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Abstract

This paper presents a modular introduction to crash-tolerant and Byzantine-tolerant protocols for
reaching consensus that use the method introduced by the Paxos algorithm of Lamport and by the
viewstamped replication algorithm of Oki and Liskov. The consensus protocol runs a sequence
of epoch abstractions as governed by an epoch-change abstraction. Implementations of epoch and
epoch-change that tolerate crash faults yield the consensus algorithm in Paxos and in viewstamped
replication. Implementations of epoch and epoch-change that tolerate Byzantine faults yield the
consensus algorithm in the PBFT protocol of Castro and Liskov.

1 Introduction

The Greek island of Paxos has become famous in distributed computing for its consensus algorithm [14],
a leader-based protocol for reaching agreement among a set of processes in the presence of faults. It
was only discovered about 20 years ago. Like many other Greek islands, Paxos is a nice location with
sandy beaches and picturesque scenery. It is thus hardly surprising that many people have since traveled
to Paxos to investigate the secrets of its consensus algorithm [15, 7, 16, 1, 2, 12, 17, 20].

The purpose of this trip is pedagogical: we give a modular introduction to the Paxos consensus pro-
tocol. The same algorithm also exists in the New World under the name of viewstamped replication [21],
and our description covers it as well. Further variants of the Paxos protocol have been developed that
tolerate not only crashes but arbitrary behavior of some processes, so-called Byzantine faults. The most
prominent example is the PBFT protocol (for “Practical Byzantine Fault Tolerance”) [5]. We explain
how these two consensus protocols work in a unified language and identify common building blocks in-
herent in them. Our formulation relies on the findings of another recent excursion to Paxos [20], which
uncovered the fundamental role of the so-called “weak interactive consistency” primitive for Paxos con-
sensus tolerating Byzantine faults.

Our abstract consensus protocol relies on a dynamically changing leader process that is supposed
to be a correct process eventually. The protocol is structured into a sequence of epochs, which are
started by an epoch-change primitive. By implementing the epoch-change and epoch modules in the
two failure models, tolerating crash faults and Byzantine faults, we instantiate abstract consensus to the
Paxos protocol and to the PBFT protocol, respectively. As a side-effect, this description yields also the
first formulation of Byzantine consensus relying on an abstract eventual leader-detector oracle (Ω).

This report focuses on using leader-based consensus algorithms for reaching agreement on a single
question; in their original incarnations, the Paxos protocol, viewstamped replication, and the PBFT pro-
tocol address the more general atomic broadcast problem. Atomic broadcast corresponds to a sequence
of such agreements and lets the processes implement a fault-tolerant service using replication [22].
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2 Model and Assumptions

2.1 System Model

The system consists of n processes p1, . . . , pn. Up to f of them may fail at some time by exhibiting
crash faults or by behaving arbitrarily (so-called Byzantine faults). We assume that crashes are final and
processes do not recover. We call a process correct until it fails and faulty afterwards; these terms are
dynamic and depend on the time at which they apply. With crash faults, a process is either forever correct
or correct until it fails, when it becomes faulty and no longer takes any steps. With Byzantine faults, it
means that all processes are initially correct and that some of them become faulty at well-defined points
during the execution, for example, as the result of being corrupted by an attacker; this corresponds to the
notion of adaptive security from cryptography [10]. These notions differ from the standard terminology
used in the literature on reliable distributed systems, but they are necessary for unifying our definitions
covering crash faults and Byzantine faults.1

Every two correct processes can send messages to each other using a point-to-point channel abstrac-
tion (specified below). The system is partially synchronous [8] in the sense that there is no a priori
bound on message delays and the processes have no synchronized clocks, but there is a time (not known
to the processes) after which the system is stable in the sense that message delays and processing times
are bounded. In other words, the system is eventually synchronous.

2.2 Definitions

The algorithms in this paper implement uniform consensus (with crash faults) and Byzantine consensus
(with Byzantine faults).

Uniform consensus. The goal of a consensus protocol is to agree on a common value, despite the
failure of some processes and the unbounded delays of the communication channels.

A consensus protocol is invoked at every process by a propose(v) event, containing an initial value v
that the process proposes for the decision. The protocol terminates when it outputs an event decide(v)
with a decision value v. In a system with crash faults, uniform consensus satisfies the following proper-
ties:

Validity: If a process decides v, then v was proposed by some process.

Agreement: No two correct processes decide differently.

Integrity: Every correct process decides at most once.

Termination: Every permanently correct process eventually decides some value.

Note how this actually defines uniform consensus [13] through our definition of “correct” processes.2

1The standard definitions [13] of “correct” and “faulty” processes are static, in the sense that a process that eventually
crashes is called faulty from the outset. This leads to the distinction between non-uniform and uniform definitions. “Cor-
rect” and “faulty” processes according to the standard terminology are here called processes that remain correct forever and
processes that eventually crash, respectively.

2If we use the standard notion of a “correct” process here, then this formulation of agreement does not define the standard
notion of uniform consensus [13], as it allows a process to decide a different value and then to crash. Uniform consensus is
therefore typically defined to require agreement for any two processes. But with Byzantine faults, a faulty process may decide
arbitrarily and thus, no agreement condition referring to actions of all processes can cover crash faults and Byzantine faults
simultaneously. Hence, our choice to define a “correct” process in a dynamic, time-dependent way.
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Byzantine consensus. In a system with Byzantine faults the consensus problem is defined through
the same events as with crash faults and has almost the same properties. The only difference lies in the
validity condition because one cannot make any statement about the values that faulty processes propose.
A protocol for Byzantine consensus satisfies the agreement, integrity, and termination conditions of
uniform consensus and the following condition:

Weak validity: If all processes are correct and propose v, then a correct process may only decide v.

When some processes are faulty, weak validity allows Byzantine consensus to decide on a value
originating from the faulty processes, which was never proposed by a correct process. Weak valid-
ity contrasts with strong validity in Byzantine consensus, which requires that if all correct processes
propose v, then a correct process may only decide v.

2.3 Primitives

Basic communication primitives. The protocols use several standard abstractions that encapsulate
elementary message exchange between the processes [13]. We first consider two primitives for systems
with crash faults.

A perfect point-to-point link (pp2p) abstraction allows any process to send messages to any other
process reliably, such that if both processes remain correct forever, every message is eventually delivered
to the receiver.

A best-effort broadcast (beb) primitive enables a process to send a message in a one-shot operation
to all processes in the system, including itself. Messages are only guaranteed to be delivered if the
sender is correct forever and to those receivers that do not fail.

These two primitives have dual notions in the model with Byzantine faults. Since faulty processes
may access messages sent over the network, modify them, or insert messages on the network, the ba-
sic communication abstractions additionally must guarantee message integrity. The interface of these
abstractions contains an indication of the sender of for every delivered message.

More precisely, an authenticated perfect point-to-point link (app2p) abstraction is a perfect point-
to-point link primitive that guarantees, in addition, that if a message m is delivered to a correct receiver
process with indicated sender ps, and ps is correct up to this time, then ps previously sent m.

Analogously, an authenticated best-effort broadcast (abeb) abstraction is a best-effort broadcast
primitive that guarantees, in addition, that if a message m is delivered to a correct receiver process with
indicated sender ps, and ps is correct up to this time, then ps previously broadcast m.

The authenticated communication primitives can be implemented easily with a message-authentica-
tion code (MAC) [19], a symmetric cryptographic primitive that relies on a secret key shared by every
pair of processes. We assume that these keys have been distributed by a trusted entity beforehand.

Finally, we introduce an eventual leader detector (Ω) abstraction, which applies to both failure
models. Ω periodically outputs an event trust(j) at an arbitrary process, which indicates that pj is
trusted to be leader. We say that the process that receives the event henceforth trusts pj (until the
process receives the next trust event or forever). The eventual leader detector ensures (1) that there is
a time after which every correct process trusts some process that remains correct forever, and (2) that
there is a time after which no two correct processes trust a different process.

Weak interactive consistency. A protocol for weak interactive consistency (WIC) is invoked at every
process by a send(m) event with an input message m; the protocol outputs a vector M with n entries
through an event deliver(M) at every process, such thatM [i] is either a special symbol⊥ or corresponds
to the input message of pi. To differentiate the send and deliver events from others, we also say that a
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process wic-sends a message and wic-delivers a message vector. The protocol implementation may rely
on a designated process p`, called the leader. It satisfies the following conditions:

Consistency: If the leader remains correct forever, then every correct process wic-delivers the same M ,
and this M contains at least n− f messages different from ⊥.

Integrity: If some correct process wic-delivers M with M [j] 6= ⊥ and pj is correct up to this time, then
pj has previously executed wic-send with message M [j].

Termination: If the leader remains correct forever, then every permanently correct process eventually
wic-delivers some M .

The weak interactive consistency primitive was defined by Milosevic, Hutle, and Schiper [20] with the
goal of simplifying Byzantine consensus protocols.

A protocol that implements WIC with crash faults is straightforward. Every process simply uses the
perfect point-to-point links to send m to the leader, the leader collects n − f messages in M , and uses
best-effort broadcast to disseminate M . This protocol involves only two rounds of messages.

With Byzantine faults, assuming the processes use a public-key digital signature scheme, the same
two-round protocol implements WIC; every process signs its initial message to the leader and before
wic-delivering M , a process verifies that M [j] contains a valid signature by pj .

Furthermore, a three-round implementation in the Byzantine model that uses only message authen-
tication but no computationally expensive public-key signatures works as follows [5, 20].

1. In the first round, every process uses authenticated best-effort broadcast to sendm to all processes.
Every process collects n − f such inputs in a vector E, such that E[j] = mj when it received
input mj from pj .

2. In the second round, every process uses authenticated best-effort broadcast to send the vector E
computed above to all processes. Every process waits until it receives n − f such vectors such
that Ek was broadcast by pk. The leader p` then checks for each input mj that it received from pj

in the first round if ∣∣∣{k |Ek[j] = mj

}∣∣∣ > 2f.

If this is the case, then p` sets M [j]← mj , and otherwise, it sets M [j]← ⊥.

3. In the third round, only p` sends a message. It uses authenticated best-effort broadcast to send the
vector M computed above to all processes. When a process pi receives this message containing
M , it revisits the vectors Ek received in the second round and verifies that for any j with M [j] 6=
⊥, it holds ∣∣∣{k |Ek[j] = M [j]

}∣∣∣ > f.

If this is not the case, then pi sets M [j]← ⊥. Finally, pi outputs M .

We refer to the literature [20] for a proof that this protocol implements weak interactive consistency for
n > 3f . The protocol has message complexity O(n2) and communication (bit) complexity O(n2b),
assuming that the length of the input messages is bounded by b. Using a collision-free hash function
whose output is of size κ, the communication complexity can be reduced to O(nb+ n2κ) [5].
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Quorums. A quorum in a system of n processes is a set of more than n/2 processes. Every two
quorums overlap in at least one process.

A Byzantine quorum in a system of n processes that tolerates f Byzantine faults is a set of more
than n+f

2 processes. Every two Byzantine quorums overlap in at least one correct process. For f = 0, a
0-tolerant Byzantine quorum reduces to a quorum.

Consider a vector S of n entries, where each entry corresponds to a process and is either a tuple of
the form [· · · , ts, v, · · · ] that contains at least a timestamp ts and a value v, or is equal to ⊥. We define
the g-tolerant quorum maximum of S, denoted by quorum-maxg(S), as a timestamp/value pair (ts, v)
such that ∣∣∣{j |S[j] = [· · · , ts′, v′, · · · ] ∧ (ts′ < ts ∨ (ts′ = ts ∧ v′ = v))

}∣∣∣ > n+ g

2
.

If no such tuple exists, we define the quorum maximum to be ⊥.
In other words, the 0-tolerant quorum maximum of S is the timestamp/value pair with the highest

timestamp found in a quorum of non-⊥ entries of S; more generally, the g-tolerant quorum maximum
of S is the timestamp/value pair with the highest timestamp found in a Byzantine quorum (tolerating g
faults) of non-⊥ entries of S.

2.4 Notation for Protocols

Protocols are presented in a modular way using the notation of Guerraoui and Rodrigues [13]. Every
primitive is defined by a protocol module that may be called by other protocol implementations. A
protocol module can be instantiated statically; this usually happens only once and occurs implicitly
when an algorithm includes the protocol module among the list of its used protocols. A protocol module
can also be instantiated dynamically with an a-priori unknown number of instances. The initializations
of dynamic instances are mentioned explicitly in the code of the algorithm that calls them. Dynamically
instantiated protocol modules are named and addressed by an identifier. When an instance causes the
basic communication primitives (pp2p, beb, app2p, abeb) to send and receive messages, this identifier
is contained implicitly in all messages sent by the instance and only messages matching the identifier
are received by the instance.

3 Abstract Leader-based Consensus

This section presents a leader-based consensus protocol, implemented using two abstract primitives
defined next, epoch-change and epoch. The consensus protocol invokes a sequence of such epochs,
governed by outputs from epoch-change.

The definitions of the two primitives are the same for crash faults and for Byzantine faults. The
consensus protocol is also the same for both fault types, only the problem that it solves differs according
to the implementation of the primitives.

3.1 Primitives

Epoch-change. The task of an epoch-change abstraction is to periodically output a startepoch(ts, `)
event. When this occurs, we say the process starts epoch (ts, `). The event contains two parameters, an
epoch timestamp ts and a leader index `, that serve to identify the starting epoch. We require that the
timestamps in the sequence of epochs that are started at one process are monotonically increasing and
that every process receives the same leader index for a given epoch timestamp. More precisely:

Monotonicity: If a correct process starts an epoch (ts, `) and later starts an epoch (ts′, `′), then ts′ > ts.
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Consistency: If a correct process starts an epoch (ts, `) and another correct process starts an epoch
(ts′, `′) with ts = ts′, then ` = `′.

Eventual accuracy and agreement: There is a time after which every correct process has started some
epoch and starts no further epoch, such that (1) the last epoch started at every correct process is
epoch (ts, `); and (2) p` remains forever correct.

When an epoch-change is initialized, the primitive makes available a default timestamp and leader index
that are equal for all processes.

Epoch. An epoch is a primitive similar to consensus, where the processes propose a value and may
decide a value. Every epoch is identified by an epoch timestamp and has a designated leader. As for
consensus, the goal of an epoch is that all processes decide the same value. But an epoch is easier to
implement than consensus because it only represents an attempt to reach consensus; an epoch may not
terminate and can be aborted if it does not decide. As another simplification, only the leader proposes
a value and the epoch is required to decide only when its leader is correct. Because an epoch may not
decide, a protocol usually runs multiple epochs in a logical sequence such that later epochs depend on
earlier ones.

More precisely, an epoch is initialized with a timestamp ts, a leader index `, and some implementa-
tion-specific value state at every process. To start the protocol, the leader p` must trigger a propose(v)
event containing a value v. When this occurs, we say the leader ep-proposes v, to distinguish it from
proposing a value for consensus. One way for an epoch to terminate is to output an event decide(v).
When it occurs, we say the process ep-decides v.

An epoch may also terminate when the calling protocol locally triggers an abort event. After re-
ceiving this event, the epoch returns an event aborted(state) to the caller, containing some internal
state. The caller must use this state to initialize the next epoch in that it participates. Aborts are al-
ways triggered externally, an epoch does not abort on its own. Different processes may abort an epoch
independently of each other at different times.

Every process runs at most one epoch at a time; the process may only initialize a new epoch after
the previously active one has aborted or ep-decided. Moreover, a process must only initialize an epoch
with a higher timestamp than that of all epochs that it initialized previously.

Under these assumptions about invoking multiple epochs, a single epoch with timestamp ts and
leader p` satisfies the following properties:

Validity: If a correct process ep-decides v, then v was ep-proposed by the leader p`′ of an epoch with
timestamp ts′ ≤ ts and leader p`′ .

Agreement: No two correct processes ep-decide differently.

Integrity: Every correct process ep-decides at most once.

Lock-in: If a correct process has ep-decided v in an epoch with timestamp ts′ < ts, then no correct
process ep-decides a value different from v.

Termination: If the leader p` is permanently correct, has ep-proposed a value, and no correct process
aborts the epoch, then every permanently correct process eventually ep-decides some value.

Abort behavior: When a permanently correct process aborts the epoch, it eventually outputs aborted;
moreover, a correct process outputs aborted only if the epoch has been aborted by some correct
process.
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The above validity condition only applies to the model of crash faults, as it refers to the actions of a
leader p`′ , which poses a problem if p`′ may suffer from a Byzantine fault. But our goal is to implement
Byzantine consensus, which requires only weak validity, where all processes are correct. Thus, we can
also use the above notion of validity for the Byzantine model under the restriction that all processes are
correct.

3.2 Consensus

Algorithm 1 implements consensus from an epoch-change abstraction (ec) and multiple instances of an
epoch abstraction (ep).

Intuitively, the value that is decided by the consensus algorithm is the value that is ep-decided by
one of the underlying epochs. The protocol invokes a sequence of epoch instances, triggered by the
startepoch events output by the epoch-change primitive. These events also contain timestamp and leader
of the next epoch to start. To switch from one epoch to the next, the protocol aborts the running epoch,
obtains its state, and initializes the next epoch with the state.

Algorithm 1 Abstract leader-based consensus: implements uniform consensus with crash faults and
Byzantine consensus with Byzantine faults (code for pi).

Implements:
Consensus (c), either Uniform consensus or Byzantine consensus.

Uses:
Epoch-change (ec);
Epoch (ep).

upon 〈init〉 do
val← ⊥
proposed← FALSE; decided← FALSE

Initialize an instance of Epoch-change and obtain its initial timestamp ets0 and initial leader `0
Initialize a new instance of Epoch with timestamp ets0, leader `0, and state (0,⊥)
(ets, `)← (ets0, `0)

upon 〈c.propose | v〉 do
val← v

upon 〈ec.startepoch | newts, new`〉 do
trigger 〈ep.abort〉 for instance with timestamp ets
wait for 〈ep.aborted | state〉 from instance with timestamp ets
(ets, `)← (newts, new`)
proposed← FALSE

Initialize a new instance of Epoch with timestamp ets, leader `, and state state

upon (` = i) ∧ (val 6= ⊥) ∧ (proposed = FALSE) do
proposed← TRUE

trigger 〈ep.propose | val〉 for instance with timestamp ets

upon 〈ep.decide | v〉 do
if decided = FALSE then
decided← TRUE

trigger 〈c.decide | v〉
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When the process has received a value proposed for consensus from the caller and the process is also
the leader of the current epoch, then it ep-proposes this value for the epoch. When the epoch ep-decides
a value, the process also decides that value for consensus, but continues to participate in the consensus
protocol forever, to help other processes decide.

The complexity of the leader-based consensus protocol depends entirely on the complexities of the
underlying implementations of epoch-change and epoch, since the protocol does not directly send any
messages using the point-to-point link abstraction or the best-effort broadcast abstraction.

Theorem 1. Given implementations of epoch and epoch-change that tolerate crash faults, Algorithm 1
implements uniform consensus with crash faults. Moreover, assuming implementations of epoch and
epoch-change that tolerate Byzantine faults, Algorithm 1 implements Byzantine consensus with Byzan-
tine faults.

Proof. Only the validity condition differs from uniform consensus to Byzantine consensus. We first
establish the two notions of validity. The proof for the remaining conditions is the same for both types
of faults.

Validity (for uniform consensus with crash faults). We show validity by induction on the sequence of
epochs that have ever been started at any correct process, ordered by their timestamp. According to the
protocol, a process decides v only when it has ep-decided v in the current epoch; hence, every decision
can be attributed to a unique epoch. Let ts∗ be the smallest timestamp of any epoch in which some
process decides v. Then this process has ep-decided v in the epoch with timestamp ts∗. According to
the validity of epoch, this means that v was ep-proposed by the leader of some epoch whose timestamp
is at most ts∗, and because a process only ep-proposes val when val has been proposed for consensus,
the condition holds.

Suppose now that validity (of consensus) holds for every process that decided in some epoch ts′,
and consider a correct process that decides in an epoch ts > ts′. According to the lock-in property of
epoch, it may only decide v; hence, the validity property holds.

Weak validity (for Byzantine consensus with Byzantine faults). For the case of Byzantine faults, the
validity condition of consensus follows essentially from the same argument as in the case of crash
faults. We note that any value proposed for consensus may be decided because the protocol guarantees
weak validity.

Agreement. According to the discussion in the proof of validity, every decision of consensus can be
attributed to the decision of an epoch. Thus, if two correct processes decide when they are in the
same epoch, then the agreement condition of an epoch ensures agreement; otherwise, if they decide in
different epochs, the lock-in property of epochs establishes agreement.

Integrity. This property is straightforward to verify from the protocol, because the decided flag prevents
multiple decisions.

Termination. It is easy to see that the protocol satisfies the requirements on invoking a sequence of
epochs, from the monotonicity and consistency of the epoch-change primitive and because the protocol
only initializes a new epoch after the previous one, with a smaller timestamp, has aborted.

According to the eventual accuracy and agreement properties of epoch-change, there exists some
epoch with timestamp ts and leader p`, such that no further epoch starts and p` remains correct forever.
Observe that the protocol only aborts an epoch when the epoch-change primitive starts another epoch.
Since this does not occur, the termination condition for epoch (ts, `) now implies that every permanently
correct process eventually ep-decides.
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4 Consensus (Paxos/Viewstamped Replication)

We give algorithms for the epoch-change and epoch primitives in a system subject to crash faults. When
they are used in the abstract leader-based consensus, the resulting protocol closely resembles the mech-
anism to reach consensus in the Paxos protocol [14] and in viewstamped replication [21].

Implementing epoch-change. Algorithm 2 presents the protocol for epoch-change. The protocol
relies on an eventual leader detector primitive.

The epoch-change protocol is quite simple. Process pi maintains two timestamps: a timestamp
lastts of the last epoch that it started (i.e., for which it triggered a startepoch event), and the time-
stamp ts of the last epoch that it attempted to start with itself as leader (i.e., for which it broadcast a
NEWEPOCH message, as described next). Initially, the process sets ts to its index i. Whenever the leader
detector subsequently makes pi trust itself, pi adds n to ts and sends a NEWEPOCH message with ts.
When process pi receives a NEWEPOCH message with a parameter newts > lastts from some p` and pi

most recently trusted p`, then the process triggers startepoch with parameters newts and `. Otherwise,
the process informs p` using a NACK message that the new epoch could not be started. When a process
receives a NACK message and still trusts itself, it increments ts by n and tries again to start an epoch by
sending another NEWEPOCH message.

Algorithm 2 incurs a complexity ofO(n) messages and a communication complexity ofO(n) during
stable periods.

Theorem 2. Algorithm 2 implements epoch-change with f crash faults for n > f .

Proof. Since process pi locally maintains the timestamp lastts of the most recently started epoch, the
protocol ensures that pi only starts further epochs with higher timestamps. This establishes the mono-
tonicity property of epoch-change. Furthermore, the space of epoch timestamps is partitioned among to
the n processes. Hence, no two distinct processes send a NEWEPOCH message with the same timestamp
value, demonstrating the consistency property.

The eventual accuracy and agreement property is based on the properties of the leader detector. Let
pt be the process that is eventually trusted by all correct processes and that remains correct forever. At
the last time when Ω causes pt to trust itself, it broadcasts a NEWEPOCH message with a timestamp tts
that should cause all processes to start an epoch with leader pt and timestamp tts. Consider any correct
process pj that receives this message: pj either last trusted pt and tts is bigger than its variable lastts
and therefore pj starts epoch (tts, t); or the condition does not hold and pj sends a NACK message to
pt. In the latter case, this message causes pt to increment its variable ts and to send another NEWEPOCH

message. The properties of Ω ensure that eventually all correct processes trust pt forever, therefore
only pt increments its ts variable and all other processes have stopped sending NEWEPOCH messages.
Hence, pt eventually sends a NEWEPOCH message with a timestamp bigger than the lastts variable of
pj . Since pj trusts pt when it receives this message, pj eventually starts some epoch with timestamp tts∗

and leader pt. And because pt is correct and sends the NEWEPOCH message with timestamp tts∗ to all
processes, every correct process eventually starts this epoch and stops sending NACK messages.

Suppose that pj above is the last process whose NACK message was delivered to pt. Then, since pt

sends the NEWEPOCH message with timestamp tts∗ to all processes, the epoch with timestamp tts∗ is
also the last epoch that every correct process starts.

Implementing epoch. Algorithm 3 implements one instance of epoch. The protocol uses best-effort
broadcast and perfect point-to-point links abstractions. In the description, the notation [x]n for any
symbol x is an abbreviation for the n-vector [x, . . . , x].
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Algorithm 2 Implements epoch-change with f crash faults for n > f (code for pi).

Implements:
Epoch-change (ec).

Uses:
Eventual leader detector (Ω);
Best-effort broadcast (beb);
Perfect point-to-point links (pp2p).

upon 〈init〉 do
trusted← 0
lastts← 0
ts← i
Initialize an instance of Eventual leader detector

upon 〈Ω.trust | `〉 do
trusted← `
if ` = i then
ts← ts+ n
trigger 〈beb.broadcast | [NEWEPOCH, ts]〉

upon 〈beb.deliver | p`, [NEWEPOCH, newts]〉 do
if ` = trusted ∧ newts > lastts then
lastts← newts
trigger 〈ec.startepoch | newts, `〉

else
trigger 〈pp2p.send | p`, [NACK]〉

upon 〈pp2p.deliver | pj , [NACK]〉 do
if trusted = i then
ts← ts+ n
trigger 〈beb.broadcast | [NEWEPOCH, ts]〉

Multiple instances of epoch may be executed at the same point in time on different processes, but
when used in our leader-based consensus protocol (Algorithm 1), then every process only runs at most
one epoch instance at a time. Different instances never interfere with each other according our assump-
tion that every instance is identified by a unique epoch timestamp and because point-to-point messages
and best-effort broadcast messages are only received from and delivered to other epoch instances with
the same timestamp.

Intuitively, the protocol works as follows. Recall that an epoch instance is initialized with a state
value, which the previous epoch instance returned to the process when it was aborted. Passing state to
the next epoch only serves the validity and lock-in properties of an epoch, since these properties (and no
others) link two epochs with different timestamps together.

The algorithm involves two rounds of message exchanges from the leader to all processes and uses
quorums to ensure lock-in in a similar way as a replicated implementation of a read/write register. In
the first round, the leader sends a READ message to obtain the state from a quorum of processes and
determines whether there exists a value that may already have been ep-decided. Every process answers
with a STATE message containing its locally stored value and the timestamp of the epoch during which
the value was last written. The leader takes the value with the highest timestamp and writes it to a
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quorum of processes. The write succeeds when the leader receives an ACCEPT message from a quorum
of processes, indicating that they have stored the value locally. It is now safe for the leader to ep-decide
for the value just written. The leader announces this value in a DECIDED message to all processes and
the processes that receive it ep-decide.

Remarks. The message complexity of an epoch is O(n), and the communication complexity of the
protocol is O(nb), where b is a bound on the length of the proposal values.

When this protocol for epoch is used together with Algorithm 2 to implement consensus using the
leader-based approach of Algorithm 1, the READ message can be omitted. Since the leader of the epoch
sends READ immediately after it sends a NEWEPOCH message to all processes in Algorithm 2, every
process could just send the STATE message upon initializing the epoch instance in reply to receiving the
NEWEPOCH message.

One can transform the actions of sending the STATE message, choosing the highest timestamp/value
pair, and sending the WRITE message into a form that uses the weak interactive consistency abstraction.
In this variant, every process wic-sends its STATE message; after wic-delivering a vector states, the
process chooses the highest timestamp/value pair from the vector and proceeds with that as if it arrived
in a WRITE message. This is equivalent to Algorithm 3 in terms of implementing an epoch; but since
every process needs to compute the maximum, it increases the communication (bit) complexity by a
factor Θ(n).

Theorem 3. Algorithm 3 implements epoch with timestamp ets and leader index ` with f crash faults
for n > 2f .

Proof. We first establish the lock-in property of an epoch. Suppose some process has ep-decided v in an
epoch with timestamp ts′ < ts. The process only ep-decided after receiving a DECIDED message with
v from the leader p`′ of epoch ts′. Before sending this message, p`′ had broadcast a WRITE message
containing v and had collected ACCEPT messages in response from a set A of more than n/2 distinct
processes. According to the protocol, these processes set their variables val to v and valts to ts′.

Consider the next epoch in which the leader sends a WRITE message, and let its timestamp be ts∗

and its leader index be `∗. This means that no process has changed its valts and val variables in any
epoch between ts′ and ts∗. By the assumption on how a process passes the state of an epoch to the next
one, every process in A starts epoch ts∗ with state (valts, val) = (ts′, v). Hence, p`∗ collects STATE

messages whose 0-tolerant quorum maximum is (ts′, v) and broadcasts a WRITE message containing v.
This implies that a process can only ep-decide v and that the set of processes whose variable val is equal
to v when they abort epoch ts∗ is at least A. Continuing this argument until epoch ts establishes the
lock-in property.

To show validity, assume that a process ep-decides v. It is obvious from the protocol that a process
only ep-decides for the value v received in a DECIDED message from p`; furthermore, every process
stores in variable val only to the value received in a WRITE message from the leader. In both cases, this
value comes from the variable tmpval of the leader. But in any epoch the leader sets tmpval only to
the value that it ep-proposed or to some value that it received in a STATE message from another process.
By backward induction in the sequence of epochs, this shows that v was ep-proposed by the leader in
some epoch with timestamp ts′ ≤ ts.

Agreement follows easily from the protocol because p` sends the same value to all processes in the
DECIDED message. Analogously, integrity follows from the protocol.

Termination is also easy to see because when p` is permanently correct and no process aborts the
epoch, then every permanently correct process eventually receives a DECIDE message and ep-decides.

Finally, abort behavior is satisfied because the protocol returns aborted immediately and only if it
has been aborted.
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Algorithm 3 Implements epoch with timestamp ets and leader ` with crash faults (Paxos/viewstamped
replication), for n > 2f .

Implements:
Epoch (ep).

Uses:
Best-effort broadcast (beb);
Perfect point-to-point links (pp2p).

upon 〈init | ets0, `0, state〉 do
(ets, `)← (ets0, `0)
(valts, val)← state
tmpval← ⊥
states← [⊥]n; accepted← 0

upon 〈ep.propose | v〉 do // leader p` only
tmpval← v
trigger 〈beb.broadcast | [READ]〉

upon 〈beb.deliver | p`, [READ]〉 do
trigger 〈pp2p.send | p`, [STATE, valts, val]〉

upon 〈pp2p.deliver | pj , [STATE, ts, v]〉 do // leader p` only
states[j]← [STATE, ts, v]

upon quorum-max0(states) 6= ⊥ do // leader p` only
(ts, v)← quorum-max0(states)
if v 6= ⊥ then tmpval← v
states← [⊥]n

trigger 〈beb.broadcast | [WRITE, tmpval]〉

upon 〈beb.deliver | p`, [WRITE, v]〉 do
(valts, val)← (ets, v)
trigger 〈pp2p.send | p`, [ACCEPT]〉

upon 〈pp2p.deliver | pj , [ACCEPT]〉 do // leader p` only
accepted← accepted+ 1

upon accepted > n/2 do // leader p` only
accepted← 0
trigger 〈beb.broadcast | [DECIDED, tmpval]〉

upon 〈beb.deliver | pj , [DECIDED, v]〉
trigger 〈ep.decide | v〉
halt

upon 〈ep.abort〉 do
trigger 〈ep.aborted | (valts, val)〉
halt
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5 Byzantine Consensus (PBFT)

This section presents the implementations of epoch-change and epoch in a system that is subject to
Byzantine faults. When they are plugged into the leader-based consensus protocol, the result is very
similar to the consensus protocol inherent in the PBFT protocol [5].

Implementing epoch-change. A protocol for epoch-change tolerating Byzantine faults is shown in
Algorithm 4. Like Algorithm 2, which solves the same problem tolerating crash faults, it relies on an
eventual leader detector primitive. But it is conceptually simpler than the epoch-change implementation
with crash faults. Algorithm 4 outputs at all correct processes a sequence of timestamps that always
increases by 1, and the leader of an epoch with timestamp ts is computed from ts by a function leader(·),
defined by

leader(ts) =

{
ts mod n if ts mod n 6= 0
n otherwise.

Hence, the leader rotates in a round-robin fashion.

Algorithm 4 Implements epoch-change with Byzantine faults (code for pi).

Implements:
Epoch-change (ec).

Uses:
Eventual leader detector (Ω);
Auth. best-effort broadcast (abeb).

upon 〈init〉 do
ts← 0
nextts← 0
trusted← 0
newepoch← [FALSE]n

Initialize an instance of Eventual leader detector

upon 〈Ω.trust | `〉 do
trusted← `

upon nextts = ts and trusted 6= leader(ts) do
nextts← ts+ 1
trigger 〈abeb.broadcast | [NEWEPOCH, nextts]〉

upon 〈abeb.deliver | pj , [NEWEPOCH, ts′]〉 such that ts′ = ts+ 1 do
newepoch[j]← TRUE

upon nextts = ts and |{j |newepoch[j] = TRUE}| > f do
nextts← ts+ 1
trigger 〈abeb.broadcast | [NEWEPOCH, nextts]〉

upon nextts > ts and |{j |newepoch[j] = TRUE}| > 2f do
ts← nextts
newepoch← [FALSE]n

trigger 〈ec.startepoch | ts, leader(ts)〉

13



The algorithm maintains a timestamp ts of the most recently started epoch and a timestamp nextts,
which is equal to ts+ 1 during the period when the process has sent a NEWEPOCH message but not yet
started the epoch with timestamp nextts. Whenever the process observes that the leader of the current
epoch is different from the process that it most recently trusted, the process begins to switch to the next
epoch by sending a NEWEPOCH message. Alternatively, the process also begins to switch to the next
epoch after receiving NEWEPOCH messages from f + 1 distinct processes. Once the process receives
2f + 1 NEWEPOCH messages (from distinct processes) it starts the epoch.

Theorem 4. Algorithm 4 implements epoch-change with f Byzantine faults for n > 3f .

Proof. We first show monotonicity and consistency. It is obvious from the algorithm that the timestamps
of two successive epochs started by a correct process increase by at least 1. Furthermore, the leader of
an epoch is derived deterministically from its timestamp.

We call a process good when it remains correct forever. To show eventual accuracy, notice that every
correct process sends a NEWEPOCH message for starting a new epoch whenever the leader of the current
epoch is not the process that it trusts. Furthermore, there exists a time when Ω has caused every correct
process to trust the same good process p`∗ forever. Hence, eventually no good process sends any further
NEWEPOCH messages. When all NEWEPOCH messages among correct processes have been delivered
and the highest epoch started by a good process has timestamp ts∗, then this process has received at least
2f + 1 NEWEPOCH messages with timestamp ts∗. Since at least f + 1 of those messages were sent by
good processes, every good process has also sent a NEWEPOCH message with timestamp ts∗ according
to the protocol. Thus, every good process eventually receives at least n−f > 2f NEWEPOCH messages
with timestamp ts∗ and starts the epoch with timestamp ts∗ and no further epoch.

Implementing epoch. Algorithm 5 implements one instance of epoch with timestamp ets and lea-
der `. As for the epoch protocol with crash faults, there may exist multiple instances with different
timestamps in the system, but one process only runs one instance of epoch at a time in leader-based
consensus. According to our protocol notation, this also means that ets is contained implicitly in every
message sent by the epoch using the basic communication primitives.

Similar to Algorithm 3, an epoch consists of a read phase followed by a write phase. We say that a
process writes a value v when it broadcasts a WRITE message containing v during the write phase.

The protocol is initialized with a state value output by the epoch instance that the process ran
previously. It contains a timestamp/value pair (valts, val) with the value that the process received most
recently in a Byzantine quorum of WRITE message in some epoch and a setwriteset of timestamp/value
pairs with one entry for every value that this process has ever written and the timestamp of the most
recent epoch where this occurred.

The read phase obtains the states from all processes to determine whether there exists a value that
may already have been ep-decided. In the case of crash faults, it was sufficient that the leader alone
computed this value and wrote it; here the leader might write a wrong value. Thus, every process must
repeat the computation of the leader and write a value, to validate the choice of the leader.

The protocol starts by the leader broadcasting a READ message, which triggers every process to
invoke a weak interactive consistency protocol and to wic-send a message [STATE, valts, val, writeset]
containing the state of the process.

The WIC primitive then wic-delivers a vector S of n entries, one for every process, in which an
entry is either a STATE message or equal to ⊥. Every non-⊥ entry contains a timestamp ts, a value v
and a set of timestamp/value pairs, representing the writeset of the originating process.

Every process now determines whether a certain value v occurs in some writeset of an entry in S that
originates from a correct process; since up to f entries in S may be from faulty processes, the process
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must filter them out first. When the writeset of more than f processes contains (ts, v) with timestamp ts
or a higher timestamp than ts, then some correct process has written v in epoch ts or later. To capture
this, we define a predicate is-in-certified-writeset(ts, v, S) to be TRUE whenever∣∣∣{j |S[j] = [STATE, ·, ·, ws′] and ∃(ts′, v′) ∈ ws′ such that ts′ ≥ ts ∧ v′ = v

}∣∣∣ > f,

and FALSE otherwise.
Furthermore, every process needs to determine whether the STATE messages in S indicate that a

certain timestamp/value pair (ts, v) occurs often enough among the non-⊥ entries of S so that a process
may already have ep-decided v. Evidence for such a pair is given by an f -tolerant quorum maximum
of S different from ⊥. If such a pair exists, then this value must be written again during the epoch.

We say that S binds ts to v, denoted binds(S, ts, v), whenever S contains at least n − f messages
different from ⊥ and satisfies

(ts, v) = quorum-maxf (S) and is-in-certified-writeset(ts, v, S) = TRUE.

If S contains at least n− f messages different from ⊥ but does not satisfy the condition, we say that S
binds ts to ⊥.

When S binds ts to some v 6= ⊥, then the process must write v; otherwise, it writes the value from
the leader p`, which it finds in S[`]. The process broadcasts a WRITE message with the value.

When a process has received more than n+f
2 WRITE messages from distinct processes containing

the same value v, it sets its state to (ets, v) and broadcasts an ACCEPT message with v. When a process
has received more than n+f

2 ACCEPT messages from distinct processes containing the same value v, it
ep-decides v.

Remarks. The cost of an epoch when using the three-round implementation of weak interactive con-
sistency described in Section 2.3 is as follows. The message complexity of an epoch is O(n2), and the
communication complexity is O(n2bw), where b is a bound on the length of the proposal values and w
is the maximal number of timestamp/value pairs that any correct process holds in the writeset variable
in its state.

When the epoch protocol is used together with Algorithm 4 to implement consensus using the leader-
based approach of Algorithm 1, the protocol can be simplified in two ways.

First, the READ message can be omitted. Since the leader of the epoch sends READ immediately
after it sends a NEWEPOCH message to all processes in Algorithm 4, every process could just send the
STATE message upon initializing the epoch instance in reply to receiving the NEWEPOCH message.

Second, in the first epoch, with timestamp ets0 and leader p`0 , the WIC primitive for reading the
state of all processes may be skipped because all processes apart from the leader initially store the
default state. Only p`0 needs to broadcast its state. One might think that it could use an authenticated
best-effort broadcast for this purpose, but this does not work because it may be faulty and violate the
integrity condition of WIC for the message from p`0 . Instead, the broadcast mechanism must at least
ensure that when a correct process receives a value v from p`0 , then no correct process receives a
value different from v. One can implement this with an extra round of echoing the value, as done in
the broadcast primitive of Srikanth and Toueg [23], or any other primitive the implements consistent
broadcast according to [4].

The protocol resulting from these two optimizations contains an initial message from the leader to all
processes and two rounds of echoing the message among all processes. This communication pattern first
appeared in Bracha’s reliable broadcast protocol [3] and is also used during the “normal-case” operation
of a view in the PBFT protocol.
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Algorithm 5 Implements epoch with timestamp ets and leader ` with Byzantine faults (PBFT), for
n > 3f .

Implements:
Epoch (ep).

Uses:
Auth. best-effort broadcast (abeb);
Weak interactive consistency (wic);

upon 〈init | ets0, `0, state〉 do
(ets, `)← (ets0, `0)
(valts, val, writeset)← state
written← [⊥]n; accepted← [⊥]n

upon 〈ep.propose | v〉 do // leader p` only
if val = ⊥ then val← v
trigger 〈abeb.broadcast | [READ]〉

upon 〈abeb.deliver | p`, [READ]〉 do
Initialize a new instance of Weak interactive consistency with leader p`

trigger 〈wic.send | [STATE, valts, val, writeset]〉 // send / pre-prepare

upon 〈wic.deliver | states〉
tmpval← ⊥
if ∃v 6= ⊥ such that binds(states, ets, v) then
tmpval← v

else if binds(states, ets,⊥) and ∃v such that states[`] = [STATE, ·, v, ·] then
tmpval← v

if tmpval 6= ⊥ then
if ∃ts such that (ts, tmpval) ∈ writeset then writeset← writeset \ {(ts, tmpval)}
writeset← writeset ∪ {(ets, tmpval)}
trigger 〈abeb.broadcast | [WRITE, tmpval]〉 // echo / prepare

upon 〈abeb.deliver | pj , [WRITE, v]〉 and written[j] = ⊥ do
written[j]← v

upon ∃v such that |{j |written[j] = v}| > n+f
2 do

(valts, val)← (ets, v)
written← [⊥]n

trigger 〈abeb.broadcast | [ACCEPT, val]〉 // ready / commit

upon 〈abeb.deliver | pj , [ACCEPT, v]〉 and accepted[j] = ⊥ do
accepted[j]← v

upon ∃v such that |{j | accepted[j] = v}| > n+f
2 do

accepted← [⊥]n

trigger 〈ep.decide | v〉
halt

upon 〈ep.abort〉 do
trigger 〈ep.aborted | (valts, val, writeset)〉
halt
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Theorem 5. Algorithm 5 implements epoch with timestamp ets and leader index ` with f Byzantine
faults for n > 3f .

Proof. We first establish the lock-in property of an epoch. Suppose some correct process has ep-
decided v in an epoch with timestamp ts′ < ts. The process only ep-decided after collecting ACCEPT

messages containing v from more than n+f
2 processes; among the processes who sent those messages,

there exists a setA of more than n+f
2 − f correct processes. According to the protocol, they all set their

variables val to v and valts to ts′.
The members of A only sent an ACCEPT message after collecting WRITE messages containing v

from more than n+f
2 processes; among them, there exists a setW of more than n+f

2 − f correct pro-
cesses. According to the protocol, they all added (ts′, v) in their variable writeset.

Consider the next epoch with timestamp ts∗ > ets, in which any correct process pj wic-delivers
states such that binds(states, ts∗, v∗) for some v∗ 6= ⊥. We claim that v∗ = v. To see this, observe
that no correct process has sent a WRITE message in any epoch between ts′ and ts∗.

This means that no correct process has changed its valts, val, and writeset variables. By the
assumption on how a correct process passes the state of an epoch to the next one, every process in A
starts epoch ts∗ with state (valts, val) = (ts′, v). Furthermore, every process in W starts epoch ts∗

with state variablewriteset that contains (ts′, v). The integrity property of weak interactive consistency
ensures that these state values are not modified in transit during WIC. Hence, the vector states wic-
delivered to pj satisfies that (ts′, v) is an f -tolerant quorum maximum of states and that is-in-certified-
writeset(ts′, v, states) = TRUE, as is easy to verify. Consequently, pj writes v, and any other correct
process who writes also writes v. This proves the above claim and implies that a correct process can
only ep-decide v in epoch ts∗. Furthermore, the set of correct processes who set their variables val
to v and valts to a value at least as large as ts′ when they abort epoch ts∗ is now at least A. Using the
same reasoning, the set of correct processes whose writeset variable contains (ts′, v) is also at least A.
Continuing this argument until epoch ts establishes the lock-in property.

To show validity, assume that a correct process ep-decides v. It is obvious from the protocol that a
correct process only ep-decides for the value v received in an ACCEPT message from a Byzantine quorum
of processes and that any correct process only sends an ACCEPT message with v after receiving v in a
WRITE message from a Byzantine quorum of processes. Moreover, any correct process only sends a
WRITE message with v after receiving a vector states that binds ts to v or after receiving states that
binds ts to ⊥ and taking v from states[`], which was wic-sent by p`. In the latter case, the validity
property is satisfied. In the former case, we continue by backward induction in the sequence of epochs
until we reach again an epoch where states binds ts to ⊥. This shows that v was ep-proposed by the
leader in some epoch with timestamp ts′ ≤ ts.

For agreement, observe how any correct process that ep-decides v must have received more than
n+f

2 ACCEPT messages with v. Since a correct process only sends one ACCEPT message in an epoch
and since n > 3f , it is not possible that another correct process receives more than n+f

2 ACCEPT

messages with a value different from v. The agreement property follows. Integrity is easy to see directly
from the protocol.

To show termination, note that if p` is good, then the WIC primitive wic-delivers a vector with at
least n−t entries different from⊥ (recall that a process is good when it remains correct forever). Hence,
every good process eventually assigns tmpval 6= ⊥ and broadcasts a WRITE message containing some
value. More precisely, all n − f > n+f

2 good processes write the same value v by the consistency of
WIC. Hence, every good process eventually sends an ACCEPT message with v and every good process
eventually decides because no further aborts occur.

Finally, abort behavior is satisfied because the protocol returns aborted immediately and only if it
has been aborted.
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6 Related Work

Lamport’s second description of Paxos [15] presents the protocol on a high level and in simple terms,
without the formal overhead of the original paper [14].

De Prisco et al. [7] give a precise formulation of the crash-tolerant Paxos protocol in terms of the
Clock General Timed Automaton model. They analyze the performance of Paxos both under normal
behavior and when process crashes and timing failures occur.

Lampson [16] unifies the Paxos protocol, Disk Paxos [9], and the PBFT protocol with an abstract
Paxos description. He structures the protocol into successive views, corresponding to the epochs of
our work. Abstract Paxos is formulated with sometimes non-local predicates, which are instantiated
by communication primitives corresponding to the three protocols. Due to the formal nature of the
abstractions, this work is less suitable as an introduction to the Paxos family of protocols.

Boichat et al. [1, 2] were the first to identify a read/write register abstraction in Paxos, and to show
how the Paxos protocol results from a combination of an eventual register primitive and an eventual
leader election abstraction. Their register-based algorithm maintains the efficiency of the Paxos proto-
col.

Chockler and Malkhi [6] introduce the notion of a ranked register to solve consensus with the Paxos
algorithm. They implement the abstraction with a collection of read-modify-write objects subject to
faults, as they are available from disk storage devices, for example.

Malkhi et al. [18] further relax the conditions on the leader-election oracle Ω that is sufficient to
implement Paxos. Their algorithm guarantees to elect a leader (and to reach agreement using Paxos) in
absence of links that become eventually timely, only based on the assumption that one process can send
messages and receives enough replies in time from a dynamic subset of the processes.

Li et al. [17] present the only other unified treatment for crash-tolerant and Byzantine-tolerant ver-
sions of Paxos, apart from this paper, that comes with actual implementations. Taking up the read/write
register-based abstraction, their work extends it to the model with Byzantine faults and gives protocols
to implement a Paxos register for both types of failures. Our model makes the epochs more prominently
visible in contrast to their work; since epochs correspond to views in the PBFT protocol, our model is
closer to the structure of PBFT and its sequence of alternating views and view changes.

The PBFT protocol exists in variations with and without public-key digital signatures. Our work
does not rely on them for explaining the PBFT protocol, but the PBFT-like implementation based on
the Paxos register uses signatures [17]. Since PBFT without signatures has become a landmark and
has inspired many subsequent practical systems and protocols [11], all avoiding digital signatures for
increased efficiency, our explanation covers their structure as well.

7 Conclusion

This paper describes Paxos-style consensus protocols tolerating crashes and Byzantine faults in a mod-
ular way. An abstract consensus protocol runs an epoch-change abstraction and a sequence of epoch
abstractions, which can be implemented in both failure models.

Our formulation uses a deeper decomposition of the protocols compared to the previous works. We
find it at the same time easier to understand and more faithful to the originals, because it illustrates the
role of successive epochs, representing the numbered proposals [15] or ballots [14] in Paxos and the
views in PBFT [5]. Furthermore, it uses a leader-election oracle also for the Byzantine case, which was
not the case in previous works.
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