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Abstract

Identity Mixer is an anonymous credential system developed at IBM that allows users for
instance to prove that they are over 18 years old without revealing their name and birthdate.
This privacy-friendly technology is realized using zero-knowledge proofs. We describe a formal
model of Identity Mixer that is well-suited for automated protocol verification tools in the
spirit of black-box cryptography models. We also describe the translation from the credential
requirement specification language CARL to an Identity Mixer proof specification.

1 Introduction

Due to advancements in processing speed and processes, mass storage technologies, and communica-
tion bandwidth caused by the ICT revolution, it is technically easy to store and combine personal
data of citizens, customers, and patients, at a previously unprecedented scale. This situation is
aggravated by users losing control over their data, as it is not clear who receives and stores which
information and how organizations handle this information, particularly to whom they pass it on.
While on the one hand privacy is very important, on the other hand many transactions require
authentication, authorization, and accountability. There is seemingly a partial conflict of goals of
properly identifying users while protecting their privacy.

Identity Mixer is an anonymous credential system that developed by IBM Research in Zürich.
The system’s main goal is to provide strong authentication of users while protecting the privacy of
the users by minimizing the amount of user information revealed in an interaction. For instance,
using Identity Mixer credentials, a user is able to prove to be an employee of a certain company
or being at least 18 years old—without revealing their name or their precise age. Therefore, the
Identity Mixer allows users to tightly control which and how much information they release to
whom. The anonymity can be revoked by a trusted third party in the case a user misbehaves. A
comprehensive description of an early version of idemix is given in [10]. Over time, the Identity
Mixer system has been extended with several features [7, 12, 14, 2, 8, 13, 9].

The Identity Mixer system achieves the seemingly contradictory combination of secure authen-
tication and privacy by using non-interactive zero-knowledge proofs. The point of this paper is to
formalize Identity Mixer, and in particular zero-knowledge proofs, in a feasible way for automated
protocol verification tools.
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Contributions The first contribution of this paper is a model of zero-knowledge proofs that is
feasible for automated verification. In fact, the specifications (except for privacy goals, which are
not considered in this paper) can directly be run in existing tools without requiring extensions.
The second contribution is a formalization of Identity Mixer in this abstract model, both allowing
for verification, and also as an overview that abstracts from the underlying cryptography and some
implementation details. A vision here is to design a model that can be turned into a correct (though
maybe not optimized) implementation by plugging in appropriate cryptographic tools; in fact, first
analysis suggests that this paper provides a first step to this idea. In order to show one aspect of the
relevance of our formalization, we give a translation from a large fragment of CARL [11], a formal
credential requirements language, to Identity Mixer proof specifications of our model and thus 1)
provide an interface to a high-level, easy-to-use policy specification language and 2) demonstrate
that many features of CARL can be indeed realized using Identity Mixer. While in this paper we
deal in detail with 1), we only informally show 2) leaving for future work a formal proof that our
realization agrees with the semantics of CARL.

Outline This paper is organized as follows. In section 2, we summarize the standard black-box
cryptography models of security protocols. In section 3, we describe our black-box style model of
zero-knowledge protocols. In section 4, the main section, we describe our model of Identity Mixer.
In section 5, we describe how we translate CARL into the proof specifications of our Identity Mixer
model. In section 6 we conclude with an overview of experiments, discuss related work, and give
an outlook on future work.

2 Preliminaries

Black-Box Cryptography Models We assume that the reader is familiar with Dolev-Yao style
protocol models, see for instance [18]. We will denote deduction rules for the intruder similar to
the following one for symmetric encryption:

k ∈ DY(M) m ∈ DY(M)
{|m|}k ∈ DY(M)

This expresses that an intruder whose knowledge is characterized by a set of messages M , can
take any derivable terms k and m, and derive the symmetric encryption {|m|}k. What the intruder
can derive, DY(M), is the least closed set that satisfies all considered deduction rules. We will,
in the body of the paper, introduce further function symbols representing several operations in
zero-knowledge proofs and similarly give intruder deduction rules for them. We will also make use
of the following generalization to simplify the presentation. We consider a set of public function
symbols Σp, containing for instance the above {| · |}·, and define the generic rule (subsuming the
above example):

t1 ∈ DY(M) . . . tn ∈ DY(M)
f(t1, . . . , tn) ∈ DY(M)

f ∈ Σp

We assume that there can be several intruders that collaborate (which can be regarded as one
intruder acting under different dishonest identities). The model includes for instance that the
machines of an actually honest organization were compromised by the intruder (which may not
be immediately obvious) who can now control the organization’s machines at his will. We do not
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consider several intruders that attack each other as (1) the overall is to protect and ensure the
guarantees of the honest participants and (2) from that perspective the collusion of all dishonest
participants is the worst case. We denote with a predicate dishonest(U) that participant U is
dishonest.

Also it is standard to model a communication medium that is entirely controlled by the intruder
(which is again the worst case). Our model is parametrized over different types of channels that
can be used, but this is mainly important for privacy properties that we do not consider in this
paper.

Honest Agents and Pattern matching The behavior of honest agents can be described by
various formalisms such as process calculi or set rewriting as in the Intermediate Format of the
AVISPA platform [3]. A property that is important for this paper is the fact that the most common
way to describe what messages an agent can receive at a particular point of the protocol execution
by a pattern, i.e. a message term with variables. The variables can be substituted for an arbitrary
value (possibly with a type restriction). For instance, a message transmission like

A→ B : {|N, {|M |}KAS
|}KAB

where KAB is a shared key of A and B, KAS is the shared key of A and a server S and N and M
are some nonces, will have the pattern {|N,X|}KAB

on the receiver side for a variable X, because B
does not have the shared key and cannot check the format of that part of the message. In fact, we
will use Alice and Bob notation for the depiction of the Identity Mixer protocols in the following
and refer to [19] for further details.

3 Modeling Zero Knowledge

3.1 Communication

Many zero-knowledge protocols are concerned with proving authentication and they do in fact not
make much sense when assuming insecure channels as it is standard in protocol analysis models.
Vice versa, we also cannot assume secure channels as that would assume authentication already.
One may rather think of a TLS channel without client authentication or a card in a card reader.
For a formal model of such channels see [21].

Identity Mixer, in contrast, can indeed be run over insecure channels: the basic authentication
properties (in terms of ownership of certain credentials) should indeed be satisfied. However, when
doing that, we immediately loose many of the privacy guarantees, as all actions become observable
for an intruder who controls the network.

While we do not consider privacy goals here, we note that it is relatively easy to model a channel
that protects the user’s privacy in the formal black-box model: the intruder has no observation of
any communication that he is not involved in (i.e. as an honest client or server).1

For simplicity, we will describe all protocols in the following over insecure channels.

3.2 Non-interactive Zero Knowledge

For a long time, zero knowledge proofs have been considered as a concept that is infeasible in
practice although theoretically appealing. (In particular a large number of interactions between

1Possible realizations of these channels can be onion-routing or when using Identity Mixer on smart cards.
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two parties is an obstacle for practical applications.) However, non-interactive zero-knowledge
proofs are increasingly being used to realize privacy-friendly systems such as Identity Mixer.

We consider here how they can be integrated into our black-box cryptography model, i.e. we
want to consider an intruder who cannot break the cryptography. In particular, we abstract from the
negligible possibility to successfully construct a zero-knowledge proof for terms that one actually
does not know. Like other cryptographic primitives such as symmetric encryption, we model a
non-interactive zero-knowledge proof as an abstract message term that has the following crucial
properties:

• One can compose the term only when knowing the secret that one proves to know.

• From the term, one cannot obtain the secret.

• The term “behaves” like any other message term, in particular, when the intruder sees a
zero-knowledge proof, he is able to replay or forward that term arbitrarily. We discuss this in
more detail below.

• The term identifies what exactly is proved about the secret (and some public values). This
becomes crucial for the model of both honest and dishonest verifiers that we will discuss
shortly.

• The prover can include a statement in the proof that is “signed” by the proof, i.e. the verifier
has (transferable) evidence that the person who performed the zero-knowledge proof made
the statement.

Note that we do not clearly distinguish between proofs of knowledge and proofs of language mem-
bership, in fact most proofs that we will consider are both.

Abstract Operation As in the case of other cryptographic primitives, we use an abstract func-
tion symbol representing the operation of performing a zero-knowledge proof, namely the 4-ary
symbol spk (for “signed proof of knowledge”; this was inspired by the notation of [15]). In the proof
term spk(Sec;Pub;Prop;Stmt), Sec is a list of secret values that the prover knows, Pub is a list of
public values about which something is proved, Prop is (an identifier of) the property of the public
and secret values being proved, and Stmt is a statement being signed by the proof.

As an example, let us consider a classical application of zero-knowledge proofs: a user has a
secret S (may be considered a private key) and a server knows a corresponding value f(S) for a
public function f . The user authenticates itself by proving the knowledge of S without revealing
S. This proof is modeled by the following term here:

spk(S; f(S);φ;Stmt)

where φ is an identifier for the fact that S is a pre-image of f(S). We discuss below the precise
role of this identifier. For now it suffices that every proof that occurs in a system specification has
a unique identifier. The Stmt can be an arbitrary message term that is used together with the
protocol, however, as we discuss below, it should contain certain items.
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Honest Provers and Verifiers As the next part of our model, we need to define how honest
agents deal with spk terms during proving and verifying proofs. As this is basically sending and
receiving a message, respectively, let us consider again how this is done in standard black-box
models for, e.g, symmetric cryptography. Basically, since honest agents always execute the protocol
to the best of their knowledge, the terms that they send and receive reflect the ideal protocol run
except for subterms that they cannot control. In particular, receiving is expressed by a pattern
that describes the set of acceptable messages, where each variable of the pattern can be replaced
by an arbitrary message.

This is in fact the key to modeling zero-knowledge proofs in the formal world: for each zero-
knowledge proof we define a proof pattern, i.e. an spk term with variables that describes the “correct”
proofs that an honest verifier accepts. For the above example of proving the knowledge of a secret
S, this pattern can be

spk(X ; f(X );φ;Stmt) .

X is a variable of the pattern that represents a term that the verifier does not see; here, and in the
following we will use the convention to use calligraphic variable names for such secrets.

Note that in this case the pattern is trivially the same as on the sender’s side. This is not in
general so, because, the sender’s view on a term may be more detailed than the receiver’s one, e.g.
when the sender proves only one of many properties of its knowledge. Since we design our model
such that receivers accept exactly the correct proofs, their pattern must be blind for aspects that are
not shown. In fact, the receiver’s pattern is the crucial part in our model of zero-knowledge proofs.
We thus chose to describe zero-knowledge proofs in Alice-and-Bob notation by making explicit the
term sent and received as follows:

U → O : spk(S; f(S);φ;Stmt)
% spk(X ; f(X );φ;Stmt) | Pub = f(X )

Here, we use the operator % that has become known as the Lowe operator [17]: M%M ′ means that
the message is sent as M by the sender and received as M ′ by the receiver.

There is some subtlety of variable context to discuss. For an authentication, we need to assume
that O knows in advance the public value Pub that belongs to U ’s secret value S, and the zero-
knowledge proof makes only sense if Pub is the same as the public value of the proof, i.e. f(X ) in
O’s view. We need to annotate this here with a side condition.2

While the public values are thus sometimes related to the context of a larger protocol, we
require that the same never holds for secret values, in particular, we do not allow several zero-
knowledge proofs within one protocol that share secret variables. This is to avoid serious mistakes
in modeling, e.g. the receiver requiring the identity of two secrets that cannot be inferred from the
zero-knowledge proofs really.

Dishonest Provers and Verifiers It is crucial that an intruder (or several dishonest agents
controlled by the intruder) can act as normal participants and perform zero-knowledge proofs
about their knowledge, or act as dishonest servers accepting proofs. As it is standard in black-box
cryptography models, the intruder is characterized by a set of rules that express what new messages
he can derive from a given set of messages. For the zero-knowledge proofs we have the following

2In a protocol description on a transition level, such equations can be substituted into the rule, so that no
equational reasoning has to be performed.
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two rules:
spk(Sec;Pub;Prop;Stmt) ∈ DY(M)
〈Pub, Prop, Stmt〉 ∈ DY(M)

〈Sec, Pub, Prop, Stmt〉 ∈ DY(M)
spk(Sec;Pub;Prop;Stmt) ∈ DY(M)

The first rule tells us that from seeing a zero-knowledge proof, the intruder can learn the public
values, the property proved, and the statement signed—but not the secret values, of course. Note
that we do not need to consider proof verification for the intruder, since honest agents perform only
correct proofs, and since dishonest agents in our model collaborate and do not try to cheat each
other.

The second rule tells us that the intruder can construct spk terms for any subterms that he
knows. This includes many terms that do not make up valid zero-knowledge proofs, i.e., when
the claimed property Prop does not hold for the secret and public values involved. In reality, this
corresponds to the intruder sending nonsensical terms instead of a zero-knowledge proof, that have
the correct basic format, but on which the verification will fail. One may rule out such terms from
our model by specializing the intruder rules, but in fact they do not hurt because honest agents
only accept valid zero-knowledge proofs (and to dishonest agents do not need to be convinced under
the assumption of collaboration).

Proof Identifiers The proof identifiers in the zero-knowledge proofs play the role of identifying
the statement proved about the values involved. A simple example why this statement is an
important parameter of the proof term is the following. In Identity Mixer, a user may show for
instance that he or she is over 18 years old. Another service of a deployed system may give a
reduction on an entry fee if one proves to be over 65. Consider a user U who has shown to be over
18 and who is in fact 70. Obviously, the credential of U in this proof can also be used to prove
that U is over 65. So the over-18 proof must carry the information that it proves only the over-18
property, not the stronger over-65 property. Otherwise there would be the danger to misuse proof
terms for getting more information about a person than actually revealed. For simplicity, we always
write the formula while this is technically difficult in practice for automated tools, where we rather
choose some identifying constant.

Mafia Attacks A Mafia Attack is a classical man-in-the-middle attack against zero-knowledge
proofs for authentication, where a dishonest verifier I tries to use the identity of the prover P
towards another (honest) verifier V , by forwarding every message from P to V and vice-versa. In
the non-interactive zero-knowledge world, I can simply forward the entire proof term from P to
any V at any time. A simple way to prevent this attack is to include in the signed statement Stmt
of an spk term the name of the intended verifier. In fact, in Identity Mixer all proves implicitly
contain the name of the intended verifier.

4 Identity Mixer Formalization

We now step-by-step describe Identity Mixer along with our formalization. We proceed bottom up,
from the smallest units of Identity Mixer to the largest.
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The Identity Mixer system defines two kinds of parties: users and organizations. When a user
enters the system for the first time, it creates a master secret, which it never reveals to any other
party.

Users are known to organizations under pseudonyms and organizations make statements about
users by issuing credentials to the users, knowing them by their pseudonyms. A credential is always
bound to the master secret of the user as well as to its pseudonym.

Master Secret Every user U has a master secret that we denote xU . This master secret is
crucial because each pseudonym and credential in Identity Mixer is based on a master secret and
we define the ownership as knowledge of its master secret. We can model x· as private function
(i.e., the intruder cannot obtain the master secret of a known user). Note however that this is not
a cryptographic function but rather a function introduced by our model. In particular, we cannot
check that the master secret that a user uses, e.g. for creating a pseudonym, is indeed a value of
the form xU for some agent U . Thus, the function x· will never appear in zero-knowledge proof
patterns.

Identity Mixer Pseudonyms Users interact with organizations under pseudonyms. We assume
that users create a fresh pseudonym for every “session” with an organization, where a session is
a sequence of transactions that are supposedly executed by the same pseudonymous user. The
basic idea is, roughly speaking, that two transactions can be linked iff they are based on the same
pseudonym (as far as the revealed information of the transactions does not make them linkable). A
pseudonym is related to the master secret of the user and to the organization that the pseudonym
is used with (thus, the pseudonyms for transactions with different organizations are necessarily
different). A pseudonym has the form:

p(xU , O,R1, R2)

where R1 and R2 are random numbers chosen by the user and the organization when creating the
pseudonym (see subsection 4.1). (As said above, an intruder may use an arbitrary value instead of
the master secret xU for its pseudonyms.)

Identity Mixer Credentials Every organization O that can issue credentials has a public-key
which technically determines the type of credentials τO that O can issue. (An organization that
issues several types of credentials is regarded here simply as a collaboration of organizations that
each issue a single credential type.) A credential type is like a record type in a programming
language: we have a finite set NO = {n1, . . . , nkO

} of fields or attribute names. Each field has a
(basic) type and for simplicity (and realism) we assume they all have the type nonce (other types
like date and string are encoded in a certain way into this data-type). Each element of such a
credential type is thus a function from NO to nonce. Again, we follow the real implementation and
assume a fixed sequence of the attributes, denoted by the function posO from NO to {1, . . . , kO}.
Thus, a credential is basically a pseudonym and a list of nonces signed by an organization O:

sigO(P, V1, . . . , VkO
) .

The function symbol sig has the intruder rules that all contents can be viewed, and the intruder
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can issue credentials under dishonest identities:

sigO(t1, . . . , tn) ∈ DY(M)
〈t1, . . . , tn〉 ∈ DY(M)

〈t1, . . . , tn〉 ∈ DY(M)
sigO(t1, . . . , tn) ∈ DY(M)

dishonest(O)

4.1 Creating Pseudonyms

We now describe the basic protocols of Identity Mixer, first the protocol for a user U to create a
new pseudonym with organization O. Recall that we describe protocols here over standard insecure
channels, while in practice one may better use anonymous channels.

U → O : createNym
O → U : R2

U : note(registered(O, p(xU , O,R1, R2)))
U → O : spk(xU ; p(xU , O,R1, R2);φ;O)

% spk(X ; p(X , O,X1, R2);φ;O)
O : note(registered(p(X , O,X1, R2)))

In the first message, U notifies O that it wants to create a pseudonym. O replies with a fresh
random nonce R2. The user also creates a random nonce R1, and the new pseudonym will be
p(xU , O,R1, R2) where xU is the master secret of the user and p is a function that abstracts from
the concrete cryptographic realization. Note that a dishonest user may take any value instead of
xU , but honest agents will always use their master secret. U notes the pseudonym in its data base
as a pseudonym it has with O (assuming the final step of the protocol works). U transmits the
pseudonym to O as part of a zero-knowledge proof that (1) the pseudonym indeed has the form
p(X , O,X1, R2), in particular containing the name of O and the random number R2 that O has
generated and that (2) U knows the secret X1 behind the pseudonym.

4.2 Issuing Credentials

The next protocol is concerned with issuing a credential. Of course, this makes only sense in a
certain context, namely when a user has (possibly anonymously) proved the ownership of other
credentials. This context is captured by a pseudonym relative to which the credential is issued.
Suppose that the user U known under pseudonym P = p(xU , O,R1, R2) to organization O (where
U views the pseudonym as p(. . .) and O views the pseudonym as P ) has proved itself worthy of
a credential, and the attributes V1, . . . , VkO

of this credential are all determined by this context.
Then we have the following protocol:

U → O : spk(xU ;O, p(xU , O,R1, R2), V1, . . . , VkO
;φ;O)

% spk(X ;O, p(X , O,X1,X2), V1, . . . , VkO
;φ;O) | P = p(X , O,X1,X2)

O : check that the user qualifies
O : note(granted(sigO(p(X , O,X1,X2), V1, . . . , VkO

)))
O → U : sigO(p(X , O,X1,X2), V1, . . . , VkO

)
U : note(granted(sigO(p(xU , O,R1, R2), V1, . . . , VkO

)))
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In the first step, U sends the application for the credential, in form of the values it shall contain,
as part of a zero-knowledge proof that it knows the master-secret behind the pseudonym p(. . .).
O will check whether the user registered by that pseudonym has proved to be eligible for the
concrete credential it asks for. If so, O creates the new credential by signing with its public key the
pseudonym and all the values as transmitted. The server stores the credential in its database and
transmits it to the user, who also stores it.

Note that we have described the issuing protocol in a generic form with lists of arbitrary length;
we cannot directly specify this in specification languages like IF and generically verify it with
automated tools, but will rather consider instantiations of this protocol with concrete credential
types in the automated verification.

Blind Issuing There are several variants, depending on the type of attribute. First, there may
be server-chosen attributes, like a unique serial number. In this case, the protocol is modified in the
obvious way, namely the user not transmitting that value. Second, there may be blind issuing of
some attributes. To that end we have two binary functions blind(·) and unblind(·) with the following
properties:

unblind(X, blind(X,V )) ≈ V
unblind(X, sigO(P, V1, . . . , Vk)) ≈ sigO(P, unblind(X,V1), . . . , unblind(X,Vk))

unblind(X, f(Y )) ≈ f(Y ) for all f /∈ {blind, sig}

The user can then blind some values with a secret before transmitting them to the server and
unblind them as soon as it receives the credential.

Note that this algebraic theory is very difficult to handle within verification tools (due to homo-
morphism). We can easily avoid the algebraic reasoning when given a concrete scenario, including
concrete credential types and fixed blindable fields (i.e. for which the server does not check any
property). Then, we can easily “compile in” the fixed blinding/unblinding scheme into the protocol.
Consider for instance a scenario, where the credential has three fields, of which the first is from the
context, the second is chosen by the user and blindly sent, the third is chosen by the server. Then
we have the following specialization of the above protocol with blinding built-in:

U → O : spk(xU ;O, p(xU , O,R1, R2), V1, blind(X,V2);φ;O)
% spk(X ;O, p(X , O,X1,X2), V1,X3;φ;O)

O : check that the user qualifies, chooseV3

O : note(granted(sigO(p(X , O,X1,X2), V1,X3, V3)))
O → U : sigO(p(X , O,X1,X2), V1,X3, V3)

U : note(granted(sigO(p(xU , O,R1, R2), V1, V2, V3)))

Note that in the last step the stored credential in the view of U is unblinded. While this takes
care of the case of an honest U , we also need a special rule for the dishonest user to unblind its
credentials:

sigO(P, V1, blind(X,V2), V3) ∈ DY(M) X ∈ DY(M)
sigO(P, V1, V2, V3) ∈ DY(M)

4.3 Proof of Ownership

The core protocol of the system is the proof of ownership of one or more credentials with cer-
tain properties, and potentially revealing some values from these credentials. The protocol is
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parametrized over the statement to be proved. We first show the generic formulation and then
show how to instantiate it for several examples.

The protocol is parametrized over a set of patterns, i.e. terms with variables, that specify the
credentials and their properties. These patterns may be different for sender and receiver side, for
instance, above we have xu for the master secret on the sender side and XU on the receiver side.
Precisely, we consider the following set of values as parameters:

• φ a unique identifier for the statement to be proved;

• credential patterns C1, . . . , Ck on the sender side;

• credential patterns C1, . . . , Ck on the receiver side;

• the patterns for the issuers of the credential I1, . . . , Ik; in Identity Mixer, the issuers are never
hidden in proofs, and thus both sides have the same view on them;

• patterns V1, . . . , Vl for revealed values (including verifiable encryptions) on the sender side;

• patterns V1, . . . ,Vl for revealed values on the receiver side;

• PO, the pseudonym under which U is known to O (also identical view on both sides);

• an optional statement S to be signed by the prover with the zero-knowledge proof.

U → O : spk(C1, . . . , Ck, xU ;PO, I1, . . . , Ik, V1, . . . , Vl, ;φ;O,S)
% spk(C1, . . . , Ck,X ;PO, I1, . . . , Ik,V1, . . . ,Vl;φ;O,S)
| PO = p(X , O, . . .) ∧

∧k
i=1 Ci = sigIi

(p(X , . . .), . . .)
O : check that PO is a registered pseudonym
O : safe the entire proof term in PO’s record.

The line following the | symbol thus reflects the built-in check that all credentials are issued by the
expected issuer and with respect to a pseudonym that is based on some master secret X which is
also contained in the pseudonym PO that the user is acting under. Having all credentials bound to
the same pseudonym realizes the consistency property. It ensures, in particular, that participants
(like dishonest servers) cannot use just any credentials they have seen without knowing the master
secret behind them.

Besides these built-in properties, any other proved property is determined by the concrete
application. The most important features of proofs are now discussed by some examples.

Revealing Values Example: showing one credential with 3 attributes and revealing the second
of them, has the following pattern on the receiver side (where XP represents the pseudonym and
Xi the values:

C1 7→ sigI1(XP ,X1,X2,X3) V1 7→ X2

This gives the following concrete receiver-side pattern for the proof:

spk(sigI1(p(X , . . .),X1,X2,X3),X ; p(X , O, . . .), I1,X2;φ;O,S)
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Equality of Attributes Example: proof of ownership for two credentials C1 and C2 with three
attributes each, and showing that the second attribute of C1 equals the first one of C2:

C1 7→ sigI1(XP1 ,X1,X2,X3) C2 7→ sigI2(XP2 ,X2,X ′2,X ′3)

Relations on Attributes We now come to proving properties of credential attributes that are
not revealed, e.g., that one is over 18 years old according to an electronic passport. More concretely,
suppose we have a passport sigI(name, bd, . . .) where name is the bearer’s name, bd is the date of
birth etc. We want to show plusYears(bd, 18) ≤ today where plusYears adds to a date a given
number of years and today is the date of the verification, and ≤ is the comparison on dates.

This is problematic in two regards. First, if we commit to use concrete numbers in the verification
problems, e.g. setting a birthdate to a concrete date in a scenario, then the verification result only
applies to that particular birthdate which is clearly not very helpful. Second, in general, we get the
problem of dealing with arithmetic in general (e.g. that from bd1 ≤ bd2 and bd2 ≤ bd3 immediately
follows bd1 ≤ bd3 without further proof).

To avoid both problems, we consider only unary relations R(x), e.g. R can be the “over-18”
property of birthdates. (This excludes for instance the proof that one birthday is greater than
another.) Let R1, . . . , Rn be the set of relations that can occur in all zero-knowledge protocols of
our verification task. We consider the 2n equivalence classes of data,3 denoted as D0,...,0, . . . , D1,...,1,
where

Db1,...,bn
= {x | R1(x) ⇐⇒ b1 ∧ . . . ∧Rn(x) ⇐⇒ bn}

We do not exclude that one relation may imply another, e.g. R1 may be “over-18” and R2 may be
“over-21”; in this case the equivalence classes D0,1,... are simply empty.

For the encoding of concrete credential attribute values like names, dates, and so on, we use
terms of the form av(c, b1, . . . , bn) where av stands for abstract value, c is an ordinary constant (so
we can have several abstract values that belong to the same equivalence class) and b1, . . . , bn is the
list of booleans that characterizes the concrete equivalence class.

Assume for the concrete age example, there is only one relation “over-18” and we consider the
concrete scenario with the certificate sigI(av(alice, 0), av(aliceBirthday, 1)), i.e., where the name
alice does not satisfy “over-18”, but the date of birth does. (Note that there is only one other
reasonable case, namely with av(aliceBirthday, 0) where alice is a minor.) We have the following
instantiation of the zero-knowledge proof:

C1 7→ sigI(XP ,X1, av(X2, 1))

Here, we ignore the form of the term that represents the name (i.e., any name X1 is accepted) while
for the second term, we require that it is any abstract value that satisfies the “over-18” relation.

Verifiable Encryption For several reasons such as escrow, one may reveal attributes under the
encryption with the public key pk(T ) of a trusted third party T and prove that the message is
indeed encrypted for T and contains the respective value of the credential (which is not revealed
to the verifier). Similar to the issuing, we assume that every party T accepts only one kind of
verifiable encryption, identified again as a sequence of attributes of certain types.

Example: reveal first and second attribute of credential C1 to party T :

C1 7→ sigI1(XP ,X1,X2,X3) V1 7→ {X1,X2}T
3Recall that we assume just one data-type for attributes into which all values are encoded.
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Note that, as in all cases above, this pattern describes what messages the verifier will accept,
namely only a zero-knowledge proof of credential C1 that reveals a value V1 that is an encryption
for T and contains the same values that are the first and second attribute of C1, even thought the
verifier cannot see these values.

4.4 Revoking Anonymity

Using the verifiable encryption mechanisms, one can implement measures to revoke the anonymity
of users in case of abusive or criminal behavior. The idea is to require the verifiable encryption
for a trusted third party containing of sufficient information to identify the user. Consider the
following example of an online order described by a term Ord . The user U who wants to make
the purchase performs a zero-knowledge proof for owning an electronic passport with the over-18
property and produces a verifiable encryption for the judge T of its real name, and date and place
of birth as shown in the passport. Part of the signed statement is also the order description Ord
(or a hash of it).4 If U does not pay within a certain amount of time, the server S will send the
zero-knowledge proof that U has sent (including the verifiable encryptions) to the judge T . From
the zero-knowledge proof, the judge T can convince itself that the proof was performed by someone
who had the respective credentials, i.e. the owner of the passport whose name is in the verifiable
encryption, and this person signed the order information Ord . Moreover, T is able to open the
verifiable encryption and obtain the identifying information about U . With this, T can further
proceed and for instance contact U directly and demand a proof of payment (note that the server
may have falsely claimed that U did not pay) and otherwise further jurisdictional actions can be
started.

More generally, the verifiable encryption together with the signed proofs of knowledge allow for
accountability while protecting the privacy of honest users.

4.5 Goals

We describe here the goals of the protocols only informally. Note that this is not a major topic
because the way we model IDMX is so abstract that many properties can be directly inferred from
certain constructions using relatively simply meta-arguments. For instance, it is straightforward
to see that the master secret xU of an honest user is never leaked, because it is contained only in
positions of constructs that do not allow derivation (i.e. under a p(. . .) or in the first arguments
of an spk). More interesting is to consider larger systems based on IDMX as building blocks. We
have developed several application scenarios; their verification will be subject of future work.

For the protocol for creating a pseudonym, we require only the property that the generated
pseudonym is really fresh. Formally, no agent ever notes the same pseudonym twice. This follows
directly from the facts that only honest agents make notes in our model and every honest agent
participating creates a fresh nonce that is part of the pseudonym it notes.

For the issuing protocol, the requirement is that when an agent owns a credential C from an
honest issuer I under pseudonym P , then according to I’s knowledge about P and I’s policy, P
is eligible for C. This refers to the abstract check in the issuing protocol. As one cannot forge
credentials from an honest agent I in our model, the only way that the user has a credential is

4We do not consider the precise details of payment and delivery; they may be also completely anonymized using
Identity Mixer, but one can also consider classical solutions where payment gateway or the delivery service can see
the users real name (but hide that from the merchant to which Alice is anonymous).
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by the issuing protocol, thus P passing the abstracted eligibility test. Note that the case of a
dishonest agent who shares its master secret with other agents simply means in our model that the
credential has now several owners (all collaborating dishonest agents who know the master secret).
We note that such a credential sharing cannot be technically prevented but made unattractive for
the intruders [9]. We thus do not consider credential sharing to be a violation of the security goals.

For the verification/proof protocols the idea is, roughly speaking, that one cannot prove anything
about oneself that is not true (according to credentials). In particular, a user should be unable
to prove the ownership of a credential without actually owning it. Formally, we can express this
as follows, leaving out revealing and properties for simplicity. Whenever an honest organization
O verifies a show proof with a set of credentials C1, . . . , Cn issued by I1, . . . , In, respectively, as
belonging to user identified by pseudonym P who states Stmt; then the issuers I1, . . . , In have
indeed issued the credentials C1, . . . , Cn, and their owner is that same as the owner of P who
indeed made the statement Stmt to O. Again by the form of the zero-knowledge proofs, we can
indeed derive that the credentials have been issued by the Ii and that they all have the same owner
as P . The statement must have also been composed by somebody who knows the master secret, i.e.,
the owner (or one of the owners) of P . The fact that P meant it for O as recipient follows from the
inclusion of O in the statement and in P itself. The cases of attribute equality and relation proofs
are similar. For the verifiable encryption it is tempting to require a secrecy property; however,
the data encrypted may be weak secrets, so this must actually be accounted under the privacy
properties that we do not cover here.

It is important to observe that all these properties hold even in an environment where an intruder
can see all messages: in particular, the intruder cannot use the credentials of honest agents, even if
he has seen them (because he never sees the master secret).

A similar property concerns revealing information to a trusted third party when revoking
anonymity. We consider here a concrete scenario where a shop complains about a customer who
has not paid, where the shop gives all available evidence to the third party, i.e. the signed proofs of
knowledge of the order that includes the verifiable encryptions, typically of identifying attributes,
such as name and address, of the customer. There are two important points about this scenario:
(1) the third party is able to obtain the identifying attributes of the customer from this evidence
and (2) that customer indeed signed the order as given in the evidence. Thus, we require that a
malicious shop cannot prove false claims about its customers, and yet there is a guarantee that
from the evidence it has, a trusted third party can obtain the identifying attributes. We thus have
accountability under the assumption that an intruder cannot block the contact between server and
trusted third party for an indefinite amount of time.

5 Implementing CARL

The pattern-based description of zero-knowledge proofs about one’s credentials that we have intro-
duced above are a powerful means to design proofs, however, due to the low level of the specification
it is not very convenient to describe—and communicate—proofs this way. A much more readable
and easy to use language is CARL [11], a technology-neutral language to describe the proof require-
ments. We now give a translation from a fragment of CARL to the proof patterns of our Identity
Mixer formalization.

The fragment of CARL that we consider is described by the following expression:
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own C1 :: τ1 issued-by I1, . . . , Cn :: τn issued-by In
reveal t(1,S), . . . , t(nS ,S)

reveal t(1,S1), . . . , t(nS1 ,S1) to S1

. . .
reveal t(1,Sm), . . . , t(nSm ,Sm) to Sm
where φ
sign Stmt

This expresses the policy of a server S, specifying that the user has to prove the ownership of
credentials Ci of type τi, issued by Ii, and reveal the terms t(1,S), . . . , t(nS ,S) to the server. Further,
the user has to reveal the terms t(1,Sj), . . . , t(nSj

,Sj) to the third party Sj . For Identity Mixer,
revealing to third parties is technically realized by verifiable encryption: in fact the server S does
not obtain these terms, but requires the proof that the third parties can obtain these values. We
require that the mentioned issuers Ii be constants.

The policy further contains a formula φ for which we restrict ourselves to conjunction of equalities
and relations of terms. A term itself is either a variable or a credential attribute. We will encode
the required properties into the patterns of the spk-terms. Finally, we have also a statement Stmt
that should be signed with the zero-knowledge proof.

As an example consider for instance the following policy:

own C :: passport issued-by swissGov
reveal C.gender
reveal C.firstname, C.lastname, C.bd, to judge
where plusY ears(bd, 18) ≤ today

We now give the translation of our CARL fragment to the SPK-patterns for the server. First,
however, we have to clarify how the abstract credentials of CARL are mapped into Identity Mixer
credentials. CARL treats credentials like record types of a programming language. In Identity
Mixer, we encode this into a signed list of values, i.e. choosing an order on the attributes. As
mentioned above, we assume in Identity Mixer that all values are encoded into one single base type
(a subset of the integers) and every issuer issues just one type of credential, so that from the issuer
the encoding and type is already clear. We assume that we are given only a CARL specification
that is conform with this notion, i.e. for each line own C :: τ issued-by I we have that I indeed
issues credentials of type τ . We assume a given translation function π with the property that πτ (n)
gives the position of attribute n in the Identity Mixer encoding of credential type τ .

We now first formally define the entire translation and then explain it step by step and give an
example.

We define the following substitution σ1:

Ci 7→ sigIi
(p(X , , , ),X1,i, . . . ,Xli,i) for 1 ≤ i ≤ n (1)

VSi 7→ dt(i,S)e for 1 ≤ i ≤ nS (2)

VSi 7→ {dt(1,S1)e, . . . , dt(nSi
,Si)e}Si for 1 ≤ i ≤ m (3)

where the t(i,Sk) are all of the form C.n for a credential Ci :: τi and an attribute n contained in
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type τi and where

dCi.ae = Xpos(τi,a),i (4)
dV e = V for a variable V (5)
dce = c for a constant c (6)

Further, depending on the formula φ, we define the following substitution σ2:

ddt1 = t2ee = {(dt1e, dt2e)} (7)
ddφ ∧ ψee = ddφee ∪ ddψee (8)
ddRi(t)ee = {(dte, av( , [b1, . . . , bn])), (bi, 1)} where the bj are fresh variables (9)

σ2 = unify(ddφee) (10)

We define the final proof pattern for the recipient by the list of credential patterns Ciσ2 and the
reveal patterns V1σ2, . . . ,VnS

σ2,VS1σ2, . . . ,VSmσ2. The signed statement is Stmt.
We now explain our definition step by step. (1) maps the own lines of the specification

to requirements about the credentials that need to be owned, namely that they have the form
sigIi

(p(X , . . .),X1,i, . . . ,Xli,i) where Ii is the specified issuer of the own lines, and the X... are the
values of the respective attributes.

(2) defines the translation of the values VSi revealed to the verifying organization (i.e. the reveal
lines without the to); this uses the function d·e defined in equations (4)–(6): it translates each
reference C.a to the attribute a of credential C to the respective value X... introduced in (1);
variables and constants of the specification are not changed by this translation function.

(3) translates the reveal lines for third parties; the difference to (2) is that we encrypt the
revealed values with the public keys of the respective third parties.

(7)–(9) turn the formula φ into a unification problem, i.e. a set of pairs of terms; in (10), the
function unify computes the most general unifier σ2 for this unification problem (this unifier exists
due to the structure and the fact that our CARL fragment does not allow for unsatisfiable formulae
on credentials). In a nutshell, the equations translate the formula in a substitution of the variables
that describes the “structure” which the terms in the credentials and revealed values must have.
More in detail, (7) defines that the equality of two terms requires that the d·e-translation of the
terms must be unified, (8) defines that for a conjunction the unification problems arising from the
subformulae are joined (thus σ2 must unify all equations from both parts). (9) covers the unary
relations on a credential value: it must have the form av( , [b1, . . . , bn]) and flag bi must be true
(for satisfying relation Ri).

We assume the definition of the type passport as well as the relevant partial function pos passport
describing the order of attributes in the encoding in the cryptographic credential as follows:

passport = {firstname, lastname, birthdate, gender} (11)

pos(passport , a) =


1 a = firstname

2 a = lastname

3 a = birthdate

4 a = gender

(12)

We furthermore assume 4 unary relations R1, . . . R4 to be defined for the envisioned usage
scenario the example is embedded in to make the mapping of the greater-than-or-equal relation
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over the birthdate more interesting. We let R3 be the “over 18”-relation and R4 the “over 65”-
relation of birthdates. We assume that the user has an age of 33 years, that is, the date of birth
only fulfills R3.

We give the receiver’s view of the proof term below:

spk( sigswissGov (p(X , . . .),X1,1,X2,1, av(X3, 0, 0, 1, 0),X4,1);
p(X , O, . . .), swissGov ,X4,1, {X1,1,X2,1, av(X3, 0, 0, 1, 0)}judge;
φ;
O,S)

This simple example shows the translation of the key concepts of CARL for the identity mixer
realization.

6 Conclusions

Experimental Results The ultimate goal of our formalization is a model that is well-suited for
automated verification with automated tools for protocol analysis. This paper provides a first step
that is necessary to achieve this goal. Nonetheless, we have developed these models in interaction
with experiments on the existing tool OFMC [20]. Note that our formalization is independent of
a particular tool, and is thus suitable for other protocol analysis tools such as the other tools of
AVISPA [3]. We have modeled a simple example scenario where Alice shows that she is over 18, and
gets issued a new credential. The AVISPA tool can verify this scenario within minutes and finds
(within seconds) attacks against the variants where we omit the name of the designated verifier in
zero-knowledge proofs—the classical Mafia-attack (cf. 3).

Related Work The SPK notation that we have used in this paper was inspired by [15]. We have
slightly adapted the use here, explicitly denoting the values that are revealed (which do not appear
in the original notation). In fact, we use the denotation of the “secret” values of a proof not as an
indication that they need to be kept secret, but in fact that those are the ones the prover has to
know. In fact, in our notation, the proof does not reveal any terms but the revealed ones and the
signed-statement including what can be derived from these values. Another difference is the use of a
proof identifier rather than a proof statement; this is for supporting current tools and specification
languages at the cost of a notational inconvenience (i.e. the need to specify a constant for each
statement proved in the entire system under consideration). Related to the original notation,
[6] shows how to derive automated zero-knowledge proofs from this.

The modeling of non-interactive zero-knowledge proofs has independently been studied by [5].
Their approach is mainly based on algebraic properties: they use explicit verify-operations that
can be applied by the receiver to the received proof terms and that explicitly check for certain
conditions. This algebraic formalization is very involved and easily leads to non-termination of the
verification tool, ProVerif, that they use. To avoid the non-termination, the algebraic theory has
to be carefully adapted and to make this encoding still manageable, it is generated by a special
compiler. For all these difficulties, the authors have turned to a static analysis-style approach [4].

In contrast, our annotation of receive patterns is relatively straightforward to write as one simply
has to specify the “view” of the receiver on the proof terms. But more importantly, it avoids the
use of algebraic properties entirely and can thus be used with a larger class of tools: we require
only support for free public function symbols (identical to the standard black-box crypto model
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of hash-functions). The resulting verification problem is thus similar (in terms of complexity) to
the standard protocol verification problems which is well-studied and for which a variety of mature
tools exists.

We finally note that there have been several proposal for formalizing privacy goals in the black-
box model, see for instance [1]. These models are quite difficult for automated analysis, though
there are some new ideas [16]. Further investigation is left for future work.
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