

RZ 3743 (# 99753) 12/21/2009
Computer Science 7 pages

Research Report

Transaction Tracking in Large-Scale Datacenters

G.J. Paljak*‡

* IBM Research – Zurich, Rüschlikon, Switzerland

‡ Budapest University of Technology and Economics, Budapest, Hungary

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

 1

Transaction Tracking in Large-Scale

Datacenters
1

G. J. Paljak

IBM Research, Zurich Research Laboratory

Budapest University of Technology and Economics, Hungary

gpa@zurich.ibm.com

Abstract— The current evolution of over-provisioned,

under-utilized datacenters (DCs) to resilient, dynamically

reconfigurable, virtualized cloud computing DCs that are

managed to meet optimums in terms of performance and

energy consumption requires new analysis and ben-

chmarking methodologies, which poses significant chal-

lenges in system monitoring and modeling. We present a

technical view of business transaction tracking in DCs,

and its uses in analytical and simulation modeling.

I. MOTIVATION

Cloud computing is a new way of providing IT ser-
vices; in a cloud-computing DC, applications are pro-
vided as standardized offerings to end users over a dy-
namically reconfigurable system of network and compu-
tation nodes. This requires significant transition from
traditional ways how computational resources were
used, benchmarked, and optimized.

The traditional DC has taken advantage of the low
cost of computing power and often evaded performance
issues by over-provisioning the system with a high
quantity of under-utilized servers, storage, and network
capacity, often without a clear picture of how the result-
ing system may perform. As the DC applications and
workloads evolve, this approach leads to inefficient use
of resources and power.

The modern DC is moving towards new architec-
tures based on hierarchical clustering of virtualized
servers around a converged message-passing DC net-
work (DCN); an ensemble of one or more such virtua-
lized DCs is called a compute cloud. Cloud computing
uses scale-out IT building blocks to improve the
cost/performance ratio. Scale-out and virtualization
leads to separation of functionality. It is uncommon for a
virtual machine to provide multiple services (as opposed
to a mainframe system), instead a service is often pro-
vided by a set of virtual machines (cluster of many iden-
tical machines). Functionality is federated on the level
of virtual machines running on the hypervisor (managed
environment, ensemble management). Virtualization al-
so provides the inherent advantage of task migration,
replication as a baseline service. Therefore, it is vastly
widespread that the processing of a client request spans
through multiple machines and multiple applications.

Our aim is to analyze the performance of such systems
by tracking the transactions in the heterogeneous envi-
ronment.

 While performance optimization on a component
level for individual servers is well developed, it is defi-
nitely less mature on an integrated systemic level. The
workloads are heterogeneous, asynchronous, and not
well understood at the DCN level.

Traditional component-level benchmarks include the
SPEC benchmarks often used for CPU and cache profil-
ing [24], or network component benchmarks, such as
[22]. Often analysis focuses on examining the perfor-
mance of NICs and network protocols [32]. However,
efforts such as TPC-W benchmarks for Online Transac-
tion Processing (OLTP) [30] intend to measure a com-
plex systems’ overall performance, must by necessity
often focus on only a few main components: web ser-
vice engines [34], message-oriented middleware [35],
the Java

TM
 Virtual Machine [36] or storage systems [37].

While these approaches remain relevant, they may no
longer correlate to the overall cloud DC and DCN sys-
tem performance.

An emerging new class of holistic DC benchmarking
that is application- and network-centric must include
global knowledge of the current DC workloads and their
traffic patterns. In this paper, we study a technical aspect
of DC performance analysis, tracking transactions in a
distributed system. We address the problem of DC-level
modeling in both analytical and simulation means.

The paper is organized as follows: in section II. we
describe the concept of DC modeling, in II.A we give an
abstraction of DC topology, in II.B the importance of
transactions and traces is described, in II.C we sum up
some analytical work on workload benchmarking, in
II.D. we present a simulation methodology effectively
used in large-scale systems, and in II.E summarize the
challenge of transaction-tracking. In section III.1 we
give an overview of efforts on transaction tracking in
distributed systems, intended as a tutorial, and III.2. our
approach is presented. Section IV briefly outlines our
future work.

1
 An abridged section of this report will be published in [2]

 2

II. A FRAMEWORK FOR DC ANALYSIS

A. A description of the DC topology

To describe the structural configuration of a DC, we
introduce a three-pronged framework, depicted in Figure
1. It is expressed on three levels of abstractions by three
graphs: (a) the nodes on the business topology level are
services, and edges connect two nodes if one service
uses or relies on the other; (b) the application level con-
tains all deployed software components as nodes and
their interdependencies as edges; (c) the infrastructure
level is composed of computational and network device
nodes; the edges of this level are the network links.
Mappings between the three graphs exist: the Cloud ser-
vices are mapped onto their provider applications, and
applications onto infrastructure resources used. To un-
derstand a system, each level and the mapping between
the levels must be understood.

B. Business transactions as paths on the topology

A transaction is a causal data flow from the entry
point of a request to the exit point of the response, in-
itiated by an actor of the system. A transaction
represents a trajectory in the DC state space.

Transactions on each abstraction level of the DC to-
pology (Figure 1) appear as ordered paths on the graph.
On level a, a transaction is a service invocation, which
may also rely on other services to serve the response. In-
side the service provider, on the application level (level
b); a transaction is a series of method invocations, gen-
erally spanning multiple applications with RPC-style in-
teractions. Finally, a transaction translates into an or-
dered set of resource occupancies: a path of network
packet flows and computation times on the infrastruc-
ture level, flowing through multiple servers and the in-
terconnecting DCN of the infrastructure topology (level
c and Figure 3).

In order to have a record of such a transaction, its
events, the data being passed is generally described in
the following format (referred to as trace format): {(1)
TimeStamp | (2) SRC | (3) DST | (4) Prio | (5) BSize }.
In order to maintain the causality relation, it is further
extended with the (6) GlobalID provided by transaction
tracking module. In order to preserve the causality rela-
tion among events, a central database of the GlobalIDs
is maintained: this is typically a tree that where a parent-
child relation indicates causality.

C. Analyisis of DC workload and metrics

The application transactions mapped to the network
layer translate into a trace of flits, packets/frames, and
flows. Each component is described by two random va-
riables (e.g. burst size and inter-burst gap), for which we
must choose a distribution based on the workload cha-
racteristics of the specific benchmark (inter-burst/frame
gap, Figure 4).

The best-established (verified by both analytical and
simulation means) performance metrics at DCN level
are latency (end-to-end (e2e) delay at L7), throughput,
jitter, and, at times, fairness. More recently [6], argued
for the introduction of Flow Completion Time (FCT) as
more representative of the user experience. FCT is the
time interval between the injection of the first Ethernet
frame by the source node and the reception of the last
frame at the destination node. One problem on L2,
where DCB (Datacenter Bridging) is defined in 802, is
the flow definition – which differs from that of a L3/4
(TCP) flow. Hence, the two main challenges of FCT as
a DCN metric are as follows:

1) Sensitivity to distributions renders the choice of
distribution a delicate issue. For example, for Pareto dis-
tributions, FCT loses its relevancy because

FCT = Σ (tinject + tqueue + tflight + tRTX) ≠ Le2e(X),

i.e., the central limit theorem does not apply. Therefore,
each term of the sum (except for tflight) must be analyzed
and reported independently.

2) The presence of priority flow control (PFC) as de-
fined in and required by most DC applications, requires
precise definition of flow completion and rigorous ac-
counting in the simulation statistics of (1) flows received
entirely without any loss; (2) flows received entirely
with some loss; (3) flows received partially, and (4)
flows not yet having arrived at destination.

As none of these above issues has been practically
solved (for a solution see [1]), although FCT has been
proposed as a DCN benchmarking metric, it was not
pursued in 802 DCB. Hence, the metrics used most in
DCs are latency and throughput (primary), and power,
fairness and jitter (secondary). Although power is ex-
pected to become a primary metric, we currently cannot
properly monitor and aggregate all power statistics into
a meaningful metric, such as [TPS/Watt]. Another open
issue is how to homogenize the L7/application me-
trics—e.g. TPS and response time—with the L2 DCN
metrics, where throughput and latency represent aggre-

Figure 1. Abstraction levels of a DC structure

 3

gate statistics. The translation between application and
DCN (L7:L2) metrics is the role of ―integrated‖ metrics
conversion—a problem yet to be solved.

Also, the burstiness of workloads on the application
level is studied in [5], authors emphasize the importance
of the bursty nature of workloads and claim that it has
primary importance on overall performance, as it may
lead to a different general modes of operation (bottle-
neck switching).

Based on these, we propose the trace-based in-depth
transactional analysis of DCs, to be able to detect such
situations and to trigger proactive re-configuration.

Traces are also widely used for empirical validation
of analytical models, like in processor design [4], wire-
less networks [3], or High-Performance Computing
(HPC) systems with tens of thousands of nodes, de-
scribed in II.D.

D. VENUS: an OMNeT++-based large-scale

simulation platform

Traces are also widely used in a trace-driven simula-
tion. In those cases, computing nodes are represented by
a trace that contains two basic kinds of records, namely
computation and communication, rather than by an exact
model of their behavior. Computations are not actually
performed, but represented by the amount of CPU time
they would consume in reality. Communications are
transformed into data messages that are fed to a model
of the DCN.

To ensure accurate results, the simulation should
preserve causal dependencies between records, e.g.,
when a particular computation depends on data to be de-
livered by a preceding communication, the start of the
computation must wait for the communication to com-
plete.

As many HPC applications are based on the Mes-
sage Passing Interface (MPI), tracing MPI calls (by in-
strumenting MPI libraries) is a suitable method to cha-
racterize the communication patterns of HPC workloads.

An example of this approach is the MARS simulator
presented in [18], or of its successor, the VENUS-
Dimemas HPC tracing and simulation environment, de-
picted in Figure 3. Both of them are based on the OM-
NeT++ discrete event simulator [38].

The co-simulation environment composes of
VENUS responsible for detailed simulation of the net-

work and Dimemas replaying application traces, i.e.,
simulating computation nodes. Paraver processes the
simulation output and provides a graphical representa-
tion of the state of MPI threads and of the communica-
tion between them and network devices. The inputs for
the simulation environment are the following: (a) net-
work topology descriptor; (b) a route descriptor for ex-
plicit definitions of routes between any two hosts; (c)
network device models (representing Myrinet DCN
hardware in this case), and (d) MPI application run trac-
es and task mappings. For further details, the reader is
referred to [8].

Our proposal is to use the verified and validated MPI
environment, and to replace the original MPI traces by
commercial DC traces. According to our approach,
business transactions in a Cloud would translate into
causally ordered sets of communication and computa-
tion primitives.

E. Why is transaction tracking difficult

The challenge of transaction tracing in commercial
DC environments for further analysis and trace-driven
simulation is two-fold:

(i) The lack of a de-facto standard DC communica-
tion protocol similar to the MPI, typically used for in-
strumentation tap in HPC. In DCs, instead of MPI calls,
there are RPC, CORBA, JDBC, etc. calls, to name just a
few. There is a multitude of protocols, some of which
are proprietary and so may be their implementation;
even if one has an instrumented version of some of these
protocols, generalization is still an open issue.

(ii) Observing and rebuilding causal paths (trajecto-
ries) are complex in a typical DC environment. Transac-
tions span across multiple, different-purpose subsystems
and protocols; most of the information exchange is en-
crypted which is, by design, against observability.

In Section III we present methodologies to overcome
the challenges.

Figure 3. HPC co-simulation platform: VENUS/Dimemas

Burstk
-1

Burs
tk

Burstk
+1

IBGa
pk

IBGapk

-1

Burs
t0

Burs
t1

IBGa
p0

IFGa
pn

Figure 2. Transaction consisting of 5 bursts, each having 7-15 Ether-

net frames, with an arbitrary burst size and inter-burst gap.

 4

III. TRANSACTION MONITORING

A. Approaches for transaction tracking

The task of monitoring, in this case, is to track trans-
actions following the causal path of component-level re-
source occupancies. This provides performance informa-
tion broken down into components and traces that can
later be used for building and validating analytical mod-
els, or driving the simulation.

There are three main types of transaction observation
and reconstruction methodologies: white-, gray-, and
black-box. In a white-box model, all source code is
available and can be instrumented. Throughout the im-
plementations of this concept, either application-specific
assumptions, or globally unique identifiers (GUIDs) are
used.

This is the case for NetLogger [9] or the Application
Response Measurement standard (ARM, [29], Figure 4)
where the application source code is extended with ex-
plicit tracing information. NetLogger provides near real-
time analysis and anomality detection. It requires its in-
strumentation code to be inserted to the application
source code (similarly to ARM), but NetLogger focuses
on matching start and end events of tasks, and does not
handle correlation across a distributed transaction (un-
like ARM). ARM is an interface specification designed
for monitoring transactions with the ability to handle
correlation IDs; the interface specification and free or
commercial implementations are available for several
programming languages, including C and Java.

WebMon [28] uses HTTP cookies modified for stor-
ing GUIDs that are created by custom JavaScript, and
are passed to instrumented web- and application servers.
The fact that correlation is done on HTTP level leads to
a coarse-grained component definition, meaning less in-
sight to the system (e.g. no performance information on
database queries or other sub-transactions provided), but
also less overhead.

User Programmable Virtualized Networks, described
in [33], provide the developer with the freedom to han-
dle network interactions and take some of the generally
OS responsibilities. This requires one to extend the ap-
plication and to modify the typical OS kernels’ network-
ing stack; and offers the opportunity of insert tags with
IDs into the packets and handling those on the level of
the custom application/OS component.

However, in general, the application source code is
not available, or it is problematic to modify owing to its
complexity or other reasons. In this case, platform-level
instrumentation may still be feasible, which involves the
extension of OS components, protocol implementations,
middleware applications or runtime environments to
support tracing. This approach is transparent towards the
application.

Next, we look at some gray-box solutions, Magpie
[10] is built on Microsoft

®
 Windows

®
 platform and uses

a built-in event-logging framework (Event Tracing for
Windows, ETW) extended also by custom, middleware-
specific event generator code. They use an event schema
for reconstructing causal paths; this externally added
platform- or application-specific knowledge describes
which attributes connect events to each other to form a
path. (Earlier versions of Magpie used GUIDs.) PinPoint
[11] uses platform-specific tracers that extend protocol
implementations and middleware, such as the web serv-
er, J2EE containers, the JDBC and the Remote Method
Invocation (RMI) protocols, to tag transactions with
GUIDs and to preserve the tagging. A centralized ag-
gregator reconstructs the correct paths and stores in a
repository for further analysis, visualization. However,
they do not track lower level events (e.g. network pack-
ets), which, for example, Magpie does.

A similar instrumentation in [12] for the Java Virtual
Machine uses agent-injection to the runtime-
environment and inserts trace statements ahead of the
flow control, and support propagation through TCP with
additional platform-specific instrumentation. The path
reconstruction is similar to that of Magpie, harnesses
application specific knowledge, not GUIDs, to drive a
series of graph transformations.

Common Object Requesting Broker Architecture
(CORBA), being a well-accepted standard for distri-
buted systems, has transaction-tracking methodologies.
Its built-in concept of interceptors (interrupting the re-
quest flow between a client and a server and executing
custom code) provides useful facilities for this purpose.
Authors of [31] take advantage of these interceptors and
use them to insert ARM-compliant transaction tracking
code the control flow on the middleware layer. In [21]
as well, interceptors are used for trace collection, in this
case caller-callee pairs, not multi-stage transactions. A
statistical analysis system for processing the traces was
also developed. For CORBA/COM, a method is intro-
duced in [27] that uses automatically generated (by the
IDL compiler) skeletons and stubs to identify first call-
er-callee relationships and then to propagate GUIDs to
observe transactions spanning across multiple compo-
nents.

Figure 4. The ARM projection of a transaction on the DC

infrastructure

 5

In [13], ISA level instrumentation is used, i.e., a
four-byte tag is maintained for every byte of the memo-
ry and the propagation of tags is assured by inserting in-
to and extracting from Ethernet frames. It is also possi-
ble to add specific tagging from the application source
code; this can be done by the C library developed by the
authors. In languages like Java where the virtual ad-
dresses are hidden, such application-level tagging be-
comes difficult to achieve. This kind of instrumentation
requires profound modification of OS components, de-
vice drivers. Whodunit [26] detects transactions com-
municating through shared memory, events or RPCs by
means using OS-level instrumentation (creating wrap-
pers for several functions, e.g. send and receive wrap-
pers to follow IPC), and running critical sections in
QEMU, a CPU emulator. The overhead of OS instru-
mentation is approx. 3%, but the execution on the emu-
lator is 100-400 times slower, according to case studies.
SysProf [25] is a profiler, keeping track of resource uti-
lization using kernel-level instrumentation, however it is
capable of supplying transaction profiles, it requires ad-
ditionally supplied domain-, or transaction-specific
knowledge to identify the causality of transactions when
they are interleaving or concurrent.

At the other extreme, the most generic case is the
black-box approach, where no previous knowledge on
the components is provided, and only passive monitor-
ing instruments (with practically zero performance im-
pact) are used. The causal-path reconstruction can only
be based utilizing the events and the timestamps of the
transaction, that can be easily logged, by probabilistic
and statistic means, therefore fully correct transaction-
instance level causal path reconstructions are not feasi-
ble. Authors of [16] show a model for corresponding
events to re-construct a transaction by finding matchings
in bipartite graphs; optimal solution for two-state sys-
tems with independent, identically distributed transition
times corresponds to a minimum-weight perfect match-
ing in the graph. In [15] the authors consider a similar
approach and present two algorithms: harnessing nested
sub-transactions (identifying call-pairs and matching the
probably nested tuples), and a convolution method ap-
plied on message traces as time signals. E2Eprof [14]
analyses log files and estimates most probable causal
paths based on cross-correlating timestamps of the mes-
sages between infrastructure components. In [17] and
[20] a network-only approach focusing on TCP is intro-
duced, they do not offer transaction reconstruction, but
coarse-grained application-level interaction discovery.
In [17] authors profile the network usage of applications
and correlate it to resource consumption. [20] is also an
enhancement to network packet sniffing by mapping in-
terconnected TCP sessions using user-supplied domain
knowledge. In [23] the authors do not intend to identify
the causality relation, but they study the mass characte-
ristics of transactions and describe flow dynamics in
some monitoring points (e.g. Apache HTTP logs,
MySQL query logs) with autoregressive models. The

fault detection scheme they propose determines inva-
riants (of the mass characteristics) and identify faults
when these invariants are broken.

We must also call the attention to three main chal-
lenges for black-box approaches: (i.) they heavily rely
on well-synchronized clocks, but claim that the 1-5 ms
error of the Network Time Protocol (NTP), the imple-
mentation of which is generally available as a built-in
OS component, is satisfactory; (ii.) asynchronous calls
are harder to trace without additional knowledge, than
request-response interactions; (iii.) in case of kept-alive
connections or sessions (typically from a connection
pool) one cannot make use of connection opening and
closing events as start and finish events of
(sub)transactions.

B. Orchestration prototype: a grey box scenario

In our research, we stated the following require-
ments against transaction tracking: (i.) avoid modifying
application source code (as it is rarely accessible in a
production environment); (ii.) emphasize correct cau-
sality re-construction; (iii.) adhere to standards, as much
as possible.

Therefore, we decided to use a grey-box scenario on
the concept of extending middleware components. We
take advantage of middleware applications offering the
ability to plug in additional code modules by extracting
attributes about a transaction and sending that informa-
tion to a separate tracking processor. One example of
such transaction tracking is the IBM

®
 Tivoli

®
 Compo-

site Application Manager (ITCAM) for Transactions
[19]. This software is designed for monitoring distri-
buted systems, transaction tracking is based on the ARM
standard. Its main advantage is the middleware-level
support from multiple vendors who natively support au-
tomatic insertion of ARM calls to the control flow of the
application and harnessing native middleware instru-
mentation. However, general use cases include non-
supported middleware, in that case monitoring is still
possible by extending the specific application with
ARM-compliant instrumentation code, according to
[29], or adding ARM support to the middleware, like in
[7]. ITCAM uses the techniques of linking (a single
attribute is used to group events) and stitching (several
attributes are combined using a predefined method) to
correlate transactions end-to-end (Figure 4).

IV. CONCLUSIONS AND NEXT STEPS

We have shown uses and the challenges of DC
transaction tracking, and some of the methods to over-
come these challenges. As our main contribution, we
have proposed a three-pronged approach to DC man-
agement, which combines workload and resource moni-
toring with performance modeling, both by simulation
and analysis.

 6

These methods build on our recent progress made in
key independent fields: Ethernet DCB monitoring on
L2, ARM-based transaction tracing, large-scale HPC
simulations in VENUS [8], and analytical modeling of
dynamic and distributed systems.

Next Steps: With the progress toward cloud compu-
ting system-level optimization and management are
areas of growing relevance in IT. The community is
making steady progress in DC benchmarking, improved
scheduling and load balancing, and ultimately, toward
automated Cloud management and optimization. Al-
though most of the standards bodies, researchers, ven-
dors, and customers are asking for DC traces, workloads
and traffic generators, no such data is publicly available
yet. This we attribute to the following: (i) lack of a stan-
dard DC message-passing library, similar to MPI in
HPC, and (ii) lack of monitoring tools capable of (DC
and cloud) system-level benchmarking. The latter lack is
sustained by the continuing prevalence of segregated,
component-level benchmarking. Nonetheless, despite
these challenges, DC and cloud management and opti-
mization are a promising area of research for the sys-
tems community.

V. ACKNOWLEDGEMENTS

We thank M. Gusat, C. DeCusatis, C. Minkenberg,
L. McKenna, K. Bhardwaj R. Luijten, W. Denzel, G.
Rodriguez, A. Pataricza, I. Kocsis, Z. Egel, and D. Toth
for their contributions.

REFERENCES

[1] Gusat, M., et al., ―On Flow Completion Time Benchmarking in
Datacenters,‖ http://www.ieee802.org/1/files/public/docs2007/
au-sim-ZRL-FCT-BMRK-r03.pdf , 2007

[2] M. Gusat, C. Minkenberg , C. DeCusatis, L. McKenna K.
Bhardaj, G.J. Paljak, A. Pataricza, I. Kocsis , “Benchmarking
the Ethernet-Federated Datacenter”, First Workshop on Data
Center - Converged and Virtual Ethernet Switching (DC
CAVES), Sept. 2009, to appear

[3] Eckhardt, D. A. and Steenkiste, P. A trace-based evaluation of
adaptive error correction for a wireless local area network. Mob.
Netw. Appl. 4, 4 (Dec. 1999), 273-287, 1999

[4] Ho, R. C., Yang, C. H., Horowitz, M. A., and Dill, D. L.
Architecture validation for processors. SIGARCH Comput.
Archit. News 23, 2 (May. 1995), 404-413, 1995

[5] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, "Burstiness in
Multi-Tier Applications: Symptoms, Causes, and New Models",
Middleware 2008 , Leuven, Belgium, December 2008, Lecture
Notes in Computer Science, Volume 5346, pp. 265-286,
Springer Berlin / Heidelberg, 2008

[6] Dukkipati, McKeown. ―Why flow-completion time is the right
metric for congestion control,‖ SIGCOMM Comput. Commun.
Rev. 36, 59-62, 2006

[7] ARM Instrumentation Framework for JBoss and Tomcat,
http://wwwvs.informatik.fh-wiesbaden.de/oss/jboss-
arm/index.html

[8] Minkenberg, C., Rodriguez, G. ―Trace-driven co-simulation of
high-performance computing systems using OMNeT++,‖ Proc.
2nd Int’l Workshop on OMNeT++, 2009

[9] Gunter et al\. ―Log summarization and anomaly detection for
troubleshooting distributed systems,‖ Proc. 8th IEEE/ACM Int’l
Conf. on Grid Computing, 2007

[10] Barham et al. ―Using Magpie for request extraction and
workload modelling,‖ Proc. 6th USENIX OSDI, 2004.

[11] Chen et al., ―Path-based failure and evolution management,‖
Proc. 2004 USENIX Symposium on Network Systems Design
and Implementation, 2004.

[12] Mirgorodskiy, Miller, ―Diagnosing distributed systems with
self-propelled instrumentation,‖ Technical Report, University of
Wisconsin,, 2007

[13] Mysore et al., ―Understanding and visualizing full systems with
data flow tomography,‖ Proc. ASPLOS 2008.

[14] Agarwala et al., ―E2eprof: Automated end-to-end performance
management for enterprise systems,‖ Proc. DSN 2007.

[15] Aguilera et al., ―Performance debugging for distributed systems
of black boxes,‖ Proc. ACM Symposium on Operating Systems
Principles (SOSP) 2003.

[16] Anandkumar et al., ―Tracking in a spaghetti bowl: monitoring
transactions using footprints,‖ Proc. ACM SIGMETRICS, 2008

[17] Liu et al., ―Real-time Application Monitoring and Diagnosis for
Service Hosting Platforms of Black Boxes‖, Proc. 10th
Symposium on Integrated Network Management, 2007

[18] Denzel W., et al., ―A framework for end-to-end simulation of
high-performance computing systems.‖ Proc. 1st Int’l Conf. on
Simulation Tools and Techniques for Communications,
Networks and Systems, 2008, article 21.

[19] Tivoli Composite Application Manager for Transactions
http://www-01.ibm.com/software/tivoli/products/composite-
application-mgr-transactions/

[20] Ozturk, LaFon, ―DAFA: Distributed Application Flow
Analyzer,‖ Proc. Fifth Int’l Conf. on Information, Communica-
tions and Signal Processing, 2005, pp. 404-408, 2005

[21] Moe et al., ―Using Execution trace data to improve distributed
systems,‖ Proc. Int’l Conf, on Software Maintenance
(ICSM'02), 2002.

[22] Lu, Y., et al.,“Congestion control in networks with no
congestion drops,” in Proc. 44th Annual Allerton Conference on
Communication, Control, and Computing, Monticello, IL, Sept.
2006.

[23] Chen Yoshihira, 2006. ―Modeling and tracking of transaction
flow dynamics for fault detection in complex systems,‖ IEEE
Trans. Dependable Secur. Comput, vol. ?, pp. 312-326, 2006

[24] Phansalkar et al., ―Four Generations of SPEC CPU
Benchmarks: What has changed and what has not?‖ Technical
Report TR-041026-1, The University of Texas at Austin, 2004.

[25] Agarwala et al. ―SysProf: Online distributed behavior diagnosis
through fine-grain system monitoring,‖ Proc. Distributed
Computing Systems, 2006. ICDCS 2006, pp. 8-8, 2006

[26] Chanda et al., ―Whodunit: transactional profiling for multi-tier
applications,‖ SIGOPS Oper. Syst. Rev. vol. 41, pp. 17-30,
2007

[27] Jun Li, ―Monitoring and characterization of component-based
systems with global causality capture,‖ Proc. 23rd Int’l Conf. on
Distributed Computing Systems, pp. 422-431, 2003

[28] Gschwind et al., ―WebMon: A performance profiler for web
transactions,‖ Proc. WECWIS 2002, pp. 171-176, 2002

[29] Application Response Measurement,
http://www.opengroup.org/management/arm/

[30] TPC-W benchmark, http://www.tpc.org/tpcw/

[31] Schmid et al., ―Measuring end-to-end performance of CORBA
applications using a generic instrumentation approach,‖ Proc.
ISCC 2002, pages?

 7

[32] Lin et al., ―A new TCP and UDP network benchmark suite‖.
Proc. 2007 Spring Simulation Multiconference – Vol. 1, pp.
211-217, 2007

[33] Meijer et al., ―User programmable virtualized networks,‖ Proc.
Second IEEE Int’l Conf. on E-Science and Grid Computing,
2006

[34] Suzumura et al., ―Performance Comparison of Web Service
Engines in PHP, Java and C‖, Proc. 2008 IEEE Int’l Conf. on
Web Services, pp. 385-392, 2008

[35] Sachs et al., ―Performance evaluation of message-oriented
middleware using the SPECjms2007 benchmark,‖ Perform.
Eval. (2009, in press).

[36] Lam et al., ―A performance study of clustering web application
servers with distributed JVM,‖ Proc. Parallel and Distributed
Systems, 2008. ICPADS '08., pp. 328-335, 2008

[37] Traeger et al.,. ―A nine year study of file system and storage
benchmarking,‖ IEEE Trans. Storage, vol. …pp. 1-56, 2008

[38] A. Varga, ―The OMNeT++ Discrete Event Simulation System‖,
Proceedings of the European Simulation Multiconference (ESM
2001), June 6-9, 2001, Prague, Czech Republic.

[39] QEMU, open source processor emulator, http://www.qemu.org/

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

IBM and Tivoli are trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or
service marks of others.

