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Abstract

As we are transforming into an digital society, it is vital that we protect our data in all of
our transactions. This requires that transactions are securely authenticated, and that we protect
privacy by not revealing more about ourselves than necessary. Anonymous credentials promise to
address both of these seemingly opposing requirements at the same time. Anonymous credentials
are essentially a privacy-enhancing public-key infrastructure which require standardization to be
widely used. Anonymous credential systems are far more complex than ordinary signature schemes
since they provide more functionality in order to address all of the requirements of a public key
infrastructure with privacy-protection. Unfortunately, the description of these features are spread
over many research papers and it is often not clear how they could all be securely integrated into a
single system. This paper describes the Identity Mixer anonymous credential system that integrates
cryptographic techniques from many sources to build an anonymous credential system with a rich
feature set. The aim of this paper is to stimulate standardization effort towards a privacy-enhancing
public-key infrastructure.
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1 Introduction

The amount of our daily transactions that we perform electronically is rising. Many of us use the
Internet on a daily basis for purposes ranging from accessing information to electronic commerce and
e-banking to interactions with government bodies. Securing these transactions requires the use of strong
authentication. Electronic authentication tokens and mechanisms that provide authentication become
common, not only for the use with the Internet. Indeed, electronic identity cards, authentication by
mobile phone, and RFID tokens are spreading fast.

These authentication mechanisms unfortunately have the shortcoming that they label users with a
unique identifier. This is a risk to users’ privacy because transactions by the same user can be linked
together. This lack of privacy is typically not a problem for e-government applications. However,
such a government issued strong root of trust is very attractive for so-called secondary use by the
commercial sector. In this application area, unique identification is often inappropriate, attribute-based
authentication mostly desired and privacy important to make the services sustainable. A position paper
issued in February 2009 by ENISA1 on “Privacy Features of European eID Card Specifications” underlines
the need for “privacy-respecting use of unique identifiers” in emerging European eID cards, and explicitly
refers to the emerging anonymous credentials technologies (“privacy-enhanced PKI tokens” in their
terminology), as having significant potential in this arena.

Anonymous credentials [Bra95a, Bra95b, CL01, Cha85, Dam90], allow an identity provider to issue
a credential (or certificate) to a user. This credential contains attributes of the user such as address or
date of birth but also the user’s rights or roles. Using the credential, the user can later prove to a third
party that she possesses a credential containing a given attribute or role without revealing any other
information stored in the credential. For instance, the user could use a government-issued anonymous
ID credential to prove that she is of age, i.e., that she possesses a credential that contains a date of birth
which is further in the past than 21 years. Thus, anonymous credentials promise to be an important
technology in protecting users’ privacy in an electronic environment.

There is a large body of research on anonymous credential systems and a number of different meth-
ods or algorithms are described in the literature. In addition to the basic functionality of an anonymous
credential system, i.e., to issue a credential and then later to selectively reveal attributes contained
in credentials, there are extensions proposed in the literature to meet the requirements of real world
deployment. These extensions include the revocation of credentials [BDD07, CKS09, CL04, NFHF09],
revocation of anonymity [CL01], encoding binary attributes efficiently [CG08], or to verifiably encrypt at-
tributes under some third party’s encryption key [CD00, CS03]. These important features were described
somewhat independently, with different setup assumptions and trust models.

Based on these papers we have implemented a unified system called the the Identity Mixer Anonymous
Credential System, which takes the form of a cryptographic library. This paper presents a high level
specification of the system, based on the full specification with all cryptographic details [IBM09]. It is
similar to a cryptographic library that offers, for example, implementations of the RSA or DSA signature
schemes: it offers all the functionalities required to establish a pseudonym, issue a credential containing
different attributes to a pseudonym, and different ways of proving possession of a credential. The ways to
prove possession of a credential offered are the disclosure of a selected subset of the attributes contained
in the credential, to prove that an (integer) attribute lies in a given range, to prove that an attribute is
verifiably encrypted under some third party’s public key, or that a cryptographic commitment contains
a specific attribute. The source code of the Identity Mixer library has been made publicly available.

2 Overview of an Anonymous Credential System

An anonymous credential system involves the roles of issuers, recipients, provers and verifiers (or relying
parties). Credential issuance is carried out between an issuer and a recipient who a protocol that
results in the recipient having a credential. This credential consists of a set of attribute values as well as
cryptographic information that allows the owner of the credential to create a proof of possession (or simply
a proof). That is, when creating a proof the credential owner acts in the role of the prover communicating
with a verifier. Finally, an extended credential system requires the role of trusted third parties who
perform tasks such as anonymity revocation, credential revocation, or decryption of (verifiably) encrypted

1ENISA: European Network and Information Security Agency http://www.enisa.europa.eu
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attributes. Usually organizations or governments assume the roles of issuer, verifier and trusted party,
and natural persons the ones of recipient and prover. Note that the roles are not fixed, for example, an
organization acting as verifier can assume the role of an issuer in a subsequent transaction. Beside the
entities building the communication endpoints in an anonymous credential system, all parties agree on
general system parameters that define the bit length of all relevant parameters as well as the groups that
will be used. In practice, these parameters can be distributed together with the code and they must be
authenticated.

Given the system and group parameters, a user can choose her master secret key that will be encoded
into every credential. Thereby all credentials are bound together, which is a sharing prevention mecha-
nism as sharing one credential effectively implies in sharing all credentials of a user. Moreover, the master
secret allows a user to derive pseudonyms to use with organizations, where a user can register several
pseudonyms with the same organization. If an organization wishes that each user can only register one
pseudonym, it can allow so called domain pseudonyms instead of pseudonyms. Pseudonyms cannot be
linked to each other unless the user shows with a proof that they are based on the same master secret
key. Organizations generate public and secret keys of the cryptographic primitives they use and make
the public keys available together with a specification of the services they offer. As an example, each
issuer publishes the structure(s) of the credential it issues.

To obtain a credential, a user contacts an issuer, agrees with him on the credential structure and
what the values of the attributes asserted by the credential will be. She then runs the interactive issuing
protocol with the organization. Having acquired a credential, a user can prove to a verifier the possession
of the credential. A proof of possession may involve several credentials acquired by the same user. In
addition to the mere possession, a user can prove statements about the attribute values contained in
the credentials using the proving protocol. Moreover, these proofs may be linked to a pseudonym of the
user’s choice or they employ verifiable encryption for some of the attribute values under a third party’s
public key. Note that the protocols for proving possession of credentials and issuing credentials may be
combined. In particular, before issuing a new credential, the issuer may require the recipient to release
certified attribute values, that is, prove that she holds a credential issued by another party.

3 Architecture & Specifications

In this section we first discuss the components of idemix , then we show how the components are used
in the protocols, and finally we provide the specification of the objects used in those protocols. In
particular, we introduce the specification languages for the information that needs to be passed between
participants.

3.1 Components of idemix

An extended anonymous credential system consists of many components. We will introduce them starting
with the attributes that are contained in credentials. Continuing with the credentials we will finish the
discussion with the optional components such as commitments and pseudonyms, which are used to
implement extensions.

3.1.1 Attributes

We denote an attribute ai as the tuple consisting of name, value and type, that is, ai = {ni, vi, ti}. The
name must be unique within a scope (e.g., a credential or a commitment), which will allow us to to refer
to the attribute using that name. The value refers to the content of the attribute, which is encoded as
defined by the type. For each type we define a mapping from the content value to a value that can be
used in the cryptographic constructions. For example, encoding a string to be used in a group G with
generator g can be achieved by use of a hash function H : {0, 1}∗ → G.

Currently, idemix supports the attribute types string, int, date, and enum. We convert strings using
a hash function and integers do not require a conversion (as we assume that they are smaller than the
group order). We chose the granularity of the dates as a second and set the origin to 1.1.1900, which is
similar to the UNIX time definition. Enumerated attributes are mapped using a distinct prime according
to the description in [CG08].
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3.1.2 Credentials

We denote the set of attributes together with the corresponding cryptographic information as credentials.
We classify attributes contained in credentials depending on which party knows the value of an attribute.
More concretely, the owner of a credential always knows all attribute values but the issuer or the verifier
might not be aware of certain values. During the issuance of a credential we distinguish three sets of
attributes as the issuer might know a value, have a commitment of the value, or the value might be
completely hidden to him. Let us denote the these sets of attributes by Ak, Ac, and Ah, respectively.
Note that the user’s master secret, as introduced in Section 2, is always contained in Ah.

When creating a proof of possession of credentials, the user has the possibility to reveal only a selected
set of attributes. Therefore, we distinguish the revealed attributes, which will be learned by the verifier,
from the unrevealed attributes. We call the two sets of attributes during the proving protocol Ar and
Ar. Note, that each attribute can be assigned to either Ar or Ar independently of all previous protocols
and, in particular, independently of the issuing protocol.

3.1.3 Commitments and Representations of Group Elements

With commitments [DF02] a user can commit to a value v, which we denote as C ← Comm(v). The
commitment has a hiding and a binding property, where hiding refers to the recipient not being able
to infer information about v given C and binding refers to the committer not being able to convince a
recipient that C = Comm(v′) for a v′ 6= v. Either of the two properties can be information theoretically
where the other will hold computationally.

In this context the bases of a commitment are selected from the bases of the group parameters.
When we need the more general version of arbitrarily chosen bases, we call the corresponding object a
representation. They are representations of group elements w.r.t. other group elements, which allows for
the integration almost arbitrary proof statements. As an example, they can be employed to build e-cash
or cloning prevention for credentials.

3.1.4 Pseudonyms and Domain Pseudonyms

Pseudonyms can be described as randomized commitments to the master secret. Thus, a pseudonym is
similar to a public key in a traditional PKI and can be used to establish a relation with an organization,
for example, in case a user wants an organization to recognize her as a returning user. In contrast to an
ordinary public-secret key pair, however, the user can generate unlimited many pseudonyms based on
the same master secret without these pseudonyms becoming linkable to each other.

A domain pseudonym is a special kind of pseudonym in the sense a user can create exactly one
pseudonym w.r.t. one domain. The domain is specified by a verifier, which allows him to control that
each user only creates only one pseudonym for his domain. Note that neither domain pseudonyms nor
ordinary pseudonyms are linkable unless a user proves that the master secret underlying them is the
same.

3.2 Protocols

The basic building block of the protocols in idemix is the Camenisch-Lysyanskaya (CL) signature
scheme [CL01, CL03] that is used to issue credentials. The signature scheme supports blocks of mes-
sages, that is, with a single signature many messages can be signed. In a simple credential, thus, each
attribute value is handled as a separate message. A more elaborate idea is to use compact encoding
as in [CG08] to combine several attribute values into one message. The signature scheme also supports
“blind” signing, where the recipient provides the issuer only with a commitment of the attribute value
that will be included in the credential. This is used for attributes of the set Ac. Credentials are always
issued to a recipient authentication with a pseudonym, which ensures that the user’s master secret gets
“blindly” embedded into the credential.

The distinguishing feature of a CL signature is that it allows a user to prove possession of a signature
without revealing the underlying messages or even the signature itself using efficient zero-knowledge
proofs of knowledge. Thus, when a user wants to convince a verifier that she has obtained a credential
from an issuer and selectively reveal some of the messages of the credential, she employs a zero-knowledge
proof stating that she “knows” a signature by the issuing organization and messages such that signature
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is valid. As the proof is “zero-knowledge”, the user can repeat such a proof as many times as she wants
and still it is not possible to link the individual proofs. This statement even holds if the verifier and the
issuer pool their information. Of course, a user can also prove possession of several credentials (acquired
from different issuers) at once to a verifier and then prove that these credentials share some messages
(without revealing the messages if the user chooses to do so).

Let us have a look at the information that is needed to carry out the protocols of idemix . The
input to the issuance protocol is depicted in Fig. 1. Note that all blue elements are known to both
communication partners, the yellow elements are private to the respective entity. References between
objects are visualized as dotted lines where the bullet indicates the destination of the reference. There
is a subtle difference between the reference from the issuance specification to the cryptographic objects
and the other references. The transparency visualizes that those values may and may not be part of
the protocol. More concretely, there may be cryptographic objects such as commitments that the issuer
received in a preceding transaction (e.g., a proving protocol).

Credential

AttributeValues

Recipient IssuerIssuing
Protocol

IssuanceSpec

AttributeValues

CredentialStructure

GroupParams
SysParams IssuerPublicKey

Figure 1: Overview over the input to the partic-
ipants of the issuing protocol of idemix . The at-
tribute values of the issuer and the recipient might
be different, in particular, the issuer does not get
any knowledge about values of attributes ai ∈ Ah
and only commitments of ai ∈ Ac. Note, the group
and system parameters can be accessed through
references given in the credential structure.

Credential

Prover

CredentialStructure

VerifierProving
Protocol

GroupParams
SysParams

ProofSpec

IssuerPublicKey

Figure 2: Input to the proving protocol is mainly
the proof specification. It links to the credential(s)
on the prover’s side and to the corresponding cre-
dential structure(s) on the verifier’s side. The ver-
ifier may get as private output cryptographic ob-
jects that he can use for application specific tasks
such as an issuance protocol.

Figure 2 shows the input to the entities engaging in a proving protocol. The colors have the same
meaning as in Fig. 1. Again, there may be cryptographic objects that the verifier learns during the
proving protocol. As mentioned before, those values can be used in a subsequent issuing protocol as
shown in Fig. 1. The details of the input elements depicted in the figures will become clear after their
detailed introduction in Section 3.3.

3.2.1 Extensions to the Issuing Protocol

The issuing protocol has not many degrees of freedom as the credential structure puts many limitations on
the protocol. For example, it defines which attributes belong to which set (i.e., Ak, Ac, or Ah). However,
there is a feature that allows for efficiently updating the attribute values contained in a credential.

Credential Updates. As the issuing protocol is interactive (and for security reasons might need to be
executed in a particularly protected environment) re-running it would not be practical in many
cases. Rather, idemix offers an non-interactive method to update credentials where the issuer
publishes update information for credentials such that attribute values are updated if necessary.

This feature can, for example, be used to implement credential revocation. The mechanism that
we have implemented employs epochs for specifying the life time, that is, a credential is only valid
for a particular epoch [CKS09].
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3.2.2 Extensions to the Proving Protocol

The proving protocol requires the prover and the verifier to agree on the attribute values that will be
revealed during the proof, that is, all attributes ai are contained in either Ar or Ar such that Ar∩Ar = ∅.
In addition, she can reveal partial information about the attributes ai ∈ Ar. By partial information we
denote the following proofs or other cryptographic constructs:

Equality. A user can prove equality of attribute values, which may be contained in different credentials. In
particular, equality proof can also be created among values that are contained in any cryptographic
objects such as credentials or commitments. As an example, a user can compute a commitment
to a value v, with C ← Comm(v). Assuming a value ṽi is contained in a credential, the user can
prove that v = ṽi.

Inequality. Allows a user to prove that an attribute value is larger or smaller than a specified constant
or another attribute value.

Set Membership. Each attribute that is contained as a compact encoding as described in [CG08] enables
the user to prove that the attribute value does or does not lie in a given set of values.

Pseudonym. A pseudonym allows a user to establish a linkable connection with a verifier (if wanted).
Furthermore, domain pseudonyms allow a verifier to guarantee that each user only registers one
pseudonyms with w.r.t. his domain.

Verifiable Encryption. A user can specify an encryption public key under which an attribute value con-
tained in a credential shall be (verifiably) encrypted.

3.3 Specification Languages

Let us first show the principle when designing a specification of an object for the example of credentials.
As seen in Fig. 3 we always use an XML schema to define the elements of each XML object. In addition,

XSD
IdemixCredStructure

XML
SwissPassport

XML
SwissPassportStructure

XML
IBMEmployeeStructure

XSD
IdemixCredential

Figure 3: Visualization of how XML schemas are used to define on each XML object. In addition, the figure
shows how the credential structure defines the individual credentials. The dashed lines indicate references from
one element to another, where the bullets indicate the target of the reference.

we separate certain components into the structural information (e.g., credential structure) and the data
(e.g., credential data). This is important for the case where the communication partners do not share
all objects, but they still need a common basis to execute a protocol. More concretely, when compiling
a proof, the prover clearly uses a credential, which is not known to the verifier. The latter still needs
to know the structure of the credential (e.g., attribute names, attribute order) to verify the compiled
proof and extract the semantics of the proof. Therefore, we use the credential structure to specify, for
example, the attribute names and types, the order of attributes, or links to the issuer public key and the
group parameters.

Note that we will not provide details on the XML schema objects as they are built from the XML
objects using standard techniques. Furthermore, we want to stress that the information acquired through
unsecured channels needs to be authenticated, which can be attained using a traditional PKI.

We will only introduce a structure for objects which have private elements at some point during their
lifetime. In particular, we will not use a structure for public keys as they are (and need to be) known to
anybody.

Let us now introduce the specification languages for the objects used in the idemix protocols.
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System and Group Parameters The system and group parameters are specified as a list of their
elements. In addition, the group parameters contain a link to the system parameters, which can also be
seen in Fig. 1. Note that both issuer public key and group parameters need to be authenticated, which
can be implemented through the use of a traditional PKI.

Issuer Key Pair. The issuer key pair consists of a public key and a private key, where we do not specify
the private key as it is never communicated and each issuer may use his own format. On the other hand,
the public key of an issuer contains cryptographic information that is needed for issuing a credential and
for verifying proofs of credentials that have been issued using this public key. Furthermore, it links to
the group parameters with respect to which it has been created (as seen in Fig. 1 and Fig. 2). Note
that, apart from the public key, an issuer needs to publish the services he offers, that is, the credential
structures it supports or being a trusted party (for verifiable encryptions). Even though this information
might be included in the public key, we suggest to create a designated file.

Credentials. As mentioned previously, we decompose credentials into a public and a private part.
Let us call the public part the credential structure and the private part the credential data. This
decomposition is needed in the issuing process, when the credential data has not been created, as well as
in the verification protocol, where the verifier does only get to know a selected subset of the credential
data.

References{
Schema = http://www.zurich.ibm.com/security/idemix/CredStruct.xsd
IssuerPublicKey = http:www.ch.ch/passport/ipk/chPassport10.xml

}
Attributes{

Attribute { FirstName, known, type:string }
Attribute { LastName, known, type:string }
Attribute { CivilStatus, known, type:enum }

{
Marriage, NeverMarried, Widowed, LegallySeparated,
AnnulledMarriage, Divorced, Common-lawPartner

}
Attribute { SocialSecurityNumber, known, type:int }
Attribute { BirthDate, known, type:dateTime }
Attribute { Diet, committed, type:string }
Attribute { Epoch, known, type:epoch }

}
Features{

Domain { http://www.ch.ch/passport/v2010 }
Epoch { http://www.ch.ch/passport/v2010/epoch.xml }

}
Implementation{

PrimeFactor { CivilStatus:Marriage = 3 }
PrimeFactor { CivilStatus:NeverMarried = 5 }
PrimeFactor { CivilStatus:Widowed = 7 }
PrimeFactor { CivilStatus:LegallySeparated = 11 }
PrimeFactor { CivilStatus:AnnulledMarriage = 13 }
PrimeFactor { CivilStatus:Divorced = 17 }
PrimeFactor { CivilStatus:Common-lawPartner = 19 }
AttributeOrder { FirstName, LastName, CivilStatus,

SocialSecurityNumber, BirthDate, Diet }
}

Figure 4: Example credential structure in “human readable” form. We assume that this structure is lo-
cated at http://www.ch.ch/passport/v2010/chPassport10.xml and corresponds to a Swiss passport.
In the implementation, this structure is formulated in XML.
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In Fig. 4 we describe the credential structure. It contains (1) references to the schema and the
issuer public key and (2) information about the structure of a credential, which is needed to extract the
semantics of a proof. We partition the latter into the attribute, feature, and implementation specific
information.

The attribute information defines name, issuance mode (see Section 3.3), and type (e.g., string,
enumeration) of each attribute. The feature section contains all relevant information about extensions
such as domain pseudonyms or epoch information (see Section 3.3). Finally, the implementation specific
information is mapping general concepts to the actual implementation. As an example, enumerated
attributes are implemented using prime encoded attributes [CG08], which require the assignment of a
distinct prime to each possible attribute value.

The credential data most importantly refers to the credential structure that it is based on. In addition,
it contains the (randomized) signature and the values of the attributes. Figure 5 shows the credential
that corresponds to the proof specification given in Fig. 6.
References{

Schema = http://www.zurich.ibm.com/security/idemix/cred.xsd
Structure = http://www.ch.ch/passport/v2010/chPassport10.xml

}
Elements{

Signature = { A:4923...8422, v:3892...3718, e:8439...9239 }
Values { FirstName:Patrik; LastName:Bichsel; ... }

}

Figure 5: This example shows a Swiss passport credential, where the prover clearly knows all the attribute
values.

Commitment and Representation A commitment and a representation, similar to a credential,
consist of a set of values. We assume that the bases for the commitments are listed in the same file
as the group parameters. Thus, they use a reference to link to the corresponding parameters. The
representations, however, list their bases in addition to the list of exponents.

Pseudonym and Domain Pseudonym. As pseudonyms are a special case of a commitment, they
also contain a reference to the group parameters they make use of. In addition, at the user’s side
pseudonyms contain the randomization exponent value . Domain pseudonyms also reference their do-
main, which can be implemented by having them point to the respective credential structure.

Verifiable Encryption. A verifiable encryption is transferred to a verifier and possibly to a trusted
party for decryption. It does not need to be stored at the prover’s side as it usually is not repeatedly
needed. It contains the public key used for the encryption as well as the name used in the proof
specification, the label and the ciphertext of the encryption.

Epoch. Epochs are encoded as a dedicated attribute, thus, it needs no specification similar to the
previous elements. However, the update of a credential containing an epoch attribute needs to be defined.
We propose to extend the Features section of a credential with a link to the update information, which
needs to be specified for each credential individually. Such a reference could, for example, be a URL such
as http://www.ch.ch/passport/v2010/epoch/73942934949/update.xml, containing an identifier for
the credential. The file may contain update information for all the attributes in Ak and for the signature
of the credential.

Protocol Messages. When running the protocols, there are several messages that are passed between
the communication partners. The specification of those objects contains the reference to the schema and
the cryptographic values. Each cryptographic value is assigned a name such that the communication
partner can retrieve the values easily.
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Issuance Specification. Issuing a credential requires a credential structure and a set of attribute
values. As introduced in Section 3.1.1, the set of values from the issuer may differ from the set of the
recipient. In particular, values of attributes in Ak are known to both recipient and issuer and values
of attributes ai ∈ Ah are only known to the recipient. For each attributeai ∈ Ac the recipient knows
the corresponding value vi and the issuer needs a commitment C ← Comm(vi). We define the issuance
modes known, hidden, and committed in the credential structure to denote the set an attribute belongs
to. The reason for defining the issuance mode in the credential structure is to have the same issuance
modes used for all recipients.

Therefore, the majority of the information used in the issuance protocol is defined by the credential
structure. Still, if a commitment for a value in Ac is communicated in a proving protocol before the
issuance protocol is carried out, then these two protocols must be tied together. This can be achieved
by defining an appropriate issuance specification. In Fig. 1 we visualize this case by the transparent link
from the issuance specification to the values of an issuer.

Proof Specification. Specifying a proof of a credential is more elaborate compared to the issuance
as there is a broad range of proofs that can be compiled even using a given credential. We start with
the specification of identifiers for all distinct values that will be included in a proof. Also, we specify the
attribute type of each identifier, where the protocol aborts if the type of the identifier and the type of an
attribute that it identifies do not match. In addition to identifiers, we allow for constants in the proof
specification.
Declaration{ id1:unrevealed:string; id2:unrevealed:string;

id3:unrevealed:int; id4:unrevealed:enum;
id5:revealed:string; id6:unrevealed:enum }

ProvenStatements{
Credentials{

randName1:http://www.ch.ch/passport/v2010/chPassport10.xml =
[FirstName:id1, LastName:id2, CivilStatus:id4];

randName2:http://www.ibm.com/employee/employeeCert.xml =
[LastName:id2, Position:id5, Band:5, YearsOfEmployment:id3];

randName3:http://www.ch.ch/health/v2010/healthCert10.xml =
[FirstName:id1, LastName:id2, Diet:id6] }

Enums{
randName1:CivilStatus = or[Marriage, Widowed]
randName3:Diet = or[Diabetes, Lactose-Intolerance] }

Inequalities{
http://www.ibm.com/employee/ipk.xml, geq<id3,5> }

Commitments{ randCommName1 = {id1,id2}; randCommName2 = {id6} }
Representations{ randRepName = {r2,u2,r1; base1,base2,base3} }
Pseudonyms{ randNymName; http://www.ibm.com/employee/ }
VerifiableEncryptions{ PublicKey1 = [Label,u1] }
Message { randMsgName = "Term 1:We will not use this data for ..." }

}

Figure 6: Example proof specification using a Swiss passport, an IBM employee credential, and a Swiss
health credential.

As mentioned before, we use one identifier for each distinct value in a proof. Therefore, to prove
equality of two attribute values, we can simply assign the same identifier to them. Attributes not
included in an equality proof do not need to be specified. Such attributes are assigned to Ar, thus, they
are handled like unrevealed attributes.

We start the definition of the statements to be proved with a list of credentials that the user proves
ownership of. Next, we assign attribute identifiers or constants to the attributes, where the constants
will cause an equality proof w.r.t. the constant. Subsequently, we specify the properties that will be
proved about certain attributes.

Let us elaborate the examples of property proof provided in the specification in Fig. 6 before describing
the property proofs in a more generally. Using two commitments and a representation that have already
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been communicated to the verifier, the user proves that (1) the last name in all credentials are identical,
(2) the employee is in band 5, (3) the prover is widowed or married as certified by the Swiss government,
(4) the employee is at least 5 years with IBM (where this proof uses values from the public key of the
issuer of the IBM employee credential), (5) the commitment with name randCommName1 contains the
first and last name as certified by the Swiss government. Here, the commitment randCommName2 could
be used for an issuance protocol as explained in Section 3.3.

Note, that we require all credentials used in one proof to contain the master secret of a user. Also
note that the proof specification does not contain any implementation specific parts. We define the
idemix specific details in the credential structure specification (see Fig. 4).

On a more general level, we allow for proofs of set membership for enumerated attributes. We support
the and, or, and not operators on a given set of values and w.r.t. an attribute identifier. Similar to set
membership proofs, we allow for inequality proofs, that is, proofs for statements of the form vi ◦ v̂, where
vi is an attribute value, ◦ is the operator, and v̂ can be a constant or another attribute value. Currently,
the following operators are implemented: <, >, ≤ , and ≥. Consequently, we also support proofs that
an attribute lies within a specified range.

Relating to the components that we describe in Section 3.1, we need to describe how commitments,
representations, pseudonyms and domain pseudonyms are handled. For each exponent of any of those
components, the proof specification defines the identifier that it relates, or the constant that it is equiva-
lent to. In addition, all the components of a proof specification are assigned random names, which allow
for the identification of the corresponding object in the context of a proof but prevent different proofs
from becoming trivially linkable. Those corresponding objects contain the cryptographic values such as
the signature on a credential, the commitment value or the bases and the value of a representation.

4 Cryptographic Preliminaries

We give some preliminaries necessary for the presentation of the protocols. In addition, we define
commonly-used parameters and specify notational conventions that are necessary to have a mapping
from this specification to the implementation (i.e., Java).

4.1 Naming Conventions

The implementation follows the protocols presented in this document closely. To facilitate reading both
the documentation and the code, the following variable naming conventions have been adopted. Let us
define the general rules.

1. Capitals are prefixed with “cap” if the Java naming convention would be violated.

2. Subscripts are denoted by an underscore, “ ”.

3. Greek letters are denoted using their names.

4. List variables MAY include the suffix Tup to indicate that the variable is a tuple.

5. Prefixes are: cap, bold
Multiple prefixes are ordered using the above sequence.

6. Suffixes are: Tilde, Hat, Prime, Tup
Multiple suffixes are ordered using the above sequence.

4.2 Notation and System Parameters

Let H : {0, 1}∗ → {0, 1}`H be a cryptographic hash function. The current implementation uses SHA-256
[Nat93]. Let “‖” denote the operator for concatenation of numbers or strings. By {0, 1}` we denote
the set of integers {0, . . . , 2` − 1} and by ±{0, 1}` the set of integers {−2` + 1, . . . , 2` − 1}. There is
no explicit relations between this notation and the number of bits needed to represent these integers.
Having said this, the set {0, 1}` can be mapped to the set of all bit strings with ` binary digits in a
straightforward manner. Note that, however, {−2` + 1, . . . , 2` − 1} does not so easily map to the set of
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all ` + 1 bit strings. The notation x ∈R S means x is chosen uniformly at random from the set S, and
#S denotes the number of elements in S. The Tables 1, 2 and 3 in Appendix A list the notation used
in this document.

4.3 Zero-Knowledge Proofs

When presenting protocols, we use the notation of Camenisch and Stadler [CS97] to specify zero-
knowledge (ZK) proofs in an abstract way. This allows the reader to quickly determine what the protocol
will accomplish, before looking through the details of how it is accomplished. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and δ such that y = gαhβ and ỹ = g̃αh̃δ

holds,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉 that have
the same order. (Note, that some elements in the representation of y and ỹ are equal.) The convention
is that values (α, β, δ) denote quantities of which knowledge is being proven (and which are kept secret),
while all other values are known to the verifier. For prime-order groups, which include all groups we
consider in this paper, it is well-known that there exists a knowledge extractor which can extract these
quantities from a successful prover.

All of the zero-knowledge proofs in the idemix library are implemented as a common three-move
ZK protocol, made non-interactive using the Fiat-Shamir heuristic [FS87] (three-move ZK protocols are
similar to Schnorr signatures [Sch91] and are also called sigma protocols). The values in the first flow of
the protocol (of the form t = gr) will be referred to as “t-values”, while the responses computed in the
third flow (of the form s = r− cα) will be called “s-values”. The challenge, c, is computed has the hash
of the t-values, common inputs, and also a common string we call the context string, consisting of a list
of all public parameters and the issuer public key. This prevents values generated during the proof from
being re-used in some other context.

We refer to Appendix C for more details.

4.4 The CL Signature Scheme

We recall this signature scheme (the CL signature scheme) and the related protocols here.

Key generation. On input `n, choose an `n-bit RSA modulus n such that n ← pq, p ← 2p′ + 1, q ←
2q′+1, where p, q, p′, and q′ are primes. Choose, uniformly at random, R0, . . . , RL−1, S, Z ∈ QRn.
Output the public key (n,R0, . . . , RL−1, S, Z) and the secret key p.

Message space. Let `m be a parameter. The message space is the set

{(m0, . . . ,mL−1) : mi ∈ ±{0, 1}`m} .

Signing algorithm. On input m0, . . . ,mL−1 , choose a random prime number e of length `e > `m + 2,
and a random number v of length `v ← `n + `m + `r, where `r is a security parameter. Compute
the value A such that

A←

(
Z

Rm0
0 . . . R

mL−1
L−1 Sv

)1/e

mod n .

The signature on the message (m0, . . . ,mL−1) consists of (A, e, v).

Verification algorithm. To verify that the tuple (A, e, v) is a signature on message (m0, . . . ,mL−1),
check that

Z ≡ AeRm0
0 . . . R

mL−1
L−1 Sv (mod n) , mi ∈ ±{0, 1}`m , and 2`e > e > 2`e−1

all holds.

Theorem 4.1 ([CL03]). The signature scheme is secure against adaptive chosen message at-
tacks [GMR88] under the strong RSA assumption.

The original scheme considered messages in the interval [0, 2`m−1] . Here, however, we allow messages
to be from [−2`m + 1, 2`m − 1]. The only consequence of this is that we need to require that `e > `m + 2
holds instead of `e > `m + 1.
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4.5 The CS Encryption Scheme

This text is taken from Camenisch-Shoup [CS03] and is a variation of an encryption scheme put forth
in [CS02].

4.5.1 Background

Let p, q, p′, q′ be distinct odd primes with p ← 2p′ + 1 and q ← 2q′ + 1, and where p′ and q′ are both `
bits in length. Let n← pq and n′ ← p′q′. Consider the group Z∗n2 and the subgroup P of Z∗n2 consisting
of all n-th powers of elements in Z∗n2 .

Paillier’s Decision Composite Residuosity (DCR) assumption [Pai99] is that given only n, it is hard
to distinguish random elements of Z∗n2 from random elements of P.

To be completely formal, one should specify a sequence of bit lengths `(λ), parameterized by a security
parameter λ ≥ 0, and to generate an instance of the problem for security parameter λ, the primes p′ and
q′ should be distinct, random primes of length `← `(λ), such that p← 2p′ + 1 and q ← 2q′ + 1 are also
primes.

The primes p′ and q′ are called Sophie Germain primes and the primes p and q are called safe primes.
It has never been proven that there are infinitely many Sophie Germain primes. Nevertheless, it is
widely conjectured, and amply supported by empirical evidence, that the probability that a random
`-bit number is Sophie Germain prime is Ω(1/`2). We shall assume that this conjecture holds, so that
we can assume that problem instances can be efficiently generated.

Note that Paillier did not make the restriction to safe primes in originally formulating the DCR
assumption. As will become evident, we need to restrict ourselves to safe primes for technical reasons.
However, it is easy to see that the DCR assumption without this restriction implies the DCR assumption
with this restriction, assuming that safe primes are sufficiently dense, as we are here.

We can decompose Z∗n2 as an internal direct product

Z∗n2 ≡ Gn ·Gn′ ·G2 ·T,

where each group Gτ is a cyclic group of order τ , and T is the subgroup of Z∗n2 generated by (−1 mod n2).
This decomposition is unique, except for the choice of G2 (there are two possible choices). For any
x ∈ Z∗n2 , we can express x uniquely as x ≡ x(Gn)x(Gn′)x(G2)x(T), where for each Gτ , x(Gτ ) ∈ Gτ ,
and x(T) ∈ T.

Note that the element h ← (1 + n mod n2) ∈ Z∗n2 has order n, i.e., it generates Gn, and that
ha ← (1 + an mod n2) for 0 ≤ a < n. Observe that P← Gn′G2T.

4.5.2 The Scheme

For a security parameter λ ≥ 0, `← `(λ) is an auxiliary parameter.
The scheme makes use of a keyed hash scheme H that uses a key hk, chosen at random from an

appropriate key space associated with the security parameter λ; the resulting hash function Hhk(·) maps
a triple (u, e, L) to a number in the set [2`]. We shall assume that H is collision resistant, i.e., given a
randomly chosen hash key hk, it is computationally infeasible to find two triples (u, e, L) 6= (u′, e′, L′)
such that Hhk(u, e, L) ≡ Hhk(u′, e′, L′).

Let abs : Z∗n2 → Z∗n2 map (a mod n2), where 0 < a < n2, to (n2 − a mod n2) if a > n2/2, and to
(a mod n2), otherwise. Note that v2 ≡ (abs(v))2 holds for all v ∈ Z∗n2 .

We now describe the key generation, encryption, and decryption algorithms of the encryption scheme,
as they behave for a given value of the security parameter λ.

Key Generation. Select two random `-bit Sophie Germain primes p′ and q′, with p′ 6= q′, and compute
p := (2p′ + 1), q := (2q′ + 1), n := pq, and n′ := p′q′, where `← `(λ) is an auxiliary security parameter.
Choose random x1, x2, x3 ∈R [n2/4], choose a random g′ ∈R Z∗n2 , and compute g := (g′)2n, y1 := gx1 ,
y2 := gx2 , and y3 := gx3 . Also, generate a hash key hk from the key space of the hash schemeH associated
with the security parameter λ. The public key is (hk, n, g, y1, y2, y3). The secret key is (hk, n, x1, x2, x3).

In what follows, let h← (1 + n mod n2) ∈ Z∗n2 , which as discussed above, is an element of order n.
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Encryption. To encrypt a message m ∈ [n] with label L ∈ {0, 1}∗ under a public key as above, choose
a random r ∈R [n/4] and compute

u := gr , e := yr
1hm , and v := abs

(
(y2y

Hhk(u,e,L)
3 )r

)
.

The ciphertext is (u, e, v).

Decryption. To decrypt a ciphertext (u, e, v) ∈ Z∗n2 × Z∗n2 × Z∗n2 with label L under a secret key as
above, first check that abs(v) ≡ v and u2(x2+Hhk(u,e,L)x3) ≡ v2. If this does not hold, then output reject
and halt. Next, let t← 2−1 mod n, and compute m̂ := (e/ux1)2t. If m̂ is of the form hm for some m ∈ [n],
then output m; otherwise, output reject.

4.6 Integer Commitments

We require integer commitments to implement protocol extensions such as Inequality proofs or to allow
an issuer to make the issuance dependent on a credential proof. Finally, integer commitments can be
used to link to application level protocols. As a commitment scheme we use the so-called Damg̊ard-
Fujisaki-Okamoto scheme [DF02], which is essentially the Pedersen commitment scheme [Ped92] in a
group of unknown order.

Assuming Z, S, n from the public key of an issuer generated as described above, committing to an
arbitrarily large integer m is done by

1. choosing a random r ∈R [0, bn/4c] and

2. computing the commitment as C := ZmSr mod n.

We note that it is important that the committing entity is not privy of the factorization of n. Thus, it
is preferable to use the Z, S, n from the public key of an issuer.

5 System Setup

The anonymous credential system requires general parameters, which we separate into system parameters
(consisting of bit lengths as well as prime probabilities) and group parameters, which define the groups
that are used within the system. In addition, the issuer, trusted third parties and user must generate
parameters to be able to participate in the credential system.

5.1 System and Group Parameters

The system parameters as given in Table 2 must be fixed and made public. In addition, we must generate
and publish a group to be used for commitments. We denote this group Z∗Γ with order Γ−1 = ρ·b for some
large prime ρ . This ensures that Z∗Γ has a large subgroup of prime order ρ, and that discrete logarithms
are hard to compute. The bit lengths of Γ and ρ are given by `Γ and `ρ respectively. Preferably, the
cofactor b is small, which will render constraint 4 trivial (see Table 3).

A generator g of the group is computed by choosing a random g′ ∈R Z∗Γ with g′b 6≡ 1 (mod Γ)
and computing g = g′b (mod Γ). The necessary second generator h can be computed by choosing
r ∈R [0..ρ] and computing h = gr. The group parameters Γ, ρ, g and h are provided to all parties as
public parameters. A user verifies the system parameters by checking that ρ and Γ are prime, and that
ρ | (Γ− 1), ρ - Γ−1

ρ , and gρ ≡ hρ ≡ 1 (mod Γ).

5.2 Issuer Key Generation (CL Signature Scheme)

The issuer’s key pair is used for issuing certificates, that is, issuing signatures on lists of attributes.
Values in the public key are also used in other ways, therefore, we must present the key generation step
of the CL signature scheme in order to describe some protocols. The maximum number l of attributes
of the credential is determined by the public key. The number of attributes available to users is l − `res
since some attributes are reserved (e.g., the master secret).
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The issuer generates a safe RSA key pair. To this effect he first generates the safe primes p and q ,
p = 2p′+ 1 and q = 2q′+ 1, then computes n = pq . For security, n should be `n bits, p and q must have
bit length `n/2. In addition, the issuer generates parameters for the CL signature scheme by choosing

S ∈R QRn, and Z,R1, . . . , Rl ∈R 〈S〉

(where QRn is the group of quadratic residues (mod n) and 〈S〉 is the subgroup generated by S). S
must have order #QRn = p′q′. Furthermore, the issuer chooses xZ , xR1 , . . . , xRl ∈R [2, p′q′ − 1] and
computes Z = SxZ , Ri = SxRi for 1 ≤ i ≤ l.

The following non-interactive zero-knowledge proof of knowledge assures every user of the key about
its correct generation, that is, that Z,Ri ∈ 〈S〉 for 1 ≤ i ≤ l.

SPK {(αZ , α1, . . . , αl) : Z = SαZ , R1 = Sα1 , . . . , Rl = Sαl}

where all equalities are mod n. In addition to verifying the proof length of the the public key parameters
must be verified.

The issuer’s public key is pkI = (n, S, Z,R1, . . . , Rl, P ) and the private key is skI = (p, q) .

5.3 Trustee Key Generation (CS Encryption Scheme)

Select two random `-bit Sophie Germain primes p′ and q′, with p′ 6= q′, and compute p := (2p′ + 1),
q := (2q′+1), n := pq, and n]′ := p′q′, where ` = `(λ) is an auxiliary security parameter. Choose random
x1, x2, x3 ∈R [n2/4], choose a random g′ ∈R Z∗n2 , and compute g := (g′)2n, y1 := gx1 , y2 := gx2 , and
y3 := gx3 . Also, generate a hash key hk from the key space of the hash scheme H associated with the
security parameter λ. The public key is (hk, n, g, y1, y2, y3). The secret key is (hk, n, x1, x2, x3).

In what follows, let h = (1 + n mod n2) ∈ Z∗n2 , which as discussed above, is an element of order n.

5.4 User Master Secret Generation

The user’s master secret m1 is an integer chosen uniformly at random from the interval [1, ρ]. Depending
on the issuance specification, m1 may be new or re-used from a previous certificate.

5.5 Pseudonyms and Domain Pseudonyms

The user can generate as many pseudonyms and domain pseudonyms as she wants. Each pseudonym or
domain pseudonym is unlinkable to any other pseudonym or domain pseudonym generated by the user.
However, the domain pseudonyms enforce that a user can only generate one pseudonym per domain (i.e.,
given the domain and the user’s master secret key, the domain pseudonym is unique). It is enforced that
all pseudonyms are computed in the subgroup 〈g〉 of Z∗Γ which has order ρ.

A pseudonym is computed as Nym := commit(m1). Let dom be an arbitrary string describing a
domain. A domain pseudonym for dom is computed as DNym := gm1

dom, where gdom := H(dom)(Γ−1)/ρ mod Γ,
where H is a hash function mapping {0, 1}∗ → ZΓ (see [IBM09] for description of H).

6 Protocol Specification of idemix

Let us recall the inputs of the idemix protocols as discussed in Section 3.2. The protocols are run
interactively between the participants, which we describe in a sequential fashion in the issuance protocol.
The proving protocol is less interactive, however, it is essential to note that the prover first computes
cryptographic values for all sub-proofs. Then she is able to compute the challenge used to make the
zero-knowledge proof non-interactive. Using this challenge, the prover (again) calls all sub-provers. This
methodology can be seen as there is an optional value [c] specified as input of all sub-provers.

6.1 Credential Issuance

Let us begin by giving an overview of the protocol used to issue a credential. The roles in this protocol
are the Recipient of the credential, which is executed by a user, and the Issuer of the credential, which
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is typically run by an organization (e.g., a company, a government). During the issuance protocol, the
Issuer and Recipient interactively create a CL-signature for the Recipient, which is the cryptographic
part of a credential. At each step of this three flow protocol, a zero knowledge proof ensures that both
parties are correctly implementing the protocol.

6.1.1 Protocol: IssueCertificateProtocol

Input Common: S, {nym} , {dNym} , {Ck}∀k∈Ac , {mi}∀i∈Ak
Recipient: m1, {(mk, rk)}k∈Ac , {mj}j∈Ah , {ri}i∈{nym}
Issuer: skI

Output Common: The CL-signature (A, e, v) or ⊥ if the protocol fails.

S is the issuing specification, which is an input to the Issuer and the Recipient, and it most impor-
tantly determines the credential structure. Thereby, the issuer public key and the attribute structures
are implicitly defined. Note that the credential structure specifies the attributes, that is, their data type,
issuance mode (see 3.1.1) and the index with respect to the bases in the issuer public key. In addition, S
allows both parties to compute a common string context which is a list of all public parameters. This
string will be included in the hash, which binds the zero-knowledge proof to the current context. This
prevents values generated during the proof from being re-used in some other context.

The committed values ({mk}k∈Ac) are given to the Issuer through the commitment Ck ← Zmk(k) S
rk
(k)

(mod n(k)). Subsequently, the issuer has as private input the integer values rk. We remark that the
commitment bases need to be chosen such that the issuer is ensured that the recipient (the committer)
does not know the factorization of the modulus n(k) (see § 4.6).

Similarly, the set of values ri are the integers s.t. nym ← gm1hri , ∀i ∈ {nym}. If the protocol is run
without any pseudonym, we set nym := ⊥, similarly if not domain pseudonym is present dNym := ⊥.

A note on enumerated attributes. Enumerated attributes are specified as a set of names. Using
the attribute structure, the set can be translated into the value of the enumerated attribute. An
enumerated attribute can contain the values of several attributes.

All possible values for enumerated attributes are specified in the credential structure. To indicate
which of the enumerated attributes are contained in the credential, there is a list in the attribute.
This list is built of attributeName:enumValue entries. Using this list and the primes assigned in
the credential structure, the attribute value can be calculated as the product of the corresponding
primes.

Example 6.1. Let us assume that there is an attribute named “sex”, which can assume the values
“male” or “female”, and an attribute named “language”, which can have the values “german”,
“french” or “english”. Those attributes are encoded in the attribute “enumEncoding” and the
following primes are associated to the attributes:

sex:male = 3
sex:female = 5
language:german = 7
language:french = 11
language:english = 13

A male user speaking German and French would consequently get assigned the values sex:male,
language:german, and language:french which results in an effective attribute value mj of 231.

Round 0

0.1 Issuer chooses a random nonce n1 ∈R {0, 1}`ø .

0.2 Issuer → Recipient: n1.

0.3 Issuer and Recipient load attribute structures A from S.

Round 1
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1.1 Recipient chooses a random integer v′ ∈R ±{0, 1}`n+`ø .

1.2 Recipient computes
U := Sv

′
·
∏
j∈A

R
mj
j mod n

Next, Recipient computes a non-interactive proof that this was done correctly. (We slightly abuse
the CS notation by not replacing all the values the prover is proving knowledge of with Greek letters.)

SPK{{mi}i∈Ah , v
′, {(mk, rk)}k∈Ac : (1)

U ≡ ±Sv
′ ∏
k∈Ah

Rmkk (mod n)

∧nym 6=⊥ nym ≡ gm1hr (mod Γ)
∧dNym 6=⊥ dNym ≡ gm1

dom (mod Γ)
∧k∈Ac (Ck ≡ ±Zmk(k) S

rk
(k) (mod n(k)))

∧ mi ∈ ±{0, 1}`m+`ø+`H+1 ∀ i ∈ Ah}

Note. In some cases the issuer may require that the master secret m1 be the same as the master secret
of a credential previously used during a proof protocol. This is enforced by using the same pseudonym
nym or dNym in both protocols. Moreover, the master secret can only ever be used for pseudonym, i.e.,
the library will not allow its use for computation anywhere else than for nym, dNym and U .

1.3 Recipient computes SPK (1).

1.3.0.0 Choose m̃j ∈R ±{0, 1}`m+`ø+`H+1 for j ∈ {1 ∪Ah ∪Ac}.
1.3.0.1 (knowledge of pseudonym and master secret key) If nym 6= ⊥ compute

ñym := gm̃1hr̃i mod Γ

where r̃i ∈R [1, ρ], otherwise set ñym := ⊥.
1.3.0.2 (knowledge of domain pseudonym and master secret key) If dNym 6= ⊥ compute

d̃Nym := gm̃1
dom mod Γ

otherwise set d̃Nym := ⊥.
1.3.1 (knowledge of U ’s representation) Compute

Ũ := Sṽ
′
·
∏
j∈A

R
m̃j
j mod n

where

ṽ′ ∈R ±{0, 1}`n+2`ø+`H .

Store all random values.
1.3.2 (knowledge of committed values) Compute the map from attribute names to C̃j where

C̃j := (Zm̃j(j) S
r̃j
(j) mod n(j))j∈Ac

with all r̃j ∈R ±{0, 1}`n+2`ø+`H .
1.3.3 (challenge via Fiat-Shamir) Compute the challenge as:

c :=H(context‖U‖C1‖ . . . ‖Ck‖nym‖dNym‖
Ũ‖C̃1‖ . . . ‖C̃k‖ ˜nym‖ ˜dNym‖n1) .
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1.3.4 (responses to challenge) The responses are (some denoted as ordered lists):

v̂′ := ṽ′ + cv′

sA := (m̂j := m̃j + cmj)j∈A

If nym 6= ⊥ compute r̂j := r̃j + crj mod ρ for all j ∈ {nym} otherwise set r̂ := ⊥.
1.3.5 (output SPK{. . .}(n1)) The complete proof signature is

P1 := (c, v̂′, sA, r̂) .

1.4 Recipient → Issuer: U , P1, n2 ∈R {0, 1}`ø .

1.5 Recipient stores the following elements to file (for use in credential epoch update)

• Ak (values and structure)
• v′

• context

Round 2 (Signature Generation)

2.0 Issuer verifies P1.

2.0.0.1 (knowledge of pseudonym and master secret key) If nym 6= ⊥ compute

ˆnym := nym−cgm̂1hr̂ mod Γ

otherwise set ˆnym := ⊥.
2.0.0.2 (knowledge of pseudonym and master secret key) If dNym 6= ⊥ compute

ˆdNym := dNym−cgm̂1
dom mod Γ

otherwise set ˆdNym := ⊥.
2.0.1 (representation of U) Compute

Û := U−c(Sv̂
′
)
∏
j∈A

R
m̂j
j mod n .

2.0.2 (knowledge of committed values) Compute the ordered list

Ĉj :=
(
c−cj Z

m̂j
(j) S

r̂j
(j) mod n(j)

)
j∈Ac

.

2.0.3 (verify challenge) Compute

ĉ :=H(context‖U‖C1‖ . . . ‖Ck‖nym‖dNym‖

Û‖Ĉ1‖ . . . ‖Ĉk‖ ˆnym‖ ˆdNym‖n1)

If ĉ 6= c, verification fails, abort IssueCertificateProtocol and return ⊥.
2.0.4 (length checks) Check that

v̂′ ∈ ±{0, 1}`n+2`ø+`H+1
,

m̂i ∈ ±{0, 1}`m+`ø+`H+2
, for all i ∈ {1 ∪Ah ∪Ac} .

If any length check fails; abort IssueCertificateProtocol and return ⊥.

2.1 Issuer generates a CL signature on the attributes.
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2.1.1 Choose a random prime

e ∈R [2`e−1, 2`e−1 + 2`
′
e−1] .

2.1.2 Choose a random integer ṽ ∈R {0, 1}`v−1, and compute v′′ := 2`v−1 + ṽ.
2.1.3 Compute

Q :=
Z

USv′′
∏
i∈Ak R

mi
i

mod n and A := Qe
−1 mod p′q′ mod n .

(A, e, v′′) will be sent to the Recipient. Recall Ak that contains the known attributes.
2.1.4 Issuer stores the following elements RecipientRecord to file (for use in credential up-

dates):
• Q
• Ak (values and structure)
• v′′

• context

2.2 Issuer creates the following proof of correctness.

SPK{(e−1) : A ≡ ±Qe
−1

(mod n)}(n2) .

2.2.1 Compute Ã := Qr (mod n), for r ∈R Z∗p′q′ .
2.2.2 Compute c′ := H(context‖Q‖A‖Ã‖n2).
2.2.3 Compute se := r − c′e−1 (mod p′q′). The proof is P2 ← (se, c′).

2.3 Issuer sends (A, e, v′′), P2, (mi)i∈Ak to the Recipient.

Round 3

3.0 Compute v := v′′ + v′.

3.1 Recipient verifies (A, e, v), using the CL-sig verification algorithm:

3.1.0 Check that e is prime, and e ∈ [2`e−1, 2`e−1 + 2`
′
e−1] .

3.1.1 Compute Q := Z
Sv

Q
i∈S R

mi
i

mod n.

3.1.2 Compute Q̂ := Ae mod n.
3.1.3 If Q̂ 6≡ Q (mod n), abort IssueCertificateProtocol.

3.2 Recipient verifies P2.

3.2.1 Compute Â := Ac
′+se·eSv

′se mod n.
3.2.2 Compute ĉ := H(context‖Q‖A‖Â‖n2).
3.2.3 If ĉ 6= c′, abort IssueCertificateProtocol.

3.3 (output) If steps 3.1 and 3.2 succeed, store the credential (mi)iinA, (A, e, v)).

6.1.2 Protocol: UpdateCredential

To update a credential, the issuer runs some parts of the issuance protocol again. However, he includes
the new message values for the updated attributes. The issuer has stored Ak, (mi)Ak , Q and v′′ on file
for the credential. Now let (m̄i)Ak be the values of the attributes as they should appear in updated
credential and let ∆mi = m̄i −mi. We assume that one of these mi encodes the epoch.

Round 1 (Signature Generation)

1.1 Issuer reads previously saved elements from update file.

1.2 Issuer generates a CL signature on the attributes.

1.2.1 Choose a random prime

e ∈R [2`e−1, 2`e−1 + 2`
′
e−1] .
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1.2.2 Choose a random integer ṽ ∈R {0, 1}`v−1, and compute v̄′′ := 2`v−1 + ṽ and ∆v′′ :=
v̄′′ − v′′

1.2.3 Compute

Q̄ :=
Q

(
∏
i∈AKN

R∆mi
i )S∆v′′

mod n and Ā := Q̄e
−1 mod p′q′ mod n .

1.2.4 Set Q := Q̄ , v′′ := v̄′′ , mi := m̄i, and A := Ā.

1.3 Issuer creates the following proof of correctness.

P2 := SPK
{

(e−1) : A ≡ ±Qe
−1

(mod n)
}

(n2) .

1.4 Issuer sends (A, e, v′′), P2, and (mi)i∈Ak to the Recipient.

1.5 Issuer updates the following elements in file (for use in credential update)

• Q
• v′′

• {mi : i ∈ Ak}

Round 2

2.1 Recipient reads previously saved elements from update file.

2.2 Recipient verifies P2.

2.2.1 Compute Q and Q̂ = Ac
′
Qse .

2.2.2 Compute ĉ = H(context‖Q‖A‖Q̂‖n2).
2.2.3 If ĉ 6= c′, abort IssueCredentialProtocol.

2.3 Recipient computes and stores v = v′ + v′′.

2.4 Recipient verifies (A, e, v), using the CL-sigature verification algorithm (see issuing Step 2.2.

2.4.2 Check that e is prime and that e ∈ [2`e−1, 2`e−1 + 2`
′
e−1] .

2.4.1 Check Z ≡ AeRm1
1 . . . Rmll Sv (mod n).

2.5 (output) If steps 2.2 and 2.4 succeed, the credential (m1, . . . ,ml, (A, e, v)) is output and the
recipient update its record for this credential.

6.2 Credential Proof

Let us describe how a user acting as the Prover can use a proof specification to create a proof of
possession of a credential. Such a proof can be verified by the Verifier, which could be a relying party
basing its access control decision on such a proof. For creating such a proof, we use the basic proof
system of the underlying anonymous credential system of Camenisch and Lysyanskaya [CL03]. This
basic protocol is extended by protocols for verifiable encryption of Camenisch and Shoup [CS03] and for
enumerated attributes described by Camenisch and Gross [CG08].

We refer to the example of a proof specification given in Fig. 6 where where we also explained the
components of the proof specification. For the detailed notation of the object see Appendix D.2.

A note on the trust model is applicable here. A proof of knowledge of a value in the group Z∗n where
n is from the issuer’s public key, requires that the Verifier trusts the issuer not to share the secret key
with the Prover (see § 4.6). An alternative would be to have the Prover use the Verifier’s public
key, however this requires additional infrastructure.

As there is little interaction between the Prover and Verifier, the presentation of the protocols for
both roles are easily separated. The protocols for the prover and the verifier are denoted ProveProtocol
and VerifyProtocol, respectively. We start with the description of the ProveProtocol.
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6.2.1 The Prove Protocol

The ProveProtocol realizes a non-interactive proof of the statements defined in the proof specification.
Note that many assertions require multiple credentials, for example, a merchant might want to ensure

that the name field of the credit card credential matches the name field on the government ID credential.
We allow for such proofs, however, the library requires the master secret of all credentials used in one
proof to be the same (this is proven transparently to the user of the library).

Abstractly, the proof is the composition of the following proofs. Let V = {v1, . . . , vt} be the set of
values in the credentials held by the prover.

SPK{(V ) : vi ∈ V are certified, same master secret used(ProveCL) (2)
∧ pseudonyms matching master secret (ProvePseudonym)
∧ commitments to some vi (ProveCommitment)
∧ vi lies satisfies some inequality (ProveInequality, etc. . . )
∧ some vi are encrypted (ProveVerEnc, etc. . . )
∧ . . . and other predicates}

Implicit in (2) is that the attributes in the predicates ProveCommitment, ProveInequality, and
ProveVerEnc, etc. are the same as those certified in ProveCL. Thus, in addition to proving an attribute
mi lies in a given range or is contained in a given commitment, the verifier is also assured that mi

appears in a particular credential. Finally, note that some certified attributes are revealed to the verifier
in the clear (Ar). Here, the verifier is assured that the attributes were signed by the issuer, in addition
to learning their values.

The basic proof structure for an individual credential proof is similar to a Schnorr signature, the
non-interactive version of a common three-move ZK proof. First, the Prover computes random values
of the form t := gr, then she computes a challenge c := H(. . . ‖t), and finally she computes a response of
the form s := r− cα, to prove knowledge of α. We will refer to the value(s) in the first step as t-value(s)
and the response(s) as s-value(s).

The major steps in (2) will be described as separate protocols. For each credential in the specification,
we must prove possession of a CL-signature, using ProveCL. We may also need various other sub-protocols
(or “sub-provers”), typically one for each predicate type. The modularity of implementing each predicate
by a sub-protocol, has been helped manage the complexity of ProveProtocol, both in documentation and
implementation.

Since all sub-proofs will share a challenge value, they must run in two steps. First, each sub-protocol
outputs the t-values which are all included in a hash to form the challenge. Then, given the challenge,
the sub-protocols output the s-values. The table below gives the names of each predicate and the
corresponding sub-provers for proof and verification.

Predicate Name ProveProtocol VerifyProtocol
CLPredicate ProveCL VerifyCL
InequalityPredicate ProveInequality VerifyInequality
PrimeEncodePredicate ProvePrimeEncode VerifyPrimeEncode
CommitmentPredicate ProveCommitment VerifyCommitment
RepresentationPredicate ProveRepresentation VerifyRepresentation
PseudonymPredicate ProvePseudonym VerifyPseudonym
DomainNymPredicate ProveDomainNym VerifyDomainNym
VerEncPredicate ProveVerEnc VerifyVerEnc
EpochPredidcate reveal the epoch attribute

Our presentation of ProveProtocol first describes how the Prover generates the proof, and then how
the Verifier performs verification. Recall that the Prover and Verifier augment the specification
with additional, possibly private, values.

6.2.2 Validation

The specification is (partially) validated at three occasions: first, when it is loaded through the Parser;
second, the specification is built; third, when it is passed to the Prover. This method in validating allows
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us to fail as early as possible. However, assume that the proof specification defines attribute value vi
and attribute value vj to be the same. If vi 6= vj , the validation will not fail but the proof cannot be
compiled. Let us summarize the validations:

Parser validations done when parsing a proof specification from XML

• attribute identifiers i have unique names

• ∀dNym: domain is not null

• all identifiers i referenced in CLPredicate, InequalityPredicate, RepresentationPredicate, Com-
mitmentPredicate, EnumPredicate, or VerEncPredicate are found, i.e., i ∈ Ir ∪ Ir.

ProofSpec validations done when building a proof specification object

• all attributes have corresponding attribute identifiers

• data type of attributes and identifiers match

• group parameters among all CLPredicates match

Prover validations carried out when creating a prover object

• all credentials referenced from a CLPredicate are provided to the Prover

• all referenced pseudonyms are provided to the Prover

Prover and Verifier validations

• the bases in the proof specification match the bases in the representation object.

• messages in proof specification matches library internal message.

6.2.3 Protocol: buildProof

Input: m1, {cred}, S, n1, {comm} , {rep} , {nym} , {dNym} , {verEnc} ,
{msg}.

Output: non-interactive proof of statements in S: (Common, c, s)

Here, {cred} are the credential(s), {comm} the commitments, {rep} the representations, {nym}
the pseudonyms, {dNym} the domain pseudonyms, {verEnc} the verifiable encryptions, and {msg} the
message(s) that are needed to compile the proof. The nonce n1 is generated by the Verifier and sent
to the Prover.

Let P be the set of predicates as specified in S, Ir the set of non-revealed identifiers, and Ir the
set of revealed identifiers. This protocol coordinates the use of the sub-provers and passes the relevant
inputs of the Prover to them.

0. Setup

0.1 For each hidden identifier vi ∈ Vh, generate v̂i ∈R {0, 1}`m+`ø+`H . These values are stored in
the respective identifier.

1. Compute t-values

1.1 For each predicate p in P call the appropriate sub-prover. Each sub-prover has access to a list
T to store the t-values, and a list Common to store common values. Sub-provers can access
the random values from step 0.1 through the identifiers.

We assume the sub-protocols maintain state until the end of the proof (i.e., until both the t-values
and s-values have been computed).

2. Compute the challenge
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2.1 Challenge c:

c :=H(context,Common,T, {comm} , {rep} , {nym} , {dNym} ,
{verEnc} , {msg} , n1),

where context is a string representing the context (or environment), defined in § 4.3,

3. Compute the responses

3.1 For each predicate p ∈ P, call the corresponding sub-prover. Sub-provers output s-values to s
as required, indexed by predicate or identifier name.

4. Output proof

4.1 Output the proof (c, s,Common,R). The structure of s is such that given s and S the verifier
can easily determine the correct s-values to use during verification.

6.2.4 Protocol: ProveCL

For each credential, the sub-protocol ProveCL is invoked which proves the following,

SPK{(e, {mi : i ∈ Ah} , v) :
Z∏

i/∈Ah
Rmii

≡ ±AeSv
∏
i∈Ah

Rmii (mod n)

∧ mi ∈ {0, 1}`m+`ø+`H+2 ∀ i ∈ Ah

∧ e− 2`e−1 ∈ {0, 1}`
′
e+`ø+`H+2 }(n1)

and expands to the following protocol.

Input cred , CLPredicate p, [c]
Output if c ≡⊥, outputs one t-value, and a common value A′ otherwise

outputs three s-values

Let (A, e, v) be the CL signature for cred . Let I be the list of identifiers in p. If c 6≡⊥, then steps 1-3
have already been executed, skip to Step 4.

1. Randomize signature

1.1 Choose rA ∈R {0, 1}`n+`ø

1.2 Compute the randomized CL signature (A′, e, v′), where

A′ := ASrA (mod n) ,
v′ := v − erA (in Z) .

Additionally compute e′ := e− 2`e−1.

2. Compute t-values

2.1 Choose random integers

ẽ ∈R ±{0, 1}`
′
e+`ø+`H

ṽ′ ∈R ±{0, 1}`v+`ø+`H .

For each identifiers i ∈ I, recover the corresponding random value m̃i, computed in step 0.1
of buildProof.

2.2 Compute

Z̃ := (A′)ẽ
(∏
i∈I

Rm̃ii

)
(Sṽ

′
) mod n .
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3. Output t-value Z̃, common value A′.

4. Compute the s-values. Compute the following in Z:

4.1 ê := ẽ+ ce′ ( = ẽ+ c(e− 2`e−1)),

4.2 v̂′ := ṽ′ + cv′,

4.3 m̂i := m̃i + cmi for i /∈ Ar.

6.2.5 Proof Prime Encoding

The protocol ProvePrimeEncode is implemented by three other protocols, ProveCGAND, ProveCGOR, and
ProveCGNOT, the Camenisch-Gross [CG08] protocols for the AND, OR and NOT operators applicable
to PrimeEncodePredicate. These three protocols are described separately.

The prime encoding protocols require a modulus n (mostly for computing commitments). This is
taken from the issuer’s public key in the first credential certifying the attribute that appears in the
predicate being proven.

Protocol: ProveCGAND Here we describe the procotol for predicates with the AND operator. Let m
be the value specified by the attribute, ci the primes corresponding to the attributes revealed during
the proof, and mr :=

∏
i ci their product. The product of the primes not revealed during the proof are

denoted mh := m/mr.
Let C := ZmSr be a commitment to m. The protocol ProveCGAND proves

SPK{(m, r,mh) : C ≡ ±ZmSr (mod n) ∧ C ≡ ±(Zmr )mhSr (mod n)} .

Input PrimeEncodePredicate p (with AND operator), [c]
Output if c ≡⊥, outputs two t-values, and a common value

otherwise outputs two s-values

Recover m from the identifier, obtain the value mr from the predicate, and compute mh := m/mr.
The random value m̃, is the shared value computed in step 0.1 of buildProof.

1. Commit to m

1.1 Choose r ∈R {0, 1}`n

1.2 Compute the commitment C = ZmSr (mod n).

2. Compute t-value

2.1 Choose the random integers

m̃h ∈R ±{0, 1}`m+`ø+`H+1−`mr

r̃ ∈R ±{0, 1}`n+`ø+`H+1

where `mr is the bitlength of mr.

2.2 Compute

C̃ := (Zmr )m̃hS r̃ (mod n),

C̃0 := Zm̃S r̃ (mod n).

3. Output t-values C̃ and C̃0, common value C.

4. Compute and output the s-values. Compute the following in Z:

4.1 m̂h := m̃h + cmh

4.2 r̂ := r̃ + cr.
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Protocol: ProveCGNOT Let mi be the factors of the attribute m, and mr be the constant we want to
show that mi 6= mr. The sub-protocol ProveCGNOT proves the following,

SPK{(m, r, a, b, r′) :

Z ≡ (ZmSr)a(Zmr )bSr
′

(mod n) ∧ m, r ∈ {0, 1}`m+`ø+`H+2 ∀

∧ a, b ∈ {0, 1}`m+`ø+`H+2 }

and expands to the following protocol.

Input PrimeEncodePredicate p (with NOT operator), [c]
Output if c ≡⊥, outputs one t-value, and a common value

otherwise outputs three s-values

If m is not a comitted attribute, and if i is not in E , then we need commit to it, otherwise we skip to
step 2.

1. Commit to m and compute exponents

1.1 Choose r ∈R {0, 1}`n

1.2 Compute the commitment C, where

C := ZmSr (mod n) ,

1.3 Choose random integers

m̃, r̃ ∈R ±{0, 1}`m+`ø+`H+1
.

1.4 Compute a and b with extended Euclid’s algorithm, s.t. ma+mrb = 1

1.5 compute r′

r′ := −ra

2. Compute t-values

2.1 Choose random values

r̃′, ã, b̃ ∈R ±{0, 1}`m+`ø+`H+1−ni`t

2.2 Compute

C̃ := C ã(Zmr )b̃S r̃
′

(mod n) .

3. Output t-value C̃, common value C.

4. Compute and output the s-values. Compute the following in Z:

4.1 r̂′ := r̃′ + cr′

4.2 â := ã+ ca.

4.3 b̂ := b̃+ cb.
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6.2.6 Protocol: ProveInequality

An inequality predicate specifies an attribute value m, an operator ∗ and a constant mr and proves that
a m ∗ mr holds. The operator ∗ is one of >,≥, <,≤. The proof idea is to calculate the delta value
from m and mr depending on the operator. Then the delta value is split into the sum of four squares
ui, i ∈ {1, . . . , 4} and creates the following proof.

SPK{(m, r∆, {u1, . . . , u4} , {r1, . . . , r4} , α) :

∧ T a∆Z
b ≡ ±Zm(Sa)r∆ (mod n)

∧ Tj ≡ ±ZujSrj (mod n), for j = 1, 2, 3, 4
∧ T∆ ≡ Tu1

1 . . . Tu4
4 Sα (mod n)}(n1)

where α = r∆ −
∑4
j=1 ujrj .

Input InequalityPredicate p, [c]
Output if c ≡⊥, outputs six t-values, and five common values

otherwise outputs ten s-values

Let rm be the random value for m chosen in Step 0.1 of buildProof. If c 6≡⊥, Steps 1-2 have already
been executed, skip to Step 3.

1. Proof Setup

1.1 Define

∆ :=


b−m if ∗ ≡≤
b−m− 1 if ∗ ≡<
m− b if ∗ ≡≥
m− b− 1 if ∗ ≡>

and

a :=
{
−1 if ∗ ≡≤ or <
1 if ∗ ≡≥ or >.

Note that ∆ will always be non-negative if the predicate is true. If ∆ < 0, the proof fails and
returns ⊥.

1.2 Express ∆ as the sum of four squares,

∆ := u1
2 + u2

2 + u3
2 + u4

2 .

The current implementation uses an algorithm of Rabin and Shallit, described in [RS86, Sch].
Note that this step accounts for a substantial fraction of the computation time of this protocol,
and increases non-linearly with increasing values of ∆.

1.3 Compute:

T1 := Zu1Sr1 (mod n) T2 := Zu2Sr2 (mod n)
T3 := Zu3Sr3 (mod n) T4 := Zu4Sr4 (mod n)
T∆ := Z∆Sr∆ (mod n) ,

where r∆, ri ∈R {0, 1}`n+`ø . Record r∆, ri, T∆, Ti for later use.

2. Compute t-values

2.1 Compute :

T̂1 := Z ũ1S r̃1 (mod n) T̂2 := Z ũ2S r̃2 (mod n)
T̂3 := Z ũ3S r̃3 (mod n) T̂4 := Z ũ4S r̃4 (mod n)
T̂∆ := Zm̃(Sa)r̃∆ (mod n) .

where ũi ∈R {0, 1}`m+`H+`ø and r̃i, r̃∆ ∈R {0, 1}`m+`H+2`ø . Note, m̃ is the randomness shared
accross sub-provers.
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2.2 Compute
Q := T ũ1

1 T ũ2
2 T ũ3

3 T ũ4
4 Sα̃ (mod n)

where α̃ ∈R {0, 1}`n+`m+2`k+2`ø+3.

2.3 Output t-values: T̂1, . . . , T̂4, T̂∆, Q.

2.4 Output Common values T∆, T1, . . . , T4.

3. Compute s-values

3.1 For i ∈ {1, 2, 3, 4}, compute
ûi := ũi + cui ,

3.2 and
r̂i := r̃i + cri .

3.3 Compute and output r̂∆ := r̃∆ + cr∆.

3.4 Compute α := r∆ −
∑4
j=1 ujrj , and output α̂ := α̃+ cα.

6.2.7 Protocol: ProveCommitment

The ProveCommitment protocol proves knowledge of a commitment and is run for each commitment
predicate. A commitment comm is of the form C := Ra1

1 Ra2
2 . . . RaLL Sr. The bases Ri and S are from a

public key of an issuer, and a1, . . . , aL, are the committed values. The proof works for one to L values,
and each value i may either be revealed (i ∈ Ir) or non-revealed (i ∈ Ir).

We prove:

SPK{(a1, . . . , aL, r) :
C∏

i∈Ir R
ai
i

≡ ±

(∏
i∈Ir

Raii

)
Sr (mod n)} .

Input comm, CommitmentPredicate p, [c]
Output if c ≡⊥, outputs one t-value

otherwise outputs one s-values

If c 6≡⊥, skip to Step 2.

1. Compute t-values

1.1 Choose the random integer

r̃ ∈R ±{0, 1}`n+`ø+`H+1

1.2 Compute and output

C̃ :=

(∏
i∈Ir

Rãii

)
S r̃ (mod n) ,

where ãi are chosen in Step 0.1 of buildProof.

2. Compute response values

2.1 Compute in Z and output r̂ := r̃ + cr.
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6.2.8 Protocol: ProveRepresentation

Let a representation rep be of the form R :=
∏k
i=1 g

xi
i (mod n). The random values corresponding to the

exponents xi are generated in Step 0.1 of buildProof. Since all random values are generated in buildProof,
this sub-protocol computes no responses based on c.

We prove:

SPK{(x1, . . . , xk) : R ≡ ±
k∏
i=1

gxii (mod n)} .

Input rep, RepresentationPredicate p, [c]
Output if c ≡⊥, outputs one t-value

otherwise outputs one s-values

1. Compute and output t-Value R̃ =
∏
g
r̃j
j , for all j such that xj corresponds to a hidden identifier.

6.2.9 Protocol: ProvePseudonym/ProveDomainNym

The buildProof protocol proves knowledge of the secret underlying a pseudonym and that the pseudonym
is based on the master secret key. Let nym and/or dNym be a pseudonym or domain pseudonym,
respectively.

This implements the sub-protocol

SPK{(m1, r1) :
nym ≡ gm1hr (mod Γ) ∧nym 6=⊥

dNym ≡ gm1
dom (mod Γ) ∧dNym 6=⊥}

where m1 is the master secret key.

Input nym and/or dNym, NymPredicate and/or DomNymPredicate p, [c]
Output if c ≡⊥, outputs one t-value

otherwise outputs one s-values

If c 6≡⊥, skip to Step 2.

1. Compute t-value

1.1 Choose a random integer r̃ ∈R Zρ.
1.2 Compute and output

˜nym := gm̃1hr̃ (mod Γ) if nym 6= ⊥ and
˜dNym := gm̃1

dom (mod Γ) if dNym 6= ⊥ .

where m̃1 is chosen in Step 0.1 of buildProof.

2. Compute response values

2.1 Compute in Z and output r̂ := r̃ + cr.

6.2.10 Protocol: ProveVerEnc

We assume that the prover has made a Camenisch-Shoup encryption (u, v, e) of some attribute m with
label L and now want to prove that this is indeed the case. That is, we want to run the following
subprotocol

PK{(r,m) : u2 ≡ g2r ∧ e2 ≡ y2r
1 h2m ∧ v2 ≡ (y2y

Hhk(u,e,L)
3 )2r } .

Note that r is the randomness used to encrypt m as (u, v, e)
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Input verEnc, VerEncPredicate p, [c]
Output if c ≡⊥, outputs 3 t-values

otherwise outputs s-value

If c 6≡⊥, Steps 1 has already been executed, skip to Step 2. The predicate p contains the public key,
and the ciphertext (u, v, e), as well as the randomness r has been loaded by the prover.

1. Compute t-values

1.1 Choose random random r̃ ∈ ±{0, 1}2`enc+`ø+`H+1

1.2 Compute
û := g2̃r, ê := y2̃r

1 h2m̃, and v̂ := (y2y
Hhk(u,e,L)
3 )2̃r .

1.3 Output t-values (to be hashed): û, ê, and v̂

2. (Compute s-values)

2.1 Compute and output r̂ := r̃ + cr.

6.2.11 The Verify Protocol

The verification of the proof will have a similar structure to its generation. The main protocol, VerifyPro-
tocol will iterate over the predicates in S and make calls to to the appropriate verification sub-protocols.
The sub-protocols compute the verification values (t̂-values) to be hashed (together) and compared
against c.

6.2.12 Protocol: verifyProof

Input S, P = (c, s,Common), n1

Output accept or reject P

The data structure s is accesible to all sub-provers, which may retrieve the required s-values.

1. Compute t̂-values

1.1 For each predicate p in P call the appropriate sub-verifier. Each sub-verifier has access to a
list T̂ to store the t̂-values, and the appropriate common values from Common. Sub-verifiers
can access the s-values.

2. Compute the verification challenge

2.1

c :=H(context,Common, T̂, {comm} , {rep} , {nym} , {dNym} ,
{verEnc} , {msg} , n1),

where context is defined in § 6.2.3.

3. Verify equality of challenge

3.1 If c ≡ ĉ accept P and reject otherwise.

6.2.13 Protocol: VerifyCL

Input Credential structure, CLPredicate p

Output one t̂-value

Using p, the verifier retrieves the common value A′ and the s-values. To compute the t-value, the
verifier iterates over the attributes from the credential structure and retrieves either the s-value through
the attribute identifier name or the attribute value (also stored in the list of s-values).
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1. Compute:

T̂ :=

(
Z

(
∏
i∈Ar R

mi
i )(A′)2`e−1

)−c
(A′)ê

(∏
i∈Ar

Rm̂ii

)
Sv̂
′

mod n

2. Check lengths:

m̂i ∈ ±{0, 1}`m+`ø+`H+1
, for i ∈ Ar,

ê ∈ ±{0, 1}`
′
e+`ø+`H+1

.

If any of these checks fail, reject the proof.

3. Output T̂ .

6.2.14 Verify Prime Encoding

Similar to ProvePrimeEncode (§ 6.2.5), separate sub-protocols are used to implement the verification
of prime encoded attribute proofs. These are VerifyCGAND, VerifyCGOR and VerifyCGNOT, which are
described in § 6.2.14, § 6.2.14. Much of the computation must be done with respect to an issuer public
key. For a PrimeEncodePredicate p, we use the public key of the first credential in the specification which
certifies the attribute referenced by p.

Protocol: VerifyCGAND

Input PrimeEncodePredicate p (with AND operator)
Output one t̂-value

Let m̂ be the s-value corresponding to the identifier specified in p, mr the constant in p, and let m̂h, r̂
and C be the output of ProveCGAND.

1. Compute:

Ĉ := C−c(Zmr )m̂hS r̂ (mod n), and

Ĉ0 := C−cZm̂S r̂ (mod n).

2. Check length:

m̂h ∈ ±{0, 1}`m+`ø+`H+1−`Er ,

where `Er is the bitlength of Er. Reject the proof if this check fails.

3. Output Ĉ, Ĉ0.

Protocol: VerifyCGNOT

Input PrimeEncodePredicate p (with NOT operator)
Output one t̂-value

Let m̂ be the s-value corresponding to the identifier specified in p, mr the constant in p, and let
r̂′, â, b̂ and C be the output of ProveCGOR.

1. Compute:
Ĉ := Z−cC â(Zmr )b̂S r̂

′
(mod n) .

31



2. Check lengths:

m̂i ∈ ±{0, 1}`m+`ø+`H+1
, for i /∈ Ar,

If any of these checks fail, reject the proof.

3. Output T̂ .

6.2.15 Protocol: VerifyInequality

Input InequalityPredicate p

Output six t̂-value
Let T∆, T1, T2, T3, T4 be the common values from the proof.

1. Compute ∆′ and update c if necessary.

∆′ =


b if ∗ ≡≤
b− 1 if ∗ ≡<
b if ∗ ≡≥
b+ 1 if ∗ ≡>

a =
{
−1 if ∗ ≡≤ or <

1 if ∗ ≡≥ or >

Note that ∆′ = m− a∆.

2. Compute t̂-values

2.1 Compute

T̂∆ :=
(
T∆

aZ∆′
)−c

Zm̂(Sa)r̂∆ (mod n) .

2.2 For i ∈ {1, . . . , 4}, compute
T̂i := T−ci Z ûiS r̂i (mod n) .

2.3 Compute
Q̂ := (T∆)−cT û1

1 T û2
2 T û3

3 T û4
4 Sα̂ (mod n) .

3. Output T̂∆, T̂1, . . . , T̂4, Q̂.

6.2.16 Protocol: VerifyCommitment

Input comm, CommitmentPredicate p

Output one t̂-value

Let r̂ be the s-value, and let Ir and Ir be as defined in ProveCommitment (see § 6.2.7).

1. Compute

C ′ :=
C∏

i∈Ir R
ai
i

(mod n) ,

and

Ĉ := (C ′)−c
(∏
i∈H

Râii

)
S r̂ (mod n) .
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6.2.17 Protocol: VerifyRepresentation

Input rep, RepresentationPredicate p

Output one t̂-value

For each identifier in p, recover x̂i, from the proof. Let I be the set of identifiers (i.e., {1, . . . k} used
in R, where Ir are revealed and Ir are not revealed.

1. Compute R′ :=
∏
j∈Ir g

xj
j .

2. Compute and output R̂ = (R/R′)−c
∏
j∈Ir g

x̂j
j .

6.2.18 Protocol: VerifyPseudonym/VerifyDomainNym

Input nym or dNym, PseudonymPredicate of DomainNymPredicate p

Output one t̂-value

Using p the protocol locates the value r̂.

1. Compute
ˆnym := nym−cgm̂1hr̂ (mod Γ) if nym 6= ⊥ and

ˆdNym := dNym−cgm̂1
dom (mod Γ) if dNym 6= ⊥

2. Output ˆnym and/or ˆdNym, if applicable.

6.2.19 Protocol: VerifyVerEnc

Input verEnc, ProveVerEnc p

Output three t̂-values

Using p the protocol retrieved the values m̂1 and r̂.

1. (Compute t̂-values)

1.1 Compute

û := u−2cg2̂r,

ê := u−2cy2̂r
1 h2m̂1 , and

v̂ := u−2c(y2y
Hhk(u,e,L)
3 )2̂r .

2. Output û, ê, and v̂.
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Symbol Description Defined
n RSA modulus for CL signatures p. 16
p, q prime factors of n p. 16
QRn group of quadratic residues mod n p. 16

pkB , skB public key, secret key of entity B p. 16
S,Z,Ri part of the issuer’s public key (for CL sigs.) p. 16

Γ modulus of the commitment group p. 15
ρ prime order of a large subgroup of Z∗Γ p. 15
b cofactor of Γ− 1 p. 15
g, h generators of the order ρ subgroup of Z∗Γ p. 15
l total number of attributes in a certificate

(bases in the issuer’s CL public key)
p. 15

m1 the master secret p. 16, 16
A ordered set of attributes p. 5

(m1, . . . ,ml) attributes in A p. 5
Ak indices of attributes which are public during a

certificate issue
p. 6

Ah indices of attributes which are hid-
den/committed during an issue

p. 6

Ar indices of attributes revealed during a proof p. 6
ci commitment of attribute i, i.e. comm(mi) p. 6

n, g, y1, y2, y3 Verifiable encryption public key —
n, x1, x2, x3 Verifiable encryption private key —

h Ver. enc. param. h = (1 + n mod n2) ∈ Z∗n2 —

Table 1: Notation used in this document. The “Defined” column gives the page number where the
symbol is defined. (The source code may refer to this table as table:notation.)

A Notation
Table 1 lists the notation used in this document. Table 2 lists recommended sizes for system parameters,
and lists the constraints between parameters.

B Cryptographic Assumptions

The protocols discussed in this chapter rely on the strong RSA and the decisional Diffie-Hellman as-
sumptions. We state then briefly for completeness.

Assumption 1 (Strong RSA Assumption). The strong RSA (SRSA) assumption states that it is com-
putational infeasible, on input a random RSA modulus n and a random element u ∈ Z∗n, to compute
values e > 1 and v such that ve ≡ u (mod n).

The tuple (n, u) generated as above is called an instance of the flexible RSA problem.

Assumption 2 (DDH Assumption). Let Γ be an `Γ-bit prime and ρ is an `ρ-bit prime such that ρ|Γ−1.
Let γ ∈ Z∗Γ be an element of order ρ. Then, for sufficiently large values of `Γ and `ρ, the distribution
{(δ, δa, δb, δab)} is computationally indistinguishable from the distribution {(δ, δa, δb, δc)}, where δ is a
random element from 〈γ〉, and a, b, and c are random elements from [0, ρ− 1]

The following theorem will turn out to be handy in some of our analyses.

Theorem B.1. [CS03] Under the strong RSA assumption, given a modulus n (distributed as above),
along with random elements g, h ∈ (Z∗n)2, it is hard to compute an element w ∈ Z∗n and integers a, b, c
such that

wc ≡ gahb (mod n) and c does not divide a or b. (3)
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Parameter Description Bitlength
`n size of RSA modulus 2048
`Γ size of the commitment group modulus 1632
`ρ size of the prime order subgroup of Γ 256
`m size of attributes 256
`res number reserved attributes in a certificate 1†

`e size of e values of certificates 597
`′e size of the interval the e values are taken from 120
`v size of the v values of the certificates 2724
`ø security parameter that governs the statis-

tical zero-knowledge property (source name
l statzk)

80

`k security parameter 160
`H domain of the hash function H used for the

Fiat-Shamir heuristic
256

`r security parameter required in the proof of se-
curity of the credential system

80

`pt prime number generation returns composites
with probability 1− 1/2`pt

80†

`enc security parameter for the CS encryption
scheme, bit length of

√
n

1500

Table 2: System parameter sizes (in bits) used in idemix. (Source code may refer to this table as
table:params.) († This value is an integer, not a bit length.)

Number Constraint
1 `e > `ø + `H + max{`m + 4, `′e + 2}
2 `v > `n + `ø + `H + max{`m + `r + 3, `ø + 2}
3 `H ≥ `k
4 ρ - b
5 `H < `e
6 `′e < `e − `ø − `H − 3
7 `ρ ≤ `m

Table 3: Constraints which parameter choices must satisfy to ensure security and soundness. (Source
code may refer to this table as table:constraints.)
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Prover Verifier

(g, q, y, x) (g, q, y)
↓ ↓

rα ∈R Zq
t := grα -t

c ∈R {0, 1}k
� c

sα := rα − cx mod q
-

sα

t
?= gsαyc

↓
(yes/no)

Figure 7: The protocol denoted PK{(α) : y = gα}. The prover’s input to the protocol is (g, q, y, x)
and the verifier’s input is (g, q, y). The prover has no output; the verifier’s output is either yes or no,
depending on whether or not he accepts the protocols, i.e., whether or not t = gsαyc holds.

Intuitively, computing such a w and integers a, b, and c such that c does not divide a and b seems to
require knowledge of the group’s order: One computes w as gxhy for some x and y and then raises both
sides to the power of c. Now if c should not divide a, then one seems to need reducing xc modulo the
order of the group. However, this is not possible as the order is not known and so it seems impossible to
compute such an a that is not divisible by c.

C Protocols to Prove Knowledge of and Relations among Dis-
crete Logarithms

In the following we will use various protocols to prove knowledge of and relations among discrete loga-
rithms. To describe these protocols, we use notation introduced by Camenisch and Stadler [CS97] for
various proofs of knowledge of discrete logarithms and proofs of the validity of statements about discrete
logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (v < α < u)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that y = gαhβ and ỹ = g̃αh̃γ

holds, with v < α < u,” where y, g, h, ỹ, g̃, and h̃ are elements of some groups G = 〈g〉 = 〈h〉 and
G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek letters denote the quantities the knowledge of which is
being proved, while all other parameters are known to the verifier. More precisely, the property of “proof
of knowledge” means that there exists a knowledge extraction algorithm who can extract the Greek
quantities from a successful prover if given rewinding and reset access to the prover (cf. Chapter ??).
Thus, using this notation, a proof protocol can be described by just pointing out its aim while hiding
the protocols realization details.

In the following we will first explain how such protocols can be constructed. Unless otherwise stated,
we assume a group G = 〈g〉 of prime order q.

C.1 Schnorr’s Identification Scheme

The probably simplest is case is the protocol denoted PK{(α) : y = gα}, where y ∈ G, and is depicted in
Figure 7. This protocol is also known as Schnorr’s identification protocol [Sch91]. As the first step in the
protocol, the prover chooses a random integer rα, computes the protocol commitment t := grα and sends
it to the verifier. The verifier replies with a random protocol challenge c. Next, the prover computes the
protocol response s := r− cx mod q and sends it to the verifier. Finally, the verifier accepts the protocol
if the verification equation t = gsαyc holds.

The protocol is a proof of knowledge of the discrete logarithm logg y with cheating probability (knowl-
edge error) of 2−k. The protocol is also zero-knowledge against an honest verifier.
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To achieve zero-knowledge against any verifier, one needs to choose k logarithmic in the security
parameter and repeat the protocols sufficiently many times to make the knowledge error small enough,
losing some efficiency by this repetition. Reasonable parameters seem to be k = 10 and repeating the
protocol 8 times to achieve an overall cheating probability of 2−80. Luckily, one can alternatively use
one of the many known constructions to achieve zero-knowledge that retain efficiency, e.g., [Dam00]. We
note that this discussion holds for all the protocols we consider in this chapter.

From the protocol just discussed, one can derive the Schnorr signature scheme, denoted SPK{(α) :
y = gα}(m), by using the Fiat-Shamir heuristic [FS87, PS96], i.e., by replacing the verifier by a call to a
hash function H and thus computing the challenge as c = H(g‖y‖t‖m), where m ∈ {0, 1}∗ is the message
that is signed. The signature of m consists of the pair (s, c). The verification equation of the signature
scheme entails computing t̂ := gsyc and then verifying whether c = H(g‖y‖t̂‖m) holds. This signature
scheme can be shown secure in the so-called random oracle model [BR93].

C.2 Proving Knowledge of a Representation

One generalization of Schnorr’s identification scheme is to use, say, ` bases g1, . . . , g` with gi ∈ G. That
is, the protocol denoted PK{(α1, . . . , α`) : y =

∏`
i=1 g

αi
i } is a proof of knowledge of the representation of

y ∈ G w.r.t. the bases gi. It is constructed as follows. The inputs of the prover and the verifier consist
of y, g1, . . ., g`, the order q of the group, and the system parameter k. The secret input of the prover
consists of xi’s such that y =

∏`
i=1 g

xi
i . Thus, each xi corresponds to an αi. Now, to compute the first

message of the protocol, the prover chooses ` random integers rαi ∈ Zq, computes t :=
∏`
i=1 g

rαi
i , and

sends t to the verifier. The verifier replies with a c chosen as in the protocol above, i.e., randomly from
{0, 1}k. Next, the prover computes sαi := rαi − cxi mod q and sends the resulting sα1 , . . . , sα` to the
verifier. The verifier will accept the protocol if the equation t = yc

∏`
i=1 g

sαi
i holds. This protocol can

be shown to be a proof of knowledge of values αi such that y =
∏`
i=1 g

αi
i with knowledge error 2−k and

to be honest-verifier zero-knowledge.

C.3 Combining Different Proof Protocols

One can combine different instances of the protocol described so far. The simplest combination is a
protocol denoted

PK{(α1, . . . , α`, β1, . . . , β`′) : y =
∏̀
i=1

gαii ∧ z =
`′∏
i=1

hβii }

with gi, hi, y, z ∈ G. It is obtained by running the two protocols

PK{(α1, . . . , α`, ) : y =
∏̀
i=1

gαii } and PK{(β1, . . . , β`′) : z =
`′∏
i=1

hβii }

in parallel as sub-protocols as follows. First, the prover computes and sends to the verifier the commit-
ment messages of both protocols at the same time. Next, the verifier chooses and sends back a single
challenge message, i.e., the verifier chooses the same challenge message for both protocols. Finally, the
verifier will accept the overall protocol only if the verification equations of both (sub-)protocols hold.

In the same way one constructs a protocol that involves several terms (i.e., representations of several
values) by just running the protocol for each term in parallel and by letting the challenge to be the same
for each of these protocols. So, for instance, the protocol PK{(α, β, γ) : y = gα ∧ z = hβ ∧ w = gγ} is
obtained by running the three sub-protocols PK{(α) : y = gα}, PK{(β) : z = hβ}, and PK{(γ) : w = gγ}
in parallel in as just described.

C.4 Proving Equality of Discrete Logarithms

Another useful combination of the protocols discusses so far is one where, in addition to prove knowledge
of discrete logarithms or representations, the prover can show that some discrete logarithms are equal.
Such protocols are in principle also obtained from running the basic protocol for each term in parallel.
However, now not only are the challenges the same for each of these protocols but also some of random
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choices of the prover as well as some of the response messages of the protocols needs to be the same. In
general, when we compose protocols for arbitrary terms, the prover is to use the same random rα in all
the protocols that involve α in their term. Let us consider the protocol PK{(α, β) : y = gαhβ ∧ z = hα}
as an example. The verifier’s and the prover’s common input to the protocol consists of y, z, g, h, q and
the prover’s secret input consists of xα and xβ such that y := gxαhxβ and z := hxα . To compute the
commitment message, the prover chooses random rα and rβ from Zq and computes ty := grαhrβ and
tz := hrα . Upon receiving the commitment messages ty and tz, the verifier replies with a single random
challenge message c ∈R {0, 1}k. Next, the prover computes the response messages as sα := rα+cxα mod q
and sβ := rβ + cxβ mod q. Having received sα and sβ , the verifier will accept the protocol if the two
verification equations ty = ycgsαhsβ and tz = zchsα hold.

Let us explain why the verifier should be convinced that logh z equals the first element in the rep-
resentation of y w.r.t. g and h. Using standard rewinding techniques, one can obtain from a successful
prover commitment and response messages for different challenge messages but the same commitment
messages, i.e., two tuples (ty, tz, c, sα, sβ) and (t′y, t

′
z, c
′, s′α, s

′
β) with (ty, tz) = (t′y, t

′
z) and c 6= c′. From

the verification equations one can thus conclude that

yc−c
′

= gs
′
α−sαhs

′
β−sβ and zc−c

′
= hs

′
α−sα .

Now we can set x̂α := (s′α − sα)(c− c′)−1 mod q and x̂β := (s′β − sβ)(c− c′)−1 mod q and thus we have

y = gx̂αhx̂β and z = hx̂α ,

i.e., we see that indeed logh z equals the first element in the representation of y w.r.t. g and h.
From what we have now seen, we are able to construct protocols that fall into the class denoted

PK{(α1, . . . α`α) : y1 =
∏
i∈I1

g
αf1(i)

i ∧ y2 =
∏
i∈I2

g
αf2(i)

i ∧

· · · ∧ y`y =
∏
i∈I`y

g
αf`y (i)

i } ,

where

• `α, `g, and `y are parameters denoting the number of secrets αi, of bases gi, and of elements yi,
respectively,

• the yi’s and gi’s can be arbitrary elements of G and do not necessarily be distinct or can be a
product of other (given) elements, e.g., y3 = y5g

3
2/y2,

• the sets Ij define which bases are used for the j-th term and the functions fj define which secret
αk is used for a particular base in the term.

The protocol is depicted in Figure 8. We note that the protocol has the property that from a successful
prover one can extract values α1, . . . , α`α such that the equations

y1 =
∏
i∈I1

g
αf1(i)

i , y2 =
∏
i∈I2

g
αf2(i)

i , · · · , y`y =
∏
i∈I`y

g
αf`y (i)

i

all hold. That is, it is an honest-verifier zero-knowledge proof of knowledge of the values α1, . . . , α`α
with knowledge error 2−k.

Let us finally consider some example instances of this general protocol. The protocol denoted
PK{(α, β) : y1 = gα ∧ y2 = gβ ∧ y3 = yβ1 } proves that logg y3 is the product of logg y1 and logg y2,
the protocol denoted PK{(α) : y1 = gα ∧ y2 = yα1 } proves that logg y2 = (logg y1)2, and the protocol
denoted PK{(α, β) : g = yαhβ} proves that the first element of the representation of y that the prover
knows w.r.t. g and h is non-zero, provided that the prover is not privy to loggh (in case the prover knows
loggh, he is able to compute q different representations of y w.r.t. g and h, otherwise he can only know
one).
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Prover Verifier

(g1, . . . , g`g , y1, . . . , y`y , (g1, . . . , g`g , y1, . . . , y`y ,
I1, . . . , I`y , f1, . . . , f`y , I1, . . . , I`y , f1, . . . , f`y ,
x1, . . . , x`α , q) q)
↓ ↓

rα1 , . . . , rα`α ∈R Zq
For j = 1, . . . , `y do:

tyj :=
∏
i∈Ij g

rαfj(i)

i
-

ty1 , . . . , ty`y

c ∈R {0, 1}k
� c

sαi := rαi − cxi mod q
-

sα1 , . . . , sα`α

For j = 1, . . . , `y check:

tyj
?= ycj

∏
i∈Ij g

sαfj(i)

i

↓
(yes/no)

Figure 8: The protocol denoted PK{(α1, . . . α`α) : y1 =
∏
i∈I1 g

αf1(i)

i ∧ y2 =
∏
i∈I2 g

αf2(i)

i ∧ · · · ∧ y`y =∏
i∈I`y

g
αf`y (i)

i }.

C.5 The Schnorr Protocol Modulo a Composite

So far we have considered proof protocols for a group of prime order where the order is known to both
the prover and the verifier. However, often one would like to use these kind of protocols in groups where
the order is not known to all parties as is for instance the case in RSA-groups. RSA groups are subgroups
of Z∗n, where n is the product of two primes. Thus, if one does not know the factorization of n, one does
in general not know the order of a subgroup generated by a random element of Z∗n.

In particular, let n be the product of two safe primes, i.e., primes p and q such that p′ = (p − 1)/2
and q′ = (q − 1)/2 are also primes. Let g be a generator of the quadratic residues modulo n (so, g will
have order p′q′). In this case, knowing the order p′q′ of g is equivalent to knowing the factorization of n.
Let y = gx with x ∈ {0, 1}` for some `. Now consider the protocol denoted PK{(α) : y = gα (mod n)},
where at least the prover is assumed not to be privy to the factorization of n. The prover and verifier’s
common inputs are (y, g, n, `n) and the prover’s additional input is x = logg y, where `n = dlog2 ne (i.e.,
the length of n in bits). We may assume that x ∈ [0, n]. The protocol is as follows.

1. The prover chooses uniformly at random rα ∈R {0, 1}`n+`c+`∅ , computes ty := gr mod n, and
sends t to the verifier.

2. The verifier chooses a random c ∈R {0, 1}`c and sends that to the prover.

3. The prover replies with sα := rα − xc.

4. The verifier checks whether ty
?≡ ycgsα (mod n) holds.

The difference to the protocol in the case the order of the group 〈g〉 is known is that here, as she does
not know the order of the group, the prover can no longer choose rα randomly from the integers modulo
this order and can no longer reduce sα modulo this order. So, the prover needs to choose rα some how
differently such that nevertheless sα and ty do not reveal information about x, i.e., such that the protocol
remains zero-knowledge. Thus if x ∈ [0, n] and the prover chooses rα ∈R {0, 1}`n+`c+`∅ , then, for any
c ∈ {0, 1}`c and sufficiently large `∅ (e.g., 80), the value sα := rα−xc is distributed statistically close to
the uniform distribution over {0, 1}`n+`c+`∅ . Also, the value ty := gr mod n is distributed statistically
close to uniform over 〈g〉. Therefore, provided that y ∈ 〈g〉, the protocol is statistical honest-verifier
zero-knowledge for sufficiently large `∅ (e.g., `∅ = 80).

Now, this protocol is only a proof of knowledge of logg y if `c equals 1 and if repeated sufficiently
many, say k, times. Let us investigate this. Assume we are given a prover that can successfully run the
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protocol for given y, g, and n. By standard rewinding techniques, one can extract two triples (t, c, s)
and (t′, c′, s′) from the prover such that t = t′, c 6= c′, and t ≡ ycgs ≡ yc′gs′ (mod n) holds. W.l.o.g. we
may assume that c′ > c. From the last equation we can derive that yc

′−c ≡ gs−s′ (mod n).
If `c = 1, we must have c′ = 1 and c = 0 and hence y ≡ gs−s

′
(mod n), i.e., s − s′ is a discrete

logarithm of y to the base g and hence the protocol is indeed a proof of knowledge.
If `c > 1, we are stuck with the equation yc

′−c ≡ gs−s
′

(mod n), i.e., we seem to need to compute
a (c′ − c)-th root of gs−s

′
modulo n which is assumed to be hard without knowledge of g’s order.

Unfortunately, Theorem B.1 provides a way out. That is, under the strong RSA assumption, we will
have that (c′− c)|(s− s′). Let u be such that (c′− c)u = (s− s′). Then y ≡ bgu (mod n) for some b such
that bc

′−c ≡ 1 (mod n). Assuming that 2`c < min(p′, q′), it must be that b = ±1 or gcd(b ± 1, n) splits
n (which again would counter the strong RSA assumption). Of course, if both y and g are quadratic
residues, then y ≡ gu (mod n).

The reader might now think that the protocol is therefore a proof of knowledge under the strong
RSA assumption for `c > 1. Unfortunately this is not the case. Let us expand. The definition of a proof
of knowledge (cf. Chapter ??), requires that the inputs n, g, and y be fixed, i.e., that the knowledge
extractor works for any prover that is successful for a given input n, g, and y. However, the above
argument only works for n chosen at random. For instance, it does not work if the prover knew the
factorization of n as he then could compute c, c′, s, and s′ such that (c′ − c) - (s − s′) (for instance by
adding a multiple of the order of g to s). Now, if n is fixed, there always exists a prover who has the
factorization encoded into herself and thus she could successfully run the protocol but the knowledge
extractor cannot extract a witness. In order words, the protocol only has the proof of knowledge property
for random n which contradicts the requirement of a proof of knowledge that the witness can be extracted
for any given n. Nevertheless, the protocol is still useful as a building block, i.e., one only need to take
into account the probability spaces of n, g, and y. That is, one has to consider the overall system of
which the protocol is part and cannot just consider the protocol by itself as one could if it was a true
proof of knowledge. Despite of all of this, we denote this protocol also as PK{(α) : y ≡ ±gα (mod n)}
or PK{(α) : y ≡ gα (mod n)}, depending on whether the verifier is assured that y is a quadratic residue
or not.

C.6 Proving that a Secret Lies in a Given Interval

One property of the protocol just described that is handy in many cases is the fact that the prover
cannot reduce the response messages modulo the order of the group is to argue about the bit-length of
the secret known to the prover. Let x ∈ ±{0, 1}`x for some `x and let y := gx mod n, with g and n as
before. Now consider the following modification of the protocol (the inputs to the prover and the verifier
remain unchanged except that both parties are further given `x).

1. The prover chooses uniform at random rα ∈R {0, 1}`x+`c+`∅ , computes ty := gr mod n, and sends
t to the verifier.

2. The verifier chooses a random c ∈R {0, 1}`c and sends that to the prover.

3. The prover replies with sα := rα − xc.

4. The verifier checks whether

ty
?≡ ycgsα (mod n) and sα

?
∈ ±{0, 1}`x+`c+`∅+1

hold.

The modification is that the prover chooses rα from a different interval and that the verifier also checks
that sα takes at most `x + `c + `∅ + 1 bits.

The analysis of this protocols is of course almost identical to the original one, except that we are
now considering the bit-lengths of sα and rα. First, it is not difficult to see that the protocol remains
statistical honest-verifier zero-knowledge. Above we have argued that under the strong RSA assumption,
one can extract a value u from a successful prover such that y ≡ ±gu (mod n), where with u = (s −
s′)/(c′ − c). Now because (c′ − c) divides (s− s′) and as (s− s′) ∈ ±{0, 1}`x+`c+`∅+2, we must have u ∈
±{0, 1}`x+`c+`∅+2. In other words, the discrete logarithm known to the prover has at most `x+`c+`∅+2
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bits (neglecting its sign). Note that this length is independent of the length of the modulus n. Also
note that in fact the length of the prover’s secret must be shorter, (only about `x bits) for the prover
to be able to run the protocol successfully with high probability; so the protocol is not an argument of
the exact length of the secret. However, in many cases this is good enough. We denote this modified
protocol as PK{(α) : y ≡ gα (mod n) ∧ α ∈ ±{0, 1}`x+`c+`∅+2}.

The protocol can be also be used to prove that the secret known to the prover lies in any interval,
say, in [a, b]. To this end note that [a, b] = [a+b

2 −
b−a

2 , a+b
2 + b−2

2 ]. Thus the protocol denoted

PK{(α) :
y

g(a+b)/2
≡ gα (mod n) ∧ α ∈ [−b− a

2
,
b− a

2
]}

is an argument that the prover knows a value x such that x ∈ [a, b] and y ≡ gx (mod n). As before,
the actual value x given as input to the prover must lie in a smaller interval, namely in the interval
[a+b

2 −
b−a

2·2`c+`∅+2 ,
a+b

2 + a+b
2·2`c+`∅+2 ].

It is straightforward to extent and generalize the protocols just discussed in the same way as the
protocols we considered for groups of known order. Moreover, the protocols over groups of known order
and those over groups of unknown order can be combined. Let us consider a simple combination as an
example; the constructions of general combinations is left as an exercise to the reader.

Assume a group G = 〈g〉 of order a prime q, and let n be an RSA modulus as above, h1 be an
element from Z∗n, h2 be an element from 〈h1〉, and y = gx with x ∈ {0, 1}`x for some integer `x <
(log2 q)−1−(`c+`∅ +2). Finally, assume that the prover is not privy to n’s factorization. Now consider
the following protocol. The common input to the prover and the verifier consists of q, g, y, n, h1, h2,
and a and the secret input to the prover consists of x.

1. First, the prover chooses a random r ∈R [0, n2`∅ ], computes z := hx1h
r
2 mod n, and sends z to the

verifier.

2. Next, the prover and the verifier run the protocol denoted:

PK{(α, β) : y = gα ∧ z ≡ hα1h
β
2 (mod n) ∧ α ∈ ±{0, 1}`x+`c+`∅+2},

i.e., they perform the following steps.

(a) The prover chooses a random rα ∈ [−a2`c+`∅ , a2`c+`∅ ] and a random rβ ∈ {0, 1}`n+`c+2`∅ ],
computes ty := grα and tz := hrα1 h

rβ
2 mod n and sends ty and tz to the verifier.

(b) The verifier chooses a random c ∈R {0, 1}`c and sends that to the prover.

(c) The prover replies with sα := rα − xc and sβ := rβ − rc.
(d) The verifier checks whether

ty
?= ycgsα , tz

?≡ zchsα1 h
sβ
2 (mod n) , and

sα
?
∈ ±{0, 1}`x+`c+`∅+1

hold.

Let us analyze this protocol. From our considerations above we know that one can extract from a
successful prover values (ty, tz, c, sα, sβ) and (t′y, t

′
z, c
′, s′α, s

′
β) with (ty, tz) = (t′y, t

′
z) and c 6= c′. From

the verification equations we have that

zc−c
′
≡ hs

′
α−sα

1 h
s′β−sβ
2 (mod n) , yc−c

′
= gs

′
α−sα , and

(s′α − sα) ∈ ±{0, 1}`x+`c+`∅+2 .

From the first of these equations we can conclude that under the Strong RSA assumption (c− c′) divides
(s′α − sα), i.e., there exists some u such that (s′α − sα) = u(c − c′). Thus, we can rewrite the second
equation as yc−c

′
= gu(c−c′). Now, as y ∈ 〈g〉 (which we can test as g has prime order q), we must have

y = gu. From the third of the equations we can further derive that u ∈ ±{0, 1}`x+`c+`∅+2. Thus the
verifier is assured that the prover knows logg y which lies in ±{0, 1}`x+`c+`∅+2, i.e., the protocol is a
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proof that a discrete logarithm in a group of known order lies in some interval. Of course this makes
sense only if the group’s order is larger than 2`x+`c+`∅+3.

As the basic protocol PK{(α) : y ≡ ±gα (mod n)} in group of unknown order, the protocol just
described in not a proof of knowledge either as its analysis depends on the strong RSA assumption and
thus is correct only if the prover can execute the protocol for a random n. As the goal of the protocol
was to prove that logg y lies in some interval, we do not need to fix n but could have the verifier generate
n and send it to the prover before running the protocol. The protocol augmented like this would indeed
be a true proof of knowledge. For the protocol to be zero-knowledge, the prover needs to be ensured that
h2 ∈ 〈h1〉 as otherwise z could leak information about x. Unfortunately, the only way known to prove
that h2 ∈ 〈h1〉 holds is not very efficient, i.e., is to have the verifier run the protocol PK{(α) : h2 ≡ ±hα1
(mod n)} many times with binary challenges (cf. above). However, in some cases this proof can be
delegated to a set-up phase and thus needs to be done only once and for all, or sometimes n, h1, and h2

can be provided by a trusted third party.
The protocol just discussed can be extended to three (or more) different groups, i.e., groups G1 = 〈g1〉

and G2 = 〈g2〉 of known order q1 and q2 together with a RSA sub-group of unknown order as to show
that two discrete logarithms in G1 and G2 are the same. I.e., let y1 = gx1 and y2 = gx2 with x ∈ ±{0, 1}`x
and `x < (log2 min{q1, q2}) − 1 − (`c + `∅ + 2), and z = hx1h

r
2 (mod n) for some random r. Then, the

protocol

PK{(α, β) : y1 = gα1 ∧ y2 = gα2 ∧ z ≡ hα1h
β
2 (mod n) ∧ α ∈ ±{0, 1}`x+`c+`∅+2} ,

will convince a verifier that logg1
y1 = logg2

y1 where we define logg y to be the integer x for which y = gx

and that closed to 0, i.e., logg y lies in [−q/2, q/2]. Of course, the protocol can also be generalized to
representations, i.e., to a protocol showing that an element of a representation lies in a certain interval.

D Example Specifications in XML

We provide some examples of elements specified in XML. In addition, the test cases use simple specifi-
cations that can be used as a reference when creating your own XML specifications.

D.1 Credential Structure

The following credential structure follows the one proposed in Fig. 4. In addition it shows the flexibility
of the prime encodings by having several attributes encoded into one prime encoding.

<?xml version="1.0" encoding="UTF-8"?>

<CredentialStructure

xmlns="http://www.zurich.ibm.com/security/idemix"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://www.zurich.ibm.com/security/idemix

file:CredentialStructure.xsd">

<References>

<IssuerPublicKey>

http://www.ch.ch/passport/v2010/ipk.xml

</IssuerPublicKey>

</References>

<Attributes>

<Attribute name="FirstName" issuanceMode="known" type="string"/>

<Attribute name="LastName" issuanceMode="known" type="string"/>

<Attribute name="CivilStatus" issuanceMode="known" type="enum">

<EnumValue name="Marriage"/>

<EnumValue name="NeverMarried"/>

<EnumValue name="Widowed" />

<EnumValue name="LegallySeparated" />

<EnumValue name="AnnulledMarriage" />
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<EnumValue name="Divorced" />

<EnumValue name="Common-lawPartner" />

</Attribute>

<Attribute name="Sex" issuanceMode="known" type="enum">

<EnumValue name="Male" />

<EnumValue name="Female" />

</Attribute>

<Attribute name="OfficialLanguage" issuanceMode="known" type="enum">

<EnumValue name="German" />

<EnumValue name="French" />

<EnumValue name="Italian"/>

<EnumValue name="Rhaeto-Romanic" />

</Attribute>

<Attribute name="SocialSecurityNumber" issuanceMode="known" type="int"/>

<Attribute name="BirthDate" issuanceMode="known" type="dateTime"/>

<Attribute name="Epoch" issuanceMode="known" type="int"/>

<Attribute name="Diet" issuanceMode="committed" type="string"/>

</Attributes>

<Features>

<Epoch location="http://www.ch.ch/epoch file:CalculationMethod.xml"/>

<Domain location="http://www.ch.ch "/>

</Features>

<Implementation>

<PrimeEncoding name="PrimeEncoding1">

<PrimeFactor attributeName="CivilStatus" enumValue="Marriage">

3

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="NeverMarried">

5

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="Widowed">

7

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="LegallySeparated">

11

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="AnnulledMarriage">

13

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="Divorced">

17

</PrimeFactor>

<PrimeFactor attributeName="CivilStatus" enumValue="Common-lawPartner">

19

</PrimeFactor>

<PrimeFactor attributeName="Sex" enumValue="Male">

23

</PrimeFactor>

<PrimeFactor attributeName="Sex" enumValue="Female">

29

</PrimeFactor>

</PrimeEncoding>

<PrimeEncoding name="PrimeEncoding2">

<PrimeFactor attributeName="OfficialLanguage" enumValue="German">

2

</PrimeFactor>

<PrimeFactor attributeName="OfficialLanguage" enumValue="French">

3

</PrimeFactor>
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<PrimeFactor attributeName="OfficialLanguage" enumValue="Italian">

5

</PrimeFactor>

<PrimeFactor attributeName="OfficialLanguage" enumValue="Rhaeto-Romanic">

7

</PrimeFactor>

</PrimeEncoding>

<AttributeOrder>

<Attribute name="FirstName">1</Attribute>

<Attribute name="LastName">2</Attribute>

<Attribute name="primeEncoding1">3</Attribute>

<Attribute name="primeEncoding2">4</Attribute>

<Attribute name="SocialSecurityNumber">5</Attribute>

<Attribute name="BirthDate">6</Attribute>

<Attribute name="Epoch">7</Attribute>

<Attribute name="Diet">8</Attribute>

</AttributeOrder>

</Implementation>

</CredentialStructure>

D.2 Proof Specification

<?xml version="1.0" encoding="UTF-8"?>

<CredentialStructure xmlns="http://www.zurich.ibm.com/security/idemix"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:schemaLocation="http://www.zurich.ibm.com/security/idemix CertificateStructure.xsd">

<References>

<IssuerPublicKey>

tests\com\ibm\zrl\idmx\tests\ipk.xml

</IssuerPublicKey>

</References>

<Attributes>

<Attribute issuanceMode="known" name="FirstName" type="string" />

<Attribute issuanceMode="known" name="LastName" type="string" />

<Attribute issuanceMode="known" name="CivilStatus" type="enum">

<EnumValue>Marriage</EnumValue>

<EnumValue>NeverMarried</EnumValue>

<EnumValue>Widowed</EnumValue>

<EnumValue>LegallySeparated</EnumValue>

<EnumValue>AnnulledMarriage</EnumValue>

<EnumValue>Divorced</EnumValue>

<EnumValue>Common-lawPartner</EnumValue>

</Attribute>

<Attribute issuanceMode="known" name="SocialSecurityNumber"

type="int" />

<Attribute issuanceMode="known" name="BirthDate" type="date" />

<Attribute issuanceMode="committed" name="Diet" type="string" />

<Attribute issuanceMode="known" name="Epoch" type="epoch" />

<Attribute issuanceMode="known" name="OfficialLanguage"

type="enum">

<EnumValue>German</EnumValue>

<EnumValue>French</EnumValue>

<EnumValue>Italian</EnumValue>

<EnumValue>Rhaeto-Romanic</EnumValue>

</Attribute>

<Attribute issuanceMode="committed" name="DriverCategory"

type="enum">
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<EnumValue>A1</EnumValue>

<EnumValue>B</EnumValue>

<EnumValue>B1</EnumValue>

<EnumValue>C</EnumValue>

<EnumValue>C1</EnumValue>

<EnumValue>D</EnumValue>

<EnumValue>D1</EnumValue>

<EnumValue>BE</EnumValue>

<EnumValue>CE</EnumValue>

<EnumValue>DE</EnumValue>

<EnumValue>C1E</EnumValue>

<EnumValue>D1E</EnumValue>

<EnumValue>F</EnumValue>

<EnumValue>G</EnumValue>

<EnumValue>M</EnumValue>

</Attribute>

<Attribute issuanceMode="known" name="Gender" type="enum">

<EnumValue>Male</EnumValue>

<EnumValue>Female</EnumValue>

</Attribute>

</Attributes>

<Features>

<Updates>http://www.ibm.com/employee/updates.xml</Updates>

</Features>

<Implementation>

<PrimeEncoding name="PrimeEncoding1">

<PrimeFactor attName="CivilStatus" attValue="Marriage">3

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="NeverMarried">5

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="Widowed">7

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="LegallySeparated">11

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="AnnulledMarriage">13

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="Divorced">17

</PrimeFactor>

<PrimeFactor attName="CivilStatus" attValue="Common-lawPartner">19

</PrimeFactor>

<PrimeFactor attName="OfficialLanguage" attValue="German">23

</PrimeFactor>

<PrimeFactor attName="OfficialLanguage" attValue="French">29

</PrimeFactor>

<PrimeFactor attName="OfficialLanguage" attValue="Italian">31

</PrimeFactor>

<PrimeFactor attName="OfficialLanguage" attValue="Rhaeto-Romanic">37

</PrimeFactor>

<PrimeFactor attName="Gender" attValue="Male">41

</PrimeFactor>

<PrimeFactor attName="Gender" attValue="Female">43

</PrimeFactor>

</PrimeEncoding>

<PrimeEncoding name="PrimeEncoding2">

<PrimeFactor attName="DriverCategory" attValue="A1">3

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="B">5

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="B1">7
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</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="C">11

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="C1">13

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="D">17

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="D1">19

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="BE">23

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="CE">29

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="DE">31

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="C1E">37

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="D1E">41

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="F">43

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="G">47

</PrimeFactor>

<PrimeFactor attName="DriverCategory" attValue="M">53

</PrimeFactor>

</PrimeEncoding>

<AttributeOrder>

<Attribute name="FirstName">1</Attribute>

<Attribute name="LastName">2</Attribute>

<Attribute name="PrimeEncoding1">3</Attribute>

<Attribute name="SocialSecurityNumber">4</Attribute>

<Attribute name="BirthDate">5</Attribute>

<Attribute name="Diet">6</Attribute>

<Attribute name="Epoch">7</Attribute>

<Attribute name="PrimeEncoding2">8</Attribute>

</AttributeOrder>

</Implementation>

</CredentialStructure>
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