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Abstract. A business process is often modeled using some kind of a directed
flow graph, which we call avorkflow graph The Refined Process Structure Tree
(RPST) [1] is a technique for workflow graph parsing, i.e., for digecing the
structure of a workflow graph, which has various applications. In thiepave
provide two improvements to the RPST. First, we propose an alternatiye wa
to compute the RPST that is simpler than the one developed originally [1]. In
particular, the computation reduces to constructingttée of the triconnected
componentsf a workflow graph in the special case when every node has at most
one incoming or at most one outgoing edge. Such graphs occurefrdgun
applications. Secondly, we extend the applicability of the RPST. Originally, the
RPST was applicable only to graphs with a single source and single sink such
that the completed version of the graph is biconnected. We lift both restrictio
Therefore, the RPST is then applicable to arbitrary directed graphstsatavery

node is on a path from some source to some sink. This includes graphs with
multiple sources aridr sinks and disconnected graphs.

1 Introduction

Companies widely use business process modeling for dodingetheir operational
procedures. Business analysts develop process modelscbyndesing business sce-
narios into business activities and defining their logiaadl &&mporal dependencies.
The models are then utilized for communicating, analyzomimizing, and support-
ing execution of individual business cases within or acmspanies. Various mod-
eling notations have been proposed. Many of them, for exaitia Business Process
Modeling Notation (BPMN), Event-driven Process Chains CEPand UML activity
diagrams, are based ovorkflow graphswhich are directed graphs with nodes repre-
senting activities or control decisions, and edges specjfiemporal dependencies.

A workflow graph can be parsed into a hierarchy of subgrapltis avsingle entry
and single exit. Such a subgraph is a logically independdnwsrkflow or subprocess
of the business process. The result of the parsing procéslaparse treewhich is the
containment hierarchy of the subgraphs. The parse treedramig applications, e.g.,
translation between process languages [1-3], control-flod data-flow analysis [4—
7], process comparison and merging [8], process abstref@ip process comprehen-
sion [10], model layout [11], and pattern application ingess modeling [12].
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Vanhatalo, \6lzer, and Koehler [1] proposed a workflow graph parsing riépe,
called theRefined Process Structure TrgRPST), that has a number of desirable prop-
erties: The resulting parse tree is unique aratlular wheremodularmeans that a local
change in the workflow graph only results in a local changéefarse tree. Further-
more, it is finer grained than any known alternative appraashit can be computed in
linear time. The linear time computation is based on the ije@arjan and Valdes [13]
to compute a parse tree based onttimnnected componentd a biconnected graph.

In this paper, we improve the RPST in two ways:

o The original RPST algorithm [1] contains, besides the caiaan of the tricon-
nected components, a post-processing step that is fainiyplkax. In this paper, we
show that the computation can be considerably simplifiednsoducing a pre-
processing step that splits every node of the workflow grajpth more than one
incoming and more than one outgoing edge into two nodes. \&eephat for the
resulting graph, the RPST and the triconnected componeirtside. Furthermore,
we prove that the RPST of the original graph can then be oy a simple post-
processing step. This new approach reduces the implernmengdbrt considerably,
requiring only little more than the computation of the trioected components, of
which an implementation is publicly available [14].

o The original technique [1] is restricted to workflow graphatthave a single source
and a single sink such that adding an edge from the sink todhecs makes the
graph biconnected. This assumption is too restrictive &cfice as many business
process models have multiple sources/andinks, some are not biconnected, and
some are not even connected. In this paper, we show how tih@satibns can be
overcome. The resulting technique can be applied to anyflerigraph such that
each node lies on a path from some source to some sink.

The remainder of the paper is structured as follows: The gsegtion defines the
RPST and provides additional preliminary definitions. S8qtroposes the simplified
algorithm for computing the RPST, and Sect. 4 then genestize algorithm to operate
on workflow graphs of arbitrary structure.

2 Preliminaries

This section presents the preliminary notions: the RPSTifSect. 2.1, and the tri-
connected components of the graph [13, 15] in Sect. 2.2. Yge teethe corresponding
original articles for additional motivation of the defiitis presented in this section.

2.1 The Refined Process Structure Tree

A multi-graph G= (V, E, ¢) consists of two disjoint set¢ andE of nodesandedges
respectively, and a mappidghat assigns to each edge either an ordered pair of nodes,
in which cases is adirected multi-graphor an unordered pair of nodes, in which case
G is anundirected multi-graphA pair of nodes may be connected by more than one
edge (hence the name multi-graph). We assume that the nggpsriixed, so that a
subgraph can be identified with a pai’(E’), whereV’ C V andE’ C E such that each
edge inE’ connects only nodes M’. Let F C E be a set of edge§r = (VE, F) is the
subgraptformed by Fif Vg is the smallest set of nodes such th&t,(F) is a subgraph.
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(@) (b)
Fig. 1. (a) A workflow graph represented in BPMN, (b) the correspondin@ T3implified)

A multi-terminal graph(MTG) is a directed multi-grapl®& that has at least one
source and at least one sink such that each node lies on arpattsbme source to
some sinkG is atwo-terminal graph(TTQ) if it has exactly one source and exactly
one sink. Fig.1(a) shows a workflow graph in BPMN notation Bigd1(b) presents the
corresponding TTG. Note that the activity nodes, @2, etc.) are ignored in the TTG
for the sake of simplicity. We assume for simplicity of thegentation that a TTG has
at least two nodes and two edges.

Let G be an MTG and5g = (Vg, F) be a connected subgraph®fthat is formed
by a setF of edges. A node Vg is interior with respect taGr if it is connected only
to nodes inVg; otherwise it is éboundary nod®f Gg. A boundary nodel of Gg is an
entryof Gg if no incoming edge ofi belongs td- or if all outgoing edges aifi belong to
F. A boundary node of G is anexit of Gg if no outgoing edge of belongs td- or if
all incoming edges of belong toF. F is afragmentof a TTGG if Gg has exactly two
boundary nodes, one entry and one exit. Thgset containing the entry and the exit
node is also called thentry-exit pairof the fragment. A fragment igivial if it only
contains a single edge. Note that every singleton edge farfragment. By definition,
the source of a TTG is an entry to every fragment it belongsitbthe sink of a TTG is
an exit from every fragment it belongs to. Intuitively, capitenters’ the TTG through
the source and ‘exits’ the TTG through the sink. Note alsowearepresent a fragment
as a set of edges rather than as a subgraph.

We say that two fragments F’ arenestedf F C F’ or F’ C F. They aredisjoint
if FnF = 0. If they are neither nested nor disjoint, we say that tbegrlap A
fragment ofG is said to becanonical (or objectivé if it does not overlap with any
other fragment of5. The Refined Process Structure Tree (RPSfT is the set of all
canonical fragments @. It follows that any two canonical fragments are either egst
or disjoint and, hence, they form a hierarchy. This hierarcan be shown as a tree,
where the parent of a canonical fragménts the smallest canonical fragment that
containsF. The root of the tree is the entire graph, the leaves areithal iragments.

Fig.2 exemplifies the RPST. Fig.2(a) shows a TTG and its daabfragments,
where every fragment is formed by edges enclosed in or Extérg) an area denoted
by the dotted border. For example, the canonical fragnienis formed by edges
{b,c,d, e, f}, has interior nodeg¢v, w} and boundary node, x}, with u being an en-
try andx an exit of the fragment. Fig.2(b) visualizes the RPST ase tre
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Fig.2.(a) ATTG and its canonical fragments, (b) the RPST of (a)
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2.2 The Triconnected Components

The fragments of a TTG are closely related tatitsonnected componentahich was
pointed out by Tarjan and Valdes [13]. This relationshiprigc@l for the results that are
obtained later in this paper. Here, we introduce the trieated components in detalil
and we start with some preliminary definitions.

The completed versionf a TTG G, denotedC(G), is the undirected graph that
results from ignoring the direction of all the edges®&nd adding an additional edge
between the source and the sink. The additional edge igidhkzeturn edgeof C(G).
Let G be an undirected multi-grapt is connectedf each pair of nodes is connected
by a pathG is biconnectedf G has no self-loops and if for each triplev, x of nodes,
there is a path fronu to v that does not visik. If a nodex witnesses thaG is not
biconnected, i.e., there exist nodew such thatx is on every path betweamandyv,
thenx s called aseparation pointf G. G is triconnectedf for each quadruple, v, X, y
of nodes, there is a path fromto v that visits neithex nory. A pair {x, y} witnessing
thatG is not triconnected is called separation pairof G, i.e., there exist nodesg v
such that every path fromnto v visits eitherx ory.

The TTG in Fig.1(b) is connected, but not biconnected; ttaeso, x, y, andzare all
separation points. Fig.3(a) shows the completed ves{@) of the TTG from Fig.1(b),
wherer is the return edge. The completed version is biconnecteddiuticonnected;
{u, x} and{x, z} are two of many separation pairs©G).

Fragments are strongly related to triconnectivity and ssjmmn pairs. Note that the
entry-exit-paifu, x} of fragmentT 1 in Fig.2(a) is also a separation pair of its completed
version in Fig.3(a). In fact, each entry-exit pair of a nomidl fragment of a TTGG is
a separation pair a(G).

An (undirected) graph that is not connected can be uniquatiitioned intocon-
nected componentse., maximal connected subgraphs. A connected graplistimat
biconnected can be uniquely decomposed bitmnnected componenise., maximal
biconnected subgraphs. The biconnected components cdtdiaad by splitting the
graph into multiple subgraphs at each separation pointaiee of the relationship of
fragments to triconnectivity, we are interested to decosep@ograph into unique tricon-
nected components. That decomposition is explained ineimainder of this section.

Let G be a biconnected multi-graph angv be two nodes o6. A separation class
w.Lt. U Vvis a maximal se§ of edges such that any two edgesSrare connected by a
path that visits neithew norv except as a start or end point. If there is a partition of all
edges ofs into two sets, E; such that both sets contain more than one edge and each
separation class w.rt, v is contained in either of these sets, we ¢ajV} a split pair.
We can thersplit the graph into two parts w.r.t. the parametEgsE; andu, v: To this
end, we add a fresh edgdetweeru andv to the graph, which is called\artual edge

20520
(b) (d)

Fig. 3. The completed version of the TTG from Fig.1(b) and its triconnected cots: (a) The
completed version, (b) a polygon, (c) a rigid component, and (d) d bon
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@ (b) (©) (d)
Fig. 4. (a) A split of a hexagon from Fig.3(b), (b)-(c) a split of a tetragat),& split of a bond

The graphs formed by the sdig U {€} andE; U {e} are the obtainedplit graphsof the
performed split operation. A virtual edge is visualized lyashed line.

For an example of a split operation, consider the hexagorngr3¢). Note that it
already contains virtual edges, which are the result ofiptsvsplits. The hexagon can
be split along the split pain, z using the set&; = {k,r,a}, E; = {m,g,1}. This results
in two tetragons, which are shown in Fig.4(a).

It may be possible to split the obtained split graphs further, into smaller split
graphs, possibly w.r.t. afierent split pair. A split graph is calledsplit componenif it
cannot be split further. Special split graphs poé/gonsandbonds A polygonis a graph
that hak > 3 nodes and edges such that all nodes and edges are contained in a cycle,
cf., Fig.3(b). Abondconsists of 2 nodes ard> 2 edges between them, cf., Fig.3(d).
Each split component is eithetrgangle, i.e., a polygon with three nodestriple bond
i.e., a bond with three edges, osianpletriconnected graph, whesimplemeans that no
pair of nodes is connected by more than one edge [15]. If acgptiponent is the latter,
we also call it arigid component. Fig.3(c) shows an example of a rigid component,
whereas the split graphs shown in Fig.3(b) and Fig.3(d) atesplit components as
they can be split further.

The set of split components that can be derived from a bictedemulti-graph is
not unique. To see that, we consider polygons and bondsnBtarice, a tetragon, cf.,
Fig.4(a), can be split along a diagonal into two split gragbspending on the choice
of the diagonal, two dierent sets of split components are obtained. Fig.4(b) sboes
of the two possibilities for splitting the tetragon given the left in Fig.4(a). Similarly,
a bond with more than three edges, cf., Fig.3(d), can beigpitwo bonds in several
ways, depending on the choice Bf and E,. One possibility to split the bond from
Fig.3(d) is shown in Fig.4(d). A set of split components foe tgraph in Fig.3(a) is
given by the graphs in Figs.3(c), 4(b), 4(c), and 4(d).

The inverse of a split operation is calledn@rgeoperation. Two split graphs formed
by edgess andEj, respectively, that share a virtual edgjgetween a paiu, v of nodes
can be merged, which results in the graph formed by theEget (E;) \ {e} of edges.

If we start with a set of split components Gf and then iteratively merge a polygon
with a polygon and a bond with a bond until no more such merggngossible, we
obtain the uniquériconnected componentsf G. Because a merge operation is the
inverse of a split operation, we can also obtain the tricatetecomponents by suitable
split operations only: Let be asplit graph decompositionf G, i.e., a set of split
graphs recursively derived fro@. A polygonP € ¥ is maximalw.r.t. € if there is
no other polygon irg” that shares a virtual edge with A bondB € % is maximal
w.r.t. ¥ if there is no other bond if¥ that shares a virtual edge with ¢ is a set of
thetriconnected componentds G if each member o is either a maximal polygon, a
maximal bond, or a rigid split component. The set of the tritected components 6f
exists and is unique, cf., [15].
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Fig.5. (@) A TTG and its triconnected component subgraphs, (b) the tree dfitomnected
components of (a)

The graphs in Fig.4(c) can be merged along the virtual gd@ée obtained tetragon
can be merged with the triangles in Fig.4(b) along the virtalgesn ando to obtain
the maximal polygon from Fig.3(b). Figs.3(b), 3(c), and)XHdow all the triconnected
components of the graph from Fig.3(a): Fig.3(d) is a maxibwadd, which is obtained
by merging the bonds in Fig.4(d), and Fig.3(c) is a rigid comgnt.

Any split graph decomposition can be arranged in a tree: fBeartodes are the split
graphs. Two split graphs are connected in a tree if they shaigual edge. The root
of the tree is the split graph that contains the return edpetrée of the triconnected
componentsf G is the tree derived in this way from its triconnected compuse

Let C be a triconnected component of graBhLet F be the set of all edges &
that appear irC or some descendant 6fin the tree of the triconnected components.
The graph formed b¥ is called thericonnected component subgragérived fromC.

Fig.5 shows the tree of the triconnected components. Irb&y. the triconnected
component subgraphs of the workflow graph are visualizesly ttorrespond to the
triconnected components from Fig.3. Each triconnectedoomant subgraph is formed
by edges enclosed in or intersecting a region with the dditeder, e.g., all the graph
edges forP1 are derived from the component given in Fig.3(b). Fig.&(tvanges the
triconnected components in a tree. The root of the treenioeleP1, corresponds to the
triconnected component that contains the return edijete the diference between the
tree of the triconnected components in Fig.5 and the RPSTgid F

3 Simplified Computation of the Refined Process Structure Tre

In this section, we show how the RPST computation can be gistbcompared with
the original algorithm. In Sect. 3.1, we discuss the RPSTTd®3 in which every node
has at most one incoming or at most one outgoing edge. Sucls Bféscommon in
practice. In Sect. 3.2, we address the general case of th& R&8putation of any
TTG whose completed version is biconnected.

3.1 The RPST of Normalized TTGs

We call a TTGnormalizedif every node has at most one incoming or at most one
outgoing edge. In this section, we show that for normaliz&¢3, the RPST compu-
tation reduces to computing the tree of the triconnectedpoorents. In other words,
each canonical fragment corresponds to a triconnected @oamp subgraph and each
triconnected component subgraph corresponds to a cahémaigaent.

Let C(G) be the completed version of a TTG. A paixt,y} of nodes is called a
boundary pairif there are at least two separation classes Wx,t/}. A separation class
is proper if it does not contain the return edge. The boundary paix} in Fig.3(a)
generates two separation classes. The first contains tleslgdgd, e, f and is therefore
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proper, whereas the second contains all other edges of éph @gnd is therefore not
proper. Fragments are strongly related to proper separatasses. To describe that
relationship, we introduce the notion osaparation component

Definition 1 (Separation component)Let {x,y} be a boundary pair aZ(G). A sepa-
ration componeniv.r.t. {x, y} is the union of one or more proper separation classes w.r.t.

{x,y}.

The bond from Fig.3(d) without the virtual edges a separation component w.(y, z}
of the completed version of the TTG from Fig.3(a). It is theamof the three proper
separation classefh}, {i}, and{j}.

We know that the entry-exit paii, y} of a fragment is a boundary pair & and
that the fragment is aeparation componemt.r.t. {x,y} [1]. Furthermore, it follows
from the construction of the triconnected components thahdriconnected compo-
nent subgraph is a separation component. Polyvyanyy eflablserved that every
triconnected component subgraph of a normalized TTG isgarfeant. For normalized
TTGs, we can extend this observation to a full charactedraif fragments in terms of
separation components.

Lemma 1. Let F be a set of edges of a normalized TTG. F is a separatiorpooent
if and only if F is a fragment.

Proof. For (=), let {u, v} be the boundary pair & and lete be an edge ifr. As the
return edge is not iifr, it is in a different separation class w.{t, v} thane. Consider a
simple directed path from the source to the sink of the graphdontain. It follows
that the path contains one of the nodasv} beforee and one afteg; otherwise the
separation class @ would contain the return edge. Let, without loss of gengrali
be the former node andthe latter. It follows thau has an incoming edge outsidfe
and an outgoing edge inside andv has an incoming edge insideand an outgoing
edge outsid€&. Based on the assumption that the TTG is normalized, it isstoaight-
forward to establish that is an entry ands is an exit of F. Furthermore, there is no
other boundary node besidesaindv because that would contradict the definition of a
separation class. Hendg,is a fragment.

The direction &) is Theorem 2 in [1]. O

It turns out that the set of triconnected component subgrapta normalized TTG is
exactly the set of all its canonical fragments and, thu$)esRPST of the TTG. Before
we prove the statement, we give two auxiliary lemmas whish by themselves deliver
interesting insights into separation components of a nize®T TG and their relations.

Lemma 2. If F is a separation component and & triconnected component subgraph,
then F and F do not overlap.

Proof. If F contains only a single edge or the entire graph, the clairivialt Otherwise

F can be split & from the main graph into a split graph. We continue the deasinp
tion until we reach a set of split components. Those can tznged in a tree (of split
components) as described abovecorresponds to a subgraph of this tree, i.e., a subtree
represents exactly the edgedofOn the other hand;’ also corresponds to a subtree of
the tree of split components because the triconnected coemp®are obtained by merg-
ing split components, i.e., by collapsing parts of the tresptit components. SincE
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andF’ both correspond to subtrees of the same tree, they do ndapver O

It follows from Lemma 2 that triconnected component subgsago not overlap. We
show now that for a separation component which is stricthtaimed in a triconnected
component subgraph, there always exists another sepa@inponent contained in
the same triconnected component subgraph that overlapstwit

Lemma 3. If F is a separation component that is not a triconnected congmt sub-
graph, then there exists a separation componénskch that F and Foverlap.

Proof. Consider a split graph decomposition that cont&nf F is not a triconnected
component subgraph, thénand the parent df are either bonds w.r.t. the same bound-
ary pair or polygons. In both cases, it is easy to display alwpolygon, respectively,
that overlaps with-. O

We are now ready to prove the main proposition of this section

Theorem 1. Let F be a set of edges of a normalized TTG. F is a canonicahiey if
and only if F is a triconnected component subgraph.

Proof.

= LetF be a canonical fragment. We want to show thés a triconnected component
subgraph. Because of LemmaF.js a separation component.Hfis not a tricon-
nected component subgraph, then there exists, becausenmh& 8, a separation
component’ that overlaps with-. Because of Lemma E’ is a fragment, which
contradicts- being canonical.

< LetF be atriconnected component subgraph. We want to showrtised canonical
fragment. Because of LemmaR,is a fragment. LeF’ be any fragment. Because
of Lemma 1,F’ is a separation component. Because of Lemnfa&ndF’ do not
overlap. Hencef: is a canonical fragment. O

Fornormalized TTGs, Theorem 1impliesthat 7"~ X7 PI°
the tree of the triconnected components and
the RPST coincide, i.e., both deliver the same (s)
decomposition on the set of edges of the TTG.. : : :
Fig.6(a) shows a normalized TTG and its tri- “......... oo .-
connected component subgraphs. The TTG is (@)

formed by a subset of edges of the Workﬂovl\éig 6.(a) ATTG and s triconnected com
graph from Fig.1(b). The triconnected com- 2* ~* ;
ponent subgraphs are also all the canonical"e subgraphs, (b) the RPST of (a)
fragments of the TTG. Therefore, the RPST of the workflow grfapm Fig.6(a), which
is given in Fig.6(b), can be computed by constructing the trithe triconnected com-
ponents of the workflow graph.

3.2 The RPST of General TTGs

We now show how to compute the RPST of an arbitrary TTG whosgpteted version

is biconnected. To do so, we normalize the TTG by splittingesthat have more
than one incoming and more than one outgoing edge into twesidfe then compute
the RPST of the normalized TTG as in Sect. 3.1. Finally, wgeatdahe RPST of the
normalized TTG onto the original one and obtain the RPST ebifiginal TTG.
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Fig. 7. (a) Node-splitting, (b) a TTG, and (c) the normalized version of (b)

A single node-splitting is sketched in Fig.7(a). For insg&yif the splitting is applied
to nodeu of the graph from Fig.7(b), it results in the new graph giverrig.7(c) with
three fresh elements: nodesandus, and edgee. This is the only applicable splitting
in the example. Hence, the resulting graph is normalizedwandall it thenormalized
versionof the TTG. The procedure can be formalized as follows.

Definition 2 (Node-splitting). Let G = (V, E, ) be a directed multi-graph ande V

a node ofG. A splitting of x is applicableif x has more than one incoming and more
than one outgoing edge. The application results in a g@pk (V’,E’, '), where
V' = (V\ {X}) U{xx,xx}, EZ = E U {e}, wherexx and x« are fresh nodes anglis a
fresh edge, and’ is such that’(e) = (xx, xx). In addition, f € E,¢(f) = (y,2) and
¢'(f) = (y,Z) implies thaty’ = x« if y = x, and otherwisg’ = y; andZ = «xif z = X,
and otherwise = z

Splitting is applicable if and only if the graph is not noriimal. It is not dfficult to see
that the order of dferent splittings does not influence the final result and efloee, we
indeed get a normal form by applying all applicable splgtnn any order.

After normalization, we proceed by computing the tree ofttimnnected compo-
nents of the graph. As we know from Sect. 3.1, the tree coésoidth the RPST of the
normalized graph. This tree can be projected onto the @igjraph by deleting all the
edges introduced during node-splittings. We will see Ittat this projection preserves
the fragments. However,the deletion of the edges may riesinigments which have a
single child fragment. This means that twdéfdient fragments of the normalized graph
project onto the same fragment of the original graph. We tifesn the tree by deleting
redundant occurrences of such fragments. Consequerdlgrly child fragment of a
redundant fragment becomes a child of the parent of the dadhrfragment, or the
root of the tree if the redundant fragment has no parent. €keltris the RPST of the
original graph. Alg. 1 details again the sequence of thesesst

Algorithm 1 Simplified computation of the RPST
RPST(Directed multi-graph G = (V, E, ¢))

1.G' = (V/,E, ) is the normalized version @&

2. T’ is the tree of the triconnected component&of
3.T is T’ without trivial fragments irE’\E

4.Ris T without redundant fragments

5.return R// the RPST of G

We exemplify Alg. 1 in Fig.8 and Fig.9 by computing the RPSTtloé TTG from
Fig.8(a). Fig.8(a) shows the triconnected component sigigP1 andB1 of the TTG,
whereas Fig.8(b) shows the corresponding tree of the miscted components. The
TTG is not normalized: Nodesandz are incident with multiple incoming and multiple
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@) (b) (©

Fig.8.(a) ATTG and its triconnected component subgraphs, (b) the tree tf¢cbenected com-
ponents of (a), and (c) the normalized version of (a) and its tricondecimponent subgraphs

outgoing edges, and all the triconnected component subgrapthe TTG are frag-
ments. Fig.8(c) shows the normalized version of the TTG fFigi8(a); it is obtained
by splitting nodesy andz, in any order. The normalization introduces edgasdmto
the TTG. The tree of the triconnected components of the niiwethversion consists of
four triconnected componentBl, B1, P2, andB2 shown in Fig.8(c). It follows from
Lemma 1 that they are all fragments.

Fig.9(a) shows the tree of the triconnected componentseohtitmalized version
from Fig.8(c). Because of Theorem 1, the tree is the RPSTeafithhmalized version. In
Fig.9(b), one can see the RPST without trivial fragmentscivborrespond to the edges
I andm. Note thatP2 now specifies the same set of edges of the TT82ag herefore,
we omit P2, which is redundant, to obtain the tree given in Fig.9(d)isTiree is the
RPST of the original TTG from Fig.8(a). Fig.9(d) visualizée TTG again together
with its canonical fragments. Please note that Alg. 1, in garnson with the tricon-
nected decomposition shown in Fig.8(a) and Fig.8(b), axtditly discovered canonical
fragmentB2. P1, B1, andB2 are all the canonical fragments of the TTG.

To show that we indeed obtain the RPST of the original graghhave to show
that (i) each canonical fragment of the normalized versimjegts onto a canonical
fragment of the original graph or onto the empty set, anddfigach canonical fragment
of the original graph, there is a canonical fragment of themadized version that is
projected onto it. We establish these properties for a singlde-splitting step. The
claim then follows by induction.

Consider a single node-splitting step transforming a gi@phto G’, let x be the
node that is split into nodes< andx«, and lete be the edge that is added between
andxx. We define the following mappings for the next lemma:

1. A mappingy maps a seF of edges ofG’ to a sety(F) of edges ofG by y/(F) =
F\{e}.

O day I

I\ B §BI K

P2iJ IR

VAR N B2/
fip2im B2 I

hi hi

(@) (b) (c) (d)

Fig. 9.(a) The tree of the triconnected components of the TTG from Fig.&(c)hé tree from (a)
without the fresh edgdsandm, (c) the RPST of the TTG from Fig.8(a), and (d) the TTG from
Fig.8(a) and its canonical fragments
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2. A mappingg maps a set of edgés of G to a setp(H) of edges ofG’ by ¢(H) =
H U {e} if H has an incoming edge toas well as an outgoing edge fromand
otherwisep(H) = H.

Now, we claim:

Lemma 4. Let¢, ¢ and e be defined as above. We have:

1. If F # {e} is a fragment of G theny(F) is a fragment of G.
2. If His a fragment of G, thea(H) is a fragment of G
3. If F # {€} is a canonical fragment of Gtheny(F) is a canonical fragment of G.
4. If H is a canonical fragment of G, then there exists a cacainiragment F of G
such thaty(F) = H.
The proof of Lemma 4 is in Appendix A. Lemma 4 and the fact tleathestep in Alg. 1
can be computed in linear time allow us to conclude:

Theorem 2. Alg. 1 computes the RPST of a TTG whose completed versiooos-bi
nected in linear time.

4 Generalization of the Refined Process Structure Tree

So far, the RPST decomposition is restricted to TTGs whos®teted version is bicon-
nected. In practice this is notficient, as a process model may have multiple sources
and sinks, cf., Fig.10(b), may be disconnected or may \@édd&onnectedness assump-
tion. For the latter, consider Fig.10(a). Nodés a separation point of the completed
version of the graph as its deletion separates the nodesthlgth al from the rest of
the graph. Hence, the completed version is not biconnekitee. that process modeling
languages such as BPMN and EPC do not impose such strudtnitations. In fact, a
test of the SAP reference model [16], a collection of indakprocess models given as
EPCs, showed that more than 80 percent of the models viateefthe restrictions.

%

(b)
Fig. 10.A workflow graph (a) whose completed versiomi biconnected, (b) has multiple sinks

In this section, we propose a way to decompose any MTG. Thutses this section
are also described in detail in a thesis [17]. We start by oigpasing arbitrary TTGs.

4.1 The RPST of TTGs

Fig.11(a) shows the TTG that corresponds to the process Inmoéigy.10(a). As we
explained above, its completed version is not biconnectediise nodeis a separation
point. Note thatu has multiple incoming as well as multiple outgoing edgeseriZv
separation point has this property:

Lemmab. Let G be a TTG. Every separation point of&) has more than one incom-
ing and more than one outgoing edge in G.
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(b)

Fig.11. (a) A TTG whose completed version ii®t biconnected, (b) the RPST of (a), (c) the
normalization of (a), and (d) the RPST of (c)

Proof. A sourcesand a sink of G are in the same biconnected componert(®) as
they are connected i@ and, therefore, biconnected@{G) after introducing the return
edge. Moreover, it is easy to see t46) is connected withous ort and, hences and
t are not separation points 6{G). Let x, without loss of generality, be some separation
point of C(G) that results in a se® of biconnected components. et B, without loss
of generality, be a biconnected component induced tyat does not contaia andt.
Assumey is a node which belongs to As every node of G is on a path froato t,
thenx is on every path fronsto y and fromy tot. A path fromstoy implies thatx has
an incoming edge that does not belondtand an outgoing edge that belonggtdA
path fromy to t implies thatx has an incoming edge that belong$tand an outgoing
edge that does not belongltoHence, the claim holds.

If b consists of a single edge, it is an incoming and an outgoing @dx. Every
path fromsto t throughx also contains two edges incident withan incoming and an
outgoing, which do not belong tm Hence, the claim holds. O

It follows that the completed version of the normalizatidriGois biconnected. There-
fore, we can apply Alg. 1 from Sect. 3.2 to decompose an aryiff TG. We call the
resulting decomposition db the RPSTof G. This is a generalization of the previous
definition because i€(G) is already biconnected, we get the RPST as defined previ-
ously. Note that we obtain the same result by splitting ohéydeparation points @,
computing the RPST of the resulting gra@h (in any way), and then projecting the
RPST ofG’ ontoG. As the normalized version and its RPST are unique, it thbovis
from the construction that the RPST of an arbitrary TTG igjuei

Fig.11 shows the RPST of the example, as well as the way inhaihis obtained.
Again, the RPST of the original graph is obtained by delethg edgeh, which was
generated in the node-splitting, and afterwards removiegedundant fragmeiB2.

Figs. 12(a), 12(b), and 12(c) show more examples of decoitgus of TTGS
whose completed versions are not biconnected. Every sphagtatained has either ex-

(d)
Fig. 12.(a)—(c) The RPST of a TTG, and (d) Valdes's parse tree of the Tof fc)
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actly two boundary nodes, one entry and one exit, or exacgybmundary node, which
is bidirectional LetG be a TTG and- be a connected subgraph®fA boundary node
u of F is bidirectionalif there exist an incoming and an outgoing edgeudfside F,
and there exist an incoming and an outgoing edgeaftsideF. Note that control flow
can both enter and ex# throughu.

Valdes [18] has proposed an alternative way to decomposebéreay TTGG. He
proposed to first compute thdconnected componerd§C(G) and then further decom-
pose each biconnected component into its triconnected aoemgs. If we adapt this
idea and compute the RPST of each biconnected compon&{&)f we obtain a root
component that contains all biconnected components adrehijl which in turn have
their RPSTs as subtrees. The result for the graph from Fig).i2shown in Fig.12(d),
which is diferent from the decomposition we propose. Note that thetrbasla com-
ponent that has more than two boundary nodes, B,gand another one having two
boundary nodes that are both bidirectional, é33.Unlike our decomposition, the de-
composition in Fig.12(d) does not reflect the fact that thegonent containing node
w depends on the component that is entered through mode

4.2 The RPST of MTGs

To decompose an arbitrary MTG, we ‘normalize’ an MTG into &y constructing
a unique source and a unique sink as follows.

Definition 3. LetG be an MTG. We construct a gra@i from G as follows.
1. If G has more than one source, a new sowiseadded and for each source nade
of G, an edge fronsto u is added.
2. If G has more than one sink, a new sinis added and for each sink nodef G,
an edge fronvtotis added.
G’ is a TTG, which we call th TG versionof G. Thenormalized version Gof G is
the normalized version @&’.

By normalizing an MTG, we again obtain a TTG whose completexdion is bicon-
nected. The normalized version can be decomposed with tB& Rfad the decomposi-
tion can be projected onto the original MTG through Alg. 1eTksult that is obtained
from applying Alg. 1 to the normalized version of an MT&is called theRPSTof G.
The RPST of an MTG is unique.

Fig.13 shows (a) an MT®, (b) the RPST o6, (c) the TTG versiors’ of G, and
(d) the RPST of5’. The RPST of is derived from the RPST @&’ with Alg. 1.

Note that for an MTG, the subgraphs formed by the decompositiay have more

than two boundary nodes. For example, subgrBphn Fig.13(a) has two sources
oI
{BI ‘B2
IN N
P2i i P3i P4 DS,
i A
ga hb c‘B3.“fk
ol N
iL6; LP7;
nomn
di ej
@) (b) (©) (d)
Fig. 13.(a) An MTGG, (b) the RPST of5, (c) the TTG versios’ of G, and (d) the RPST d&’




14 Artem Polyvyanyy, Jussi Vanhatalo, and Hagen2ér

/AN
faip2iidej
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P3:iP4;
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bg ch

@) (b) (c) (d)
Fig. 14.(a) A disconnected MT®&, (b) the RPST of5, (c) the TTG versioriG* of G, and (d) the
RPST ofG*
andv as entries, and an exit. SubgraphB2 has an entryv, and three sinks as exits.

SubgraphP1 two sources as entries, and three sinks as exits.

An RPST-formed subgraph is not necessarily a connectedapibgf an MTG. If
an MTG is disconnected, the root fragment of its RPST is amiothe connected
components of the MTG. For example, Fig.14 shows an exanif a disconnected
MTG G, (b) the RPST ofG, (c) the TTG (and normalized) versid@si of G, and (d)
the RPST ofG*. Note that every connected component of the MTG always besan
separate component of the RPST decomposition.

Fig.15 shows the RPST-formed fragments of the workflow gsapkroduced in
Fig.10. We can use these fragments to translate BPMN diagirm BPEL processes.
We have labeled the fragments according to the BPEL bloakg ¢brrespond to. For
examplesequence B Fig.15(a) is a sequence ofileloop and the activita2. These

@) (b)
Fig. 15.The RPST-formed fragments of the workflow graphs introduced irlBig.

5 Conclusion

We simplified the theory for workflow graph parsing into se@ntry-single-exit frag-
ments through use of normalized TTGs. This leads to a simogliin of the RPST
parsing algorithm and its implementation. The implemeataéffort is essentially re-
duced to the computation of the triconnected componentshath an implementation
is publicly available [14]. In fact, in many applicationgdes have either a single in-
coming or a single outgoing edge, in which case no pre- antppmsessing steps are
required. Together with our previous results [1, 17], weehawarsing technique that
produces a unigue and modular decomposition in linear tinaesimple way. The result
has a simple characterization in terms of canonical fragsaen

In the second part of the paper, we have shown how the RPShitgEhgives rise to
a decomposition of any workflow graph that may occur in pcactihe only remaining
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assumption is that each node must be on a path from some gowsome sink.

We have implemented the simplified RPST computation, asqzexp in this pa-
per, and tested its functionally against the implementatibthe original RPST tech-
nique [1] on the SAP reference model [16], which consists@f EPC models. The
models were transformed to TTGs that range in size from 2 Soetiges, with the aver-
age of 287 edges in one TTG. As it was discovered during evaluatianptbdels have
on average 16 non-trivial fragments, ranging from the minimum of 1 fragm to the
maximum of 132 fragments in one model.
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A Appendix — Proofs — NOT TO BE INCLUDED IN THE
FINAL PUBLISHED VERSION OF THIS PAPER

Note. The proofs in this appendix are too long to be included in thelfpublished
version of this paper, but we will make them available sejgéiraas a technical report.
Nevertheless, we provide them for the reviewers of this sefion as an appendix.

Consider a single node-splitting step transforming a gi@phto G’, let x be the
node that is split into nodes< andx«, and lete be the edge that is added between
andx:. We define the following mappings for the next lemma:

1. A mappingy maps a seF of edges ofG’ to a sety(F) of edges ofG by y(F) =
F\ {e}.

2. A mappingg maps a set of edgéd of G to a setp(H) of edges ofG’ by ¢(H) =
H U {e} if H has an incoming edge toas well as an outgoing edge froxpand
otherwisep(H) = H.

Now, we claim:
Lemma 4. Let¢ andy be as defined above. We have:

1. If F # {e} is a fragment of G theny(F) is a fragment of G.

2. If His a fragment of G, thep(H) is a fragment of G

3. If F # {e} is a canonical fragment of Gtheny(F) is a canonical fragment of G.

4. If H is a canonical fragment of G, then there exists a cacalnfragment F of G
such thaty(F) = H.

Proof. We prove each part separately.

1.,2. The proofs of these parts are derived by straightfahapplications of the defi-
nitions.

3. Suppos&(F) are not canonical. Then there exist a fragmdraf G that overlaps
with ¢(F). We know from part 2 of this lemma thatH) is a fragment, and from
(F) € F andH ¢ ¢(H) it follows thatF and¢(H) overlap, which contradicts our
assumption thaf is canonical.

4. LetS; andS; be two fragments o6 such that the exit of S; is the entry ofS,.

If S=S;US;is afragment, we say th&is asequencandS; andS, are called
segment®f S. We also say tha$; and S, arein sequencelt follows from the
biconnectedness @(G) that the entry ofS; and the exit ofS, are then distinct.
Furthermore§ is a fragment if and only if all nodes that are incidentvtzelong to
S. A sequences is maximalif S is not a segment of another sequence. We know
that a sequence is a canonical fragment if and only if it isimak[1].

We define the fragmer# as follows. IfH is a sequence—hence maximal—and
is a boundary node dfl such that all outgoing edges or all incoming edgex affe
insideH, then we seF = H U {g}. Otherwise, we sef = ¢(H). To show thaf is

a canonical fragment, we consider both cases separately.

Let H be a maximal sequence and Jetwithout loss of generality, be an entry of
H such that all outgoing edges »fare insideH. (The exit case is analogous.) We
distinguish two cases.
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1. Anincoming edge okis in H. Call this edge. Then the sequendé can be
divided into two segmentS;, S, such thaky € S;. Theng(S1) and¢(S,) are
both fragments. Moreover they are in sequence, th&t is¢(S1) U ¢(S2) is a
sequencel- must be a maximal sequence because othetig@uld not be a
maximal sequence. Therefofejs a canonical fragment.

2. No incoming edge ok is in H. As all outgoing edges of are inH, H is in
sequence with the trivial fragmefd} in G’. BecauseH is a maximal sequence
of G, F = H U {g} is a maximal sequence &f .

Now we consider the ‘otherwise’ case, i.E.,= ¢(H). We know from part 2 of
this lemma thaf is a fragment. Suppose thBtwere not canonical. Then, there
is some fragmenE’ of G’ such thatF andF’ overlap. Therefore, none of three
setskF \ F', FnF’  andF’ \ F are empty. Lets call an eddeoriginal if f # e. If

all three set$ \ F’, F n F” andF’ \ F contain an original edge, theth = y(F)
andy/(F’) also overlap, which contradictd being canonical. Therefore, we have
to prove that none of the three s&sg F’, F n F’ andF’ \ F equals{e}. To derive

a contradiction we suppose that this is the case. It folloarsédiately thak must
then be a boundary node bf. We assume without loss of generality thais an
entry ofH.

We know from previous results [1], that there are only two sv@ty which two
fragmentds, F’ can overlap:

1. F andF’ are two non-maximal sequences that share a common segment.

2. F andF’ are separation components w.r.t. the same boundaryyair that
share a common separation class wuty}. (F andF’ are then speciddond
fragmentsn the terminology of [1].)

We consider these two cases now separately.

2. Consider the cade N F’ = {e}. The boundary pair ofe} is {xx, x«}, which is
therefore also the common boundary paiFandF’. It follows thatx is a sep-
aration point ofC(G), contradicting our assumption th@{G) is biconnected.
The other two cases use exactly the same argument.

1. LetF andF’ be two non-maximal sequences that share a common segment.
(a) If the shared segment {s}, thene € F and because of the definition

of ¢, H contains an outgoing edge frorm Becausde} andF’ \ {e} are
two fragments in sequence, all the incident edges«tare inF’, which
contradicts thaH contains an outgoing edge froxn

(b) LetF \ F’ = {e}, thene € F and because of the definition f H contains
an incoming edge ta. That edge must be insid€ N F, the overlapping
segment of the two sequences. It follows thats a boundary node of this
segment inG’. As xx is a boundary of that segment, this contradicts the
assumption that(G) is biconnected.

(c) LetF’\ F = {e}. AsF does not contaie, we haveF = H. AsF = Hisa
sequence by assumption, some outgoing edge®butsideF (otherwise
we would not be in the top-level ‘otherwise’ case). Call tadgeey. By
assumptiorns is an interior node oF’. Theney must be inF’ \ F, which
contradicts the initial assumption of this subcase.



