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Abstract. A business process is often modeled using some kind of a directed
flow graph, which we call aworkflow graph. The Refined Process Structure Tree
(RPST) [1] is a technique for workflow graph parsing, i.e., for discovering the
structure of a workflow graph, which has various applications. In this paper, we
provide two improvements to the RPST. First, we propose an alternative way
to compute the RPST that is simpler than the one developed originally [1]. In
particular, the computation reduces to constructing thetree of the triconnected
componentsof a workflow graph in the special case when every node has at most
one incoming or at most one outgoing edge. Such graphs occur frequently in
applications. Secondly, we extend the applicability of the RPST. Originally, the
RPST was applicable only to graphs with a single source and single sink such
that the completed version of the graph is biconnected. We lift both restrictions.
Therefore, the RPST is then applicable to arbitrary directed graphs suchthat every
node is on a path from some source to some sink. This includes graphs with
multiple sources and/or sinks and disconnected graphs.

1 Introduction

Companies widely use business process modeling for documenting their operational
procedures. Business analysts develop process models by decomposing business sce-
narios into business activities and defining their logical and temporal dependencies.
The models are then utilized for communicating, analyzing,optimizing, and support-
ing execution of individual business cases within or acrosscompanies. Various mod-
eling notations have been proposed. Many of them, for example the Business Process
Modeling Notation (BPMN), Event-driven Process Chains (EPC), and UML activity
diagrams, are based onworkflow graphs, which are directed graphs with nodes repre-
senting activities or control decisions, and edges specifying temporal dependencies.

A workflow graph can be parsed into a hierarchy of subgraphs with a single entry
and single exit. Such a subgraph is a logically independent subworkflow or subprocess
of the business process. The result of the parsing procedureis aparse tree, which is the
containment hierarchy of the subgraphs. The parse tree has various applications, e.g.,
translation between process languages [1–3], control-flowand data-flow analysis [4–
7], process comparison and merging [8], process abstraction [9], process comprehen-
sion [10], model layout [11], and pattern application in process modeling [12].
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Vanhatalo, V̈olzer, and Koehler [1] proposed a workflow graph parsing technique,
called theRefined Process Structure Tree(RPST), that has a number of desirable prop-
erties: The resulting parse tree is unique andmodular, wheremodularmeans that a local
change in the workflow graph only results in a local change of the parse tree. Further-
more, it is finer grained than any known alternative approachand it can be computed in
linear time. The linear time computation is based on the ideaby Tarjan and Valdes [13]
to compute a parse tree based on thetriconnected componentsof a biconnected graph.

In this paper, we improve the RPST in two ways:

◦ The original RPST algorithm [1] contains, besides the computation of the tricon-
nected components, a post-processing step that is fairly complex. In this paper, we
show that the computation can be considerably simplified by introducing a pre-
processing step that splits every node of the workflow graph with more than one
incoming and more than one outgoing edge into two nodes. We prove that for the
resulting graph, the RPST and the triconnected components coincide. Furthermore,
we prove that the RPST of the original graph can then be obtained by a simple post-
processing step. This new approach reduces the implementation effort considerably,
requiring only little more than the computation of the triconnected components, of
which an implementation is publicly available [14].
◦ The original technique [1] is restricted to workflow graphs that have a single source

and a single sink such that adding an edge from the sink to the source makes the
graph biconnected. This assumption is too restrictive in practice as many business
process models have multiple sources and/or sinks, some are not biconnected, and
some are not even connected. In this paper, we show how these limitations can be
overcome. The resulting technique can be applied to any workflow graph such that
each node lies on a path from some source to some sink.

The remainder of the paper is structured as follows: The nextsection defines the
RPST and provides additional preliminary definitions. Sect. 3 proposes the simplified
algorithm for computing the RPST, and Sect. 4 then generalizes the algorithm to operate
on workflow graphs of arbitrary structure.

2 Preliminaries

This section presents the preliminary notions: the RPST [1]in Sect. 2.1, and the tri-
connected components of the graph [13, 15] in Sect. 2.2. We refer to the corresponding
original articles for additional motivation of the definitions presented in this section.

2.1 The Refined Process Structure Tree

A multi-graph G= (V,E, ℓ) consists of two disjoint setsV andE of nodesandedges,
respectively, and a mappingℓ that assigns to each edge either an ordered pair of nodes,
in which caseG is adirected multi-graph, or an unordered pair of nodes, in which case
G is anundirected multi-graph. A pair of nodes may be connected by more than one
edge (hence the name multi-graph). We assume that the mapping ℓ is fixed, so that a
subgraph can be identified with a pair (V′,E′), whereV′ ⊆ V andE′ ⊆ E such that each
edge inE′ connects only nodes inV′. Let F ⊆ E be a set of edges,GF = (VF , F) is the
subgraphformed by Fif VF is the smallest set of nodes such that (VF , F) is a subgraph.
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(a) (b)
Fig. 1. (a) A workflow graph represented in BPMN, (b) the corresponding TTG (simplified)

A multi-terminal graph(MTG) is a directed multi-graphG that has at least one
source and at least one sink such that each node lies on a path from some source to
some sink;G is a two-terminal graph(TTG) if it has exactly one source and exactly
one sink. Fig.1(a) shows a workflow graph in BPMN notation andFig.1(b) presents the
corresponding TTG. Note that the activity nodes (a1,a2, etc.) are ignored in the TTG
for the sake of simplicity. We assume for simplicity of the presentation that a TTG has
at least two nodes and two edges.

Let G be an MTG andGF = (VF , F) be a connected subgraph ofG that is formed
by a setF of edges. A node inVF is interior with respect toGF if it is connected only
to nodes inVF ; otherwise it is aboundary nodeof GF . A boundary nodeu of GF is an
entryof GF if no incoming edge ofu belongs toF or if all outgoing edges ofu belong to
F. A boundary nodev of GF is anexit of GF if no outgoing edge ofv belongs toF or if
all incoming edges ofv belong toF. F is a fragmentof a TTGG if GF has exactly two
boundary nodes, one entry and one exit. The set{u, v} containing the entry and the exit
node is also called theentry-exit pairof the fragment. A fragment istrivial if it only
contains a single edge. Note that every singleton edge formsa fragment. By definition,
the source of a TTG is an entry to every fragment it belongs to and the sink of a TTG is
an exit from every fragment it belongs to. Intuitively, control ‘enters’ the TTG through
the source and ‘exits’ the TTG through the sink. Note also that we represent a fragment
as a set of edges rather than as a subgraph.

We say that two fragmentsF, F′ arenestedif F ⊆ F′ or F′ ⊆ F. They aredisjoint
if F ∩ F′ = ∅. If they are neither nested nor disjoint, we say that theyoverlap. A
fragment ofG is said to becanonical (or objective) if it does not overlap with any
other fragment ofG. TheRefined Process Structure Tree (RPST)of G is the set of all
canonical fragments ofG. It follows that any two canonical fragments are either nested
or disjoint and, hence, they form a hierarchy. This hierarchy can be shown as a tree,
where the parent of a canonical fragmentF is the smallest canonical fragment that
containsF. The root of the tree is the entire graph, the leaves are the trivial fragments.

Fig.2 exemplifies the RPST. Fig.2(a) shows a TTG and its canonical fragments,
where every fragment is formed by edges enclosed in or intersecting an area denoted
by the dotted border. For example, the canonical fragmentT1 is formed by edges
{b, c,d,e, f }, has interior nodes{v,w} and boundary nodes{u, x}, with u being an en-
try andx an exit of the fragment. Fig.2(b) visualizes the RPST as a tree.

(a) (b)
Fig. 2. (a) A TTG and its canonical fragments, (b) the RPST of (a)
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2.2 The Triconnected Components

The fragments of a TTG are closely related to itstriconnected components, which was
pointed out by Tarjan and Valdes [13]. This relationship is crucial for the results that are
obtained later in this paper. Here, we introduce the triconnected components in detail
and we start with some preliminary definitions.

The completed versionof a TTG G, denotedC(G), is the undirected graph that
results from ignoring the direction of all the edges ofG and adding an additional edge
between the source and the sink. The additional edge is called thereturn edgeof C(G).
Let G be an undirected multi-graph.G is connectedif each pair of nodes is connected
by a path;G is biconnectedif G has no self-loops and if for each tripleu, v, x of nodes,
there is a path fromu to v that does not visitx. If a nodex witnesses thatG is not
biconnected, i.e., there exist nodesu, v such thatx is on every path betweenu andv,
thenx is called aseparation pointof G. G is triconnectedif for each quadrupleu, v, x, y
of nodes, there is a path fromu to v that visits neitherx nor y. A pair {x, y} witnessing
thatG is not triconnected is called aseparation pairof G, i.e., there exist nodesu, v
such that every path fromu to v visits eitherx or y.

The TTG in Fig.1(b) is connected, but not biconnected; the nodesu, x, y, andzare all
separation points. Fig.3(a) shows the completed versionC(G) of the TTG from Fig.1(b),
wherer is the return edge. The completed version is biconnected butnot triconnected;
{u, x} and{x, z} are two of many separation pairs ofC(G).

Fragments are strongly related to triconnectivity and separation pairs. Note that the
entry-exit-pair{u, x} of fragmentT1 in Fig.2(a) is also a separation pair of its completed
version in Fig.3(a). In fact, each entry-exit pair of a non-trivial fragment of a TTGG is
a separation pair ofC(G).

An (undirected) graph that is not connected can be uniquely partitioned intocon-
nected components, i.e., maximal connected subgraphs. A connected graph thatis not
biconnected can be uniquely decomposed intobiconnected components, i.e., maximal
biconnected subgraphs. The biconnected components can be obtained by splitting the
graph into multiple subgraphs at each separation point. Because of the relationship of
fragments to triconnectivity, we are interested to decompose a graph into unique tricon-
nected components. That decomposition is explained in the remainder of this section.

Let G be a biconnected multi-graph andu, v be two nodes ofG. A separation class
w.r.t. u, v is a maximal setS of edges such that any two edges inS are connected by a
path that visits neitheru nor v except as a start or end point. If there is a partition of all
edges ofG into two setsE0,E1 such that both sets contain more than one edge and each
separation class w.r.t.u, v is contained in either of these sets, we call{u, v} a split pair.
We can thensplit the graph into two parts w.r.t. the parametersE0,E1 andu, v: To this
end, we add a fresh edgeebetweenu andv to the graph, which is called avirtual edge.

(a) (b) (c) (d)

Fig. 3.The completed version of the TTG from Fig.1(b) and its triconnected components: (a) The
completed version, (b) a polygon, (c) a rigid component, and (d) a bond
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(a) (b) (c) (d)

Fig. 4. (a) A split of a hexagon from Fig.3(b), (b)-(c) a split of a tetragon, (d) a split of a bond

The graphs formed by the setsE0 ∪ {e} andE1 ∪ {e} are the obtainedsplit graphsof the
performed split operation. A virtual edge is visualized by adashed line.

For an example of a split operation, consider the hexagon in Fig.3(b). Note that it
already contains virtual edges, which are the result of previous splits. The hexagon can
be split along the split pairu, z using the setsE1 = {k, r,a},E2 = {m,g, l}. This results
in two tetragons, which are shown in Fig.4(a).

It may be possible to split the obtained split graphs further, i.e., into smaller split
graphs, possibly w.r.t. a different split pair. A split graph is called asplit componentif it
cannot be split further. Special split graphs arepolygonsandbonds. A polygonis a graph
that hask ≥ 3 nodes andk edges such that all nodes and edges are contained in a cycle,
cf., Fig.3(b). Abondconsists of 2 nodes andk ≥ 2 edges between them, cf., Fig.3(d).
Each split component is either atriangle, i.e., a polygon with three nodes, atriple bond,
i.e., a bond with three edges, or asimpletriconnected graph, wheresimplemeans that no
pair of nodes is connected by more than one edge [15]. If a split component is the latter,
we also call it arigid component. Fig.3(c) shows an example of a rigid component,
whereas the split graphs shown in Fig.3(b) and Fig.3(d) are not split components as
they can be split further.

The set of split components that can be derived from a biconnected multi-graph is
not unique. To see that, we consider polygons and bonds. For instance, a tetragon, cf.,
Fig.4(a), can be split along a diagonal into two split graphs. Depending on the choice
of the diagonal, two different sets of split components are obtained. Fig.4(b) showsone
of the two possibilities for splitting the tetragon given onthe left in Fig.4(a). Similarly,
a bond with more than three edges, cf., Fig.3(d), can be splitinto two bonds in several
ways, depending on the choice ofE1 and E2. One possibility to split the bond from
Fig.3(d) is shown in Fig.4(d). A set of split components for the graph in Fig.3(a) is
given by the graphs in Figs.3(c), 4(b), 4(c), and 4(d).

The inverse of a split operation is called amergeoperation. Two split graphs formed
by edgesE0 andE1, respectively, that share a virtual edgeebetween a pairu, v of nodes
can be merged, which results in the graph formed by the set (E0 ∪ E1) \ {e} of edges.
If we start with a set of split components ofG and then iteratively merge a polygon
with a polygon and a bond with a bond until no more such mergingis possible, we
obtain the uniquetriconnected componentsof G. Because a merge operation is the
inverse of a split operation, we can also obtain the triconnected components by suitable
split operations only: LetC be asplit graph decompositionof G, i.e., a set of split
graphs recursively derived fromG. A polygon P ∈ C is maximalw.r.t. C if there is
no other polygon inC that shares a virtual edge withP. A bond B ∈ C is maximal
w.r.t. C if there is no other bond inC that shares a virtual edge withB. C is a set of
the triconnected componentsof G if each member ofC is either a maximal polygon, a
maximal bond, or a rigid split component. The set of the triconnected components ofG
exists and is unique, cf., [15].
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(a) (b)

Fig. 5. (a) A TTG and its triconnected component subgraphs, (b) the tree of thetriconnected
components of (a)

The graphs in Fig.4(c) can be merged along the virtual edgep. The obtained tetragon
can be merged with the triangles in Fig.4(b) along the virtual edgesn ando to obtain
the maximal polygon from Fig.3(b). Figs.3(b), 3(c), and 3(d) show all the triconnected
components of the graph from Fig.3(a): Fig.3(d) is a maximalbond, which is obtained
by merging the bonds in Fig.4(d), and Fig.3(c) is a rigid component.

Any split graph decomposition can be arranged in a tree: The tree nodes are the split
graphs. Two split graphs are connected in a tree if they sharea virtual edge. The root
of the tree is the split graph that contains the return edge. The tree of the triconnected
componentsof G is the tree derived in this way from its triconnected components.

Let C be a triconnected component of graphG. Let F be the set of all edges ofG
that appear inC or some descendant ofC in the tree of the triconnected components.
The graph formed byF is called thetriconnected component subgraphderived fromC.

Fig.5 shows the tree of the triconnected components. In Fig.5(a), the triconnected
component subgraphs of the workflow graph are visualized; they correspond to the
triconnected components from Fig.3. Each triconnected component subgraph is formed
by edges enclosed in or intersecting a region with the dottedborder, e.g., all the graph
edges forP1 are derived from the component given in Fig.3(b). Fig.5(b)arranges the
triconnected components in a tree. The root of the tree, i.e., nodeP1, corresponds to the
triconnected component that contains the return edger. Note the difference between the
tree of the triconnected components in Fig.5 and the RPST in Fig.2

3 Simplified Computation of the Refined Process Structure Tree

In this section, we show how the RPST computation can be simplified compared with
the original algorithm. In Sect. 3.1, we discuss the RPST of TTGs in which every node
has at most one incoming or at most one outgoing edge. Such TTGs are common in
practice. In Sect. 3.2, we address the general case of the RPST computation of any
TTG whose completed version is biconnected.

3.1 The RPST of Normalized TTGs

We call a TTGnormalizedif every node has at most one incoming or at most one
outgoing edge. In this section, we show that for normalized TTGs, the RPST compu-
tation reduces to computing the tree of the triconnected components. In other words,
each canonical fragment corresponds to a triconnected component subgraph and each
triconnected component subgraph corresponds to a canonical fragment.

Let C(G) be the completed version of a TTG. A pair{x, y} of nodes is called a
boundary pairif there are at least two separation classes w.r.t.{x, y}. A separation class
is proper if it does not contain the return edge. The boundary pair{u, x} in Fig.3(a)
generates two separation classes. The first contains the edgesb, c,d,e, f and is therefore
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proper, whereas the second contains all other edges of the graph and is therefore not
proper. Fragments are strongly related to proper separation classes. To describe that
relationship, we introduce the notion of aseparation component.

Definition 1 (Separation component).Let {x, y} be a boundary pair ofC(G). A sepa-
ration componentw.r.t. {x, y} is the union of one or more proper separation classes w.r.t.
{x, y}.

The bond from Fig.3(d) without the virtual edgem is a separation component w.r.t.{y, z}
of the completed version of the TTG from Fig.3(a). It is the union of the three proper
separation classes:{h}, {i}, and{ j}.

We know that the entry-exit pair{x, y} of a fragment is a boundary pair ofG and
that the fragment is aseparation componentw.r.t. {x, y} [1]. Furthermore, it follows
from the construction of the triconnected components that each triconnected compo-
nent subgraph is a separation component. Polyvyanyy et al. [9] observed that every
triconnected component subgraph of a normalized TTG is a fragment. For normalized
TTGs, we can extend this observation to a full characterization of fragments in terms of
separation components.

Lemma 1. Let F be a set of edges of a normalized TTG. F is a separation component
if and only if F is a fragment.

Proof. For (⇒), let {u, v} be the boundary pair ofF and lete be an edge inF. As the
return edge is not inF, it is in a different separation class w.r.t.{u, v} thane. Consider a
simple directed path from the source to the sink of the graph that containse. It follows
that the path contains one of the nodes{u, v} beforee and one aftere; otherwise the
separation class ofe would contain the return edge. Let, without loss of generality, u
be the former node andv the latter. It follows thatu has an incoming edge outsideF
and an outgoing edge insideF, andv has an incoming edge insideF and an outgoing
edge outsideF. Based on the assumption that the TTG is normalized, it is nowstraight-
forward to establish thatu is an entry andv is an exit ofF. Furthermore, there is no
other boundary node besidesu andv because that would contradict the definition of a
separation class. Hence,F is a fragment.

The direction (⇐) is Theorem 2 in [1]. ⊓⊔

It turns out that the set of triconnected component subgraphs of a normalized TTG is
exactly the set of all its canonical fragments and, thus, is the RPST of the TTG. Before
we prove the statement, we give two auxiliary lemmas which also by themselves deliver
interesting insights into separation components of a normalized TTG and their relations.

Lemma 2. If F is a separation component and F′ a triconnected component subgraph,
then F and F′ do not overlap.

Proof. If F contains only a single edge or the entire graph, the claim is trivial. Otherwise
F can be split off from the main graph into a split graph. We continue the decomposi-
tion until we reach a set of split components. Those can be arranged in a tree (of split
components) as described above.F corresponds to a subgraph of this tree, i.e., a subtree
represents exactly the edges ofF. On the other hand,F′ also corresponds to a subtree of
the tree of split components because the triconnected components are obtained by merg-
ing split components, i.e., by collapsing parts of the tree of split components. SinceF
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andF′ both correspond to subtrees of the same tree, they do not overlap. ⊓⊔

It follows from Lemma 2 that triconnected component subgraphs do not overlap. We
show now that for a separation component which is strictly contained in a triconnected
component subgraph, there always exists another separation component contained in
the same triconnected component subgraph that overlaps with it.

Lemma 3. If F is a separation component that is not a triconnected component sub-
graph, then there exists a separation component F′, such that F and F′ overlap.

Proof. Consider a split graph decomposition that containsF. If F is not a triconnected
component subgraph, thenF and the parent ofF are either bonds w.r.t. the same bound-
ary pair or polygons. In both cases, it is easy to display a bond or polygon, respectively,
that overlaps withF. ⊓⊔

We are now ready to prove the main proposition of this section.

Theorem 1. Let F be a set of edges of a normalized TTG. F is a canonical fragment if
and only if F is a triconnected component subgraph.

Proof.
⇒ Let F be a canonical fragment. We want to show thatF is a triconnected component

subgraph. Because of Lemma 1,F is a separation component. IfF is not a tricon-
nected component subgraph, then there exists, because of Lemma 3, a separation
componentF′ that overlaps withF. Because of Lemma 1,F′ is a fragment, which
contradictsF being canonical.

⇐ Let F be a triconnected component subgraph. We want to show thatF is a canonical
fragment. Because of Lemma 1,F is a fragment. LetF′ be any fragment. Because
of Lemma 1,F′ is a separation component. Because of Lemma 2,F andF′ do not
overlap. Hence,F is a canonical fragment. ⊓⊔

(a) (b)

Fig. 6.(a) A TTG and its triconnected com-
ponent subgraphs, (b) the RPST of (a)

For normalized TTGs, Theorem 1 implies that
the tree of the triconnected components and
the RPST coincide, i.e., both deliver the same
decomposition on the set of edges of the TTG.
Fig.6(a) shows a normalized TTG and its tri-
connected component subgraphs. The TTG is
formed by a subset of edges of the workflow
graph from Fig.1(b). The triconnected com-
ponent subgraphs are also all the canonical
fragments of the TTG. Therefore, the RPST of the workflow graph from Fig.6(a), which
is given in Fig.6(b), can be computed by constructing the tree of the triconnected com-
ponents of the workflow graph.

3.2 The RPST of General TTGs

We now show how to compute the RPST of an arbitrary TTG whose completed version
is biconnected. To do so, we normalize the TTG by splitting nodes that have more
than one incoming and more than one outgoing edge into two nodes. We then compute
the RPST of the normalized TTG as in Sect. 3.1. Finally, we project the RPST of the
normalized TTG onto the original one and obtain the RPST of the original TTG.
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(a) (b) (c)

Fig. 7. (a) Node-splitting, (b) a TTG, and (c) the normalized version of (b)

A single node-splitting is sketched in Fig.7(a). For instance, if the splitting is applied
to nodeu of the graph from Fig.7(b), it results in the new graph given in Fig.7(c) with
three fresh elements: nodes∗u andu∗, and edgee. This is the only applicable splitting
in the example. Hence, the resulting graph is normalized andwe call it thenormalized
versionof the TTG. The procedure can be formalized as follows.

Definition 2 (Node-splitting). Let G = (V,E, ℓ) be a directed multi-graph andx ∈ V
a node ofG. A splitting of x is applicableif x has more than one incoming and more
than one outgoing edge. The application results in a graphG′ = (V′,E′, ℓ′), where
V′ = (V \ {x}) ∪ {∗x, x∗}, E′ = E ∪ {e}, where∗x and x∗ are fresh nodes ande is a
fresh edge, andℓ′ is such thatℓ′(e) = (∗x, x∗). In addition, f ∈ E, ℓ( f ) = (y, z) and
ℓ′( f ) = (y′, z′) implies thaty′ = x∗ if y = x, and otherwisey′ = y; andz′ = ∗x if z = x,
and otherwisez′ = z.

Splitting is applicable if and only if the graph is not normalized. It is not difficult to see
that the order of different splittings does not influence the final result and, therefore, we
indeed get a normal form by applying all applicable splittings in any order.

After normalization, we proceed by computing the tree of thetriconnected compo-
nents of the graph. As we know from Sect. 3.1, the tree coincides with the RPST of the
normalized graph. This tree can be projected onto the original graph by deleting all the
edges introduced during node-splittings. We will see laterthat this projection preserves
the fragments. However,the deletion of the edges may resultin fragments which have a
single child fragment. This means that two different fragments of the normalized graph
project onto the same fragment of the original graph. We thusclean the tree by deleting
redundant occurrences of such fragments. Consequently, the only child fragment of a
redundant fragment becomes a child of the parent of the redundant fragment, or the
root of the tree if the redundant fragment has no parent. The result is the RPST of the
original graph. Alg. 1 details again the sequence of these steps.

Algorithm 1 Simplified computation of the RPST
RPST(Directed multi-graph G = (V,E, ℓ))
1. G′ = (V′,E′, ℓ′) is the normalized version ofG
2. T′ is the tree of the triconnected components ofG′

3. T is T′ without trivial fragments inE′\E
4. R is T without redundant fragments
5. return R // the RPST of G

We exemplify Alg. 1 in Fig.8 and Fig.9 by computing the RPST ofthe TTG from
Fig.8(a). Fig.8(a) shows the triconnected component subgraphsP1 andB1 of the TTG,
whereas Fig.8(b) shows the corresponding tree of the triconnected components. The
TTG is not normalized: Nodesy andzare incident with multiple incoming and multiple



10 Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer

(a) (b) (c)

Fig. 8. (a) A TTG and its triconnected component subgraphs, (b) the tree of thetriconnected com-
ponents of (a), and (c) the normalized version of (a) and its triconnected component subgraphs

outgoing edges, and all the triconnected component subgraphs of the TTG are frag-
ments. Fig.8(c) shows the normalized version of the TTG fromFig.8(a); it is obtained
by splitting nodesy andz, in any order. The normalization introduces edgesl andm to
the TTG. The tree of the triconnected components of the normalized version consists of
four triconnected components:P1, B1, P2, andB2 shown in Fig.8(c). It follows from
Lemma 1 that they are all fragments.

Fig.9(a) shows the tree of the triconnected components of the normalized version
from Fig.8(c). Because of Theorem 1, the tree is the RPST of the normalized version. In
Fig.9(b), one can see the RPST without trivial fragments, which correspond to the edges
l andm. Note thatP2 now specifies the same set of edges of the TTG asB2. Therefore,
we omit P2, which is redundant, to obtain the tree given in Fig.9(c). This tree is the
RPST of the original TTG from Fig.8(a). Fig.9(d) visualizesthe TTG again together
with its canonical fragments. Please note that Alg. 1, in comparison with the tricon-
nected decomposition shown in Fig.8(a) and Fig.8(b), additionally discovered canonical
fragmentB2. P1, B1, andB2 are all the canonical fragments of the TTG.

To show that we indeed obtain the RPST of the original graph, we have to show
that (i) each canonical fragment of the normalized version projects onto a canonical
fragment of the original graph or onto the empty set, and (ii)for each canonical fragment
of the original graph, there is a canonical fragment of the normalized version that is
projected onto it. We establish these properties for a single node-splitting step. The
claim then follows by induction.

Consider a single node-splitting step transforming a graphG into G′, let x be the
node that is split into nodes∗x andx∗, and lete be the edge that is added between∗x
andx∗. We define the following mappings for the next lemma:
1. A mappingψ maps a setF of edges ofG′ to a setψ(F) of edges ofG by ψ(F) =

F \ {e}.

(a) (b) (c) (d)

Fig. 9. (a) The tree of the triconnected components of the TTG from Fig.8(c), (b) the tree from (a)
without the fresh edgesl andm, (c) the RPST of the TTG from Fig.8(a), and (d) the TTG from
Fig.8(a) and its canonical fragments
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2. A mappingφ maps a set of edgesH of G to a setφ(H) of edges ofG′ by φ(H) =
H ∪ {e} if H has an incoming edge tox as well as an outgoing edge fromx, and
otherwiseφ(H) = H.

Now, we claim:

Lemma 4. Letφ, ψ and e be defined as above. We have:

1. If F , {e} is a fragment of G′, thenψ(F) is a fragment of G.
2. If H is a fragment of G, thenφ(H) is a fragment of G′.
3. If F , {e} is a canonical fragment of G′, thenψ(F) is a canonical fragment of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F of G′

such thatψ(F) = H.
The proof of Lemma 4 is in Appendix A. Lemma 4 and the fact that each step in Alg. 1
can be computed in linear time allow us to conclude:

Theorem 2. Alg. 1 computes the RPST of a TTG whose completed version is bicon-
nected in linear time.

4 Generalization of the Refined Process Structure Tree
So far, the RPST decomposition is restricted to TTGs whose completed version is bicon-
nected. In practice this is not sufficient, as a process model may have multiple sources
and sinks, cf., Fig.10(b), may be disconnected or may violate biconnectedness assump-
tion. For the latter, consider Fig.10(a). Nodeu is a separation point of the completed
version of the graph as its deletion separates the node labeled witha1 from the rest of
the graph. Hence, the completed version is not biconnected.Note that process modeling
languages such as BPMN and EPC do not impose such structural limitations. In fact, a
test of the SAP reference model [16], a collection of industrial process models given as
EPCs, showed that more than 80 percent of the models violate one of the restrictions.

(a) (b)

Fig. 10.A workflow graph (a) whose completed version isnotbiconnected, (b) has multiple sinks

In this section, we propose a way to decompose any MTG. The results of this section
are also described in detail in a thesis [17]. We start by decomposing arbitrary TTGs.

4.1 The RPST of TTGs

Fig.11(a) shows the TTG that corresponds to the process model in Fig.10(a). As we
explained above, its completed version is not biconnected because nodeu is a separation
point. Note thatu has multiple incoming as well as multiple outgoing edges. Every
separation point has this property:

Lemma 5. Let G be a TTG. Every separation point of C(G) has more than one incom-
ing and more than one outgoing edge in G.
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(a) (b) (c) (d)

Fig. 11. (a) A TTG whose completed version isnot biconnected, (b) the RPST of (a), (c) the
normalization of (a), and (d) the RPST of (c)

Proof. A sources and a sinkt of G are in the same biconnected component ofC(G) as
they are connected inG and, therefore, biconnected inC(G) after introducing the return
edge. Moreover, it is easy to see thatC(G) is connected withoutsor t and, hence,sand
t are not separation points ofC(G). Let x, without loss of generality, be some separation
point ofC(G) that results in a setB of biconnected components. Letb ∈ B, without loss
of generality, be a biconnected component induced byx that does not contains andt.
Assumey is a node which belongs tob. As every node of G is on a path froms to t,
thenx is on every path froms to y and fromy to t. A path froms to y implies thatx has
an incoming edge that does not belong tob and an outgoing edge that belongs tob. A
path fromy to t implies thatx has an incoming edge that belongs tob and an outgoing
edge that does not belong tob. Hence, the claim holds.

If b consists of a single edge, it is an incoming and an outgoing edge of x. Every
path froms to t throughx also contains two edges incident withx, an incoming and an
outgoing, which do not belong tob. Hence, the claim holds. ⊓⊔

It follows that the completed version of the normalization of G is biconnected. There-
fore, we can apply Alg. 1 from Sect. 3.2 to decompose an arbitrary TTG. We call the
resulting decomposition ofG the RPSTof G. This is a generalization of the previous
definition because ifC(G) is already biconnected, we get the RPST as defined previ-
ously. Note that we obtain the same result by splitting only the separation points ofG,
computing the RPST of the resulting graphG′ (in any way), and then projecting the
RPST ofG′ ontoG. As the normalized version and its RPST are unique, it then follows
from the construction that the RPST of an arbitrary TTG is unique.

Fig.11 shows the RPST of the example, as well as the way in which it is obtained.
Again, the RPST of the original graph is obtained by deletingthe edgeh, which was
generated in the node-splitting, and afterwards removing the redundant fragmentB2.

Figs. 12(a), 12(b), and 12(c) show more examples of decompositions of TTGs
whose completed versions are not biconnected. Every subgraph obtained has either ex-

(a) (b) (c) (d)

Fig. 12.(a)–(c) The RPST of a TTG, and (d) Valdes’s parse tree of the TTG from (c)
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actly two boundary nodes, one entry and one exit, or exactly one boundary node, which
is bidirectional. LetG be a TTG andF be a connected subgraph ofG. A boundary node
u of F is bidirectional if there exist an incoming and an outgoing edge ofu insideF,
and there exist an incoming and an outgoing edge ofu outsideF. Note that control flow
can both enter and exitF throughu.

Valdes [18] has proposed an alternative way to decompose an arbitrary TTGG. He
proposed to first compute thebiconnected componentsof C(G) and then further decom-
pose each biconnected component into its triconnected components. If we adapt this
idea and compute the RPST of each biconnected component ofC(G), we obtain a root
component that contains all biconnected components as children, which in turn have
their RPSTs as subtrees. The result for the graph from Fig.12(c) is shown in Fig.12(d),
which is different from the decomposition we propose. Note that the result has a com-
ponent that has more than two boundary nodes, e.g.,B, and another one having two
boundary nodes that are both bidirectional, e.g.,C. Unlike our decomposition, the de-
composition in Fig.12(d) does not reflect the fact that the component containing node
w depends on the component that is entered through nodeu.

4.2 The RPST of MTGs

To decompose an arbitrary MTG, we ‘normalize’ an MTG into a TTG by constructing
a unique source and a unique sink as follows.

Definition 3. Let G be an MTG. We construct a graphG′ from G as follows.
1. If G has more than one source, a new sources is added and for each source nodeu

of G, an edge froms to u is added.
2. If G has more than one sink, a new sinkt is added and for each sink nodev of G,

an edge fromv to t is added.
G′ is a TTG, which we call theTTG versionof G. Thenormalized version G∗ of G is
the normalized version ofG′.

By normalizing an MTG, we again obtain a TTG whose completed version is bicon-
nected. The normalized version can be decomposed with the RPST, and the decomposi-
tion can be projected onto the original MTG through Alg. 1. The result that is obtained
from applying Alg. 1 to the normalized version of an MTGG is called theRPSTof G.
The RPST of an MTG is unique.

Fig.13 shows (a) an MTGG, (b) the RPST ofG, (c) the TTG versionG′ of G, and
(d) the RPST ofG′. The RPST ofG is derived from the RPST ofG′ with Alg. 1.

Note that for an MTG, the subgraphs formed by the decomposition may have more
than two boundary nodes. For example, subgraphB1 in Fig.13(a) has two sourcesu

(a) (b) (c) (d)

Fig. 13.(a) An MTGG, (b) the RPST ofG, (c) the TTG versionG′ of G, and (d) the RPST ofG′
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(a) (b) (c) (d)

Fig. 14.(a) A disconnected MTGG, (b) the RPST ofG, (c) the TTG versionG∗ of G, and (d) the
RPST ofG∗

andv as entries, and an exitw. SubgraphB2 has an entryw, and three sinks as exits.
SubgraphP1 two sources as entries, and three sinks as exits.

An RPST-formed subgraph is not necessarily a connected subgraph of an MTG. If
an MTG is disconnected, the root fragment of its RPST is a union of the connected
components of the MTG. For example, Fig.14 shows an example of (a) a disconnected
MTG G, (b) the RPST ofG, (c) the TTG (and normalized) versionG∗ of G, and (d)
the RPST ofG∗. Note that every connected component of the MTG always becomes a
separate component of the RPST decomposition.

Fig.15 shows the RPST-formed fragments of the workflow graphs introduced in
Fig.10. We can use these fragments to translate BPMN diagrams into BPEL processes.
We have labeled the fragments according to the BPEL blocks they correspond to. For
example,sequence Bin Fig.15(a) is a sequence of awhile loop and the activitya2. These
decompositions are not directly obtainable with any prior decomposition technique.

(a) (b)

Fig. 15.The RPST-formed fragments of the workflow graphs introduced in Fig.10

5 Conclusion

We simplified the theory for workflow graph parsing into single-entry-single-exit frag-
ments through use of normalized TTGs. This leads to a simplification of the RPST
parsing algorithm and its implementation. The implementation effort is essentially re-
duced to the computation of the triconnected components, ofwhich an implementation
is publicly available [14]. In fact, in many applications, nodes have either a single in-
coming or a single outgoing edge, in which case no pre- and postprocessing steps are
required. Together with our previous results [1, 17], we have a parsing technique that
produces a unique and modular decomposition in linear time in a simple way. The result
has a simple characterization in terms of canonical fragments.

In the second part of the paper, we have shown how the RPST technique gives rise to
a decomposition of any workflow graph that may occur in practice. The only remaining
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assumption is that each node must be on a path from some sourceto some sink.
We have implemented the simplified RPST computation, as proposed in this pa-

per, and tested its functionally against the implementation of the original RPST tech-
nique [1] on the SAP reference model [16], which consists of 604 EPC models. The
models were transformed to TTGs that range in size from 2 to 195 edges, with the aver-
age of 28.7 edges in one TTG. As it was discovered during evaluation, the models have
on average 16.5 non-trivial fragments, ranging from the minimum of 1 fragment to the
maximum of 132 fragments in one model.
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A Appendix — Proofs — NOT TO BE INCLUDED IN THE
FINAL PUBLISHED VERSION OF THIS PAPER

Note. The proofs in this appendix are too long to be included in the final published
version of this paper, but we will make them available separately, as a technical report.
Nevertheless, we provide them for the reviewers of this submission as an appendix.

Consider a single node-splitting step transforming a graphG into G′, let x be the
node that is split into nodes∗x andx∗, and lete be the edge that is added between∗x
andx∗. We define the following mappings for the next lemma:

1. A mappingψ maps a setF of edges ofG′ to a setψ(F) of edges ofG by ψ(F) =
F \ {e}.

2. A mappingφ maps a set of edgesH of G to a setφ(H) of edges ofG′ by φ(H) =
H ∪ {e} if H has an incoming edge tox as well as an outgoing edge fromx, and
otherwiseφ(H) = H.

Now, we claim:

Lemma 4. Letφ andψ be as defined above. We have:

1. If F , {e} is a fragment of G′, thenψ(F) is a fragment of G.
2. If H is a fragment of G, thenφ(H) is a fragment of G′.
3. If F , {e} is a canonical fragment of G′, thenψ(F) is a canonical fragment of G.
4. If H is a canonical fragment of G, then there exists a canonical fragment F of G′

such thatψ(F) = H.

Proof. We prove each part separately.

1.,2. The proofs of these parts are derived by straightforward applications of the defi-
nitions.

3. Supposeψ(F) are not canonical. Then there exist a fragmentH of G that overlaps
with ψ(F). We know from part 2 of this lemma thatφ(H) is a fragment, and from
ψ(F) ⊆ F andH ⊆ φ(H) it follows thatF andφ(H) overlap, which contradicts our
assumption thatF is canonical.

4. Let S1 andS2 be two fragments ofG such that the exitv of S1 is the entry ofS2.
If S = S1 ∪ S2 is a fragment, we say thatS is asequenceandS1 andS2 are called
segmentsof S. We also say thatS1 andS2 are in sequence. It follows from the
biconnectedness ofC(G) that the entry ofS1 and the exit ofS2 are then distinct.
Furthermore,S is a fragment if and only if all nodes that are incident tov belong to
S. A sequenceS is maximalif S is not a segment of another sequence. We know
that a sequence is a canonical fragment if and only if it is maximal [1].
We define the fragmentF as follows. IfH is a sequence—hence maximal—andx
is a boundary node ofH such that all outgoing edges or all incoming edges ofx are
insideH, then we setF = H ∪ {e}. Otherwise, we setF = φ(H). To show thatF is
a canonical fragment, we consider both cases separately.
Let H be a maximal sequence and letx, without loss of generality, be an entry of
H such that all outgoing edges ofx are insideH. (The exit case is analogous.) We
distinguish two cases.
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1. An incoming edge ofx is in H. Call this edgee0. Then the sequenceH can be
divided into two segmentsS1,S2 such thate0 ∈ S1. Thenφ(S1) andφ(S2) are
both fragments. Moreover they are in sequence, that is,F = φ(S1) ∪ φ(S2) is a
sequence.F must be a maximal sequence because otherwiseH would not be a
maximal sequence. Therefore,F is a canonical fragment.

2. No incoming edge ofx is in H. As all outgoing edges ofx are inH, H is in
sequence with the trivial fragment{e} in G′. BecauseH is a maximal sequence
of G, F = H ∪ {e} is a maximal sequence ofG′.

Now we consider the ‘otherwise’ case, i.e.,F = φ(H). We know from part 2 of
this lemma thatF is a fragment. Suppose thatF were not canonical. Then, there
is some fragmentF′ of G′ such thatF and F′ overlap. Therefore, none of three
setsF \ F′, F ∩ F′ andF′ \ F are empty. Lets call an edgef original if f , e. If
all three setsF \ F′, F ∩ F′ andF′ \ F contain an original edge, thenH = ψ(F)
andψ(F′) also overlap, which contradictsH being canonical. Therefore, we have
to prove that none of the three setsF \ F′, F ∩ F′ andF′ \ F equals{e}. To derive
a contradiction we suppose that this is the case. It follows immediately thatx must
then be a boundary node ofH. We assume without loss of generality thatx is an
entry ofH.
We know from previous results [1], that there are only two ways in which two
fragmentsF, F′ can overlap:
1. F andF′ are two non-maximal sequences that share a common segment.
2. F andF′ are separation components w.r.t. the same boundary pair{u, v} that

share a common separation class w.r.t.{u, v}. (F andF′ are then specialbond
fragmentsin the terminology of [1].)

We consider these two cases now separately.
2. Consider the caseF ∩ F′ = {e}. The boundary pair of{e} is {∗x, x∗}, which is

therefore also the common boundary pair ofF andF′. It follows thatx is a sep-
aration point ofC(G), contradicting our assumption thatC(G) is biconnected.
The other two cases use exactly the same argument.

1. LetF andF′ be two non-maximal sequences that share a common segment.
(a) If the shared segment is{e}, then e ∈ F and because of the definition

of φ, H contains an outgoing edge fromx. Because{e} and F′ \ {e} are
two fragments in sequence, all the incident edges tox∗ are inF′, which
contradicts thatH contains an outgoing edge fromx.

(b) Let F \ F′ = {e}, thene ∈ F and because of the definition ofφ, H contains
an incoming edge tox. That edge must be insideF′ ∩ F, the overlapping
segment of the two sequences. It follows that∗x is a boundary node of this
segment inG′. As x∗ is a boundary of that segment, this contradicts the
assumption thatC(G) is biconnected.

(c) Let F′ \ F = {e}. As F does not containe, we haveF = H. As F = H is a
sequence by assumption, some outgoing edge ofx is outsideF (otherwise
we would not be in the top-level ‘otherwise’ case). Call thisedgee0. By
assumptionx∗ is an interior node ofF′. Thene0 must be inF′ \ F, which
contradicts the initial assumption of this subcase.


