.
Σ is the set ofevents, which processes use to communi-
cate with their environment. Events can be structured
using channels. Given a channelc and a setA, we

can definec to be of type A. This means that for
all a ∈ A, events of the formc.a belong toΣ and
represent the communication ofa on the channelc.
By {| c |}, we denote the set of all possible events
involving channelc, i.e.,{| c |} := {c.a | a ∈ A}. Fora
a tuple(a1, ..., an), wheren ≥ 1, we writec.a1. ... .an.

A processdescribes a communication pattern. Pro-
cesses are referred to byprocess identifiers. Let I be
the set of all process identifiers. The set of processesP
is then inductively defined by the following grammar:

P ::= e→ P | STOP | i | P � P | P ‖
E

P ,

wherei ∈ I, e ∈ Σ, andE ⊆ Σ.
For a processP ∈ P and an identifieri ∈ I, i = P

denotes theassignmentof P to i. Processes can be
parametrized, for examplei(v) = P defines a process
parametrized by variablev. This denotes a family of
processes, one for each value ofv.

Let P,Q ∈ P be two processes. The processe→ P

engagesin the evente first and behaves like the process
P afterward. When using channels, this notation can
be extended. ForA′ ⊆ A, the expressionc?a : A′ → P

represents a process that waits for ana ∈ A′ to
be receivedon channelc of type A and afterwards
behaves likeP . Similarly, c!a → P represents a
process thatsendsa on channelc and afterwards
behaves likeP . The processSTOP represents the
terminated process, which cannot engage in any further
events. For an assignmenti = P , the processi
behaves likeP . P � Q denotes a process that lets
the environment choose whether it behaves likeP or
Q. The � operator can bereplicated. For a non-
empty set of processesS ⊆ P , for example,� S

lets the environment choose one of the processes inS.
The processP ‖

E

Q represents the parallel execution

of the processesP andQ synchronizedon the set of
eventsE ⊆ Σ. That means, whenever one of the two
processes engages in an evente ∈ E, the other process
must engage ine as well. If one of them, sayP , cannot
(yet) engage ine, the other one,Q, waits until P is
ready to engage ine.

A trace is a sequence of events.〈〉 denotes theempty
trace, 〈e〉 describes asingleton trace containing the
event e, and 〈e1, ..., en〉, for n ≥ 1, denotes a trace
containing the eventse1 to en. For two finite tracest
andt′, t̂ t′ denotes theirconcatenation. Moreover, for
a set of eventsE, E∗ denotes the set of all finite traces
overE andE+ denotes the set of all finite traces over
E that contain at least one event.

The denotational semanticsof CSP [26] describes
a process as a setT (P ) ⊆ Σ∗ of finite traces. When



t ∈ T (P ), we say thatP acceptst; each such trace
t describes a sequence of events thatP can engage
in with the environment. For example,T (STOP ) :=
{〈〉}, T (e → P ) := {〈〉} ∪ {〈e〉̂ t | t ∈ T (P )}, and
T (P � Q) := T (P ) ∪ T (Q). We say thatQ refines
P , denotedP ⊑T Q, if and only if T (Q) ⊆ T (P ).
Failures-Divergence Refinement (FDR)[11] is a model
checker that decides whether one process refines an-
other one.

2.2. Multisets

A multiset, or bag, is a collection of objects where
repetition is allowed [34]. Formally, given a setA, a
multisetM of A is a pair(A, f), where the function
f : A → N0 (where N0 is the set of natural num-
bers including zero) defines how often each element
a ∈ A occurs inM. We write M(a) as shorthand
for f(a). We say thata is an elementof M, written
a ∈ M, if M(a) ≥ 1. We use standard set notation
to define multisets, but allow duplicated elements, e.g.,
M := {a1, a1} is the multiset whereM(a1) = 2 and
for all other a ∈ A, M(a) = 0. For a finite multiset
M, |M| denotes thecardinality of M and is defined
as

∑

a∈AM(a). Given the multisetsM andN, their
intersection, denotedM∩N, is the multisetO, where
for all a ∈ A, O(a) := min(M(a),N(a)). Similarly,
their union, denotedM∪N, is the multisetO, where
for all a ∈ A, O(a) := max(M(a),N(a)) and their
sum, denotedM⊎N, is the multisetO, where for all
a ∈ A, O(a) := M(a)+N(a). Theempty multiset∅ of
A is the multiset where∅(a) := 0, for all a ∈ A. For a
setA, the functionmulti returns the set of all multisets
of A. Formally,multi(A) := {(A, f) | f : A → N0}.
Note thatmulti(A) is infinite wheneverA 6= ∅.

3. Secure workflow processes

3.1. Modeling workflows

We call a unit of work anaction. The tempo-
ral ordering and logical dependencies of actions that
together implement a business objective is called a
workflow. There are various formalisms for modeling
workflows. We use CSP. Other models and formalisms
are mentioned in Section 6.

For the rest of this paper, letU be a set ofusers
andA be a set ofactions. We then model workflows
as CSP processes with a channelbusiness of type
U × A. Let EB := {|business|}. We call an element
of EB a business event. For a useru ∈ U and an action
a ∈ A, the business eventbusiness.u.a describes the
execution of the actiona by the useru.

1 2 3 4 5 6
RI PC AP

AP
RP

IC done

RI := {business.u.receive invoice | u ∈ U}

PC := {business.u.prepare check | u ∈ U}

AP := {business.u.approve payment | u ∈ U}

RP := {business.u.reject payment | u ∈ U}

IC := {business.u.issue check | u ∈ U}

Figure 1. Payment workflow

We introduce the eventdone, which states that a
workflow has finished.1 We further define the auxiliary
predicatedone on traces, where for allt ∈ Σ∗, done(t)
if and only if t contains exactly one eventdone in the
end. Formally,done(t) := ∃t′ ∈ (Σ \ {done})∗ . t =
t′ˆ〈done〉.

For a workflow w modeled by a processW , a
trace t ∈ T (W ) corresponds to aworkflow run (or
workflow instance) of w. A tracet represents afinished
workflow run if done(t); otherwise t represents an
unfinishedworkflow run. Note that given a tracet and a
processW , it is straightforward to check, using CSP’s
operational semantics, whethert ∈ T (W ). Moreover,
we can also use FDR to decide whether the workflow
run represented byt is a possible execution of the
workflow modeled byW .

For a CSP processW that models a workflow, we
require the set of tracesT (W ) to contain at least one
trace that corresponds to a finished workflow run, i.e.,
∃ t ∈ T (W ) . done(t). This ensures that each workflow
can be finished in at least one way.

We define two auxiliary functions that extract users
from traces. First, the projection functionuser : EB →
U , given a business eventbusiness.u.a, returnsu.
Second, the functionusers : Σ∗ → multi(U), given a
tracet, returns the multiset of users that are contained
in business events int.

users(t) :=























∅ if t = 〈〉,

{user(b)} ⊎ users(t′) for t = 〈b〉̂ t′

and b ∈ EB,

users(t′) for t = 〈e〉̂ t′

ande 6∈ EB.

To illustrate these notions, we introduce a running
example of a payment process. A similar example
is used in [28]. More complex workflows, modeling

1. We did not use CSP’s special eventX and the processSKIP

because later we synchronize ondone with most, but not all,
involved processes. By the semantics of CSP, all processes must
synchronize onX.



real-world applications with SoD constraints, are given
in [31,32].

Example 1 (Payment workflow) This workflow mod-
els the actions taken in a payment process where
invoices are payed by check.

W = W1

W1 = business?u : U .receive invoice →W2

W2 = business?u : U .prepare check →W3

W3 = (business?u : U .reject payment →W2)

� (business?u : U .approve payment →W3)

� (business?u : U .approve payment →W4)

W4 = business?u : U .issue check →W5

W5 = done→ STOP

In this workflow, first an invoice is received. After
the payment check has been prepared, the payment
is either approved or rejected. In the latter case, the
payment must be prepared again. If the payment is
finally approved, the check is issued and the workflow
terminates, which is denoted by the eventdone.

Figure 1 illustratesW graphically as a labeled
transition system, whose edges are annotated by sets

of labels. The edges1
{l1,...,ln}
−→ s′ denotes the set of

labeled transitionss
li→ s′, for i ∈ {1, . . . , n}. For

example, for every useru ∈ U there is a transition
business.u.receive invoice from state1 to state2.

3.2. Access control

We userole-based access control (RBAC)[8,9,29]
to describe access control policies. We only make use
of RBAC’s core idea, which is the decomposition of
the user-permission assignment relation into a user-
role and a role-permission assignment relation. For the
reminder of this paper, letR be a set ofroles.

Definition 1 (RBAC configuration)An RBAC config-
uration is a tuple (UA,PA), whereUA ⊆ U × R is
the user assignment relationand PA ⊆ R×A is the
permission assignment relation.

We say that the useru acts in roler if (u, r) ∈ UA.
Furthermore, the useru is authorized to execute the
action a, if ∃r ∈ R . (u, r) ∈ UA ∧ (r, a) ∈ PA.

In contrast to the RBAC standard of NIST [9], we
omit the concept of sessions. This is without loss of
generality as the activation and deactivation of roles
within a session can be modeled by changing RBAC
configurations, where all assigned roles are always

UsersU RolesR ActionsA
Alice

Bob

Claire

Clerk

Accountant

Manager

receive invoice

issue check

prepare check

approve payment

reject payment1st RBAC configuration:

2nd RBAC configuration:

3rd RBAC configuration: ∪ ∪

∪

Figure 2. Example RBAC configuration

implicitly activated. Note that what we call actions are
calledpermissionsin [9].

Administrative actionsAA ⊆ A are the subset of
actions that are used to modify RBAC configurations.
For a useru ∈ U , a roler ∈ R, and a user assignment
relationUA, the actionaddUA.u.r adds the tuple(u, r)
toUA and the actionrmUA.u.r removes(u, r) fromUA.
In this paper, we do not discuss administrative actions
that change permission assignment relations. A formal
description of the semantics of administrative actions
is provided in Section 3.3.

3.3. The RBAC process

Administrative actions change RBAC configura-
tions. We describe the configuration’s evolution and
the enforcement of the resulting access-control policy
in terms of a CSP process that we call theRBAC
process. As defined in Figure 3, the RBAC process
is parametrized by a user assignment relationUA and
a permission assignment relationPA, which together
represent an RBAC configuration. Besides the channel
business, introduced in Section 3.1, the RBAC process
also has a channel calledadmin of type AA. Let
EA := {| admin |}. We call an element ofEA anadmin
event. The RBAC workflow engages in the following
kinds of events:

1) business.u.a for a useru ∈ U and an action
a ∈ A, if u is authorized to executea under the
current RBAC configuration.

2) admin.addUA.u.r adds the tuple(u, r) to the
current RBAC configuration, foru ∈ U and
r ∈ R.

3) admin.rmUA.u.r removes the tuple(u, r) from
the current RBAC configuration, foru ∈ U and
r ∈ R.

Note that the RBAC process does not terminate,
i.e., it never behaves likeSTOP . This is consistent
with our view of access-control monitors that outlive
workflow execution.

Given a processW that models a workflow, we
define thesecure (workflow) processSW as the par-
allel execution ofW andRBAC, synchronized on the



RBAC(UA,PA) =
(

business?(u.a) : {u.a | ∃r ∈ R . (u, r) ∈ UA ∧ (r, a) ∈ PA} → RBAC(UA,PA)
)

�

(

admin.addUA?u : U?r : R → RBAC(UA ∪ {(u, r)}, PA)

�

(

admin.rmUA?u : U?r : R → RBAC(UA \ {(u, r)}, PA)
)

Figure 3. The RBAC process

business eventsEB. Like the RBAC process, a secure
process is parametrized by an RBAC configuration.

SW (UA,PA) = W ‖
EB

RBAC(UA,PA) .

A secure process models a workflow that only exe-
cutes actions authorized under the current RBAC con-
figuration. By synchronizing only on business events,
arbitrary admin events can be interleaved with business
events anddone in any order. Thus, the RBAC config-
uration can change between the execution of workflow
actions.

We have now introduced all the kinds of events that
we need. Specifically,Σ = EB ∪ EA ∪ {done}.

Example 2 (Secure workflow process) We refine
the workflow from Example 1 into a secure
workflow process. AssumeU := {Alice, Bob, Claire},
A := {receive invoice, issue check, prepare check,

prepare check, approve payment}, and R :=

{Accountant, Clerk, Manager}. Also, let the RBAC
configuration(UA,PA) be initially given as depicted
by the solid arrows in Figure 2. Consider the following
trace, which corresponds to a finished workflow run.

t := 〈business.Alice.receive invoice,

business.Bob.prepare check,

business.Bob.approve payment,

business.Alice.issue check, done〉

This trace represents a workflow run of the payment
workflow described in Example 1 and modeled byW .
In contrast,t 6∈ T (SW (UA,PA)) because no user is
authorized to executeapprove payment. This can be
overcome by placingBob in the Manager role with the
admin eventadmin.addUA.Bob.Manager as follows.

t′ := 〈business.Alice.receive invoice,

business.Bob.prepare check,

admin.addUA.Bob.Manager,

business.Bob.approve payment,

business.Alice.issue check, done〉

The new admin event adds(Bob, Manager) to SW ’s
RBAC configuration as indicated by the dotted ar-
row in Figure 2. Therefore,t′ ∈ T (SW (UA,PA)).
However, it is risky to allowBob to execute both
the actionsprepare check andapprove payment as he
could approve his own fraudulent payments. The next
refinement of our running example solves this problem
by enforcing an appropriate SoD constraint.

4. Abstract separation of duty constraints

4.1. Separation of duty algebra syntax

Our work builds on Li and Wang’sseparation of
duty algebra[19], SoDA. We present below the syntax
of SoDA terms.

Definition 2 (SoDA grammarS) A SoDA grammar
S with respect to aU := {u1, . . . , un} and aR :=
{r1, . . . , rm} is a quadruple

S := (N,T, P, S)

where:

• N := {S, CT, UT, AT, US, UR, U, R} is the
set of nonterminal symbols,

• T := {′,′ , (, ), {, },⊗,⊙, ⊔, ⊓, +, ¬,All}∪U ∪R
are the terminal symbols,

• the set of productionsP ⊆ ( N × (N ∪ T )∗ ) is
given by:

S ::= CT | UT

CT ::= (CT ⊔ S) | (CT ⊓ S) | (S ⊗ S)

| (S ⊙ S) | (UT )+

UT ::= AT | (UT ⊓ UT ) | (UT ⊔ UT )

| ¬UT

AT ::= {UR} | R | All

UR ::= U | U, UR

U ::= u1 | . . . | un

R ::= r1 | . . . | rm

• andS ∈ N is the start symbol.



(1)
{u} ⊢M

UA All
∃r ∈ R . (u, r) ∈ UA (2)

{u} ⊢M
UA r

(u, r) ∈ UA

(3)
{u} ⊢M

UA U
u ∈ U and∃r ∈ R . (u, r) ∈ UA (4)

{u} 0
M
UA φ

{u} ⊢M
UA ¬φ

(5)
{u} ⊢M

UA φ

{u} ⊢M
UA φ+

(6)
{u} ⊢M

UA φ, U ⊢M
UA φ+

({u} ⊎ U) ⊢M
UA φ+

(7)
U ⊢M

UA φ

U ⊢M
UA (φ ⊔ ψ)

(8)
U ⊢M

UA ψ

U ⊢M
UA (φ ⊔ ψ)

(9)
U ⊢M

UA φ, U ⊢M
UA ψ

U ⊢M
UA (φ ⊓ ψ)

(10)
U ⊢M

UA φ, V ⊢M
UA ψ

(U ⊎ V) ⊢M
UA (φ⊙ ψ)

(11)
U ⊢M

UA φ, V ⊢M
UA ψ

(U ⊎ V) ⊢M
UA (φ⊗ ψ)

(U ∩ V) = ∅ .

Figure 4. SODAM : semantics for multisets of users

The terminal symbols⊗, ⊙, ⊔, ⊓, +, and ¬ are
called operators. The nonterminal symbolAT yields
either a non-empty set of users, e.g.{Alice, Bob}, a
single role, e.g.Clerk, or the keywordAll. Note that
without loss of generality, we omit the productions
CT ::= (T ⊓ CT ) and CT ::= (T ⊔ CT ) in order
to keepS small. Li and Wang showed in [19] that⊓
and⊔ are commutative with respect to their semantics
and this is also the case for our semantics. Therefore,
each term that could be constructed with these addi-
tional productions can be transformed to a semantically
equivalent term that is constructible without them.

Let→1
S
∈ (N∪T )+×(N∪T )∗ denote one derivation

step ofS and→∗
S

the transitive closure of→1
S

. We
call an element of{s ∈ T ∗ | S →∗

S
s} a term.

Furthermore, we call an element of{s ∈ T ∗ |
AT →∗

S
s} an atomic term. These are either a set of

users, a role, or the keywordAll. We call an element
of {s ∈ T ∗ | UT →∗

S
s} a unit term. These terms

do not contain the operators⊗, ⊙, and +. Finally, a
complex termis an element of{s ∈ T ∗ | CT →∗

S
s}.

In contrast to unit terms, they contain at least one of
the operators⊗, ⊙, and+. For a termφ, we call a unit
termφut a maximal unit term ofφ if φut is a subterm
of φ and if there is no other unit termφ′ut that is also
a subterm ofφ, whereφut is a subterm ofφ′ut.

4.2. SoDA semantics for multisets of users

Li and Wang define the satisfaction of SoDA terms
for sets of users [19]. We refer to their semantics
as SODAS . We summarize their semantics and give

examples of SoDA terms and their interpretation in
the the appendix.

To motivate the need for an alternate semantics,
consider the policyP that requiresBob to execute two
actions, modeled by the SoDA termφ := {Bob}⊙{Bob}.
UnderSODAS , φ is satisfied by the set{Bob}. Our ulti-
mate goal is to mapφ to a CSP process that accepts all
traces that correspond to satisfying assignments ofφ.
Mapping sets to traces leaves room for interpretation. If
we define the correspondence between sets and traces
in a way that{Bob} maps to the set of traces containing
exactly onebusiness event executed byBob, this would
not satisfyP . On the other hand, if we map{Bob} to
the set of traces containingarbitrarily many business
events executed byBob, this set would also include
traces that do not satisfyP , for example, the trace
containing three business events executed byBob.

To address the above problem, we introduce a
new semantics,SODAM, that defines term satisfaction
based on multisets of users. This allows us to make
finer distinctions concerning repetition (quantification
requirements) than inSODAS . As shown below, under
SODAM, φ is only satisfied by the multiset{Bob, Bob}.
Mapping multisets to traces is straightforward and
the corresponding traces include exactly two business
events that are executed byBob. In this respect,SODAM

also allows a more precise mapping to traces than
SODAS .

Definition 3 (Multiset SatisfactionSODAM) Let φ be
a term,U ⊆ U a non-empty set of users, andr ∈ R a
role. A multiset of usersU satisfiesφ with respect to
a user assignment relationUA, denoted byU ⊢M

UA φ,



{Bob} ⊢M
UA′′ Accountant

(2),
{Claire} ⊢M

UA′′ Manager
(2)

{Claire} ⊢M
UA′′ φ

′ (7)

{Bob, Claire} ⊢M
UA′′ (Accountant⊗ φ′)

(11),
{Alice} ⊢M

UA′′ All
(1)

{Alice} ⊢M
UA′′ All

(1)

{Alice} ⊢M
UA′′ All

+ (5)

{Alice, Alice} ⊢M
UA′′ All

+ (6)

{Alice, Alice, Bob, Claire} ⊢M
UA′′ (Accountant⊗ (Manager ⊔ (Accountant⊗ Accountant))) ⊙ All

+ (10)

for φ′ := Manager ⊔ (Accountant ⊗ Accountant)

Figure 5. Example derivation under SODAM

if and only ifU can be derived fromφ using the rules
listed in Figure 4.

Informally, a useru satisfies the termAll if u is in
the domain ofUA. A useru satisfies a roler if there
is a role assignment(u, r) in UA, andu satisfies a set
of usersU if u is member ofU and is in the domain
of UA. A unit term¬φ is satisfied byu if u does not
satisfy φ. A non-empty multiset of usersU satisfies
a complex termφ+ if each useru ∈ U satisfies the
unit term φ. A multiset of usersU satisfies a term
φ ⊔ ψ if U satisfies eitherφ or ψ, andU satisfies a
termφ⊓ψ if U satisfies bothφ andψ. A term φ⊗ψ

is satisfied by a multiset of usersW, if W can be
partitioned into two disjoint multisetsU and V, and
U satisfiesφ and V satisfiesψ. Because every user
in W must be either inU or V, but not in both, the
⊗ operator separates duties between two multisets of
users. In contrast, the⊙ operator allows overlapping
duties. A termφ⊙ψ is satisfied by a multiset of users
W, if there are two multisetsU and V, which may
share users, andU satisfiesφ, V satisfiesψ, andW

is the sum ofU andV.

Definition 4 (Term evaluation)The value of a term
φ with respect to a user assignment relationUA,
denoted bySUA(φ), is the set of all multisets of
users that satisfyφ with respect toUA. Formally,
SUA(φ) := {U ∈ multi(U) | U ⊢M

UA φ}.

We illustrate this using our running example.

Example 3 Suppose we have the term

φ := (Accountant ⊗ (Manager⊔

(Accountant ⊗ Accountant))) ⊙ All+ ,

and the user assignment relation shown in Figure 2,
now including all arrows between users and groups,

UA′′ := {(Alice, Clerk), (Bob, Accountant),

(Bob, Manager), (Claire, Manager)}.

Figure 5 shows a derivation{Alice, Alice, Bob,

Claire} from φ using the rules from Figure 4.

We conclude by relatingSODAM andSODAS . Under
SODAS , X ⊢S

(U,UR) φ denotes the satisfaction of a term

φ by a set of usersX with respect to a tuple(U,UR),
whereU ⊆ U andUR ⊆ U ×R (see appendix). Be-
cause actions can only be executed by users who have
at least one role assignment, we simplify this tuple and
extract the available users fromUA, as one can see in
Rule (3) of Figure 4. For a user assignment relation
UA, the function lwconf(UA) := ({u ∈ U | ∃r ∈
R . (u, r) ∈ UA}, UA) mapsUA to the corresponding
tuple in SODAS . Moreover, given a multiset of users
U, the functionuserset(U) := {u | u ∈ U} returns
the the set of users contained inU. We prove the
following lemma in the appendix, showing thatSODAM

generalizesSODAS in the following sense.

Lemma 1 For all termsφ, all user assignment rela-
tions UA, and all multisets of usersU, if U ⊢M

UA φ,
thenuserset(U) ⊢S

lwconf(UA) φ.

5. Separation of duty enforcement

5.1. Approach and requirements

As shown above, SoDA specifies SoD con-
straints at a high level of abstraction. We now
describe how, given a termφ, we can construct
an enforcement monitor forφ. Our construction
maps φ to a CSP processSODφ(UA), called the
SoD enforcement process, parametrized by a user
assignment relationUA. SODφ(UA) accepts all
traces corresponding to a multiset that satisfiesφ
with respect toUA. If SODφ(UA) does not en-
gage in admin events, its definition is straight-
forward. In this case,T (SODφ(UA)) is equal to
{t ∈ E∗

B | ∃t′ ∈ E∗
B . users(t̂ t′) ∈ SUA(φ)}.

Disallowing (or ignoring) administrative events dur-
ing workflow execution is too strong a restriction
in practice. If Bob leaves his company, it should be
possible to remove all his role assignments thereby
preventing him from executing actions in currently
executing workflow runs. Similarly, ifAlice joins a
company or changes positions, i.e. gets assigned new
roles, she should also be able to execute actions in
workflow runs that were started prior to the organiza-
tional change. The SoD enforcement process defined
below accounts for such changes.



The functionupd (“update”) describes how a trace
of admin events changes a user assignment relation.

Definition 5 (UA change)Let a ∈ E∗
A be a trace of

admin events andUA a user assignment relation. The
functionupd is defined as follows:

upd(UA, a) :=















UA if a = 〈〉,

upd(UA ∪ {(u, r)}, a′) if a = (admin.addUA.u.r)̂ a′,

upd(UA \ {(u, r)}, a′) if a = (admin.rmUA.u.r)̂ a′,

whereu ranges overU , r overR, anda′ over E∗
A.

Let φ be a term,UA a user assignment relation,
and SODφ(UA) the SoD enforcement process forφ
andUA. We postulate thatSODφ(UA) must fulfill the
following requirements.

(R1) SODφ(UA) must accept every trace of ad-
min eventsa, and behave likeSODφ(UA

′)
afterwards, forUA′ := upd(UA, a).

(R2) If SODφ(UA) accepts a tracet containing no
admin events and reaches a final state, then
users(t) ⊢M

UA φ.
(R3) SODφ(UA) must engage in a business event

business.u.a, if {u} satisfies at least one
maximal unit term ofφ with respect toUA
and no restriction imposed byφ is violated.

(R4) The semantics of the operators+, ⊔, ⊓, ⊙,
and⊗ with respect to traces must agree with
their definition inSODAM.

(R1) says that administrative events are always
possible and reflected in the user assignment re-
lation. (R2) states that in the absence of admin
events,SODφ(UA) agrees with theSODAM semantics.
(R3) formulates agreement withSODAM, where for a
multiset of usersU, if U ⊢M

UA φ, then each user in
U satisfies at least one maximal unit term ofφ with
respect toUA. Similarly,SODφ(UA) must not engage
in a business event if the corresponding user does not
contribute to the satisfaction ofφ. As for (R4), consider
for example the termsφ ⊗ ψ and φ ⊗ ψ. It must be
possible to partition a trace satisfyingφ⊗ψ or φ⊗ψ

into two subtraces, one satisfyingφ and the other one
satisfying ψ. In the case ofφ ⊗ ψ, the users who
execute business events in one trace must be disjoint
from the users executing business events in the other
trace. In contrast, forφ⊙ψ, the multisets of users need
not be disjoint.

Figure 6 illustrates abstractly how an SoD enforce-
ment process relates to the processes introduced so
far. The X-axis represents time and the Y-axis lists
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Figure 6. Relations between a workflow process, a
SoD enforcement process, and the RBAC process

a workflow process, the RBAC process, and an SoD
enforcement process. We distinguish between two time
phases. Atdesign time, a business officer defines a
workflow using a workflow language that can be mod-
eled as a CSP processW , a security officer specifies
the initial RBAC configurationc1, and a compliance
officer formulates SoD constraints as a termφ, which
is mapped to the SoD enforcement processSODφ.

At run time, the workflow corresponding toW is
executed an arbitrary number of times. Each workflow
run corresponds to a trace ofW , t1, t2, and t3 in
Figure 6. In parallel to each workflow run, an instance
of SODφ is executed. For example,s1 runs in parallel
to t1. An instance ofSODφ keeps track of who has
executed actions within the associated workflow run in
the past and ensures that no SoD constraint is violated
based on this history. The execution of the RBAC
process is modeled as a single trace. Admin events
change the configuration of the RBAC process. In
Figure 6, the RBAC process evolves fromc1 to c2, then
to c3 and so forth. Furthermore, RBAC configuration
changes also affect the currently running instances of
SODφ. For example, when the RBAC configuration
of the process changes toc4, this is reflected ins2 and
s3 as indicated by the dotted arrows.

Without loss of generality, we look only at the
execution of one instance ofW , the RBAC process,
and one instance ofSODφ in the remainder of this
paper. Furthermore, we describe the traces ofW ,
RBAC, andSODφ as the single trace of the partially
synchronized, parallel composition ofW , RBAC, and
SODφ. The formal definition follows.

5.2. SoDA semantics for traces

The following example shows thatSODAM is not
expressive enough to capture requirements (R1)–(R4).

Example 4 Consider the policyP that requires one
action to be executed by a user acting asManager



(1)
{user(b)} ⊢M

UA φut

〈b〉 ⊢T
UA φut

(2)
t ⊢T

UA φ

t̂ 〈a〉 ⊢T
UA φ

(3)
t ⊢T

UA∪{(u,r)} φ

〈addUA.u.r〉̂ t ⊢T
UA φ

(4)
t ⊢T

UA\{(u,r)} φ

〈rmUA.u.r〉̂ t ⊢T
UA φ

(5)
〈b〉 ⊢T

UA φut

〈b〉 ⊢T
UA φ+

ut

(6)
〈b〉 ⊢T

UA φut , t ⊢T
UA φ+

ut

〈b〉̂ t ⊢T
UA φ+

ut

(7)
t ⊢T

UA φ

t ⊢T
UA φ ⊔ ψ

(8)
t ⊢T

UA ψ

t ⊢T
UA φ ⊔ ψ

(9)
t ⊢T

UA φ , t ⊢T
UA ψ

t ⊢T
UA φ ⊓ ψ

(10)
t1 ⊢T

UA φ , t2 ⊢T
UA ψ

t ⊢T
UA φ⊙ ψ

si(t, t1, t2) (11)
t1 ⊢T

UA φ , t2 ⊢T
UA ψ

t ⊢T
UA φ⊗ ψ

si(t, t1, t2) andusers(t1) ∩ users(t2) = ∅

Figure 7. SODAT : semantics for traces

and another action to be executed by a user who
is not acting asManager. We modelP by the term
φ := Manager ⊙ ¬Manager. UnderSODAM, φ can only
be satisfied by a multiset of users that contains two
different users. Now, consider the trace

t := 〈admin.addUA.Bob.Manager,

business.Bob.a,

admin.rmUA.Bob.Manager,

business.Bob.a′〉 ,

for two arbitrary actionsa and a′. From (R1)–
(R4), it follows that SODφ(∅) must acceptt. By
(R1), SODφ(∅) engages inadmin.addUA.Bob.Manager
and behaves likeSODφ(UA) afterwards, forUA =

{(Bob, Manager)}. Next, SODφ(UA) engages in
business.Bob.a by (R3) and (R4) becauseBob acts
as Manager. Again by (R1),SODφ(UA) engages in
admin.rmUA.Bob.Manager and behaves likeSODφ(∅)
afterwards. Finally, by (R3) and (R4),SODφ(∅) en-
gages inbusiness.Bob.a′ becauseBob does not act as
Manager. In the end,SODφ engaged in a business
event with a user that acted asManager and in another
one with a user not acting asManager, satisfying the
policy P . However, we haveusers(t) = {Bob, Bob},
which contradicts the previous statement thatφ is only
satisfied by multisets containing two different users.

This contradiction motivates the introduction of a
third semantics for SoDA terms,SODAT , that accounts
for administrative changes and defines satisfaction with
respect to traces.

In SODAT , subterms correspond to separate traces
that may interleave with each other in any order.
Admin events, though, must occur in all traces in
the same order. We formalize this relation by the
synchronized interleavingpredicatesi. For tracest,
t1, and t2, si(t, t1, t2) holds if and only if t1 and

t2 “partition” t such that each admin event int is
contained int1 andt2, and each business event is either
in t1 or t2. More formally:

Definition 6 (Synchronized interleaving)Let
t, t1, t2 ∈ (EB ∪ EA)∗ be traces. Thesynchronized
interleavingpredicatesi(t, t1, t2) is defined as follows:

si(t, t1, t2) :=















































true if t = 〈〉, t1 = 〈〉 andt2 = 〈〉,

si(t′, t′1, t
′
2) if t = 〈a〉̂ t′, t1 = 〈a〉̂ t′1,

and t2 = 〈a〉̂ t′2,

si(t′, t′1, t2) if t = 〈b〉̂ t′ andt1 = 〈b〉̂ t′1,

si(t′, t1, t
′
2) if t = 〈b〉̂ t′ andt2 = 〈b〉̂ t′2,

false otherwise,

wherea ranges overEA, b overEB, and t′, t′1, and t′2
over (EB ∪ EA)∗.

We illustratesi with an example.

t := 〈 b1, b2, b3, a1, b4, b5, a2, b6, a3, b7, a4 〉
t1 := 〈 b1, b3, a1, b4, a2, a3, b7, a4 〉
t2 := 〈 b2, a1, b5, a2, b6, a3, a4 〉

For these three traces,si(t, t1, t2) holds.
With si at hand, we define the satisfaction of SoDA

terms by traces.

Definition 7 (Trace SatisfactionSODAT ) Let φ be a
term, φut a unit term,a ∈ EA an admin event, and
b ∈ EB a business event. A tracet ∈ (EA ∪ EB)∗

satisfiesφ with respect to the user assignment relation
UA, denoted byt ⊢T

UA φ, if and only ift can be derived
from φ using the rules listed in Figure 7.



{Bob} ⊢M
{(Bob,Manager)} Manager

〈Bob.a〉 ⊢T
{(Bob,Manager)} Manager

(1)

〈addUA.Bob.Manager, Bob.a〉 ⊢T
∅ Manager

(3)

〈addUA.Bob.Manager, Bob.a, rmUA.Bob.Manager〉 ⊢T
∅ Manager

(2),

{Bob} ⊢M
∅ ¬Manager

〈Bob.a′〉 ⊢T
∅ ¬Manager

(1)

〈rmUA.Bob.Manager, Bob.a′〉 ⊢T
{(Bob,Manager)} ¬Manager

(4)

〈addUA.Bob.Manager, rmUA.Bob.Manager, Bob.a′〉 ⊢T
∅ ¬Manager

(3)

〈addUA.Bob.Manager, Bob.a, rmUA.Bob.Manager, Bob.a′〉 ⊢T
∅ (Manager ⊙ ¬Manager)

(10)

Figure 8. Example derivation under SODAT

Example 5 Consider again the termφ and the trace
t given in Example 4. Figure 8 presents a derivation
that t satisfiesφ with respect toUA = ∅. For reasons
of space, we omit the channel prefixes.

SODAT fulfills the requirements listed in Section 5.1:
(R1) follows from rules (3) and (4) of Definition 7,
(R3) from the rule (1), and (R4) from the rules corre-
sponding to the respective operators. The satisfaction
of (R2) is shown by the following lemma that relates
SODAM and SODAT , which we prove in the appendix.

Lemma 2 For all termsφ, all user assignment rela-
tions UA, and all tracest ∈ E∗

B, if t ⊢T
UA φ, then

users(t) ⊢M
UA φ.

5.3. Mapping terms to processes

First, we introduce the auxiliary processFIN that
engages in an arbitrary number of admin events before
it engages indone, and finally behaves likeSTOP .

FIN = (done → STOP ) � (admin.a : AA → FIN)

UsingFIN , we define the mappingJ.KUUA.

Definition 8 (Mapping J.KUUA) Given a set of users
U , a user assignment relationUA, and a termφ, the
mappingJφKUUA returns a CSP process parametrized
by UA. For a unit termφut and termsφ and ψ, the
mappingJ.KUUA is defined in Figure 9.

Note that the equations (1) and (2) require determin-
ing whether{u′} ⊢M

UA φut. This problem is analogous
to testing whether a propositional formula is satisfiable
under a given assignment and is also decidable in
polynomial time. In particular, we can apply bottom
up the rules (1)–(4) and (7)–(9) from Definition 4. The
only choice point arises as to whether to apply rule (7)
or (8) when evaluating a term of the formφ ⊔ ψ and
here one may simply try both possibilities.

Definition 9 (SoD enforcement process)For a termφ

and a user assignment relationUA, the SoD enforce-
ment processis the CSP process

SODφ(UA) := JφKUUA .

Before we show how an SoD enforcement process is
used together with workflows and the RBAC process,
we define and prove correctness for the mappingJ.KUUA.

Definition 10 (Correctness ofJ.KUUA) The mapping
J.KUUA is correct if for all terms φ, all user as-
signment relationsUA, and all traces t ∈ Σ∗,
t ∈ T (SODφ(UA)) anddone(t) if and only if t′ ⊢T

UA

φ, for t = t′ 〈̂done〉, wheret′ ranges over(EB ∪EA)∗.

Informally, the mappingJ.KUUA is correct if for every
term φ and every user assignment relationUA, all
traces of the processSODφ(UA) that finish with
done also satisfyφ with respect toUA underSODAT .
Conversely, every trace that satisfiesφ with respect to
UA is also inT (SODφ(UA)). We prove the following
theorem in the appendix.

Theorem 1 The mappingJ.KUUA is correct.

The following corollary relates a subset of traces of
SoD enforcement processes and their corresponding
multisets of users under the multiset semantics. It
follows directly from Theorem 1 and Lemma 2.

Corollary 1 For all terms φ, all user assignment
relations UA, and all tracest ∈ E∗

B, if t̂ 〈done〉 ∈
T (SODφ(UA)), thenusers(t) ⊢M

UA φ.

Given a processW that models a workflow and a
term φ that models an SoD policy, theSoD secure
(workflow) processSSWφ is the parallel, partially
synchronized composition ofW , the RBAC process,
and the SoD enforcement processSODφ.

SSW φ(UA,PA)

= (W ‖
EB

RBAC(UA,PA)) ‖
Σ

SODφ(UA)

= SW (UA,PA) ‖
Σ

SODφ(UA) .

Let b := business.u.a be a business event.
SSWφ(UA,PA) engages inb if W , RBAC(UA,PA),
andSODφ(UA) each engage inb. In other words,b
must be one of the next actions to be taken according
to the workflow specification, the useru must be
authorized to execute the actiona according to the



(1) JφutK
U
UA := business?u : {u′ ∈ U | {u′} ⊢M

UA φut }.a : A → FIN

� admin.addUA?u : U?r : R → JφutK
U
UA ∪ {(u,r)}

� admin.rmUA?u : U?r : R → JφutK
U
UA \ {(u,r)}

(2) Jφ+
utK

U
UA := business?u : {u′ ∈ U | {u′} ⊢M

UA φut }.a : A → (FIN � Jφ+
utK

U
UA)

� admin.addUA?u : U?r : R → Jφ+
utK

U
UA ∪ {(u,r)}

� admin.rmUA?u : U?r : R → Jφ+
utK

U
UA \ {(u,r)}

(3) Jφ ⊔ ψKU
UA := JφKU

UA � JψKU
UA

(4) Jφ ⊓ ψKU
UA := JφKU

UA ‖
Σ

JψKU
UA

(5) Jφ⊙ ψKU
UA := JφKU

UA ‖
{done} ∪ EA

JψKU
UA

(6) Jφ⊗ ψKU
UA := �

{ (Uφ,Uψ) | Uφ∪Uψ=U and Uφ∩Uψ=∅}
JφK

Uφ
UA ‖

{done} ∪ EA

JψK
Uψ
UA

Figure 9. Mapping SoDA terms to CSP processes

RBAC configuration(UA,PA), andu must not violate
the SoD policyφ, given the history of previously
executed business events andUA. Furthermore,RBAC
and SODφ can synchronously engage in an admin
event at any time. Finally,SSWφ(UA,PA) engages
in done if both W and SODφ(UA) synchronously
engage indone.

Example 6 (SoD secure workflow process) Assume
that the users who execute actions in our pay-
ment workflow must comply with the SoD pol-
icy described by the termφ of Example 3. Ex-
ample 2 shows thatt′ ∈ T (SW (UA,PA)). In
contrast, t′ 6∈ T (SSWφ(UA,PA)) becauseBob is
not allowed to execute both actionsprepare check

and approve payment. Hence, the SoD secure work-
flow process reduces the risk of fraudulent payments
pointed out in Example 2. We changet′ to t′′ by adding
the admin eventadmin.addUA.Claire.Manager and let
Claire execute theapprove payment action.

t′′ := 〈business.Alice.receive invoice,

business.Bob.prepare check,

admin.addUA.Bob.Manager,

admin.addUA.Claire.Manager,

business.Claire.approve payment,

business.Alice.issue check, done〉

The new admin event adds the role assignment
(Claire, Manager) to SSWφ’s RBAC configuration as
shown in Figure 2 by the dashed line. The tracet′′

without done satisfiesφ with respect toUA under
SODAT . Furthermore,t′′ ∈ T (SSWφ(UA,PA)).

This completes our running example and illustrates
how the three kinds of processes presented in this
paper interact and how each of them enforces its cor-
responding policy:W formalizes the workflow model,
RBAC formalizes a possibly changing access control
policy, and SODφ(UA) formalizes the SoD policy,
while accounting for changing role assignments.

5.4. From processes to enforcement monitors

CSP’soperational semanticsinterprets a process as
a labeled transition system (LTS). It is straightforward
to translate an LTS into a program that, if synchronized
with its environment, only allows the execution of
actions as defined by the CSP process. The program
thereby constitutes an enforcement monitor for the
policy specified by the CSP process. The mapping
J.KUUA may yield a nondeterministic process. However,
the corresponding LTS can either be determinized or
the enforcement monitor can keep track of the set
of reachable states after each transition, essentially
performing a power-set construction, on-the-fly.



As shown in Section 5.3, an SoD secure workflow
process is the parallel execution of three subprocesses,
each responsible for a specific task. Due to the associa-
tivity of CSP’s ||-operator, these three processes can be
grouped in any order. Furthermore, the set of events on
which these processes synchronize defines the kinds of
events each process engages in. Therefore, any subset
of these three processes can be mapped to an enforce-
ment monitor and the set of events synchronized with
the remaining processes specifies the interface of the
monitor. This is of particular interest if a system al-
ready provides one of the components we model by our
processes. For example, assume a system comes with
a workflow engine and an access control enforcement
monitor. In this case, it is sufficient to generate an
enforcement monitor for the SoD enforcement process
and to synchronize all business and admin events with
the existing components.

6. Related work

There exist many formalisms for modeling work-
flows. Examples include the Workflow Reference
Model [15], Activity Diagrams from the Unified Mod-
eling Language (UML) [22], the Business Process
Modeling Notation (BPMN) [23], and the Web Ser-
vices Business Process Execution Language (WS-
BPEL) [2]. Different formal semantics for these mod-
eling languages have been given [6,10,20,24,25,38]. In
particular, process algebras have been used to give a
formal semantics to workflow languages, for example
a semantics for BPMN is given using CSP [38].

There are also numerous models and frameworks
to formalize and enforce separation of duty con-
straints. For a taxonomy of SoD constraints and SoD
enforcement mechanisms, see for example [33] and
[12]. Because static SoD enforcement mechanisms are
considered not flexible enough for real-world settings,
research has focused on dynamic enforcement. To
the best of our knowledge, our work is the first to
model dynamic enforcement of SoD constraints with
changing role assignments.

In the seminal work of Sandhu [28],Transaction
Control Expressionsare introduced as a notation for
defining dynamic SoD constraints on data objects;
enforcement decisions are made at run-time, based
on the history of executed actions. In this notation, a
workflow, associated with a data object, is defined by
a list of actions, each with one or more attached roles.
A user is authorized to execute an action if she acts in
one of the corresponding roles. By default, all actions
must be executed by different users. Constraints are

less expressive than SoDA terms and they can only be
defined along with a concrete workflow.

Similar to [28], in Nash and Poland’sobject-based
separation of duties[21], each data object keeps track
of the users who have executed actions on it. If a user
requests to execute an action on an object, this is only
granted if he has not executed an action on this object
before. The same functionality can be modeled with
our formalism if every data object is protected by an
SoD enforcement process.

In [3], Bertino, Ferrari, and Atluri check the con-
sistency of constraints defined over workflows in a
logical framework. Constraints are defined with re-
spect to the sequence of individual workflow actions,
applying (first-order) predicates to action occurrences.
No mapping to an enforcement mechanism is given.
Schaad, Lotz, and Sohr formalize SoD constraints
in linear temporal logic (LTL) and check for safety
violations using a model checker, taking delegation and
revocation of access rights into account [30]. However,
a declarative language for SoD constraints and its
mapping to LTL is not provided. Wolter, Schaad,
and Meinel extend BPMN to support specifying SoD
constraints during workflow modeling [37]. Their con-
straints, which are less expressive than SoDA terms,
are mapped to XACML policies enforced at run time.
XACML policies, however, do not allow for changing
user assignment relations.

In the framework of Knorr and Stormer [17], dy-
namic SoD constraints are graphically defined and
mapped to Prolog clauses along with workflows that
are modeled as Petri nets. The resulting Prolog pro-
gram computes all workflow runs that do not violate
the specified SoD constraints. Similar to [3,28], and
in contrast to our results, SoD constraints can only be
described with respect to a concrete workflow.

In [35], Wang and Li also presented an enforcement
mechanism for SoDA terms. In contrast to our work,
their approach is static and not applicable to all com-
binations of terms, roles, and permission assignment
relations. In particular, the use of the¬-operator can
invalidate a large subset of assignment relations.

7. Conclusions

In this paper, we showed how to map SoDA terms
onto workflows in a general way that also supports
administrative actions. The key ideas were (1) to
extend the semantics of SoDA to traces, handling both
multiple actions by users and administrative actions,
and (2) to map SoDA terms to processes, which
interact with workflow and access control processes.
Because all components are defined in CSP, we can



directly employ CSP’s operational semantics to map
these processes to a workflow engine that performs
the necessary security checks.

As future work, we will explore how to best im-
plement our SoDA processes and integrate them with
existing workflow engines. Efficiency is a central
question in this regard. In our mapping to CSP, we
focused on providing an abstract specification of a
SoDA enforcement mechanism, rather than an efficient
one. In particular, the rule (6) in Figure 9 yields a
state space that is exponential in the number of system
users. We will investigate translations with improved
complexity and the use of data-structures for efficiently
representing extended state-machines. We will also
explore optimization techniques, e.g., pruning the state
space to eliminate states of workflow runs from which
no final state can be reached, no matter which changes
are made to the RBAC configuration. The results of
[3,18,36] should be helpful in this regard.
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Appendix

1. Li and Wang’s semantics for SoDA

We summarizeSODAS , the semantics for SoDA
terms that was originally introduced by Li and Wang in
[19]. They define satisfaction with respect to a tuple
(U,UR), whereU ⊆ U and UR ⊆ U × R. This is
in contrast to ourSODAM semantics, which is defined
with respect to just the user assignment relationUA.

Definition 11 (Set SatisfactionSODAS ) Let φ be a
term,S ⊆ U a non-empty set of users,U ⊆ U a set of
users,r ∈ R a role, andUR ⊆ U×R. A set of usersX
satisfiesφ with respect to the tuple(U,UR), denoted
by U ⊢S

(U,UR) φ, if and only ifX can be derived from
φ using the rules listed in Figure 10.

The following examples illustrate the expressivity of
SoDA terms.

• The term (All ⊗ All) ⊗ All is satisfied by three
different users.

• The termManager ⊔ (Clerk ⊗ Clerk) is satisfied
by either a user acting asManager or two different
users, both acting asClerk.

• The term (Manager ⊗ Accountant) ⊓ (Clerk ⊓

¬{Alice, Bob})+ requires a user acting asManager
and another user acting asAccountant. In addi-
tion, both users must act asClerk and must not
be Alice or Bob.

• The term(Manager⊓¬Accountant)⊔ (¬Manager⊓

Accountant))+ is satisfied by a non-empty set
of users, each either acting asManager or as
Accountant but not both.

2. Proofs

In the following, we refer to rulei of Definition 3 as
(MUi), to rulej of Definition 7 as(TRj), to rulek of
Definition 8 as(MAk), and to rulel of Definition 11
as (SEl), respectively.



(1)
{u} ⊢S

(U,UR)
All

u ∈ U (2)
{u} ⊢S

(U,UR)
r

(u, r) ∈ UR

(3)
{u} ⊢S

(U,UR)
S

u ∈ (S ∩ U) (4)
{u} 0

S
(U,UR) φ

{u} ⊢S
(U,UR)

¬φ

(5)
{u} ⊢S

(U,UR) φ

{u} ⊢M
UA φ+

(6)
{u} ⊢S

(U,UR) φ, X ⊢M
UA φ+

({u} ∪X) ⊢M
UA φ+

(7)
X ⊢S

(U,UR) φ

X ⊢S
(U,UR)

(φ ⊔ ψ)
(8)

X ⊢S
(U,UR) ψ

X ⊢S
(U,UR)

(φ ⊔ ψ)

(9)
X ⊢S

(U,UR) φ, X ⊢S
(U,UR) ψ

X ⊢S
(U,UR)

(φ ⊓ ψ)
(10)

X ⊢S
(U,UR) φ, Y ⊢S

(U,UR) ψ

(X ∪ Y ) ⊢S
(U,UR)

(φ⊙ ψ)

(11)
X ⊢S

(U,UR) φ, Y ⊢S
(U,UR) ψ

(X ∪ Y ) ⊢S
(U,UR)

(φ⊗ ψ)
(X ∩ Y ) = ∅ .

Figure 10. SODAS : semantics for sets of users

2.1. Proof of Lemma 1.We first establish two auxil-
iary propositions and then prove Lemma 1.

Proposition 1 Under SODAM, unit terms are only
satisfied by multisets of users that contain exactly one
element.

Proof: The only rules of Definition 3 that allow for
the derivation of a unit term are(MU1)–(MU4)
and (MU7)–(MU9). By their respective definitions,
the rules(MU1)–(MU4) have a multiset containing
exactly one user as their conclusion. The remaining
rules, (MU7)–(MU9), have only multisets in their
conclusions that are also in their premises. Hence,
every unit term is only satisfied by a multiset of users
that contains one element.

Proposition 2 For all unit termsφut, all user assign-
ment relationsUA, and all usersu ∈ U , {u} ⊢M

UA φut
if and only if {u} ⊢S

lwconf(UA) φut.

Proof: We proceed in two steps. We prove for all unit
termsφut, all user assignment relationsUA, and all
usersu ∈ U , (1) {u} ⊢M

UA φut ⇒ {u} ⊢S

lwconf(UA) φut
and (2){u} ⊢M

UA φut ⇐ {u} ⊢S

lwconf(UA) φut. In both
cases we reason by induction on the structure ofφut.
Let UA andu be given and(U,UR) := lwconf(UA).
(1) ⇒-direction:
Base cases:Consider the termAll and let{u} ⊢M

UA All.
By (MU1), there exists anr ∈ R such that(u, r) ∈
UA. Therefore,u ∈ U by the definition of lwconf.
From (SE1) it follows that {u} ⊢S

(U,UR) All.

Consider a term of the formr, for r ∈ R, and let
{u} ⊢M

UA r. From (MU2) it follows that (u, r) ∈ UA.
By the definition oflwconf, (u, r) ∈ UR and therefore,
{u} ⊢S

(U,UR) r by (SE2).
Consider a term of the formS, for S ⊆ U , and let

{u} ⊢M
UA S. By (MU3), u ∈ S and there exists an

r ∈ R such that(u, r) ∈ UA. By the definition of
lwconf, alsou ∈ U and thereforeu ∈ U ∩ S. From
(SE3) it follows that {u} ⊢S

(U,UR) S.
Step cases: Assume that Proposition 2 holds for
two unit termsφut and ψut. Consider now the term
¬φut and let {u} ⊢M

UA ¬φut. By (MU4), {u} 0
M
UA

φut. From the induction hypothesis, it follows that
{u} 0

S

(U,UR) φut. Therefore, {u} ⊢S

(U,UR) ¬φut
by (SE4).

Consider the termφut ⊔ ψut and let {u} ⊢M
UA

φut⊔ψut. By (MU7) and(MU8), either{u} ⊢M
UA φut

or {u} ⊢M
UA ψut. In the first case, by the induction hy-

pothesis,{u} ⊢S

(U,UR) φut and therefore{u} ⊢S

(U,UR)

φut ⊔ ψut by (SE7). The second case is analogous.
Hence,{u} ⊢S

(U,UR) φut ⊔ ψut.
Consider the termφut ⊓ ψut and let {u} ⊢M

UA

φut⊓ψut. By (MU9), {u} ⊢M
UA φut and{u} ⊢M

UA ψut.
By the induction hypothesis,{u} ⊢S

(U,UR) φut and
{u} ⊢S

(U,UR) ψut. Therefore,{u} ⊢S

(U,UR) φut ⊓ ψut
by (SE9).
(2) ⇐-direction:
Base cases:Consider the termAll and let{u} ⊢S

(U,UR)

All. By (SE1), u ∈ U and therefore, there exists an
r ∈ R such that(u, r) ∈ UA, by the definition of
lwconf. From (MU1) it follows that {u} ⊢M

UA All.



Consider a term of the formr, for r ∈ R, and let
{u} ⊢S

(U,UR) r. From (SE2) it follows that (u, r) ∈
UR. By the definition oflwconf, also(u, r) ∈ UA and
therefore,{u} ⊢M

UA r by (MU2).
Consider a term of the formS, for S ⊆ U , and let

{u} ⊢S

(U,UR) S. By (SE3), u ∈ U ∩ S and therefore,
u ∈ U and u ∈ S. From the definition oflwconf, it
follows that there exists anr ∈ R such that(u, r) ∈
UA. By (MU3), {u} ⊢M

UA S.
Step cases:Assume that Proposition 2 holds for two
unit termsφut andψut. Consider now the term¬φut
and let {u} ⊢S

(U,UR) ¬φut. By (SE4), {u} 0
S

(U,UR)

φut. From the induction hypothesis, it follows that
{u} 0

M
UA φut. Therefore,{u} ⊢M

UA ¬φut by (MU4).
Consider the termφut ⊔ ψut and let {u} ⊢S

(U,UR)

φut ⊔ ψut. By (SE7) and (SE8), either{u} ⊢S

(U,UR)

φut or {u} ⊢S

(U,UR) ψut. In the first case, by the
induction hypothesis,{u} ⊢M

UA φut and therefore
{u} ⊢M

UA φut ⊔ ψut by (MU7). The second case is
analogous. Hence,{u} ⊢M

UA φut ⊔ ψut.
Consider the termφut ⊓ ψut and let {u} ⊢S

(U,UR)

φut ⊓ ψut. By (SE9), {u} ⊢S

(U,UR) φut and
{u} ⊢S

(U,UR) ψut. By the induction hypothesis,
{u} ⊢M

UA φut and {u} ⊢M
UA ψut. Therefore,{u} ⊢M

UA

φut ⊓ ψut by (MU9).

Proof of Lemma 1: Assume an arbitrary user as-
signment relationUA and a multiset of usersU. Let
(U,UR) := lwconf(UA). We reason inductively over
the structure of SoDA terms.
Base case: Consider a unit termφut and let
U ⊢M

UA φut. By Proposition 1, U = {u},
for a user u ∈ U . From Proposition 2 it
follows that {u} ⊢S

(U,UR) φut. By the defini-
tion of userset, {u} = userset(U) and therefore
userset(U) ⊢S

(U,UR) φut.
Step cases:Assume that Lemma 1 holds for two terms
φ andψ. Consider now the termφ+ and letU ⊢M

UA

φ+. Let X := userset(U). From (MU5) and (MU6)
follows that for every useru ∈ U, {u} ⊢M

UA φ. By
the induction hypothesis and the definition ofuserset

follows that for every useru ∈ X , {u} ⊢S

(U,UR) φ.
From(SE5) and(SE6) it follows thatX ⊢S

(U,UR) φ
+.

Consider the termφ ⊔ ψ and let U ⊢M
UA φ ⊔

ψ. By (MU7) and (MU8), either U ⊢M
UA φ

or U ⊢M
UA ψ. In the first case, by the induc-

tion hypothesis,userset(U) ⊢S

(U,UR) φ and therefore
userset(U) ⊢S

(U,UR) φ⊔ψ by (SE7). The second case
is analogous. Hence,userset(U) ⊢S

(U,UR) φ ⊔ ψ.
Consider the termφ ⊓ ψ and let U ⊢M

UA φ ⊓
ψ. By (MU9), U ⊢M

UA φ and U ⊢M
UA ψ. By

the induction hypothesis,userset(U) ⊢S

(U,UR) φ and
userset(U) ⊢S

(U,UR) ψ. Therefore,userset(U) ⊢S

(U,UR)

φ ⊓ ψ by (SE9).
Consider the termφ ⊙ ψ and let U ⊢M

UA φ ⊙ ψ.
By (MU10), there are two multisets of usersV
and W such thatV ⊢M

UA φ and W ⊢M
UA ψ. By

the induction hypothesis,userset(V) ⊢S

(U,UR) φ and
userset(W) ⊢S

(U,UR) ψ. By the definition ofuserset,
userset(U) = userset(V)∪userset(W). From(SE10)
it follows that userset(U) ⊢S

(U,UR) ψ ⊙ ψ.
Consider the termφ⊗ ψ and letU ⊢M

UA φ⊗ ψ. By
(MU11), there are two multisets of usersV andW

such thatV ⊢M
UA φ, W ⊢M

UA ψ, andV ∩ W = ∅. By
the induction hypothesis,userset(V) ⊢S

(U,UR) φ and
userset(W) ⊢S

(U,UR) ψ. By the definition ofuserset,
userset(U) = userset(V) ∪ userset(W). Further-
more, if V andW are disjoint, thenuserset(V) and
userset(W) are disjoint, too. Therefore, by(SE11)
userset(U) ⊢S

(U,UR) ψ ⊗ ψ.

2.2. Proof of Lemma 2.We first establish two auxil-
iary propositions and then prove Lemma 2.

Proposition 3 For t, t1, t2 ∈ Σ∗, if si(t, t1, t2) then
users(t) = users(t1) ⊎ users(t2).

Proof: By Definition 6, each business event int is
either int1 or t2, but not in both. Therefore,users(t) =
users(t1) ⊎ users(t2) since the functionusers returns
the multiset of users that are contained in the business
events of its argument.

Proposition 4 For t ∈ E∗
B, t1, t2 ∈ Σ∗, if si(t, t1, t2)

then t1 ∈ E∗
B and t2 ∈ E∗

B.

Proof: By Definition 6, each event that is int1 or t2
is also in t. Sincet ∈ E∗

B, we therefore have thatt1
and t2 contain only business events.

Proof of Lemma 2: Assume an arbitrary user as-
signment relationUA and reason inductively over the
structure of SoDA terms.
Base cases:Consider a unit termφut and a tracet ∈
E∗
B. Let t ⊢T

UA φut. The only rules of Definition 7 that
have a unit term as their conclusion are(TR1)–(TR4).
Becauset contains no admin events, only(TR1) is
applicable. Therefore,t must be of the form〈b〉, for
a business eventb ∈ EB. By (TR1), {user(b)} ⊢M

UA

φut, which is equivalent tousers(t) ⊢M
UA φut by the

definition of users.
Consider a term of the formφ+

ut and a tracet ∈ E∗
B.

Let t ⊢T
UA φ+

ut. The only rules of Definition 7 that
have a term of the formφ+

ut as the conclusion are
(TR2)–(TR6). Becauset contains no admin events,



only (TR5) and (TR6) are applicable. For both rules,
the tracet must contain at least one business event
b such that〈b〉 ⊢T

UA φut. By the same argument as
in the unit term case, it follows thatusers(〈b〉) ⊢M

UA

φut and therefore, by(MU5), users(〈b〉) ⊢M
UA φ

+
ut. By

induction over the length oft, with 〈b〉 as the induction
basis, it follows thatusers(t) ⊢M

UA φ+
ut from (TR6)

and (MU6).
Step cases:Assume that Lemma 2 holds for two terms
φ andψ. Consider now the termφ ⊔ ψ and a trace
t ∈ E∗

B. Let t ⊢T
UA φ⊔ψ. By (TR7) and(TR8), either

t ⊢T
UA φ or t ⊢T

UA ψ. In the first case, by the induction
hypothesis,users(t) ⊢M

UA φ and thereforeusers(t) ⊢M
UA

φ⊔ψ by (MU7). The second case is analogous. Hence,
users(t) ⊢M

UA φ ⊔ ψ.
Consider the termφ ⊓ ψ and a tracet ∈ E∗

B. Let
t ⊢T

UA φ ⊓ ψ. By (TR9), t ⊢T
UA φ and t ⊢T

UA ψ.
From the induction hypothesis,users(t) ⊢M

UA φ and
users(t) ⊢M

UA ψ. Therefore,users(t) ⊢M
UA φ ⊓ ψ

by (MU9).
Consider the termφ ⊙ ψ and a tracet ∈ E∗

B. Let
t ⊢T

UA φ ⊙ ψ. By (TR10), there exist two tracest1 and
t2 such thatsi(t, t1, t2), t1 ⊢T

UA φ, and t2 ⊢T
UA ψ. By

Proposition 4,t1 and t2 consist only of admin events
becauset ∈ E∗

B. Therefore, from the induction hypoth-
esis,users(t1) ⊢M

UA φ andusers(t2) ⊢M
UA ψ. Moreover,

by Proposition 3,users(t) = users(t1) ⊎ users(t2).
Hence,users(t) ⊢M

UA φ⊙ ψ by (MU10).
Finally, consider the termφ ⊗ ψ and a tracet ∈ E∗

B.
Let t ⊢T

UA φ ⊗ ψ. By (TR11), there exist two tracest1
andt2 such thatsi(t, t1, t2), users(t1)∩ users(t2) = ∅,
t1 ⊢T

UA φ, andt2 ⊢T
UA ψ. By Proposition 4,t1 and t2

consist only of admin events becauset ∈ E∗
B. There-

fore, from the induction hypothesis,users(t1) ⊢M
UA φ

and users(t2) ⊢M
UA ψ. Furthermore, by Proposition 3,

users(t) = users(t1) ⊎ users(t2). Therefore, since
users(t1) ∩ users(t2) = ∅, users(t) ⊢M

UA φ ⊗ ψ

by (MU11).

2.3. Proof of Theorem 1.We establish four auxiliary
propositions and prove Theorem 1 afterwards. For a
tracet ending withdone, we use the convention that
t̃ denotes the tracet without the last eventdone, i.e.,
if done(t), then t = t̃ ˆ〈done〉. Recall Definition 10.
We prove that for all termsφ, all user assignmentsUA,
and all tracest ∈ Σ∗, t ∈ T (SODφ(UA)) anddone(t)
if and only if t̃ ⊢T

UA φ. We refer to the left-hand side
asLHS, and to the right-hand side asRHS.

Proposition 5 For a termφ, a trace t ∈ Σ∗, a trace
of admin eventsa ∈ E∗

A, a user assignment relations
UA, andUA′ := upd(UA, a), t ⊢T

UA′ φ if and only if
â t ⊢T

UA φ.

Proof sketch:The proof is by induction ona using
(TR3), (TR4), and Definition 5.

Proposition 6 For a user assignment relationsUA, a
term φ, a trace t ∈ Σ∗, and a trace of admin events
a ∈ E∗

A, t ⊢T
UA φ if and only if t̂ a ⊢T

UA φ.

Proof: This follows directly by applying(TR2) for
each admin event ina to t ⊢T

UA φ.

Proposition 7 For a user assignment relationsUA,
a term φ, and a set of usersU , the processJφKUUA
engages only in a business eventb, if user(b) ∈ U .

Proof: Let b be a business event. We reason inductively
on the structure ofφ. Terms of the formφut andφ+

ut

are the base cases. By(MA1) and(MA2), JφKUUA and
Jφ+KUUA only engage inb, if user(b) ∈ U . For two
termsφ andψ, assume that Proposition 7 holds. By
(MA3), (MA4), and(MA5), the processesJφ⊔ψKUUA,
Jφ ⊓ ψKUUA, andJφ ⊙ ψKUUA only engage inb if either
JφKUUA or JψKUUA engage inb. By (MA6), the process
Jφ ⊗ ψKUUA only engages inb if either JφKU

′

UA or
JψKU

′

UA engage inb, for U ′ ⊆ U . From the induction
hypothesis, it follows that all processes only engage in
b if user(b) ∈ U .

Proposition 8 For three tracest, t1, t2 ∈ (EB ∪ EA)∗

and two processesP,Q ∈ P , if t1 ∈ T (P ), t2 ∈ T (Q)
and si(t, t1, t2), thent ∈ T (P ‖

EA∪{done}

Q).

Proof sketch: The proof is by induction overt.
Proposition 8 follows by the definition of the
||-operator under the denotational semantics of CSP
and by Definition 6. The synchronization ondone can
be ignored becauset, t1, andt2 do not containdone.

Proof of Theorem 1: We proceed in two steps. We
prove that for all terms, all user assignment relations
UA, and all tracest ∈ Σ∗, (1) LHS ⇒ RHS and (2)
LHS ⇐ RHS. Let UA be given. In both cases we
reason by induction on the structure ofφ.
(1) LHS ⇒ RHS:
Base cases: Consider a unit termφut and let
t ∈ T (SODφut(UA)) and done(t). By (MA1) and
the denotational semantics of CSP,t is of the form
a1ˆ〈b〉̂ a2ˆ〈done〉, for a1, a2 ∈ E∗

A and b ∈ EB.
Let UA′ := upd(UA, a1). BecauseJφutKUUA′ engages
in b, {user(b)} ⊢M

UA′ φut by (MA1). From (TR1)
follows that〈b〉 ⊢T

UA′ φut. Therefore, by Proposition 5,
a1ˆ〈b〉 ⊢

T
UA φut and by Proposition 6a1ˆ〈b〉̂ a2 ⊢T

UA

φut. Hence,t̃ ⊢T
UA φut.

Consider a term of the formφ+
ut and let t ∈

T (SODφ
+
ut

(UA)) and done(t). By (MA2) and the



denotational semantics of CSP,t is of the form
a1ˆ 〈b1〉̂ . . .ˆanˆ 〈bn〉̂ an+1ˆ 〈done〉, for ai ∈ E∗

A,
an+1 ∈ E∗

A, and bi ∈ EB, for i ∈ {1 . . . n} and
n ≥ 1. We reason inductively overn. Assumen = 1
and letUA′ := upd(UA, a1). Analogous to the pre-
vious case, it follows thata1ˆ〈b1〉̂ a2 ⊢T

UA φut. By
(TR5), a1ˆ〈b1 〉̂ a2 ⊢T

UA φ+
ut. We now assumen > 1

and a2ˆ 〈b2〉̂ a3ˆ . . .ˆanˆ 〈bn 〉̂ an+1 ⊢T

UA′ φ+
ut, for

UA′ := upd(UA, a1). BecauseJφutKUUA′ engages in
b1, {user(b1)} ⊢M

UA′ φut by (MA2). From (TR1)
it follows that 〈b1〉 ⊢T

UA′ φut and from (TR6) that
〈b1〉̂ a2 〈̂b2〉̂ a3ˆ. . . ân 〈̂bn〉̂ an+1 ⊢T

UA′ φ
+
ut. By Propo-

sition 5,a1 〈̂b1〉̂ a2 〈̂b2〉̂ a3ˆ. . . ân 〈̂bn〉̂ an+1 ⊢T

UA′ φ
+
ut

and hencẽt ⊢T
UA φ

+
ut.

Step cases: For two termsφ and ψ, assume that
LHS ⊆ RHS holds. Consider now the termφ ⊔ ψ,
let t ∈ T (SODφ⊔ψ(UA)), and done(t). By (MA3),
SODφ⊔ψ(UA) = SODφ(UA) � SODψ(UA). From
the denotational semantics of CSP follows that either
t ∈ T (SODφ(UA)) or t ∈ T (SODψ(UA)). Consider
the first case. From the induction hypothesist̃ ⊢T

UA φ.
By (TR7), t̃ ⊢T

UA φ ⊔ ψ. The second case follows
analogously by(TR8). Hence,t̃ ⊢T

UA φ ⊔ ψ.
Consider the termφ⊓ψ, let t ∈ T (SODφ⊓ψ(UA)),

and done(t). By (MA4), SODφ⊓ψ(UA) =
SODφ(UA) ‖

Σ

SODψ(UA). From the denotational

semantics of CSP follows thatt ∈ T (SODφ(UA))
andt ∈ T (SODψ(UA)). By the induction hypothesis,
t̃ ⊢T

UA φ and t̃ ⊢T
UA ψ. By (TR9), t̃ ⊢T

UA φ ⊓ ψ.
Consider the termφ⊙ψ, let t ∈ T (SODφ⊙ψ(UA)),

and done(t). By (MA5), SODφ⊙ψ(UA) =
SODφ(UA) ‖

{done} ∪ EA

SODψ(UA). From the

denotational semantics of CSP follows that there are
two tracestφ, tψ ∈ Σ∗ such thattφ ∈ T (SODφ(UA))
and tψ ∈ T (SODψ(UA)). Furthermore, because
done(t) and becauseSODφ(UA) and SODψ(UA)
synchronize ondone, done(tφ) and done(tψ). From
the induction hypothesis, it follows that̃tφ ⊢T

UA φ

and t̃ψ ⊢T
UA ψ. Moreover, becauseSODφ(UA) and

SODψ(UA) synchronize onEA but not on EB,
si(t̃, t̃φ, t̃ψ). By (TR10), t̃ ⊢T

UA φ⊙ ψ.
Finally, consider the term φ ⊗ ψ, let

t ∈ T (SODφ⊗ψ(UA)), and done(t). By (MA6),
SODφ⊗ψ(UA) = (JφK

Uφ
UA ‖

{done} ∪ EA

JψK
Uψ
UA) � . . . .

From the denotational semantics of CSP follows that
there are two disjoint sets of usersUφ andUψ such
that t ∈ T (JφK

Uφ
UA ‖

{done} ∪ EA

JψK
Uψ
UA). Analogous

to the previous case, there are two tracest̃φ and t̃ψ
such thatt̃φ ⊢T

UA φ, t̃ψ ⊢T
UA ψ, and si(t̃, t̃φ, t̃ψ). By

Proposition 7, users inusers(t̃φ) are inUφ and users

in users(t̃ψ) are inUψ. BecauseUφ ∩ Uψ = ∅, and,
moreover,users(t̃φ) ∩ users(t̃ψ) = ∅. Therefore, by
(TR11), t̃ ⊢T

UA φ⊗ ψ.
(2) LHS ⇐ RHS:
Base cases:Consider a unit termφut and t̃ be a trace
such that̃t ⊢T

UA φut. The only rules of Definition 7 that
allow for the derivation ofφut are (TR1)–(TR4). Of
these, only(TR1) does not have a trace in its premises.
Therefore,(TR1) is at the leaves of every derivation of
t̃ ⊢T

UA φut and, thus,̃t contains a business eventb. By
iteratively applying the rules(TR2)–(TR4), one can
add admin events before and afterb but no additional
business event (otherwiseφut would not be a unit
term). It follows thatt̃ is of the forma1ˆ〈b〉̂ a2, for
a1, a2 ∈ E∗

A and b ∈ EB. Let UA′ := upd(UA, a1).
From Proposition 5 it follows that〈b〉̂ a2 ⊢T

UA′ φut
and therefore, by(TR1), {user(b)} ⊢M

UA′ φut. By
(MA1), SODφut(UA) acceptsa1 and behaves like
SODφut(UA

′) afterwards. Because{user(b)} ⊢M

UA′

φut, SODφut(UA
′) engages inb and behaves like

FIN afterwards. FromFIN ’s definition, it follows
that FIN acceptsa2ˆ〈done〉 and finally behaves like
STOP . Hence,t ∈ T (SODφut(UA)).

Consider a term of the formφ+
ut and let t̃ be

a trace such that̃t ⊢T
UA φ+

ut. The only rules of
Definition 7 that allow for the derivation ofφ+

ut are
(TR2)–(TR6). Out of these, only(TR5) does not have
a trace that satisfiesφ+

ut in its premises. Therefore,
every derivation of̃t ⊢T

UA φ
+
ut contains one application

of (TR5) and, thus,̃t contains at least one business
event b. By the rules (TR2)–(TR4) and (TR6), it
follows that t̃ is of the forma1 〈̂b1〉̂ . . . ân 〈̂bn〉̂ an+1

for ai ∈ E∗
A, an+1 ∈ E∗

A, and bi ∈ EB, for
i ∈ {1, . . . , n}. Because there is at least oneb in t̃,
n ≥ 1. We reason inductively overn. For n = 1, it
follows analogous to the unit term case, by(MA2),
that a1ˆ 〈b1〉̂ a2ˆ 〈done〉 ∈ T (SODφ

+
ut

(UA)). For
n > 1, assumea2ˆ〈b2〉̂ . . .ˆanˆ〈bn〉̂ an+1ˆ〈done〉 ∈
T (SODφ+

ut
(UA′)), for UA′ := upd(UA, a). Be-

cause a1ˆ 〈b1 〉̂ . . .ˆ anˆ 〈bn 〉̂ an+1 ⊢T
UA φ+

ut,
{user(b1)} ⊢M

UA′ φut by (TR1), (TR6), and Propo-
sition 5. By (MA2), SODφ

+
ut

(UA) accepts a1

and behaves likeSODφ
+
ut

(UA′) afterwards. Because
{user(b1)} ⊢M

UA′ φut, SODφ
+
ut

(UA′) engages in
b1 and behaves likeSODφ

+
ut

(UA′) and FIN af-
terwards. Therefore, by the induction hypothesis,
a1ˆ 〈b1〉̂ a2ˆ 〈b2 〉̂ . . .ˆ anˆ 〈bn〉̂ an+1ˆ 〈done〉 ∈
T (SODφ

+
ut

(UA)). Hence,t ∈ T (SODφ
+
ut

(UA)).
Step cases: For two termsφ and ψ, assume that
LHS ⊇ RHS holds. Consider now a term of the
form φ ⊔ ψ and let t̃ ⊢T

UA φ ⊔ ψ. By (TR7) and
(TR8), either t̃ ⊢T

UA φ or t̃ ⊢T
UA ψ. Consider the



first case. By(MA3) and the denotational seman-
tics of CSP,T (SODφ⊔ψ(UA)) = T (SODφ(UA)) ∪
T (SODψ(UA)). From the induction hypothesis it
follows that t ∈ T (SODφ(UA)) and therefore,t ∈
T (SODφ⊔ψ(UA)). The second case is analogous.
Hence,t ∈ T (SODφ⊔ψ(UA)).

Consider the termφ ⊓ ψ and let t̃ ⊢T
UA φ ⊓ ψ. By

(TR9), t̃ ⊢T
UA φ and t̃ ⊢T

UA ψ. By (MA4) and the
denotational semantics of CSP,T (SODφ⊓ψ(UA)) =
T (SODφ(UA)) ∩ T (SODψ(UA)). From the induc-
tion hypothesis it follows thatt ∈ T (SODφ(UA))
and t ∈ T (SODψ(UA)) and therefore, t ∈
T (SODφ⊓ψ(UA)).

Consider the termφ ⊙ ψ and let t̃ ⊢T
UA φ ⊙

ψ. By (TR10), there exist two traces̃tφ and t̃ψ
such that t̃φ ⊢T

UA φ, t̃ψ ⊢T
UA ψ, and si(t̃, t̃φ, t̃ψ).

By the induction hypothesis,tφ ∈ T (SODφ(UA))
and tψ ∈ T (SODψ(UA)), and therefore also
t̃φ ∈ T (SODφ(UA)) and t̃ψ ∈ T (SODψ(UA)).
From (MA5) and Proposition 8 it follows that
t̃ ∈ T (SODφ⊙ψ(UA)). Moreover, by (MA5), be-
causeSODφ(UA) and SODψ(UA) both engage in
done after having accepted̃tφ and t̃ψ respectively,
SODφ⊙ψ(UA) engages indone too, after having
accepted̃t. Hence,t ∈ T (SODφ⊙ψ(UA)).

Finally, consider a term of the formφ ⊗ ψ and
let t̃ ⊢T

UA φ ⊗ ψ. By (TR11), there exist two
traces t̃φ and t̃ψ such that t̃φ ⊢T

UA φ, t̃ψ ⊢T
UA ψ,

si(t̃, t̃φ, t̃ψ), and users(t̃φ) ∩ users(t̃ψ) = ∅. Be-
cause users(t̃φ) ∩ users(t̃ψ) = ∅, there exist two
sets of usersUφ ⊆ U and Uψ ⊆ U such that
Uφ ∪ Uψ = U , Uφ ∩ Uψ = ∅, users(t̃φ) ⊆ Uφ,
and users(t̃ψ) ⊆ Uψ. By the induction hypothesis,
tφ ∈ T (SODφ(UA)) and tψ ∈ T (SODψ(UA)),
and therefore alsõtφ ∈ T (SODφ(UA)) and t̃ψ ∈

T (SODψ(UA)). From Proposition 7,JφK
Uφ
UA therefore

acceptst̃φ and JψK
Uψ
UA acceptst̃ψ. By (MA6) and the

denotational semantics of CSP,SODφ⊗ψ(UA) also be-
haves likeJφK

Uφ
UA ‖

{done} ∪ EA

JψK
Uψ
UA. Analogous to the

previous case, it follows that̃t ∈ T (SODφ⊗ψ(UA))
and t ∈ T (SODφ⊗ψ(UA)).


