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Abstract— The current evolution of over-provisioned, 

under-utilized datacenters (DCs) to resilient, dynamically 

reconfigurable, virtualized cloud computing DCs that are 

managed to meet optimums in terms of performance and 

energy consumption requires new analysis and ben-

chmarking methodologies, which poses significant chal-

lenges in system monitoring and modeling. We present a 

technical view of business transaction tracking in DCs, 

and its uses in analytical and simulation modeling. 

I. MOTIVATION  

Cloud computing is a new way of providing IT ser-
vices; in a cloud-computing DC, applications are pro-
vided as standardized offerings to end users over a dy-
namically reconfigurable system of network and compu-
tation nodes. This requires significant transition from 
traditional ways how computational resources were 
used, benchmarked, and optimized.  

The traditional DC has taken advantage of the low 
cost of computing power and often evaded performance 
issues by over-provisioning the system with a high 
quantity of under-utilized servers, storage, and network 
capacity, often without a clear picture of how the result-
ing system may perform. As the DC applications and 
workloads evolve, this approach leads to inefficient use 
of resources and power.  

The modern DC is moving towards new architec-
tures based on hierarchical clustering of virtualized 
servers around a converged message-passing DC net-
work (DCN); an ensemble of one or more such virtua-
lized DCs is called a compute cloud. Cloud computing 
uses scale-out IT building blocks to improve the 
cost/performance ratio. Scale-out and virtualization 
leads to separation of functionality. It is uncommon for a 
virtual machine to provide multiple services (as opposed 
to a mainframe system), instead a service is often pro-
vided by a set of virtual machines (cluster of many iden-
tical machines). Functionality is federated on the level 
of virtual machines running on the hypervisor (managed 
environment, ensemble management). Virtualization al-
so provides the inherent advantage of task migration, 
replication as a baseline service. Therefore, it is vastly 
widespread that the processing of a client request spans 
through multiple machines and multiple applications. 

Our aim is to analyze the performance of such systems 
by tracking the transactions in the heterogeneous envi-
ronment.  

 While performance optimization on a component 
level for individual servers is well developed, it is defi-
nitely less mature on an integrated systemic level. The 
workloads are heterogeneous, asynchronous, and not 
well understood at the DCN level. 

Traditional component-level benchmarks include the 
SPEC benchmarks often used for CPU and cache profil-
ing [24], or network component benchmarks, such as 
[22]. Often analysis focuses on examining the perfor-
mance of NICs and network protocols [32]. However, 
efforts such as TPC-W benchmarks for Online Transac-
tion Processing (OLTP) [30] intend to measure a com-
plex systems’ overall performance, must by necessity 
often focus on only a few main components: web ser-
vice engines [34], message-oriented middleware [35], 
the Java

TM
 Virtual Machine [36] or storage systems [37].  

While these approaches remain relevant, they may no 
longer correlate to the overall cloud DC and DCN sys-
tem performance.  

An emerging new class of holistic DC benchmarking 
that is application- and network-centric must include 
global knowledge of the current DC workloads and their 
traffic patterns. In this paper, we study a technical aspect 
of DC performance analysis, tracking transactions in a 
distributed system. We address the problem of DC-level 
modeling in both analytical and simulation means. 

The paper is organized as follows: in section II. we 
describe the concept of DC modeling, in II.A we give an 
abstraction of DC topology, in II.B the importance of 
transactions and traces is described, in II.C we sum up 
some analytical work on workload benchmarking, in 
II.D. we present a simulation methodology effectively 
used in large-scale systems, and in II.E summarize the 
challenge of transaction-tracking. In section III.1 we 
give an overview of efforts on transaction tracking in 
distributed systems, intended as a tutorial, and III.2. our 
approach is presented. Section IV briefly outlines our 
future work. 
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II. A FRAMEWORK FOR DC ANALYSIS  

A. A description of the DC topology 

To describe the structural configuration of a DC, we 
introduce a three-pronged framework, depicted in Figure 
1. It is expressed on three levels of abstractions by three 
graphs: (a) the nodes on the business topology level are 
services, and edges connect two nodes if one service 
uses or relies on the other; (b) the application level con-
tains all deployed software components as nodes and 
their interdependencies as edges; (c) the infrastructure 
level is composed of computational and network device 
nodes; the edges of this level are the network links. 
Mappings between the three graphs exist: the Cloud ser-
vices are mapped onto their provider applications, and 
applications onto infrastructure resources used. To un-
derstand a system, each level and the mapping between 
the levels must be understood. 

B. Business transactions as paths on the topology 

A transaction is a causal data flow from the entry 
point of a request to the exit point of the response, in-
itiated by an actor of the system. A transaction 
represents a trajectory in the DC state space.  

Transactions on each abstraction level of the DC to-
pology (Figure 1) appear as ordered paths on the graph. 
On level a, a transaction is a service invocation, which 
may also rely on other services to serve the response. In-
side the service provider, on the application level (level 
b); a transaction is a series of method invocations, gen-
erally spanning multiple applications with RPC-style in-
teractions. Finally, a transaction translates into an or-
dered set of resource occupancies: a path of network 
packet flows and computation times on the infrastruc-
ture level, flowing through multiple servers and the in-
terconnecting DCN of the infrastructure topology (level 
c and Figure 3). 

In order to have a record of such a transaction, its 
events, the data being passed is generally described in 
the following format (referred to as trace format): {(1) 
TimeStamp | (2) SRC | (3) DST | (4) Prio | (5) BSize }. 
In order to maintain the causality relation, it is further 
extended with the (6) GlobalID provided by transaction 
tracking module. In order to preserve the causality rela-
tion among events, a central database of the GlobalIDs 
is maintained: this is typically a tree that where a parent-
child relation indicates causality. 

C. Analyisis of DC workload and metrics 

The application transactions mapped to the network 
layer translate into a trace of flits, packets/frames, and 
flows. Each component is described by two random va-
riables (e.g. burst size and inter-burst gap), for which we 
must choose a distribution based on the workload cha-
racteristics of the specific benchmark (inter-burst/frame 
gap, Figure 4). 

The best-established (verified by both analytical and 
simulation means) performance metrics at DCN level 
are latency (end-to-end (e2e) delay at L7), throughput, 
jitter, and, at times, fairness. More recently [6], argued 
for the introduction of Flow Completion Time (FCT) as 
more representative of the user experience. FCT is the 
time interval between the injection of the first Ethernet 
frame by the source node and the reception of the last 
frame at the destination node. One problem on L2, 
where DCB (Datacenter Bridging) is defined in 802, is 
the flow definition – which differs from that of a L3/4 
(TCP) flow. Hence, the two main challenges of FCT as 
a DCN metric are as follows:  

1) Sensitivity to distributions renders the choice of 
distribution a delicate issue. For example, for Pareto dis-
tributions, FCT loses its relevancy because  

FCT = Σ (tinject + tqueue + tflight + tRTX) ≠  Le2e(X),  

i.e., the central limit theorem does not apply. Therefore, 
each term of the sum (except for tflight) must be analyzed 
and reported independently.  

2) The presence of priority flow control (PFC) as de-
fined in and required by most DC applications, requires 
precise definition of flow completion and rigorous ac-
counting in the simulation statistics of (1) flows received 
entirely without any loss; (2) flows received entirely 
with some loss; (3) flows received partially, and (4) 
flows not yet having arrived at destination.  

As none of these above issues has been practically 
solved (for a solution see [1]), although FCT has been 
proposed as a DCN benchmarking metric, it was not 
pursued in 802 DCB. Hence, the metrics used most in 
DCs are latency and throughput (primary), and power, 
fairness and jitter (secondary). Although power is ex-
pected to become a primary metric, we currently cannot 
properly monitor and aggregate all power statistics into 
a meaningful metric, such as [TPS/Watt]. Another open 
issue is how to homogenize the L7/application me-
trics—e.g. TPS and response time—with the L2 DCN 
metrics, where throughput and latency represent aggre-

 

 
Figure 1. Abstraction levels of a DC structure 
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gate statistics. The translation between application and 
DCN (L7:L2) metrics is the role of ―integrated‖ metrics 
conversion—a problem yet to be solved.  

Also, the burstiness of workloads on the application 
level is studied in [5], authors emphasize the importance 
of the bursty nature of workloads and claim that it has 
primary importance on overall performance, as it may 
lead to a different general modes of operation (bottle-
neck switching). 

Based on these, we propose the trace-based in-depth 
transactional analysis of DCs, to be able to detect such 
situations and to trigger proactive re-configuration.   

Traces are also widely used for empirical validation 
of analytical models, like in processor design [4], wire-
less networks [3], or High-Performance Computing 
(HPC) systems with tens of thousands of nodes, de-
scribed in II.D. 

D. VENUS: an OMNeT++-based large-scale 

simulation platform 

Traces are also widely used in a trace-driven simula-
tion. In those cases, computing nodes are represented by 
a trace that contains two basic kinds of records, namely 
computation and communication, rather than by an exact 
model of their behavior. Computations are not actually 
performed, but represented by the amount of CPU time 
they would consume in reality. Communications are 
transformed into data messages that are fed to a model 
of the DCN.  

To ensure accurate results, the simulation should 
preserve causal dependencies between records, e.g., 
when a particular computation depends on data to be de-
livered by a preceding communication, the start of the 
computation must wait for the communication to com-
plete. 

As many HPC applications are based on the Mes-
sage Passing Interface (MPI), tracing MPI calls (by in-
strumenting MPI libraries) is a suitable method to cha-
racterize the communication patterns of HPC workloads.  

An example of this approach is the MARS simulator 
presented in [18], or of its successor, the VENUS-
Dimemas HPC tracing and simulation environment, de-
picted in Figure 3. Both of them are based on the OM-
NeT++ discrete event simulator [38].  

The co-simulation environment composes of 
VENUS responsible for detailed simulation of the net-

work and Dimemas replaying application traces, i.e., 
simulating computation nodes. Paraver processes the 
simulation output and provides a graphical representa-
tion of the state of MPI threads and of the communica-
tion between them and network devices. The inputs for 
the simulation environment are the following: (a) net-
work topology descriptor; (b) a route descriptor for ex-
plicit definitions of routes between any two hosts; (c) 
network device models (representing Myrinet DCN 
hardware in this case), and (d) MPI application run trac-
es and task mappings. For further details, the reader is 
referred to [8]. 

Our proposal is to use the verified and validated MPI 
environment, and to replace the original MPI traces by 
commercial DC traces. According to our approach, 
business transactions in a Cloud would translate into 
causally ordered sets of communication and computa-
tion primitives. 

E. Why is transaction tracking difficult 

The challenge of transaction tracing in commercial 
DC environments for further analysis and trace-driven 
simulation is two-fold:  

(i) The lack of a de-facto standard DC communica-
tion protocol similar to the MPI, typically used for in-
strumentation tap in HPC. In DCs, instead of MPI calls, 
there are RPC, CORBA, JDBC, etc. calls, to name just a 
few. There is a multitude of protocols, some of which 
are proprietary and so may be their implementation; 
even if one has an instrumented version of some of these 
protocols, generalization is still an open issue. 

(ii) Observing and rebuilding causal paths (trajecto-
ries) are complex in a typical DC environment. Transac-
tions span across multiple, different-purpose subsystems 
and protocols; most of the information exchange is en-
crypted which is, by design, against observability.  

In Section III we present methodologies to overcome 
the challenges.  

 

 

Figure 3. HPC co-simulation platform: VENUS/Dimemas  
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III. TRANSACTION MONITORING  

A. Approaches for transaction tracking 

The task of monitoring, in this case, is to track trans-
actions following the causal path of component-level re-
source occupancies. This provides performance informa-
tion broken down into components and traces that can 
later be used for building and validating analytical mod-
els, or driving the simulation.  

There are three main types of transaction observation 
and reconstruction methodologies: white-, gray-, and 
black-box. In a white-box model, all source code is 
available and can be instrumented. Throughout the im-
plementations of this concept, either application-specific 
assumptions, or globally unique identifiers (GUIDs) are 
used.  

This is the case for NetLogger [9] or the Application 
Response Measurement standard (ARM, [29], Figure 4) 
where the application source code is extended with ex-
plicit tracing information. NetLogger provides near real-
time analysis and anomality detection. It requires its in-
strumentation code to be inserted to the application 
source code (similarly to ARM), but NetLogger focuses 
on matching start and end events of tasks, and does not 
handle correlation across a distributed transaction (un-
like ARM). ARM is an interface specification designed 
for monitoring transactions with the ability to handle 
correlation IDs; the interface specification and free or 
commercial implementations are available for several 
programming languages, including C and Java. 

WebMon [28] uses HTTP cookies modified for stor-
ing GUIDs that are created by custom JavaScript, and 
are passed to instrumented web- and application servers. 
The fact that correlation is done on HTTP level leads to 
a coarse-grained component definition, meaning less in-
sight to the system (e.g. no performance information on 
database queries or other sub-transactions provided), but 
also less overhead.  

User Programmable Virtualized Networks, described 
in [33], provide the developer with the freedom to han-
dle network interactions and take some of the generally 
OS responsibilities. This requires one to extend the ap-
plication and to modify the typical OS kernels’ network-
ing stack; and offers the opportunity of insert tags with 
IDs into the packets and handling those on the level of 
the custom application/OS component.  

However, in general, the application source code is 
not available, or it is problematic to modify owing to its 
complexity or other reasons. In this case, platform-level 
instrumentation may still be feasible, which involves the 
extension of OS components, protocol implementations, 
middleware applications or runtime environments to 
support tracing. This approach is transparent towards the 
application.  

Next, we look at some gray-box solutions, Magpie 
[10] is built on Microsoft

®
 Windows

®
 platform and uses 

a built-in event-logging framework (Event Tracing for 
Windows, ETW) extended also by custom, middleware-
specific event generator code. They use an event schema 
for reconstructing causal paths; this externally added 
platform- or application-specific knowledge describes 
which attributes connect events to each other to form a 
path. (Earlier versions of Magpie used GUIDs.) PinPoint 
[11] uses platform-specific tracers that extend protocol 
implementations and middleware, such as the web serv-
er, J2EE containers, the JDBC and the Remote Method 
Invocation (RMI) protocols, to tag transactions with 
GUIDs and to preserve the tagging. A centralized ag-
gregator reconstructs the correct paths and stores in a 
repository for further analysis, visualization. However, 
they do not track lower level events (e.g. network pack-
ets), which, for example, Magpie does.  

A similar instrumentation in [12] for the Java Virtual 
Machine uses agent-injection to the runtime-
environment and inserts trace statements ahead of the 
flow control, and support propagation through TCP with 
additional platform-specific instrumentation. The path 
reconstruction is similar to that of Magpie, harnesses 
application specific knowledge, not GUIDs, to drive a 
series of graph transformations.  

Common Object Requesting Broker Architecture 
(CORBA), being a well-accepted standard for distri-
buted systems, has transaction-tracking methodologies. 
Its built-in concept of interceptors (interrupting the re-
quest flow between a client and a server and executing 
custom code) provides useful facilities for this purpose. 
Authors of [31] take advantage of these interceptors and 
use them to insert ARM-compliant transaction tracking 
code the control flow on the middleware layer.  In [21] 
as well, interceptors are used for trace collection, in this 
case caller-callee pairs, not multi-stage transactions. A 
statistical analysis system for processing the traces was 
also developed. For CORBA/COM, a method is intro-
duced in [27] that uses automatically generated (by the 
IDL compiler) skeletons and stubs to identify first call-
er-callee relationships and then to propagate GUIDs to 
observe transactions spanning across multiple compo-
nents. 

 

 
Figure 4. The ARM projection of a transaction on the DC 

infrastructure 
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In [13], ISA level instrumentation is used, i.e., a 
four-byte tag is maintained for every byte of the memo-
ry and the propagation of tags is assured by inserting in-
to and extracting from Ethernet frames. It is also possi-
ble to add specific tagging from the application source 
code; this can be done by the C library developed by the 
authors. In languages like Java where the virtual ad-
dresses are hidden, such application-level tagging be-
comes difficult to achieve. This kind of instrumentation 
requires profound modification of OS components, de-
vice drivers. Whodunit [26] detects transactions com-
municating through shared memory, events or RPCs by 
means using OS-level instrumentation (creating wrap-
pers for several functions, e.g. send and receive wrap-
pers to follow IPC), and running critical sections in 
QEMU, a CPU emulator. The overhead of OS instru-
mentation is approx. 3%, but the execution on the emu-
lator is 100-400 times slower, according to case studies. 
SysProf [25] is a profiler, keeping track of resource uti-
lization using kernel-level instrumentation, however it is 
capable of supplying transaction profiles, it requires ad-
ditionally supplied domain-, or transaction-specific 
knowledge to identify the causality of transactions when 
they are interleaving or concurrent. 

At the other extreme, the most generic case is the 
black-box approach, where no previous knowledge on 
the components is provided, and only passive monitor-
ing instruments (with practically zero performance im-
pact) are used. The causal-path reconstruction can only 
be based utilizing the events and the timestamps of the 
transaction, that can be easily logged, by probabilistic 
and statistic means, therefore fully correct transaction-
instance level causal path reconstructions are not feasi-
ble. Authors of [16] show a model for corresponding 
events to re-construct a transaction by finding matchings 
in bipartite graphs; optimal solution for two-state sys-
tems with independent, identically distributed transition 
times corresponds to a minimum-weight perfect match-
ing in the graph. In [15] the authors consider a similar 
approach and present two algorithms: harnessing nested 
sub-transactions (identifying call-pairs and matching the 
probably nested tuples), and a convolution method ap-
plied on message traces as time signals. E2Eprof [14] 
analyses log files and estimates most probable causal 
paths based on cross-correlating timestamps of the mes-
sages between infrastructure components. In [17] and 
[20] a network-only approach focusing on TCP is intro-
duced, they do not offer transaction reconstruction, but 
coarse-grained application-level interaction discovery. 
In [17] authors profile the network usage of applications 
and correlate it to resource consumption.  [20] is also an 
enhancement to network packet sniffing by mapping in-
terconnected TCP sessions using user-supplied domain 
knowledge. In [23] the authors do not intend to identify 
the causality relation, but they study the mass characte-
ristics of transactions and describe flow dynamics in 
some monitoring points (e.g. Apache HTTP logs, 
MySQL query logs) with autoregressive models. The 

fault detection scheme they propose determines inva-
riants (of the mass characteristics) and identify faults 
when these invariants are broken.    

We must also call the attention to three main chal-
lenges for black-box approaches: (i.) they heavily rely 
on well-synchronized clocks, but claim that the 1-5 ms 
error of the Network Time Protocol (NTP), the imple-
mentation of which is generally available as a built-in 
OS component, is satisfactory; (ii.) asynchronous calls  
are harder to trace without additional knowledge, than 
request-response interactions; (iii.) in case of kept-alive 
connections or sessions (typically from a connection 
pool) one cannot make use of  connection opening and 
closing events as start and finish events of 
(sub)transactions. 

B. Orchestration prototype: a grey box scenario 

In our research, we stated the following require-
ments against transaction tracking: (i.) avoid modifying 
application source code (as it is rarely accessible in a 
production environment); (ii.) emphasize correct cau-
sality re-construction; (iii.) adhere to standards, as much 
as possible.  

Therefore, we decided to use a grey-box scenario on 
the concept of extending middleware components. We 
take advantage of middleware applications offering the 
ability to plug in additional code modules by extracting 
attributes about a transaction and sending that informa-
tion to a separate tracking processor. One example of 
such transaction tracking is the IBM

®
 Tivoli

®
 Compo-

site Application Manager (ITCAM) for Transactions 
[19]. This software is designed for monitoring distri-
buted systems, transaction tracking is based on the ARM 
standard. Its main advantage is the middleware-level 
support from multiple vendors who natively support au-
tomatic insertion of ARM calls to the control flow of the 
application and harnessing native middleware instru-
mentation. However, general use cases include non-
supported middleware, in that case monitoring is still 
possible by extending the specific application with 
ARM-compliant instrumentation code, according to 
[29], or adding ARM support to the middleware, like in 
[7]. ITCAM uses the techniques of linking (a single 
attribute is used to group events) and stitching (several 
attributes are combined using a predefined method) to 
correlate transactions end-to-end (Figure 4).  

IV. CONCLUSIONS AND NEXT STEPS 

We have shown uses and the challenges of DC 
transaction tracking, and some of the methods to over-
come these challenges. As our main contribution, we 
have proposed a three-pronged approach to DC man-
agement, which combines workload and resource moni-
toring with performance modeling, both by simulation 
and analysis.  



 6 

These methods build on our recent progress made in 
key independent fields: Ethernet DCB monitoring on 
L2, ARM-based transaction tracing, large-scale HPC 
simulations in VENUS [8], and analytical modeling of 
dynamic and distributed systems.  

Next Steps: With the progress toward cloud compu-
ting system-level optimization and management are 
areas of growing relevance in IT. The community is 
making steady progress in DC benchmarking, improved 
scheduling and load balancing, and ultimately, toward 
automated Cloud management and optimization. Al-
though most of the standards bodies, researchers, ven-
dors, and customers are asking for DC traces, workloads 
and traffic generators, no such data is publicly available 
yet. This we attribute to the following: (i) lack of a stan-
dard DC message-passing library, similar to MPI in 
HPC, and (ii) lack of monitoring tools capable of (DC 
and cloud) system-level benchmarking. The latter lack is 
sustained by the continuing prevalence of segregated, 
component-level benchmarking. Nonetheless, despite 
these challenges, DC and cloud management and opti-
mization are a promising area of research for the sys-
tems community. 
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