
RZ 3727 (# 99737) 02/06/2009
Computer Science 23 pages

Research Report

Dependent and Conflicting Change Operations of Process Models

Jochen M. Küster1, Christian Gerth1,2, and Gregor Engels2

1IBM Research GmbH
Zurich Research Laboratory
8803 Rüschlikon
Switzerland

E-mail: {jku,cge}@zurich.ibm.com

2Department of Computer Science
University of Paderborn
Germany

E-mail: {gerth,engels}@upb.de

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Dependent and Conflicting Change Operations of
Process Models

Jochen M. Küster1, Christian Gerth1,2, and Gregor Engels2

1 IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland {jku,cge}@zurich.ibm.com

2 Department of Computer Science, University of Paderborn, Germany
{gerth,engels}@upb.de

Abstract. Version management of models is common for structural diagrams
such as class diagrams but still challenging for behavioral models such as pro-
cess models. For process models, conflicts of change operations are difficult to
resolve because often dependencies to other change operations exist. As a conse-
quence, conflicts and dependencies between change operations must be computed
and shown to the user who can then take them into account while creating a con-
solidated version. In this paper, we introduce the concepts of dependencies and
conflicts of change operations for process models and provide a method how to
compute them. We then discuss different possibilities for resolving conflicts. Us-
ing our approach it is possible to enable version management of process models
with minimal manual intervention of the user.

1 Introduction

Version management of models is a crucial technique for enabling modeling in dis-
tributed modeling scenarios and has recently been identified as one challenge in model
management [8]. In general, it requires to compute and visualize changes that have been
performed on a common source model while creating different versions. Based on this,
version management capabilities then have to enable the user to create a consolidated
model, by accepting or rejecting changes and thereby modifying the original source
model.

A key requirement for consolidation of changed models is that it should impose
minimal manual overhead on the user: Otherwise, a straightforward solution would be
that the user remodels all changes manually. Nowadays, version management is a com-
mon functionality of mainstream modeling tools such as the IBM Rational Software
Architect [15]. However, for behavioral models such as process models, inspecting and
accepting or rejecting changes can involve quite some overhead if the changes to be
dealt with are numerous. One reason for this is that the semantics of behavioral mod-
els is usually more complex than for structural models. A straightforward approach to
compute all changes on model elements (called elementary changes) and display them
is difficult to handle for the user: typically, elementary changes cannot be considered in
isolation but must be aggregated to compound changes [14, 25].

To enable a high degree of automation within consolidation of changes, it is impor-
tant to understand dependencies and conflicts of changes. Informally, if two changes are
dependent, then the second one requires the application of the first one. If two changes

are in conflict, then only one of the two can be applied. Other than in structural models,
in behavioral models changes are often dependent on one another. As a consequence, an
approach for computing dependent and conflicting compound changes is required. Fur-
ther, once conflicts have been computed, techniques for resolving conflicts are needed
that take into account the characteristics of the modeling language.

In this paper, we study dependencies and conflicts of compound changes for process
models. We first capture each of our compound change operations as a model transfor-
mation and then compute critical pairs [3, 9, 10] which can be used for detecting de-
pendent and conflicting transformations. We then show how the results from critical
pair analysis can be encoded as conditions which enable fast checks for dependencies
and conflicts. We extend dependencies and conflicts to change sequences and provide
a means of breaking up a change sequence into individual subsequences such that they
can be dealt with separately in the conflict resolution process. For conflict resolution,
we propose several resolution options that take into account characteristics of com-
pound change operations. Using our approach, dependencies and conflicts of compound
change operations in change logs can be computed and displayed to the user. In an eval-
uation we show that our approach leads to considerable less dependencies and conflicts
and also to less user intervention for inspecting and resolving changes compared to an
approach based on elementary changes.

The paper is structured as follows. First, in Section 2 we introduce our example sce-
narios that we obtain when performing process modeling in a distributed environment.
In Section 3, we discuss how dependencies and conflicts of change operations can be
defined and computed. In Section 4, we extend the notion of dependency and conflict
to change sequences and in Section 5 we present our approach to conflict resolution.
Section 6 reports on tool support and an evaluation of our approach. Finally, we discuss
related work and future work.

2 Background

In this section, we introduce our case study motivated by process modeling in the IBM
WebSphere Business Modeler (WBM) [1]. Figure 1 shows an example business process
model V from the insurance domain. The language supported by WBM has similarities
to UML 2.0 Activity Diagrams [20]: Nodes can be Actions or ControlNodes where Con-
trolNodes contain Decision and Merge, Fork and Join, InitialNodes and FinalNodes.
Nodes are connected by control flow as it is known from UML Activity Diagrams. In
the example in Figure 1, an insurance claim is first checked, then it is recorded and then
a decision is made whether to settle or reject it.

In a distributed modeling scenario, the process model V might have been created by
the process model representative in an enterprise and then given to two colleagues for
further elaboration. During this elaboration period, one colleague creates model V1 and
the other one model V2. Afterwards, the process model representative is faced with the
task of inspecting each change and then either accepting or rejecting it.

A common approach for version management of models is to capture possible op-
erations performed on the model. For behavioral models such as process models, it is
possible to design compound change operations that transform a model from one con-

2

sistent state into a new consistent state. Following this idea, we have previously pro-
posed compound change operations for process models [14] as follows: InsertAction,
DeleteAction or MoveAction operations allow to insert, delete or modify actions and
always produce a connected process model as output. Each of the operations consists
of several elementary changes such as creating a new action and redirecting source and
targets of the edges. Similarly, InsertFragment, DeleteFragment and MoveFragment
operations can be used for inserting, deleting or moving a complete fragment of the
process model. Here, a fragment can either be an alternative fragment consisting of a
Decision and a Merge node, a concurrent fragment consisting of a Fork and a Join node
or further types of fragments including unstructured or complex fragments which allow
to express all combinations of control nodes [14].

Record
Claim

Check
Claim

Settle
Claim

Reject
Claim

V2

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Send
Confirmation

V

V1

Recalc. Cust.
Contribution

Pay
Out

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

Close
Claim

Send
Declinature

Update
Cust. Record

Calculate
Loss Amount

Send Letter

Recalc. Cust.
Contribution

Pay
Out

Fig. 1. Example

Action Mapping (V1, V2)
� “Retrieve add. Data” – “”
� “Calculate Loss Amount” –

“Calculate Loss Amount”
� “Recalc. Cust. Contribution” –

“Recalc. Cust. Contribution”
� “Pay Out” – “Pay Out”
� “Send Confirmation” – “Send Letter”
� “Call Customer” – “”
� “Send Rej. Letter” – “Send Declinature”
� “” – “Update Cust. Record”

Fig. 2. Action mapping be-
tween V1 and V2

For the following discussions, we assume knowl-
edge about newly introduced action nodes that are sup-
posed to be identical in different versions, captured by
a mapping of identical actions shown in Figure 2.

In addition, we assume that each sequence of
change operations is recorded in a change log. This
change log describes the change operations performed
on the source model to obtain the target model and
can either be logged during editing or reconstructed by
comparing source and target model, proposed in [14].
We further assume that this change log is clean, i.e. it does not contain unnecessary

3

change operations that are later in the change log overridden [21]. In Figure 3, two
change logs are given: ∆(V, V1) describes the sequence of change operations for ob-
taining V1 from V and ∆(V, V2) describes the sequence of change operations for obtain-
ing V2 from V . For example, InsertAlt.Fragment(FA, ”Reject Claim”, ”Close Claim”)
introduces a new alternative fragment called FA between the nodes ”Reject Claim” and
”Close Claim”.�

(V, V1):
< InsertAlt.Fragment(FA, “Reject Claim”, “Close Claim”),

DeleteAction(“Close Claim”, FA, Merge2),
InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy),

InsertAction(“Calc. Loss Amount”, Fork1
FC2, Join1

FC2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA),
InsertAction(“Recalc. Cust. Contrib.”, Fork2

FC2, Join2
FC2) >

�
(V, V2):

< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertCon.Fragment(FC5, Fork2

FC4, Join2
FC4),

InsertAction(“Send Letter”, Fork1
FC4, Join1

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Calc. Loss Amount”, Fork1
FC5, Join1

FC5),
InsertAction(“Update Cust. Record”, Fork2

FC3, Join2
FC3),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

Fig. 3. Change logs ∆(V, V1) and ∆(V, V2)

For the following discussion, we distinguish between two scenarios: In the single
user scenario, a sequence of change operations is performed on a model V , obtaining
model V1. Afterwards this sequence of change operations needs to be displayed to the
user and for each change the user either has to confirm or reject it. In the multi-user
scenario, two sequences of change operations are performed concurrently on V , leading
to V1 and V2. Afterwards, all change operations are reconsidered and either rejected or
confirmed.

Requirements for both scenarios are that the application of changes should be
automatic and involve minimal user interaction. This requires that the change op-
erations can be executed automatically and requires the validity of their parame-
ters: If the parameters are invalid then a change operation becomes non-applicable.
For this purpose, it is important that dependencies between change operations in
the change sequences are known: The rejection of one operation can turn other
operations non-applicable. For example, the rejection of an InsertAlt.Fragment op-
eration leads to the non-applicability of all operations operating on this fragment.
In addition, in the multi-user scenario, conflicts need to be identified because
it is impossible to apply both operations that are in conflict without adaptation.
For example, InsertAlt.Fragment(FA, ”Reject Claim”, ”Close Claim”) and InsertCon.-
Fragment(FC3, ”Reject Claim”, ”Close Claim”) are in conflict because either an alter-
native or a concurrent fragment is inserted at the same position. This means that once
one of the change operations has been chosen the other one becomes non-applicable.
In the following, we first provide a concept for dependencies and conflicts of change
operations and then proceed to conflict resolution.

4

3 Dependencies and Conflicts of Change Operations

In this section, we establish the notions of dependencies and conflicts of change op-
erations and discuss how to compute them. We first formalize change operations using
graph transformations and then compute potential dependencies and conflicts of change
operations.

3.1 Metamodel and Change Operations

Change operations can be formalized over a process model metamodel as has been done
previously for other model transformation rules. We assume a business process model
defined by the simplified metamodel shown in Figure 4 consisting of nodes connected
by edges. Nodes can be Actions or ControlNodes or Fragments. ControlNodes contain
Decision and Merge, Fork and Join, InitialNodes and FinalNodes. We assume that the
metamodel is restricted by constraints and in particular that for Actions, only at most
one incoming and outgoing edge is allowed. Fragments are an extension that allow us to
represent a decomposition of the process model which can be computed using existing
algorithms [24]. Fragments can be used for various analysis purposes such as control
and data flow analysis but are also beneficial in the context of version management
because they allow to detect and specify compound changes [14].

Fig. 4. Metamodel for process models

Each change opera-
tion c on a model V can
be viewed as a model
transformation rule
which can be formalized
as a typed attributed
graph transformation
rule [10, 13, 18] where
the type graph represents
the metamodel. A typed
graph transformation
rule p : L → R consists
of a pair of typed in-
stance graphs L, R such
that the union is defined. A graph transformation step from a graph G to a graph H,

denoted by G
p(o)
=⇒ H, is given by a graph homomorphism o : L ∪ R → G ∪ H, called

occurrence, such that the left hand side is embedded into G and the right hand side is
embedded into H and precisely that part of G is deleted which is matched by elements
of L not belonging to R, and, that part of H is added which is matched by elements new
in R. For a rule p, an inverse rule p−1 can be constructed that inverts the transformation
defined by p.

The change operations used in Figure 3 are specified as graph transformation rules
in Figure 5. The InsertAction operation inserts a new Action between two existing nodes
and also reconnects the process model such that it stays connected. For this purpose, the
left hand side of the rule matches a fragment f and two nodes a and b connected by an

5

edge e. It then creates a new Action x and a new edge e2 and redirects the target of the
edge e1 to be the new Action. In a similar way, DeleteAction and MoveAction delete
an action or move an action, respectively. Fragment operations are used for inserting,
deleting or moving a fragment of the process model. Note that fragments can be concur-
rent fragments or alternative fragments or of a further type. Details about the fragment
structure are left out here for simplification.

a:Node e1:Edge b:Node

a:Node e1:Edge x:Action e2:Edge b:Node

a) InsertAction(x,a,b)

a:Node e1:Edge b:Node

a:Node e1:Edge x:Action e2:Edge b:Node

b) DeleteAction(x,a,b)

a:Node e3:Edge b:Node

n1:Node e1:Edge x:Action e2:Edge n2:Node

c) MoveAction(x,n1,n2,a,b)

n1:Node e1:Edge n2:Node

a:Node e3:Edge x:Action e4:Edge b:Node

f:Fragment

f:Fragment

f:Fragment

f:Fragment

a:Node e1:Edge b:Node

d) DeleteFragment(f,a,b)

a:Node e3:Edge b:Node

e) MoveFragment(f,n1,n2,a,b)

n1:Node e1:Edge n2:Node

a:Node e1:Edge f:Fragment e2:Edge b:Node

n1:Node e1:Edge f:Fragment e2:Edge n2:Node

a:Node e3:Edge f:Fragment e4:Edge b:Node

g:Fragment

g:Fragment

a:Node e1:Edge b:Node

a:Node e1:Edge f:Fragment e2:Edge b:Node

f) InsertFragment(f,a,b)
e:Fragment

e:Fragment

f:Fragment

f:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

e:Fragment

Fig. 5. Specification of operations dealing with Actions and Fragments

3.2 Dependencies and Conflicts of Changes

For graph transformation, dependencies and conflicts have been defined [5, 9, 18]: For-

mally, given a sequence of graph transformations G
p1(o1)=⇒ H1

p2(o2)=⇒ X, H1
p2(o2)=⇒ X

is (weakly sequential) independent of G
p1(o1)=⇒ H1 if the occurrence o2(L2) is already

present before the application of p1. This is the case if o2(L2) does not overlap with
objects created by p1. If in addition p2 does not delete objects that are needed for the

6

application of p1, then p1 and p2 can be exchanged and are called sequentially indepen-
dent.

Formally, given two graph transformations G
p1(o1)=⇒ H1 and G

p2(o2)=⇒ H2, G
p1(o1)=⇒ H1

is (weakly parallel) independent of G
p2(o2)=⇒ H2 if the occurrence o1(L1) of the left-

hand side of p1 is preserved by the application of p2. This is the case if o1(L1) does
not overlap with objects that are deleted by p2. If the two transformations are mutually
independent, they can be applied in any order yielding the same result. In this case we
speak of parallel independence. Otherwise, if one of two alternative transformations is
not independent of the second, the second will disable the first. In this case, the two
steps are in conflict. According to the Local Church Rosser Theorem [5] 3, parallel
independence of two transformation steps induces their sequential independence and
vice versa (with adapted occurrences).

“Reject Claim”:Node e1:Edge “Close Claim”:Node

e:Fragment

InsertAlt.Fragment(FA,
“Reject Claim”,
“Close Claim”)

InsertCon.Fragment(FC3,
“Reject Claim”,
“Close Claim”)

“Reject Claim”:Node

e1:Edge

FA:AlternativeFragment

e2:Edge

“Close Claim”:Node

e
:F

ra
g

m
e
n

t

“Reject Claim”:Node

e1:Edge

FC3:ConcurrentFragment

e2:Edge

“Close Claim”:Node

e
:F

ra
g

m
e
n

t

G

H1 H2

Reject
Claim

Close
Claim

… …

Reject
Claim

Close
Claim

…

…
Reject
Claim

Close
Claim

… …

b)a)

InsertAlt.Fragment(FA,
“Reject Claim”,
“Close Claim”)

InsertCon.Fragment(FC3,
“Reject Claim”,
“Close Claim”)

Fig. 6. A conflict between two changes

Often, we are not only interested to know whether two particular transformation
steps are parallel or sequentially independent but also whether two transformation rules
are parallel or sequentially independent. Related work (e.g. [9]) already discusses the
notion of potential conflicts and dependencies. Given two rules p1, p2, a potential con-
flict or dependency occurs if there exist transformation steps such that a conflict or
sequential dependency occurs. Given two rules p1 and p2, the computation of potential
conflicts and dependencies can be done using critical pairs. A critical pair is a pair of

transformation steps H1
p1(o1)⇐= G

p2(o2)=⇒ H2 which are in conflict and with the property
that G is minimal.

Critical pairs of two rules p1 and p2 can be computed by overlapping the left hand
sides of p1 and p2 in all possible ways such that there exists at least one object that
is deleted by one of the rules and both rules are applicable. Figure 6 a) shows two
conflicting changes in concrete syntax from our example and Figure 6 b) shows the
critical pair for this situation. Here, both changes insert a fragment at the same position
in G. If one of the changes is applied, the other one will not be applicable anymore.

3 The Local Church Rosser Theorem has been proven for typed attributed graph transformation
in [7].

7

In the following, we discuss the results of critical pair analysis obtained for the dif-
ferent scenarios. In the single-user scenario it is important to know which changes can
be independently rejected/confirmed. This can be achieved by studying compound oper-
ations for sequential independence. The idea is here to determine when compound oper-
ations are sequentially independent based on the parameters they have. As an example,
an InsertFragment operation followed by an InsertAction operation into the fragment
leads to a dependency. This means that if the InsertFragment operation is rejected, also
the (dependent) InsertAction operation needs to be rejected.

In order to compute the sequential dependencies between compound changes, given
two rules p1 and p2, we compute critical pairs of p1 and p−1

2 and p−1
1 and p2 [9].

The critical pairs obtained are then encoded by specifying conditions on the pa-
rameters of the operations and captured in a dependency matrix, shown in Figure 19
for InsertAction, DeleteAction, MoveAction and InsertFragment in the Appendix A 4.
We assume here that entry(F) and exit(F) are used to denote the entry or exit nodes
of a fragment which can be either a Decision or Fork or Merge or Join node. For each
combination of operations, there exist configurations of the parameters such that the
two operations are sequentially dependent. For example, InsertAction(X1, A, B) and
InsertFragment(F2, C, D) are sequentially dependent if C = X1 ∨ D = X1.

In the multi-user scenario, given two rules p1 and p2, we compute the critical pairs
of p1 and p2 for all combinations of change operations. Critical pairs obtained are then
encoded by specifying conditions on the parameters of p1 and p2, shown in a conflict
matrix in Figure 20 for our compound changes InsertAction, DeleteAction, MoveAction
and InsertFragment. Similarly to the sequential dependencies, all of the change opera-
tions are potentially in conflict.

4 Dependencies and Conflicts of Change Sequences

Until now we have studied dependencies and conflicts of change operations in isolation.
We now extend our concept of dependencies and conflicts to change sequences in order
to deal with change logs as introduced above.

4.1 Dependencies of Change Sequences

For the following discussion, we assume that a change sequence ∆ = 〈t1(o1), .., tn(on)〉
consists of a sequence of transformation steps ti at an occurrence oi such that the trans-

formation G = S0
t1(o1)=⇒ S1..Sn−1

tn(on)=⇒ Sn = H exists. Informally, a change sequence ∆
can be considered as a concatenation of model transformations and represents a change
log as introduced before. As a shorthand, we also write ∆ = 〈t1, .., tn〉.

Given a change sequence ∆ = 〈t1, .., tn〉, we are interested in sequential dependen-
cies because these are the changes that cannot be resolved in any order. All potential
dependencies that can occur between two changes are shown in Figure 19. Based on

4 We used the AGG tool [23] to partially compute and validate the entries of the matrices. How-
ever, AGG does currently not support inheritance in the type graph which required a simplifi-
cation of rules.

8

this, a given change sequence ∆ = 〈t1, .., tn〉 can be broken up into subsequences ci

such that the following holds:

– each subsequence ci consists of a sequence of change operations ti ∈ ∆, i.e. ck =
〈tl, .., tr〉 with the property that ti is not dependent of any change operation not
contained in ck, and

– for two subsequences ck and cl, the change operations contained are disjoint.

These subsequences can be computed as follows: Given a ∆, we compute for each pair
of compound changes ti and tj sequential dependencies. Thereby we check whether
operations ti and tj with their concrete parameters form a critical pair according to the
dependency matrix shown in Figure 19. If ti and tj are dependent, they belong to the
same subsequence.

The dependency matrix can only indicate a sequential dependency between two
operations whose signatures overlap. There are cases where a sequential dependency
exists and signatures do not overlap. These dependencies will be detected in a transitive
way. For instance, the sequential dependency of InsertAction(”Calc. Loss Amount”,
Fork1

FC5, Join1
FC5) on InsertConcurrentFragment(FC4, ”Settle Claim”, Merge1) (frag-

ment FC4) will be detected transitively since the insertion of the action ”Calc. Loss
Amount” is dependent on InsertConcurrentFragment(FC5, Fork2

FC4, Join2
FC4) (fragment

FC5) which is in turn dependent on the insertion of fragment FC4.
In the end, each ti belongs to exactly one subsequence and the operations in differ-

ent subsequences are sequentially independent. According to the Local Church Rosser
Theorem this induces parallel independence for operations in disjoint subsequences as
well.�

(V, V2):
< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),

InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertCon.Fragment(FC5, Fork2

FC4, Join2
FC4),

InsertAction(“Send Letter”, Fork1
FC4, Join1

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Calc. Loss Amount”, Fork1
FC5, Join1

FC5),
InsertAction(“Update Cust. Record”, Fork2

FC3, Join2
FC3),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

�
(V, V2):

< MoveAction(“Check Claim”, InitialNode, “Record Claim”,
“Record Claim”, Decision) >

< InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Update Cust. Record”, Fork2
FC3, Join2

FC3) >

< InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5) >

Fig. 7. Independent subsequences in ∆(V, V2)

Figure 7 shows the sequence of changes applied on our example model V in order
to obtain V2 and the decomposition of these changes into parallel independent subse-
quences. The parallel independent subsequences for change sequences are important for
several reasons: firstly, they show which changes are dependent which is important for
the single-user scenario. Secondly, for the multi-user scenario, the parallel independent
subsequences will be used for computing conflicts.

9

4.2 Conflicts of Change Sequences

Given two change sequences ∆1 = 〈t1, .., tn〉 and ∆2 = 〈s1, .., sm〉, we first compute
the parallel independent subsequences of each change sequence as described previ-
ously. Given two subsequences ck = 〈ti, ..tj〉 ∈ ∆1 and dl = 〈sm, .., sn〉 ∈ ∆2 we are
then interested in conflicts because these must be taken into account when rejecting or
accepting changes in the multi-user scenario. �

(V, V2):
x) <MoveAction(“Check Claim”, InitialNode, “Record Claim”,

“Record Claim”, Decision)>

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork1

FC3, Join1
FC3),

InsertAction(“Update Cust. Record”, Fork2
FC3, Join2

FC3)>

z) <InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

�
(V, V1):

a) <InsertAlt.Fragment(FA, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

b) <InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork1

FC2, Join1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC2, Join2

FC2)>

c) <InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy)>

Fig. 8. Computation of conflicts between subsequences of change sequences

Conflicts can be computed based on the results of critical pair analysis which de-
termines potential conflicts, displayed in Figure 20. For computation of conflicts, the
operations in two change sequences are analyzed pairwise for conflicts. Figure 8 shows
the result of this computation for our example. Here, three conflicts occur, indicated by
the arrows. Once conflicts have been determined, conflicts need to be resolved. For this,
different options exist that will be discussed in the next section.

After resolving a conflict between ck and dl, new conflicts between ∆1 and ∆2 can
occur. For identifying these, we recompute conflicts after each conflict resolution. Op-
timizations of this procedure where recomputation of conflicts is restricted to certain
subsequences is left for future work. Resolving a conflict can also lead to less conflicts
if an operation together with its subsequence is rejected and its dependent operations
also become non-applicable. In the following section, we will elaborate on conflict res-
olution.

5 Conflict Resolution

In this section, we discuss the different options for conflict resolution. For the following
discussion, we assume that two change sequences ∆1 and ∆2 exist that have been
divided into parallel independent subsequences as previously explained. For a given
conflict, conflict resolution can consist of (at least) the following choices:

– selection of the subsequence to adopt, meaning that the complete other subsequence
is discarded and not considered further,

– performing a combination of the two operations or unifying the two operations. The
operations in conflict have a similar type or are structurally very similar. In such a

10

case, the conflict can be resolved by performing one operation and establishing a
mapping between the elements used. If the operations cannot be unified directly,
i.e. one operation inserts a fragment with six branches, the other one with only two
branches, then a common superset or subset can be chosen.

– both operations are performed by modifying one or both operations, leading e.g.
to a sequential or parallel insertion of fragments or actions.

The choice which type of conflict resolution to adopt is made by the user, usually
based on his or her domain knowledge of the models, and cannot be automated.

In many cases, the decision about conflict resolution influences the change opera-
tions that are dependent on the conflicting operations. In the case of combination using
unification, the parameters of the dependent operations have to be recomputed by re-
placing the unified parameters of the conflicting operations. In the case of a combination
by introducing a new operation, this also yields to recomputation of parameters.

In the case that one of the two subsequences is adopted and the other one is dis-
carded, it is important to know about possible conflicts that occur within the adopted
subsequence. By adoption, all the operations inside the subsequence will also be
adopted, meaning that in case of a conflict this type of conflict resolution will be chosen
for contained operations as well. �

(V, V2):
…

z) <InsertCon.Fragment(FC4, “Settle Claim”, Merge1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

�
(V, V1):

…

b) <InsertCon.Fragment(FC1, “Settle Claim”, Merge1),
InsertAction(“Pay Out”, Fork1

FC1, Join1
FC1),

InsertAction(“Send Conf.”, Fork2
FC1, Join2

FC1),
InsertCon.Fragment(FC2, Fork1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork1

FC2, Join1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC2, Join2

FC2)>
…

unified

Fig. 9. Unification of two conflicts

In our example, a conflict which is likely to be resolved by a unification is the con-
flict between subsequence b) and z) shown in Figure 9. After the unification of Insert-
Con.Fragment(FC1, ...) and InsertCon.Fragment(FC4, ...) the parameters and conflicts
for the changes that are dependent on the unified changes are recomputed. In this case,
FC1 and FC4 are unified as well as the nodes ForkFC1 and ForkFC4 and JoinFC1 and
JoinFC4. This leads to two additional conflicts between InsertAction(Pay Out, ...) and
InsertAction(Send Letter, ...) as well as InsertAction(Send Conf., ...) and InsertCon.-
Fragment(FC5, ...), because due to the unification the dependent changes are now ap-
plied in the same concurrent fragment and their parameters overlap.

In all cases of conflict resolution, conflict resolution entails the application of one or
both conflicting, possibly modified or adapted, change operations. After this, conflicts
between the following operations are recomputed and displayed to the modeler, leading
to an iterative resolution process.

Figure 10 illustrates one possible resulting process model Vmerged based on the mod-
ifications made in V1 and V2. In order to visualize the conflict resolution process, ap-
plied compound changes are printed in bold letters and rejected changes in italic let-
ters. We start the conflict resolution by unifying the conflict between subsequence a)

11

Settle
Claim

Reject
Claim

Calculate
Loss Amount

Send
ConfirmationVmerged

Recalc. Cust.
Contribution

Pay
Out

Send
Declinature

Update
Cust. Record

�
(V, V2):

x) <MoveAction(“Check Claim”, InitialNode, “Record Cl aim”,
“Record Claim”, Decision)>

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Fork 1

FC3, Join 1
FC3),

InsertAction(“Update Cust. Record”, Fork 2
FC3, Join 2

FC3)>

z) <InsertCon.Fragment(F C4, “Settle Claim”, Merge 1),
InsertAction(“Send Letter”, Fork1

FC4, Join1
FC4),

InsertCon.Fragment(FC5, Fork2
FC4, Join2

FC4),
InsertAction(“Pay Out”, FC5, Join2

FC4),
InsertAction(“Calc. Loss Amount”, Fork1

FC5, Join1
FC5),

InsertAction(“Recalc. Cust. Contrib.”, Fork2
FC5, Join2

FC5)>

�
(V, V1):

a) <InsertAlt.Fragment(F A, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision 1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

b) <InsertCon.Fragment(F C1, “Settle Claim”, Merge 1),
InsertAction(“Pay Out”, Fork 1

FC1, Join 1
FC1),

InsertAction(“Send Conf.”, Fork 2
FC1, Join 2

FC1),
InsertCon.Fragment(F C2, Fork 1

FC1, “Pay Out”),
InsertAction(“Calc. Loss Amount”, Fork 1

FC2, Join 1
FC2),

InsertAction(“Recalc. Cust. Contrib.”, Fork 2
FC2, Join 2

FC2)>

c) <InsertCyclicFragment(FCy, “Record Claim”, Decision),
MoveAction(“Check Claim”, InitialNode, “Record Claim”,

MergeFCy, DecisionFCy),
InsertAction(“Ret. add. Data”, Decision2

FCy, Merge2
FCy)>

Record
Claim

Check
Claim

Call
Customer

unified (FC1)

unified (F
A)both

Close
Claim

Fig. 10. A possible merged process model based on V and the modifications made in V1 and V2

and y) and applied InsertAlt.Fragment(FA, ...) on model V . By the unification, all oc-
currences of Fork∗FC3 and Join∗FC3 in the signatures of the remaining operations are
substituted by Decision∗FA and Merge∗FA. Thereby, two new conflicts between the Insert-
Action operations in subsequence a) and y) arise. In case of the conflict between Insert-
Action(”Call Customer”, ...) and InsertAction(”Send Declinature”, ...), we select both
operations for application, leading to a sequential insertion of the two actions. In
the other case, we apply InsertAction(”Update Cust. Record”, ...) and reject Insert-
Action(”Send Rej. Letter”, ...). Finally, we apply DeleteAction(”Close Claim”, ...).
Further, we resolve the conflict between b) and z) by unification as described previ-
ously and then apply only operations in b). For the resolution of the conflict between
subsequence c) and x), we decide to adopt only subsequence x) and rejected all oper-
ations contained in subsequence c). This example shows that using our approach it is
possible to resolve conflicts between change sequences in an iterative way with minimal
manual intervention such that a consolidated process model is constructed.

6 Tool Support and Evaluation

In this section, we report on tool support and evaluation of our approach. The depen-
dency and conflict detection approach has been implemented as a prototype for IBM
WebSphere Business Modeler. Figure 11 shows a screenshot of the extension with the
example and computed conflicts.

As an initial evaluation of our approach we provide in the remainder of this section a
case study comparing our approach using compound change operations to an approach
relying on elementary change operations. In particular, we concentrate on the effects on
dependency and conflict computation and on a comparison of required user intervention
for merging two process models. For that purpose, we first describe the setting of our
case study and introduce a set of elementary change operations together with configura-
tions of the operations that lead to sequential dependencies and conflicts. Then we use

12

Fig. 11. 3-Way Merge View in the IBM WebSphere Business Modeler

the elementary change operations to express the differences of our example. Finally, we
compare the required user intervention to resolve selected differences and conflicts of
the example using compound changes and elementary changes.

6.1 Setting of the Case Study

For our case study we assume that the set of elementary change operations
consists of the following four operations: InsertElement(A), DeleteElement(B),
InsertLink(L, A, B), and DeleteLink(L, A, B). Analogously to our set of compound op-
erations, we have formulated the elementary change operations in terms of graph trans-
formations and have computed sequential dependencies and conflicts.

Figure 21 in the Appendix B shows all configurations of elementary operations
that lead to sequential dependencies. For instance, there is a sequential dependency
between InsertElement(X1) and InsertLink(L1, C, D) if either C = X1 or D = X1 with
the result, that X1 needs to be inserted before the insertion of the Link L1 becomes
applicable.

Conflicts between elementary change operations, which can occur in multi-user
scenarios, are shown in Figure 22 in the Appendix B. We computed critical pairs be-

13

tween two rule sets of elementary change operations and encoded conflicting situations
in terms of change operation parameters, e.g. two independently applied operations
DeleteElement(X1) and DeleteElement(X2) are in conflict if X2 = X1. The entries of
the matrices shown in Figure 21 and Figure 22 were computed and validated using the
AGG tool [23].

Using the elementary change operations to express the differences between the
process models V, V1 and V, V2 of our example (Figure 1) results in the change logs
given in Figure 12. For convenience and readability, both change logs ∆(V, V1) and
∆(V, V2) are ordered in such a way that change sequences containing dependent
change operations are clearly visible (separated by black lines).�

(V, V1):
100. DeleteLink(“InitialNode”, “Check Claim”)
101. DeleteLink(“Check Claim”, “Record Claim”)
102. InsertLink(“InitialNode”, “Record Claim”)
103. InsertElement(“MergeV1:2”)
104. InsertElement(“DecisionV1:2”)
105. InsertElement(“Retrieve Add. Data”)
106. InsertLink(“MergeV1:2”, “Check Claim”)
107. InsertLink(“Check Claim”, “DecisionV1:2”)
108. InsertLink(“DecisionV1:2”, “Retr. Add. Data”)
109. InsertLink(“Retr. Add. Data”, “MergeV1:2”)
110. DeleteLink(“Record Claim”, “DecisionV1”)
111. InsertLink(“Record Claim”, “MergeV1:2”)
112. InsertLink(“DecisionV1:2”, “DecisionV1”)
113. InsertElement(“ForkV1”)
114. InsertElement(“ForkV1:2”)
115. InsertElement(“JoinV1”)
116. InsertElement(“JoinV1:2”)
117. InsertElement(“Calculate Loss Amount”)
118. InsertElement(“Recalc. Cust. Contrib.”)
119. InsertElement(“Send Confirmation”)
120. InsertElement(“Pay Out”)
121. DeleteLink(“Settle Claim”, “MergeV1”)
122. InsertLink(“Settle Claim”, “ForkV1”)
123. InsertLink(“ForkV1”, “ForkV1:2”)
124. InsertLink(“ForkV1”, “Send Confirmation”)
125. InsertLink(“ForkV1:2”, “Calculate Loss Amount”)
126. InsertLink(“ForkV1:2”, “Recalc. Cust. Contrib.”)
127. InsertLink(“Calculate Loss Amount”, “JoinV1:2”)
128. InsertLink(“Recalc. Cust. Contrib.”, “JoinV1:2”)
129. InsertLink(“JoinV1:2”, “Pay Out”)
130. InsertLink(“Pay Out”, “JoinV1”)
131. InsertLink(“JoinV1”, “Merge”)
132. InsertLink(“Send Confirmation”, “JoinV1”)
133. InsertElement(“Decision V1:3”)
134. InsertElement(“Merge V1:3”)
135. InsertElement(“Call Customer”)
136. InsertElement(“Send Rej. Letter”)
137. DeleteLink(“Reject Claim”, “Close Claim”)
138. DeleteLink(“Close Claim”, “Merge V1”)
139. InsertLink(“MergeV1:3”, “MergeV1”) (���� 134,138)
140. DeleteElement(“Close Claim”) (���� 137, 138)
141. InsertLink(“Reject Claim”, “DecisionV1:3”) (���� 133, 137)
142. InsertLink(“DecisionV1:3”, “Call Customer”) (���� 133, 135)
143. InsertLink(“DecisionV1:3”, “Send Rej. Letter”) (���� 133, 136)
144. InsertLink(“Call Customer”, “MergeV1:3”) (���� 134, 135)
145. InsertLink(“Send Rej. Letter”, “MergeV1:3”) (���� 134, 136)

�
(V, V2):

200. DeleteLink(“Check Claim”, “Record Claim”)
201. DeleteLink(“InitialNode”, “Check Claim”)
202. InsertLink(“InitialNode”, “Record Claim”)
203. DeleteLink(“Record Claim”, “Decision”)
204. InsertLink(“Check Claim”, “Decision”)
205. InsertLink(“Record Claim”, “Check Claim”)
206. InsertElement(“ForkV2”)
207. InsertElement(“ForkV2:2”)
208. InsertElement(“JoinV2”)
209. InsertElement(“JoinV2:2”)
210. InsertElement(“Calculate Loss Amount”)
211. InsertElement(“Recalc. Cust. Contrib.”)
212. InsertElement(“Send Letter”)
213. InsertElement(“Pay Out”)
214. DeleteLink(“Settle Claim”, “MergeV2”)
215. InsertLink(“Settle Claim”, “ForkV2”)
216. InsertLink(“ForkV2”, “ForkV2:2”)
217. InsertLink(“ForkV2”, “Send Letter”)
218. InsertLink(“ForkV2:2”, “Calculate Loss Amount”)
219. InsertLink(“ForkV2:2”, “Recalc. Cust. Contrib.”)
220. InsertLink(“Calculate Loss Amount”, “JoinV2:2”)
221. InsertLink(“Recalc. Cust. Contrib.”, “JoinV2:2”)
222. InsertLink(“JoinV2:2”, “Pay Out”)
223. InsertLink(“Pay Out”, “JoinV2”)
224. InsertLink(“JoinV2”, “MergeV2”)
225. InsertLink(“Send Letter”, “JoinV2”)
226. InsertElement(“Fork V2:3”)
227. InsertElement(“Join V2:3”)
228. InsertElement(“Update Cust. Record”)
229. InsertElement(“Send Declinature”)
230. DeleteLink(“Reject Claim”, “Close Claim”)
231. InsertLink(“Reject Claim”, “ForkV2:3”) (���� 226, 230)
232. InsertLink(“ForkV2:3”, “Update Cust. Record”) (���� 226, 228)
233. InsertLink(“ForkV2:3”, “Send Declinature”) (���� 226, 229)
234. InsertLink(“Update Cust. Record”, “JoinV2:3”) (���� 227, 228)
235. InsertLink(“Send Declinature”, “JoinV2:3”) (���� 227, 229)
236. InsertLink(“JoinV2:3”, “Close Claim”) (���� 227, 230)

conflicting
elementary
operations

Fig. 12. Elementary change operations for the example with dependencies and conflicts for se-
lected operations

In case of our example, semantically related elementary changes (e.g. the inser-
tion of a fork and the insertion of a join forming a parallel fragment) are within the
same change sequence because in our example the related changes are either directly or
transitively dependent on each other. This is not always the case as it can happen that
semantically related changes are neither directly nor transitively dependent. In practice
this makes the resolution of differences even more difficult because related changes are
then located in different change sequences.

14

Dependencies and conflicts for selected changes are visualized in Figure 12. De-
pendencies are indicated directly behind the elementary operations, e.g. the application
of operation 142 requires that operations 133 and 135 were applied earlier. Conflicts
are represented by black arrows connecting operations in the change logs. For instance,
the two DeleteLink operations 137 and 230 are in conflict, because they delete the same
link (L2 = L1).

Settle
Claim

Reject
Claim

Vmerged

Send
Declinature

Update
Cust. Record

Check
Claim

Record
Claim

Call
Customer

Close
Claim

Fig. 13. Merged Process Model for the Evaluation Case Study

Figure 13 visualizes a merged process model Vmerged that can be obtained by apply-
ing a combination of operations contained in the change logs ∆(V, V1) and ∆(V, V2).
Changes to the original source process model V (introduced in Figure 1) are highlighted
by the gray rectangle.

In the following two subsections we describe two alternative resolutions, first by
compound and then by elementary change operations of the change logs in order to
obtain the merged process model Vmerged. Along the resoluions, we measure the re-
quired user intervention in terms of work units for the inspection of conflicts and the
application of change operations. For simplicity, we assume that each inspection and
application of an operation, dependency or conflict requires one work unit.

6.2 Difference and Conflict Resolution using Compound Change Operations

7

Step 4

Step 3

Step 3

Step 2

Step 2

Step 1

1Resolve conflict by applying only right hand side

1Inspect conflict between “Send Rej. Letter” and
“Upd. Cust. Record”

2Resolve conflict by applying both operations

1Inspect conflict between “Call Customer” and
“Send Declinature”

1Resolve conflict through unification

1Inspect conflict between the insertions of the
fragments FA and FC3

Work
Units

Case Study: Difference and Conflict Resolution using
Compound Change Operations

Fig. 14. Required user intervention using com-
pound change operations

The compound change opera-
tions which need to be applied to
the source process model V in order
to create the merged process model
Vmerged are represented in Figure 15.
In Step 1 the conflict between the in-
sertions of the two fragments FA and
FC3 is inspected (one work unit). We
assume that a user decides to resolve
the conflict by a unification of the
compound changes and inserts the
fragment FA (done in Step 2, one
work unit). Thereby, the position pa-
rameters of both InsertAction oper-
ations in change sequence y are adapted to reflect entry (Decision) and exit (Merge)
of fragment FA. Further, the conflict between the insertions of Call Customer and

15

Send Declinature is inspected and it is decided to apply both operations in Step 3. In-
spection and the application of both operations increases the work unit counter by three.

Finally, the remaining conflict between the insertions of Send Rej. Letter and
Update Cust. Record is inspected (one work unit) and it is resolved by applying only
the right hand operation (one work unit). Using the compound operations and the con-
flicts guided the user through the resolution process and in total seven work units of
user intervention were necessary to obtain the merged process model Vmerged.�

(V, V2):
y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),

InsertAction(“Send Declinature”, Fork1
FC3, Join1

FC3),
InsertAction(“Update Cust. Record”, Fork2

FC3, Join2
FC3)>

�
(V, V1):

a) <InsertAlt.Fragment(F A, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Decision 1

FA, Merge1
FA),

InsertAction(“Update Cust. Record”, Decision2
FA, Merge2

FA)>

a) <InsertAlt.Fragment(F A, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision 1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

unified (F A)

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Decision 1

FA, Merge1
FA),

InsertAction(“Update Cust. Record”, Decision 2
FA, Merge2

FA)>

a) <InsertAlt.Fragment(F A, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision 1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

unified (F A)

both

y) <InsertCon.Fragment(FC3, “Reject Claim”, “Close Claim”),
InsertAction(“Send Declinature”, Decision 1

FA, Merge1
FA),

InsertAction(“Update Cust. Record”, Decision 2
FA, Merge2

FA)>

a) <InsertAlt.Fragment(F A, “Reject Claim”, “Close Claim”),
DeleteAction(“Close Claim”, FA, Merge2),
InsertAction(“Call Customer”, Decision 1

FA, Merge1
FA),

InsertAction(“Send. Rej. Letter”, Decision2
FA, Merge2

FA)>

unified (F A)

both
right

Step 1

Step 2

Step 3

Step 4

Fig. 15. Work units to apply selected changes using compound operations

6.3 Difference and Conflict Resolution using Elementary Change Operations

In contrast to compound change operation, a conflict-driven approach for the resolution
of differences using elementary change operations is not applicable since most of the
conflicting elementary operations require other operations to be applied before. As a
consequence, we suggest an element-driven approach for elementary change operations
that starts with the decision which elements shall be inserted or deleted. According to
our set of elementary change operations, we call this approach Insert−/DeleteElement-
driven.

16

22

Step 4

Step 3

Step 2

Step 1

5Manually connect the process model with five links

3Apply working link Operations 137, 141, 142

(15)Inspect Insert/DeleteLink operations (link operations
that turn non-applicable due to applied element
operations can be computed easily – inspections are
not counted)

5Apply five InsertElement operations (Decision, Merge,
Call Customer, Send Decl., Update Cust. Record)

9Inspect all Insert- and DeleteElement operations

Work
Units

Case Study: Difference and Conflict Resolution using
Elementary Change Operations, Insert-/DeleteElement-Driven

Fig. 16. Required user intervention using elementary
change operations

Figure 17 visualizes the
parts of the elementary change
logs that need to be con-
sidered in order to create
the merged process model
Vmerged. According to the
Insert− /DeleteElement-driven
strategy, we start with an in-
spection of all InsertElement
and DeleteElement operations
in Step 1 (resulting in nine work
units). Then, in Step 2 we insert
the five required elements (five
work units). Afterwards, the remaining link operations need to be inspected in order
to identify the operations that are applicable with respect to the recently inserted and
deleted elements. Since this step is straight-forward computation, we assume that
applicable link operations are determined automatically, which produces no costs.

In Step 3 the applicable link operations are applied. In our example, these are the
operations 137, 141, and 142, increasing the work unit counter by three. Finally, the
process model needs to be connected manually in Step 4, since not all elements are con-
nected so far: A user has to insert five edges by hand in order to complete the alternative
structure in the merged process model Vmerged.

6.4 Evaluation Results

One goal of our evaluation was to show that our approach leads to less conflicts and
dependencies than an approach relying on elementary change operations, illustrated
in Table 18 for our example (Figure 1). Another goal was to show that our approach
then also leads to less required user intervention than an approach based on elementary
operations.

We can distinguish between application of operations, conflict examination and con-
flict resolution. On average, the number of elementary operations is three times the num-
ber of compound operations which makes the resolution more complex. For application
of operations this means that the user intervention triples (unless further optimizations
are implemented for the elementary operations).

The relation of conflicts for the elementary and compound operations cannot be
estimated. In our example, we obtain the number of conflicts as indicated in the table in
Figure 18, leading to a higher number of required conflict examinations if elementary
change operations are used.

The user intervention required for conflict resolution depends on the support given
by the modeling tool. Our example illustrates that computed dependencies and con-
flicts between elementary change operations do not really help a user to merge different
versions of a process model: Most of the conflicts are between operations that modify
links, and these operations require other operations to be applied before. Our sample
resolution shows that the user intervention required (work units in Figure 18) when

17

�
(V, V1):

…
133. InsertElement(“DecisionV1:3”)
134. InsertElement(“MergeV1:3”)
135. InsertElement(“Call Customer”)
136. InsertElement(“Send Rej. Letter”)
137. DeleteLink(“Reject Claim”, “Close Claim”)
138. DeleteLink(“Close Claim”, “MergeV1”)
139. InsertLink(“MergeV1:3”, “MergeV1”) (���� 134,138)
140. DeleteElement(“Close Claim”) (���� 137, 138)
141. InsertLink(“Reject Claim”, “DecisionV1:3”) (���� 133, 137)
142. InsertLink(“DecisionV1:3”, “Call Customer”) (���� 133, 135)
143. InsertLink(“DecisionV1:3”, “Send Rej. Letter”) (���� 133, 136)
144. InsertLink(“Call Customer”, “MergeV1:3”) (���� 134, 135)
145. InsertLink(“Send Rej. Letter”, “MergeV1:3”) (���� 134, 136)

�
(V, V2):

…
226. InsertElement(“ForkV2:3”)
227. InsertElement(“JoinV2:3”)
228. InsertElement(“Update Cust. Record”)
229. InsertElement(“Send Declinature”)
230. DeleteLink(“Reject Claim”, “Close Claim”)
231. InsertLink(“Reject Claim”, “ForkV2:3”) (���� 226, 230)
232. InsertLink(“ForkV2:3”, “Update Cust. Record”) (���� 226, 228)
233. InsertLink(“ForkV2:3”, “Send Declinature”) (���� 226, 229)
234. InsertLink(“Update Cust. Record”, “JoinV2:3”) (���� 227, 228)
235. InsertLink(“Send Declinature”, “JoinV2:3”) (���� 227, 229)
236. InsertLink(“JoinV2:3”, “Close Claim”) (���� 227, 230)

conflicting
elementary
operations

…
133. InsertElement(“Decision V1:3”)
134. InsertElement(“Merge V1:3”)
135. InsertElement(“Call Customer”)
136. InsertElement(“Send Rej. Letter”)
137. DeleteLink(“Reject Claim”, “Close Claim”)
138. DeleteLink(“Close Claim”, “MergeV1”)
139. InsertLink(“MergeV1:3”, “MergeV1”) (���� 134,138)
140. DeleteElement(“Close Claim”) (���� 137, 138)
141. InsertLink(“Reject Claim”, “DecisionV1:3”) (���� 133, 137)
142. InsertLink(“DecisionV1:3”, “Call Customer”) (���� 133, 135)
143. InsertLink(“DecisionV1:3”, “Send Rej. Letter”) (���� 133, 136)
144. InsertLink(“Call Customer”, “MergeV1:3”) (���� 134, 135)
145. InsertLink(“Send Rej. Letter”, “MergeV1:3”) (���� 134, 136)

…
226. InsertElement(“ForkV2:3”)
227. InsertElement(“JoinV2:3”)
228. InsertElement(“Update Cust. Record”)
229. InsertElement(“Send Declinature”)
230. DeleteLink(“Reject Claim”, “Close Claim”)
231. InsertLink(“Reject Claim”, “ForkV2:3”) (���� 226, 230)
232. InsertLink(“ForkV2:3”, “Update Cust. Record”) (���� 226, 228)
233. InsertLink(“ForkV2:3”, “Send Declinature”) (���� 226, 229)
234. InsertLink(“Update Cust. Record”, “JoinV2:3”) (���� 227, 228)
235. InsertLink(“Send Declinature”, “JoinV2:3”) (���� 227, 229)
236. InsertLink(“JoinV2:3”, “Close Claim”) (���� 227, 230)

…
133. InsertElement(“Decision V1:3”)
134. InsertElement(“Merge V1:3”)
135. InsertElement(“Call Customer”)
136. InsertElement(“Send Rej. Letter”)
137. DeleteLink(“Reject Claim”, “Close Claim”)
138. DeleteLink(“Close Claim”, “MergeV1”)
139. InsertLink(“MergeV1:3”, “MergeV1”) (���� 134,138)
140. DeleteElement(“Close Claim”) (���� 137, 138)
141. InsertLink(“Reject Claim”, “Decision V1:3”) (���� 133, 137)
142. InsertLink(“Decision V1:3”, “Call Customer”) (���� 133, 135)
143. InsertLink(“DecisionV1:3”, “Send Rej. Letter”) (���� 133, 136)
144. InsertLink(“Call Customer”, “MergeV1:3”) (���� 134, 135)
145. InsertLink(“Send Rej. Letter”, “MergeV1:3”) (���� 134, 136)

…
226. InsertElement(“ForkV2:3”)
227. InsertElement(“JoinV2:3”)
228. InsertElement(“Update Cust. Record”)
229. InsertElement(“Send Declinature”)
230. DeleteLink(“Reject Claim”, “Close Claim”)
231. InsertLink(“Reject Claim”, “ForkV2:3”) (���� 226, 230)
232. InsertLink(“ForkV2:3”, “Update Cust. Record”) (���� 226, 228)
233. InsertLink(“ForkV2:3”, “Send Declinature”) (���� 226, 229)
234. InsertLink(“Update Cust. Record”, “JoinV2:3”) (���� 227, 228)
235. InsertLink(“Send Declinature”, “JoinV2:3”) (���� 227, 229)
236. InsertLink(“JoinV2:3”, “Close Claim”) (���� 227, 230)

Step 1

Step 2

Step 3

Step 4

Manually connect the process model with five links

Fig. 17. Work units to apply selected changes using elementary operations

compound change operations are used is much less compared to the situation when
using elementary change operations.

In addition, our case study also shows that compound operations can be used to
realize advanced functionality such as change operation unification which is difficult to
realize for elementary operations, unless they are grouped again to compound opera-
tions. Compound operations also enable to always create a connected and well-formed
model during conflict resolution whereas using elementary operations elements often
have to be reconnected manually.

18

721# of Work Units for
Sample Resolution

323# of Conflicts

7103645# of Dependencies

10133342# of Change Operations

�
(V, V2)

�
(V, V1)

�
(V, V2)

�
(V, V1)

Compound ChangesElementary Changes

Fig. 18. Evaluation results for approaches based on elementary and compound operations

7 Related Work

Mens et al. [18] analyze refactorings for structural conflicts using critical pair analy-
sis. They first express refactorings as graph transformations and then detect conflicts
using the AGG tool [23]. Hausmann et al. [9] analyze functional requirements in a
use-case driven software development approach for conflicts and dependencies. Further
approaches including critical pair analysis include work by Mens et al. [17] for transfor-
mation dependency analysis. All of these approaches are similar to ours with regards to
the analysis of syntactic conflicts and dependencies and the formalization using graph
transformation. However, there are also differences: Firstly, we analyze process model
refactorings and elaborate on change sequences which have not been analyzed for con-
flicts before. Further, our analysis is performed after the changes have been made for
resolving conflicts whereas in their work conflicts should be avoided up front.

Another area of related work is concerned with model composition and model
versioning. Alanen and Porres [2] describe an algorithm how to compute elementary
change operations in a similar setting as ours. Kolovos et al. [12] describe the Epsilon
merging language which can be used to specify how models should be merged. Kelter
et al. [11] present a generic model differencing algorithm. All these approaches aim
at providing generic support for merging different models but do not focus on depen-
dencies and conflicts of change operations. Both in the IBM Rational Software Archi-
tect [15] as well as in the software configuration management infrastructure for UML
models Odyssey-SCM [19], conflicts between versions are computed based on elemen-
tary changes. In contrast to these approaches, we focus on identifying dependent and
conflicting compound change operations based on critical pairs and provide a selection
of conflict resolution techniques which is language-specific to process models, show-
ing that there is a need for these domain-specific approach to dependency and conflict
detection. As such, our approach can be categorized as an operation-based, tree-based
and syntactic approach to software merging [16].

Cicchetti et al. [4] have recently proposed a metamodel for representing conflicts
which can be used for specifying both syntactic as well as semantic conflicts. One key
difference to our work is that we do not specify conflicts for compound operations
but we compute them by using the critical pair approach. Finally, within the process
modeling community, Dijkman [6] has categorized differences of process models in the
context of process integration where models do not originate from a common source
model. Rinderle et al. [22] have studied disjoint and overlapping process model changes
in the context of the problem of migrating process instances. In their formal framework,
two change sequences are commutative if their application leads to trace equivalent

19

process models. If they in addition do not affect overlapping node sets, then they are
called disjoint. Based on this formal framework, they study conditions under which
process instances can be migrated to a new process model. Our work can be considered
as complementary to their work because we provide a structural approach to detecting
disjoint and overlapping changes.

8 Conclusion and Future Work

When modeling in a distributed environment, changes performed on models can be
conflicting or sequentially dependent. In order to consolidate different models, conflict-
ing changes must be computed and manually resolved. In this paper, we have shown
how change operations can be analyzed for conflicts and dependencies. Based on this,
we presented an approach for breaking up a sequence of change operations into subse-
quences such that change operations from different subsequences are independent. Our
approach allows to make dependencies explicit and resolve conflicts in a versioning
scenario with special language-specific conflict resolution choices. Our evaluation has
shown that our approach leads to less user interaction than using elementary change
operations.

There are several directions for future work: Firstly, we would like to validate our
approach also for other behavioral models such as statecharts where compound change
operations need to be designed and then analyzed for conflicts and dependencies in a
similar way. Another area of future work is to take into account the semantics of process
models in order to be able to identify those syntactic conflicts which do not represent a
semantic conflict.

References

1. IBM WebSphere Business Modeler. http://www.ibm.com/software/integration/wbimodeler/.
2. M. Alanen and I. Porres. Difference and Union of Models. In P. Stevens, J. Whittle, and

G. Booch, editors, UML 2003, volume 2863 of LNCS, pages 2–17. Springer, 2003.
3. P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of Visual Languages based on

Critical Pair Analysis and Contextual Layered Graph Transformation. In VL 2000, pages
59–60. IEEE Computer Society, September 2000.

4. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Managing Model Conflicts in Distributed
Development. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, editors, MoD-
ELS, volume 5301 of Lecture Notes in Computer Science, pages 311–325. Springer, 2008.

5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic Ap-
proaches to Graph Transformation Part I: Basic Concepts and Double Pushout Approach. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 1: Foundations, pages 163–245. World Scientific, 1997.

6. R. Dijkman. A Classification of Differences between Similar Business Processes. In
EDOC’07, pages 37–50. IEEE Computer Society, 2007.

7. H. Ehrig, U. Prange, and G. Taentzer. Fundamental Theory for Typed Attributed Graph
Transformation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, ICGT,
volume 3256 of Lecture Notes in Computer Science, pages 161–177. Springer, 2004.

8. R. France and B. Rumpe. Model-driven development of complex software: A research
roadmap. In L. C. Briand and A. L. Wolf, editors, International Conference on Software

20

Engineering, ISCE 2007, Workshop on the Future of Software Engineering, FOSE 2007,
May 23-25, 2007, Minneapolis, MN, USA, pages 37–54, 2007.

9. J. H. Hausmann, R. Heckel, and G. Taentzer. Detection of conflicting functional requirements
in a use case-driven approach: a static analysis technique based on graph transformation. In
Proceedings ICSE’02, pages 105–115. ACM, 2002.

10. R. Heckel, J. M. Küster, and G. Taentzer. Confluence of Typed Attributed Graph Transfor-
mation. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, ICGT’02,
volume 2505 of LNCS, pages 161–176. Springer-Verlag, 2002.

11. U. Kelter, J. Wehren, and J. Niere. A Generic Difference Algorithm for UML Models. In
P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Software Engineering 2005, Fachtagung
des GI-Fachbereichs Softwaretechnik, 8.-11.3.2005 in Essen, volume 64 of LNI, pages 105–
116. GI, 2005.

12. D. S. Kolovos, R. Paige, and F. Polack. Merging Models with the Epsilon Merging Language
(EML). In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, MoDELS 2006, volume
4199 of LNCS, pages 215–229. Springer, 2006.

13. J. M. Küster. Definition and validation of model transformations. Software and Systems
Modeling, 5(3):233–259, 2006.

14. J. M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and Resolving Process Model
Differences in the Absence of a Change Log. In M. Dumas and M. Reichert, editors,
BPM’08, volume 5240 of LNCS, pages 244–260. Springer-Verlag, 2008.

15. K. Letkeman. Comparing and merging UML models in IBM Rational Software Archi-
tect : Part 3. A deeper understanding of model merging. IBM Developerworks, 2005.
http://www.ibm.com/developerworks/rational/library/05/802 comp3/.

16. T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Trans. Software Eng.,
28(5):449–462, 2002.

17. T. Mens, R. Van Der Straeten, and M. D’Hondt. Detecting and Resolving Model Inconsis-
tencies Using Transformation Dependency Analysis. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS 2006, volume 4199 of LNCS, pages 200–214. Springer,
2006.

18. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph trans-
formation. Software and System Modeling, 6(3):269–285, 2007.

19. L. Murta, H. Oliveira, C. Dantas, L. Lopes, and C. Werner. Odyssey-SCM: An integrated
software configuration management infrastructure for UML models. Science of Computer
Programming, 65(3):249–274, 2007.

20. Object Management Group (OMG). The Unified Modeling Language 2.0, 2005.
21. S. Rinderle, M. Jurisch, and M. Reichert. On Deriving Net Change Information From Change

Logs - The DELTALAYER-Algorithm. In A. Kemper et al., editor, BTW’07, volume 103 of
LNI, pages 364–381. GI, 2007.

22. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In R. Meersman and Z. Tari, editors, CoopIS’04, volume
3290 of LNCS, pages 101–120. Springer, 2004.

23. G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In AGTIVE, volume 3062 of LNCS, pages 446–453, 2003.

24. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In ICSOC 2007, volume 4749
of LNCS, pages 43–55. Springer, 2007.

25. B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support Features in
Process-Aware Information Systems. In J. Krogstie, A. L. Opdahl, and G. Sindre, editors,
CAiSE’07, volume 4495 of LNCS, pages 574–588. Springer, 2007.

21

A Dependency and Conflict Matrix for Compound Operations

Figure 19 shows configurations of compound operations that lead to sequential depen-
dencies. Analogously, configurations of compound operations that lead to conflicts are
given in Figure 20. We assume here that entry(F) and exit(F) are used to denote the
entry or exit nodes of a fragment which can be either a Decision or Fork or Merge or
Join node. The entries of the matrices in Figure 19 and Figure 20 are computed and
validated using the critical pair analysis of the AGG tool [23].

[IF(F1), MA(X1)]:
(nQ = A & nT = F1) v
(nQ = F1 & nT = B) v
(X2 = A & oT = B) v
(oQ = F1 & X2 = B) v
oQ=entry(F1) v
nQ=entry(F1) v
oT=exit(F1) v nT=exit(F1)

[MA(X1), MA(X2)]:
(nQ = oP & nT = oS) v
(oQ = oP & X2 = oS) v
(X2 = oP & oT = oS) v
(X2 = X1 & oT = nS) v
(oQ = X1 & X2 = nS) v
(nQ = X1 & nT = nS) v
(X2 = nP & oT = X1) v
(nQ = nP & nT = X1) v
(oQ = nP & X2 = X1)

[DA(X1), MA(X2)]:
(nQ = A & nT = B) v
(oQ = A & X2 = B) v
(X2 = A & oT = B)

[IA(X1), MA(X2)]:
(nQ = A & nT = X1) v
(nQ = X1 & nT = B) v
(X2 = A & oT = B) v
(oQ = X1 & X2 = B) v
(oQ=A & X2=X1 & oT=B)

MoveAction
(X2,oQ,oT,nQ,nT)

[MA(X1), IF(F2)]:
(C = oP & D = oS) v
(C = X1 & D = nS) v
(C = nP & D = X1)

[MA(X1), DA(X2)]:
(C = oP & X2 = oS) v
(X2 = oP & D = oS) v
(D = X1 & X2 = nP) v
(C = X1 & X2 = nS) v
(C = nP & X2 = X1 &
D = nS)

[MA(X1), IA(X2)]:
(C = oP & D = oS) v
(C = X1 & D = nS) v
(C = nP & D = X1)

MoveAction
(X1,oP,oS,
nP,nS)

[IF(F1), IF(F2)]:
C = F1 v D = F1 v
C = entry(F1) v
D = exit(F1)

[IF(F1), DA(X2)]:
(X2 = A & D = F1) v
(C = F1 & X2 = B) v
C = entry(F1) v
D = exit(F1)

[IF(F1), IA(X2)]:
C = F1 v D = F1 v
C = entry(F1) v
D = exit(F1)

Insert
Fragment
(F1,A,B)

[DA(X1), IF(F2)]:
(C = A & D = B)

[DA(X1), DA(X2)]:
(C = A & X2 = B) v
(X2 = A & D = B)

[DA(X1), IA(X2)]:
(C = A & D = B)

DeleteAction
(X1,A,B)

[IA(X1), IF(F2)]:
C = X1 v D = X1

[IA(X1), DA(X2)]:
X2 = X1 v
(D = X1 & X2 = A) v
(C = X1 & X2 = B)

[IA(X1), IA(X2)]:
C = X1 v D = X1

InsertAction
(X1,A,B)

InsertFragment
(F2,C,D)

DeleteAction
(X2,C,D)

InsertAction
(X2,C,D)

Fig. 19. Sequential dependencies of compound change operations

(C = nP & D = oP) v
(C = X1 & D = oS) v
(C = oP & D = X1)

(nQ=nP & nT=nS) v
(nQ=X1 & nT=oS) v
(nQ=oP & nT=X1) v
(oQ=nP & X2=nS) v
(oQ=X1 & X2=oS) v
(oQ=oP & X2=X1) v
(X2=nP & oT=nS) v
(X2=X1 & oT=oS) v
(X2=oP & oT=X1)

(X2 = oP & D = X1) v
(C = X1 & X2 = oS) v
(C = nP & X2 = nS) v
(X2 = nP & D = nS) v
(C = oP & X2 = X1 &
D = oS)

(C = nP & D = oP) v
(C = X1 & D = oS) v
(C = oP & D = X1)

MoveAction
(X1,oP,oS,
nP,nS)

(nQ = A & nT = B) v
(X2 = A & oT = B) v
(oQ = A & X2 = B)

(X2 = A & oT = X1) v
(oQ = X1 & X2 = B) v
(nQ = A & nT = X1) v
(nQ = X1 & nT = B) v
(oQ = A & X2 = X1 &
oT = B)

(nQ = A & nT = B) v
(X2 = A & oT = B) v
(oQ = A & X2 = B)

MoveAction
(X2,oQ,oT,nQ,nT)

(C = A & D = B)(C = A & X2 = B) v
(X2 = A & D = B)

(C = A & D = B)Insert
Fragment
(F1,A,B)

(C = A & D = X1) v
(C = X1 & D = B)

(X2 = A & D = X1) v
(C = X1 & X2 = D) v
(C = A & X2 = X1 &
D = B) v

(C = A & D = X1) v
(C = X1 & D = B)

DeleteAction
(X1,A,B)

(C = A & D = B) (C = A & X2 = B) v
(X2 = A & D = B)

(C = A & D = B)InsertAction
(X1,A,B)

InsertFragment
(F2,C,D)

DeleteAction
(X2,C,D)

InsertAction
(X2,C,D)

Fig. 20. Conflicts between compound change operations

22

B Dependency and Conflict Matrix for Elementary Operations

[DL(L1), DL(L2)]:

[IL(L1), DL(L2)]:

[DE(X1), DL(L2)]:

[IE(X1), DL(L2)]:

DeleteLink
(L2,C,D)

[DL(L1), IL(L2)]:
C = A v
D = B

[IL(L1), IL(L2)]:

[DE(X1), IL(L2)]:

[IE(X1), IL(L2)]:
C = X1 v
D = X1

InsertLink
(L2,C,D)

[IL(L1), DE(X2)]:[IL(L1), IE(X2)]:InsertLink
(L1,A,B)

[DL(L1), DE(X2)]:
X2 = A v
X2 = B

[DL(L1), IE(X2)]:DeleteLink
(L1,A,B)

[DE(X1), DE(X2)]:[DE(X1), IE(X2)]:Delete
Element(X1)

[IE(X1), DE(X2)]:[IE(X1), IE(X2)]: Insert
Element(X1)

DeleteElement
(X2)

InsertElement
(X2)

Fig. 21. Sequential dependencies of elementary change operations

L2 = L1 & C = A &
D = B

DeleteLink
(L2,C,D)

(C = A && D != B) v
(C != A && D = B)

C = X1 v
D = X1

InsertLink
(L2,C,D)

X2 = A v
X2 = B

InsertLink
(L1,A,B)

DeleteLink
(L1,A,B)

X2 = X1Delete
Element(X1)

Insert
Element(X1)

DeleteElement
(X2)

InsertElement
(X2)

Fig. 22. Conflicts between elementary change operations

23

