

RZ 3757 (# 99767) 11/23/2009
Computer Science 29 pages

Research Report

Performance Evaluation of the Write Operation In Flash-Based
Solid-State Drives

Werner Bux
IBM Research – Zurich, 8803 Rüschlikon, Switzerland
Email: wbu@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

 1

Performance Evaluation of the Write Operation
In Flash-Based Solid-State Drives

Werner Bux

IBM Research – Zurich
8803 Rüschlikon, Switzerland

Abstract

We develop an analytical model to describe an important aspect of the operation
of a flash-based solid-state drive (SSD), namely, the overhead caused by its out-
of-place write and block-erase operation. Depending on the system parameters,
in particular the total memory space, the fraction of the memory available for
storing user data, and the number of pages per block, the additional write
operations performed by the garbage-collection process may significantly reduce
the lifetime of a device. We develop a Markov chain model of the SSD operation
and use it to explore the performance characteristics of different system designs.

1. Introduction

Flash memory is a non-volatile solid-state memory technology that can be
electrically written (programmed), erased, and reprogrammed [2, 9]. Its low
power consumption and good shock resistance have made it very popular for
portable devices, such as digital cameras, portable music players, mobile
phones, and handheld computers. Moreover, the computer industry has recently
shown increasing interest in using flash memory as hard-disk replacement in
workstations and even enterprise systems. Flash memory does not have the
mechanical limitations of hard drives, which makes the idea of a flash-based
solid-state drive (SSD) attractive with respect to access time, power
consumption, and reliability. What makes the notion of such SSDs less appealing
is the cost differential to hard-disk drives, the finite number of erase/write cycles,
the fact that flash requires out-of-place writes, and that data has to be erased in
large units. There are, however, effective techniques to alleviate these
shortcomings, and the current massive industry investment in the development of
SSDs suggests that chances are high for flash-based SSDs to become a
contender in a sizeable segment of the computer storage space.

In this paper, we address a specific issue of NAND flash-based SSDs: the
multiplication effect of write operations that is caused by the fact that flash
employs out-of-place write, because in-place updates of individual pages would
be prohibitive from a performance point of view. Out-of-place write necessitates a
garbage-collection process which reads the valid data from the recycled block
and writes them back elsewhere. The multiplication of user writes, often called

 2

“write amplification” [7], is a critical phenomenon in flash-based SSDs, because
of its negative effect on their lifetime.

The problem of write costs in flash-based storage has been discussed in the
literature, but apart from a few papers, such as [1, 3, 4, 7], mainly in qualitative
terms. Our paper describes an analytic approach to model the basic operation of
an SSD by a Markov chain to evaluate the performance of the write operation.

2. Basic Operation of Flash-Based SSDs

A NAND flash memory is partitioned into blocks, where each block has a fixed
number of pages (typically 64), and each page is of a fixed size (typically 4
KByte). Data are written in a unit of one page, and the erase is performed in a
unit of one block. Reads are performed in units of pages. A page can be either
programmable or unprogrammable. A programmable page, also called “free
page”, becomes unprogrammable once it is written (programmed). A written
page contains either valid or invalid data.

In flash-based systems, out-of-place write is used: When a page or a fraction
thereof needs to be rewritten, the new data does not overwrite the memory
location where the data is currently stored. Instead, the new data is written to
another page and the old page is marked invalid. Over time, the SSD
accumulates invalid pages and the number of free pages decreases. To make
space for new or updated data, invalid pages must be reclaimed. The only way to
reclaim a page is to erase the entire block the page pertains to. We consider on-
demand reclamation which is triggered when the free space has been completely
exhausted. Reclamation or garbage collection happens in multiple steps: First,
one of the blocks is selected for reclamation. Second, the valid pages of this
block are copied to a reserved free block which thereby becomes part of the
device’s actively used storage space. Third, the reclaimed block is erased and
becomes the new reserved block.

The effectiveness of the garbage-collection mechanism is influenced by the
policy according to which blocks are selected for reclamation. In the main part of
this paper we consider the so-called “greedy” policy, in which the block with the
smallest number of valid pages is selected for garbage collection. This approach
minimizes the number of valid pages that need to be re-written in the course of
garbage collection.

For systems with a large number of blocks, implementing the optimal greedy
policy may become prohibitive because of the potentially long searches needed
to find the optimal block for reclamation. Hence less expensive sub-optimal
selection algorithms are of practical interest [7, 8]. To upper-bound the
performance of such schemes, we study the performance of a fictitious algorithm

 3

in which the reclaimed block is randomly selected among all blocks having non-
zero invalid pages.

Many designs combine reclamation with wear leveling, i.e., blocks are selected
for reclamation with the aim of positively affecting the evenness of the wear of
the flash cells [4, 5, 10]. Such schemes are beyond the scope of this paper.

3. Quantitative Modeling of the SSD Operation

3.1 Model Assumptions

The memory of the solid state drive we analyze in this paper is assumed to have
a total capacity of t + 1 blocks; each block consists of c pages. The number of
pages available for storing user data is u × c. A total of (t – u) × c pages is used
to temporarily hold pages that have been marked invalid and are waiting for
being reclaimed. There is one additional reserved block, which, after garbage
collection, will hold the free pages plus copies of any valid pages that were still in
the block that was last selected for reclamation. This latter block, at the end of
the garbage collection process, will be erased and become the new reserved
block. While functionally essential, the reserved block proper does not appear
explicitly in our model.

We call the ratio of the storage part actually used for storing user data to the total
storage capacity the “utilization” ! of the SSD:

tu /=ρ . (1)

The discussion and analysis in Sections 3 through 5 are based on the
assumption of the greedy reclamation policy. In Section 6, we analyze a scheme
in which the reclaimed block is selected randomly from the blocks with non-zero
invalid pages. As explained there, this scheme is interesting because it allows
one to estimate the maximum performance degradation of sub-optimal selection
algorithms.

Write access requests are assumed to be for single pages and to occur
independently of each other. We model the system in steady-state, i.e., at a time
where the entire memory space available to the user is actually used. In the
model, access to a memory location in one of the used pages leads to a
switching of the page’s state from “valid” to “invalid” and simultaneously switches
the state of one of the free pages from “free” to “valid”. We assume that the
access to each of the valid pages occurs with equal probability 1/(u × c).

 4

3.2 Example

To illustrate the operation and the mathematical description of the system, we
consider a small, yet non-trivial system with c = 3 pages per block, t = 6 blocks in
total, and the equivalent of u = 4 blocks dedicated to hold user data. (A more
general and rigorous description of the process is provided in Sections 4.2 and
4.3.) Figure 1 shows an example of 19 consecutive stages the system steps
through. Each stage corresponding to a system state is illustrated by a 3 by 6
matrix filled with the characters v for valid, i for invalid, and space (empty) for
free. In each matrix, the left-hand column shows the state of the 3 pages in the
first block, the second column the state of the 3 pages in the second block, etc.

Looking at the first stage shown in the figure, we see that the number of v’s in the
matrix adds up to 12, the product of c = 3 and u = 4. Four pages are marked
invalid (i), and 2 are free. Obviously, the number of invalid and free pages has to
add up to 6, the product of c = 3 and (t – u) = 2.

v v i v v v v v i v v v v i i v v v
i v v i v i v v v i v i v v v i v
v i v v v v i v v i v v i v v i

v i v v v v i v v v v v i i v v v
i v v v i v i v v i i v i v v i i v
v v v v i v v v v i v v v v v i

v i i v v v v i i v v v
v v i i v v v v i i i

v v v v v i v v v v v i

v i i v v v v i i v v v v i i v v v
v v v i i v i v i i v v i v i i v
v v v v v v v v v v v i v v v v

v i v v v v v i v v v v i i v v v v i i v v i
v v i i v v i i i v v v i i i v v v i i i v
v v

v i v v i v i v v v i v i i v v i
v v i i v v v i i v v v v i i v
v v v v v v i v v v v v i v v v v v

v i v v i
v v v i i v etc.
i v v v v v

Fig. 1: Write access process and garbage collection in a system with t = 6 blocks, c = 3
pages per block, and the equivalent of u = 4 blocks available for storing user data. Time
progresses from left to right and from top to bottom.

 5

Upon arrival of a write request, the system transitions to the next state shown in
the second matrix to the immediate right of the first one. The write access is
assumed to be to the third page in the 6th block, the matrix element in the bottom
right-hand corner. As a consequence of this write access, the targeted page flips
its state from valid to invalid, and one of the free pages in the second block
changes its state from free to valid.

The next write request happens to hit the first valid page in the second block; in
the figure, this is reflected by changing the top element in the second column
from v to i and the value of the bottom element in the same column from free to
v. After this state change, all free pages are in use, hence the system has to
perform garbage collection and reclaim some space for future writes. According
to the assumed greedy reclamation strategy, the system selects the block with
the smallest number of valid pages for reclamation, which is block #3 in the
example. As described in Section 2, the valid pages of the reclaimed block are
written to the reserved block, and the selected block #3 is erased. For simplicity,
we show the state of the reserved block after reclamation in the column the
selected block has “vacated” as a result of garbage collection. In the fourth stage,
captured by the leftmost matrix in the second row, there are now 2 free pages in
the third block, which corresponds to the two invalid pages in the block that had
been selected for reclamation. We call a state of the system immediately prior to
the onset of garbage collection a “pre-reclamation state” and a state immediately
after termination of garbage collection a “post-reclamation state”. The formerly
reserved block that after garbage collection contains the free pages and the re-
written pages, if any, is called the “write block”, as new user data is written into
one of its pages until the next garbage-collection epoch.

From the post-reclamation state shown in the leftmost matrix of the second row,
the system moves after two writes to the next pre-reclamation state, the right-
most matrix in the second row. Here the first block with two valid pages gets
selected for reclamation, and so on.

3.3 Optimized State Description

It would be possible to characterize the system states by a (c × t)-tuple in which
each element could assume three different values for the corresponding page
being in either the valid, invalid, or free state. It is obvious that the resulting state
space size of 3c×t would not permit the analysis of systems other than extremely
small ones.

Among the conceivable options, we have found the following state description to
be optimal in terms of both state space regularity and size.

We describe the state of the system by a vector (x0, x1,…, xc, y) of dimension
(c + 2), where the elements xi denote the number of blocks that momentarily

 6

contain i valid or empty pages. The vector element y is a number between 1 and
c that indicates how many valid or free pages the current write block contains.

Before discussing the rationale of this choice, let us apply this description to the
example of Fig. 1. The first state in the example (the leftmost matrix in the first
row) contains 2 blocks with 3 valid pages each, 2 blocks with 2 valid and 1 invalid
page, 1 block with 1 valid and 2 invalid pages, and one block with 1 valid and 2
free pages, i.e., 3 “valid or free” pages. The latter block is the write block; hence
y is equal to 3. Because of the 2 blocks with the 3 valid pages and the write block
with 3 valid or free pages, x3 equals 3. As there are 2 blocks with 2 valid or free
pages, x2 equals 2. There is one block with one valid or free page, hence x1 = 1,
and there is no block with zero valid or free pages, hence x0 = 0. Taken together,
this yields the state vector (0,1,2,3,3). As can be deduced from the figure, the
second state is described by state vector (0,1,3,2,3). In the second state, one of
the 2 valid pages in the write block is hit by the write request, therefore the value
of y in the subsequent third state is no longer 3 but 2, because the write block no
longer contains 3 valid or free pages but only 2. The third state vector becomes
(0,1,4,1,2). Transitioning from the pre-reclamation state #3 to the post-
reclamation state #4 means that the block with the least number of valid pages (1
in this case) is selected for garbage collection, which means that x1 is reduced by
one, and the new write block contains 3 valid or free pages, i.e., x3 is increased
by 1 and y is set to 3. In summary, state #4 is described by the vector (0,0,4,2,3).

The definition of the vector element xi as the number of blocks having i pages
that are either valid or free makes it possible to describe the dynamics of the
write block analogously to that of the other pages: When one of its valid pages is
hit by a write request, the sum of the block’s valid and free pages decreases by
one. On the other hand, upon each write access hitting a page in a block that is
not the write block, one of the write block’s free pages turns into a valid one,
leaving the sum of its valid and free pages unchanged. This homogeneous
formal description of all blocks is a major advantage of our state definition.

The transition from a pre- to a post-reclamation state is also rather straight-
forwardly captured in the state description chosen: As garbage collection
produces a new write block with pages that are either free or valid but not invalid,
the state vector element with the highest index, xc, is increased by 1 and y
assumes a value of c. Secondly, the non-zero state vector element with the
smallest index is reduced by one because one of these blocks is selected for
garbage collection.

Figure 2 shows the state-transition diagram for the example discussed above.
The arrows in the figure illustrate the feasible transitions between the states. The
states arranged in the same column are characterized by having the same
number of valid or free pages:

 7

∑
=

=
c

i
ic ixyxxx

0
10),,...,,(σ . (2)

Pre-reclamation states are characterized by " = c × u = 12 and appear at the
right-hand-side border of the state space. The states at the left-hand-side border
have a " of c × (u + 1) = 15.

As the figure illustrates, the behavior of the system is very regular: Each write
access effects a “down-stream” transition to a state with a by-one-smaller " until
the smallest possible " of c × u is reached. Upon each down-stream move, the
value of y stays the same or is reduced by one.

From a state (x0, x1,…., xq,…, xc, y) in the pre-reclamation set, the system leaps
(“up-stream”) u – q columns to the left where q is the index of the first non-zero
element when scanning the state vector from left to right. At the same time, y is
set to its maximum value c.

1,0,0,5,3 1,0,1,4,3 1,1,0,4,3 2,0,0,4,3

0,1,1,4,3 0,2,0,4,3 1,0,2,3,3 1,1,1,3,3

0,0,3,3,3 0,1,2,3,3 1,0,2,3,2 1,1,1,3,2

0,0,4,2,3 0,2,1,3,3 1,1,1,3,1

0,2,1,3,2 1,0,3,2,3

0,1,3,2,3 1,0,3,2,2

0,1,3,2,2 0,3,0,3,3

0,0,5,1,3 0,3,0,3,1

0,0,5,1,2 0,2,2,2,3

0,2,2,2,2

0,2,2,2,1

0,1,4,1,3

0,1,4,1,2

0,1,4,1,1

0,0,6,0,2

Fig. 2: State-transition diagram of a system with t = 6 blocks, c = 3 pages per block, and
the equivalent of u = 4 blocks available for storing user data. For the transition
probabilities, see Table 1.

 8

In summary, the behavior of the system is characterized by a series of system
changes in the same (“down-stream”) direction until the border of the state space
is reached, followed by an “up-stream” leap, followed by the next down-stream
move, etc. This very regular process is a consequence of our particular state
description; it renders the analysis of the system more structured and the
numerical computation more transparent and efficient than alternative schemes.

4. Markov Chain Model

4.1 State Definition

We now define the states and behavior of the system considered in more
rigorous terms. The assumption of independent single-page access requests
makes it possible to describe the system behavior by a homogeneous Markov
chain with states

S = (X0, X1,…, Xc, Y) (3)

where the random variable Xi denotes the number of blocks with i valid or empty
pages and random variable Y denotes the number of valid or empty pages in the
current write block.

The random variables X0 through Xc and Y can assume non-negative integer
values. In order for the vector (x0, x1,…, xc, y) to represent a valid state, the
following conditions have to be met:

cycuixc

ucixcu

tx

c

i
i

c

i
i

c

i
i

≤≤
⎭
⎬
⎫

⎩
⎨
⎧ −+

+≤≤

=

∑

∑

∑

=

=

=

1,min

)1(

0

0

0

 (4)

4.2 State Transitions

In this section, we derive the one-step transition probabilities of the Markov chain
introduced in the preceding section.

4.2.1 State Transitions Caused by Garbage Collection

Under the greedy reclamation policy assumed, the block (or one of the blocks)
with the least number of valid pages is selected for reclamation. The valid pages
are copied into the reserved block, which then becomes the write block. The
selected block is erased and turned into the new reserved block awaiting the next

 9

garbage collection cycle. The garbage collection action is captured in our Markov
chain description by having the system change states as described below.

Assume that garbage collection is started when the system is in pre-reclamation
state

 10;;0with 110

1110

cyu;cxi xx xx

, y) , x,, x, x, x,, x(xs
c

1i
iqq

cqqqPR

≤≤⋅=⋅>==…==

……=

∑
=

−

+−

. (5)

Because the block (or one of the blocks) with the least number of valid pages is
selected for reclamation, the non-zero state variable xq with the smallest index q
is decreased by 1 and the variable xc with the highest index is increased by 1.
The latter reflects the fact that the block that was turned from the reserved into a
utilized block contains only free or valid pages; in other words, a block (the new
write block) with c valid or free pages has been added to the system.
Consequently, the variable y in the state description assumes the value c, as it
has to point to one of the blocks with c valid or free pages. In summary this
yields, for k ∈ {1,…, c}, the following expression for the transition probabilities
between pre-and post-reclamation states:

⎪⎩

⎪
⎨
⎧ ≤≤=>===

=

=+−

∑
=

−

+−+−

otherwise0

1,,0,0...if1

)),1,...,,1,,...,(),,,...,,,,...,((

0
10

110110

c

i
iqq

cqqqcqqq

cycuixxxx

cxxxxxyxxxxxp

. (6)

As part of the garbage collection process, q valid pages of the selected block are
being re-written into the hitherto reserved block, the new write block.

4.2.2 State Transitions Caused by Write Requests

As mentioned in Section 3.1, it is assumed that a write-access request targets
any of the valid pages independently and with equal probability. To derive the
state transition probabilities, assume that the updated page is part of a block with
k valid or free pages. Under this assumption, the value of the state variable xk is
reduced by 1 and the value of variable xk–1 is increased by 1. As captured by Eq.
(7), we have (for each value of k between 1 and c) to differentiate between three
cases:

(A) The write access hits a page with the same number of valid pages as the
write page, but not the write page itself. This implies k = y, and occurs when one
of the (xk – 1) × k pages in non-write blocks with k valid pages is hit, which
happens with probability (xk – 1) × k/cu, see the first line on the right-hand side

 10

of Eq. (7). In this case, the number of valid or free pages in the write block does
not change, hence y' = y.

(B) The write access hits a block with a different number of valid pages than the
write block, i.e., k ≠ y. This happens when one of the xk × k pages in blocks with
k valid pages is hit. The transition probability is given in the second line of Eq.
(7). In this case, the number of valid or free pages in the write block does not
change, hence y' = y.

(C) The write access hits a valid page of the write block, i.e., k = y and y' = y – 1.
The number of valid pages in the write block is equal to the total number k of
valid or free pages in the write block minus the number of free pages. The latter
is equal to the total number of valid or free pages in the state considered minus
the total number of valid pages. This translates into the transition probability
given in the third line of Eq. (7).

For all other combinations of k, x0,…, xc, y, and y', the transition probability is
zero.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>−==
+−

>=≠

>==
−

=

=−+

∑
=

−

otherwise0

0,1',

0,',

0,',)1(

))',,...,1,1,...,,(),,,...,,...,,((

1

11010

k

c

i
i

k
k

k
k

ckkck

xyyykif
cu

cuixk

xyyykif
cu

kx

xyyykif
cu

kx

yxxxxxyxxxxp

 (7)

For the example underlying the state-transition diagram shown in Fig. 2, Table 1
provides the transition probabilities that were calculated using Eqs. (6) and (7).

 11

Table 1: State-transition probabilities of a system with t = 6 blocks, c = 3 pages per
block, and the equivalent of u = 4 blocks available for storing user data. For an
illustration of the state space, see Fig. 2.

Current
State

Vector

Next
State

Vector
Trans.
Prob.

Current
State

Vector

Next
State

Vector
Trans.
Prob.

Current
State

Vector

Next
State

Vector
Trans.
Prob.

1,0,0,5,3 1,0,1,4,3 12/12 1,1,0,4,3 2,0,0,4,3 1/12 2,0,0,4,3 1,0,0,5,3 1
0,1,1,4,3 1,0,1,4,3 1/12 1,1,1,3,3 9/12 1,1,1,3,3 0,1,1,4,3 1

 0,2,0,4,3 2/12 1,1,1,3,2 2/12 1,1,1,3,2 0,1,1,4,3 1
 0,1,2,3,3 9/12 1,0,2,3,3 1,1,1,3,3 4/12 1,1,1,3,1 0,1,1,4,3 1

0,0,3,3,3 0,1,2,3,3 6/12 1,0,3,2,3 6/12 0,3,0,3,3 0,2,0,4,3 1
 0,0,4,2,3 6/12 1,0,3,2,2 2/12 0,3,0,3,1 0,2,0,4,3 1

1,0,1,4,3 1,1,0,4,3 2/12 1,0,2,3,2 1,1,1,3,2 2/12 1,0,3,2,3 0,0,3,3,3 1
 1,0,2,3,3 9/12 1,1,1,3,1 1/12 1,0,3,2,2 0,0,3,3,3 1
 1,0,2,3,2 1/12 1,0,3,2,2 9/12 0,2,2,2,3 0,1,2,3,3 1

0,2,0,4,3 1,1,0,4,3 2/12 0,2,1,3,3 1,1,1,3,3 2/12 0,2,2,2,2 0,1,2,3,3 1
 0,2,1,3,3 9/12 0,3,0,3,3 2/12 0,2,2,2,1 0,1,2,3,3 1
 0,2,1,3,2 1/12 0,2,2,2,3 6/12 0,1,4,1,3 0,0,4,2,3 1

0,1,2,3,3 1,0,2,3,3 1/12 0,2,2,2,2 2/12 0,1,4,1,2 0,0,4,2,3 1
 0,2,1,3,3 4/12 0,2,1,3,2 1,1,1,3,2 2/12 0,1,4,1,1 0,0,4,2,3 1
 0,1,3,2,3 6/12 0,3,0,3,1 1/12 0,0,6,0,2 0,0,5,1,3 1
 0,1,3,2,2 1/12 0,2,2,2,2 9/12

0,0,4,2,3 0,1,3,2,3 8/12 0,1,3,2,3 1,0,3,2,3 1/12
 0,0,5,1,3 3/12 0,2,2,2,3 6/12
 0,0,5,1,2 1/12 0,1,4,1,3 3/12
 0,1,4,1,2 2/12
 0,1,3,2,2 1,0,3,2,2 1/12
 0,2,2,2,2 4/12
 0,2,2,2,1 1/12
 0,1,4,1,2 6/12
 0,0,5,1,3 0,1,4,1,3 10/12
 0,0,6,0,2 2/12
 0,0,5,1,2 0,1,4,1,2 8/12
 0,1,4,1,1 1/12

 0,0,6,0,2 3/12

4.3 State Probabilities

To determine the write amplification, we need to know the probability distribution
of the number of valid pages in the blocks selected for reclamation. To determine
this distribution, it is sufficient to observe the system only when it is in a pre-
reclamation state, determine the transition probabilities pij* between successive
pre-reclamation states i and j, and from those calculate the steady-state
probabilities �i.

To proceed along this line, we group the states into subsets with the same
number of free pages n or, equivalently, the same " as defined in Eq. (2). The

 12

pre-reclamation states (n = 0) carry the numbers 1 through a0. States having n
free pages (n ∈ {1,…, c}) are numbered from an–1 + 1 through an.

The probability pij* that the system transitions in one or multiple steps from any of
its states with number i (i ∈ {1, 2,…, ac}) to the next pre-reclamation state with
number j (j ∈ {1, 2,…, a0}) can be determined in a step-by-step fashion:

Step 1: for },...,1{ 10 aai +∈ :

 =*

ijp ijp (8a)

(The one-step transition probabilities pik are given by Eq. (7).)

Steps 2 to c: for },...,1{};,...,2{ 1 nn aaicn +∈∈ −

∑
+= −

⋅=
n

n

a

ak
kjikij ppp

1

**

1

 (8b)

(The one-step transition probabilities pik are given by Eq. (7).)

Step c+1: for },...,1{ 0ai∈

=*
ijp ∑

+=
⋅

ca

ak
kjik pp

1

*

0

 (8c)

(The one-step transition probabilities pik are given by Eq. (6).)

If for i, j ∈ {1,…, a0}, we denote by

][**
ijpP = (9)

the (a0 × a0) transition probability matrix and by

),...,,(
021 aππππ = (10)

the state probability vector of the Markov chain, then it holds for the steady-state
probabilities of the pre-reclamation states [6] that

1

*

=⋅

⋅=

e

P

π

ππ

, (11)

where e is the (a0 × 1) column vector with all elements equal to one. Solving this

 13

system of linear equations finally yields the state probabilities needed for
calculating the write amplification as discussed in the next section.

4.4 Write Amplification

In the context of this paper, write amplification A is defined as the average of the
actual number of (system) page writes per user page write.

To determine A, we observe the system at garbage-collection epochs, i.e., when
the system is in a pre-reclamation state sPR as defined in (5). As explained in
Section 4.2.1, garbage collection in this state involves the re-writing of q pages.
As this happens with probability �i, the expected number of rewritten pages is
given by

 i

a

i
iqq ∑

=

=
0

1
π

. (12)

In a complete cycle consisting of all write accesses between two subsequent
garbage-collection epochs plus one garbage-collection action, exactly c pages
get either written or rewritten, qc − pages of these are user page writes. Hence
write amplification A is given by

i

a

i
iqc

cA
∑
=

−
=

0

1
π

, (13)

where the probabilities iπ are the solutions of the system of linear equations (11).

4.5 State Space Size

The number of linear equations in (11) can be reduced by a factor close to 1/c
without loss of generality or exactness of the solution. As illustrated in Fig. 2 and
formally captured in Eq. (6), all pre-reclamation states (x0, x1,…, xc, y) with the
same values of their first c + 1 elements x0,…, xc have one and only one
transition to the same post-reclamation state. Replacing them by a single “macro
pre-reclamation state” (x0,…, xc) will therefore not alter the behavior of the
system. When garbage collection is performed in states with identical values of
x0,…, xc , the same number of pages is re-written (same value of qi in Eq. (13)).
Hence knowledge of the macro pre-reclamation state probabilities is fully
sufficient for computing the write amplification.

In Appendix A1, we prove that the number of macro pre-reclamation states can
be recursively computed using the function N(m, n, s) defined as follows: For m =
1 and n = 1 and non-negative integers s, N is defined by

 14

⎩
⎨
⎧

>
≤

=
nsif
nsif

snN
0
1

),,1(

 (14)

⎩
⎨
⎧

>
≤

=
msif
msif

smN
0
1

),1,(,

respectively, and for integers m, n ≥ 2 and non-negative integers s by

⎩
⎨
⎧

≥−−+−
<−

=
nsifnsnmNsnmN
nsifsnmN

snmN
),,1(),1,(

),1,(
),,(. (15)

For a system with c pages per block, a total number of t blocks, and u blocks
available for storing user data, the number of macro pre-reclamation states is
given by

),,(),,(cutcNutcG = . (16)

Table 2 provides numerical values for G(c,t,u) for a wide range of parameter
combinations.

Table 2: Number of macro pre-reclamation states G(c, t, u) for different numbers of
pages per block c, total number of blocks t, and number of utilized blocks u.

t 4 16 64 256
c = 4

u = 1/4 t 5 64 2,280 123,464
u = 1/2 t 8 177 8,173 479,837
u = 3/4 t 5 64 2,280 123,464

c = 8
u = 1/4 t 15 2,755 6,208,394 > 1E+9
u = 1/2 t 33 17,575 83,916,031 > 1E+9
u = 3/4 t 15 2,755 6,208,394 > 1E+9
c = 16

u = 1/4 t 64 487,842 > 1E+9 > 1E+9
u = 1/2 t 177 8,908,546 > 1E+9 > 1E+9
u = 3/4 t 64 487,842 > 1E+9 > 1E+9
c = 32

u = 1/4 t 351 363,829,479 > 1E+9 > 1E+9
u = 1/2 t 1,143 > 1E+9 > 1E+9 > 1E+9
u = 3/4 t 351 363,829,479 > 1E+9 > 1E+9
c = 64

u = 1/4 t 2,280 > 1E+9 > 1E+9 > 1E+9
u = 1/2 t 8,173 > 1E+9 > 1E+9 > 1E+9
u = 3/4 t 2,280 > 1E+9 > 1E+9 > 1E+9

 15

4.6 An Upper Bound on the Write Amplification

Because the numerical evaluation of our solution is non-trivial and confined to
moderate-size systems, a simple upper bound on the write amplification is of
some practical value. In addition, it sheds interesting theoretical light onto the
behavior of our system.

The approach to upper-bound write amplification A is to upper-bound in Eq. (13)
the term

i

a

i
iq∑

=

0

1
π .

This is accomplished by finding conditions among the system parameters c, t,
and u (or ! = u/t) such that for any of the pre-reclamation states, the number of
rewritten pages qi in (13) is no larger than a given value k < c.

In Appendix A2, we prove that for k ∈ {0, 1,…,c – 1}, the following bound on the
write amplification holds:

c
kif

kc
cAA 1ˆˆ +

=<
−

=≤ ρρ (17)

5. Approximate Model

It is possible to reduce the complexity of the model by making the heuristic
assumption that in any system state the write block is always among the blocks
with the highest momentary number of valid or empty pages. Under this
assumption, the random variable Y in the state description (3) can be omitted.
This simplification leads to a considerable reduction of the compute resources
required (processing time and memory) compared with the exact solution.
Comprehensive tests showed that the error in the write amplification caused by
this approximation is generally below 2%.

6. Random Reclaimed-Block Selection

In practice, the optimal “greedy” policy, which selects the block having the least
valid pages for reclamation, can become computationally expensive when the
number of blocks is very high. It has been suggested to use less-expensive sub-
optimal selection algorithms, for example to search for the optimal block only
within an appropriate subset (“window”) of the blocks [7, 8].

Rather than studying any particular such policy, we will subsequently analyze a
fictitious scheme in which the reclaimed block is randomly selected from among
all blocks having non-zero invalid pages. The rationale for investigating this case

 16

is that one can assume that all “intelligent” policies will yield a better write
amplification than the random scheme.

Compared with the case of the greedy policy studied so far, the analysis of the
random selection scheme differs in the state transitions resulting from the
garbage collection process. Under the greedy policy, there is one and only one
transition from any pre-reclamation state, namely, the one that meets the optimal
selection criterion of the greedy policy. This fact is reflected in Eq. (6) and
illustrated in Fig. 2. In contrast, under the random reclaimed-block selection
policy, the system can, with certain probabilities that depend on the pre-
reclamation state vector, transition to multiple different post-reclamation states. In
our analysis, this change is reflected by replacing Eq. (6) by the following
formula, which holds for r ∈ {0, 1,…, c – 1}:

⎪
⎪
⎩

⎪⎪
⎨

⎧ ≤≤=>
=

=+−

∑
∑ =
−

=

otherwise0

1,,0

)),1,...,1,...,(),,,...,,...,((

0
1

0

00

c

k
krc

k
k

r

crcr

cycukxxif
x

x

cxxxyxxxp
 (18)

A transition from pre-reclamation state # i (i∈{1,…, a0}) with state vector
(x0,…, xr,…, xc,y) to post-reclamation state (x0,…, xr – 1,…, xc + 1, c) is
associated with the re-writing of r valid pages. Hence, the expected number of re-
written pages when garbage collection is performed in state # i is given by

c

c

r
r

c

k
k

c

r
r

i xuc

xr

x

xr
r

−⋅

⋅
=

⋅
=

∑

∑

∑
−

=
−

=

−

=

1

0
1

0

1

0 . (19)

In analogy to Eq. (13), we obtain the write amplification for the random
reclaimed-block selection as

i

a

i
i rc

cA
∑
=

−
=

0

1
π

 , (20)

where iπ is the steady-state probability of pre-reclamation state # i (i∈{1,…, a0}).
The state probabilities are computed by solving the system of equations (11), in
which the transition probabilities are determined on the basis of Eqs. (7) and (18)
rather than (7) and (6).

 17

7. Numerical Results

In a practical SSD, the number of pages per block is 64 and the total number of
blocks is on the order of 1,000 to 10,000. Despite our optimized state definition,
the size of the state space for these parameter values is several orders of
magnitude beyond the computation capabilities of today’s computers.
Fortunately, it turns out that the analysis of systems with smaller parameter
values still yields very useful insights into the general behavior of this type of
storage systems and that it is possible to heuristically extrapolate the measures
of interest to the parameter ranges of practical significance.

Figure 3 shows the typical write amplification characteristic of the system
considered as a function of the storage utilization !, the ratio of the space
available for storing active (i.e., valid) user data to the total storage space of the
device. Shown in the chart are curves for 5 different values of c, the number of
pages per block. All curves exhibit a very moderate write amplification effect up
to about 60% utilization. As the utilization gets into the 70 to 90% range, the
overhead caused by the out-of-place writes in combination with the block-based
erase operation becomes substantial. Figure 3 also shows that write amplification
becomes worse for larger numbers of pages per block. We will get back to this
effect in the context of Figs. 5 to 8.

Figure 4 repeats the results for c = 10 from Fig. 3 and puts them into relation with
the upper bound of Eq. (16). It can be seen that the bound is not very tight.
However, as it follows nicely the real A(!) characteristic and is trivial to compute,
it can serve as a guideline for a first-order estimation of the write amplification for
parameter ranges that are impossible to address with the exact solution.

Figure 5 plots the write amplification A as a function of the total number of blocks
t. For each of the 5 curves, the utilization, i.e., the ratio of u and t, is kept
constant. We notice again the strong dependency of A on !. It is interesting to
observe that for fixed values of !, A quickly approaches a horizontal asymptote.
The reason for this effect can be understood by inspecting the state probabilities
�i of the pre-reclamation states. It can be generally observed that the
probabilities of having to re-write 0, 1, 2,… pages during garbage collection
change only minimally when t grows beyond 50. In other words, larger values of t
and u result in larger state spaces, but the write amplification is only minimally
affected if the ratio of these parameters is kept constant.

The individual results marked with different symbols (see the legend) and
connected by solid lines represent numerical results generated by our model.
The smooth lines are used for ease of representation and should not be read as
suggesting that the corresponding values are continuous. The dashed lines
represent heuristic extrapolations of the computed results, indicating the trend for
growing values of t. Given the benign behavior of the A(t) characteristic
described above, this “engineering guess” should not be too far off the truth.

 18

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

!

A

c = 16
c = 10
c = 6
c = 4

Fig. 3: Write amplification A as function of the utilization ! for t = 10 blocks and different
numbers of pages per block c.

1
2
3
4
5
6
7
8
9

10
11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rho

A

c = 10 upr bnd

c = 10

Fig. 4: Write amplification A as function of the utilization ! for t = 10 blocks and c = 10
pages per block. Exact solution and upper bound.

 19

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160

t

A

rho = 0.95
rho = 0.9
rho = 0.8
rho = 0.6
rho = 0.4

Fig. 5: Write amplification A as function of the total numbers of blocks t for different
values of the utilization ! (0.95, 0.9, 0.8, 0.6, 0.4). c = 4 pages per block.

The intention behind Figs 6 to 9 is to provide a reasonably complete picture of
the parameter space that can be addressed by our model. For different fixed
values of !, the figures show the write amplification A as a function of the total
number of blocks t. The four charts demonstrate that A decreases with growing
storage size, but levels off at values of t below 100. The explanation of this effect
is essentially the same as for Fig. 5.

As can be seen from the four figures, the write amplification is better for smaller
values of c because smaller blocks reduce the effect of the block erase
operation. This effect is particularly strong at higher utilizations, whereas at lower
utilizations, the advantage of a smaller c is less pronounced, unless one would
consider extremely small number of pages per block. These results could be
interpreted as suggesting the use of small numbers of pages per block. One
needs to keep in mind though that optimizing A with respect to c is only one, and
likely not the most relevant, consideration: Because erases are performed in
units of blocks and take a comparatively long time, employing a small number of
pages per block would be very inefficient.

 20

1

1.1

1.2

1.3

1.4

1.5

1.6

0 10 20 30 40 50 60 70 80

t

A

c = 20
c = 10
c = 8
c = 6
c = 4

Fig. 6: Write amplification A as function of the total number of blocks t for different values
of the number of pages per block c. Utilization ! = 0.6.

1.00

1.50

2.00

2.50

3.00

3.50

0 20 40 60 80

t

A

c = 32
c = 16
c = 10
c = 6
c = 4

Fig. 7: Write amplification A as function of the total number of blocks t for different values
of the number of pages per block c. Utilization ! = 0.8.

 21

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

0 10 20 30 40 50 60 70 80

t

A

c = 32
c = 16
c = 10
c = 8
c = 6
c = 4

Fig. 8: Write amplification A as function of the total number of blocks t for different values
of the number of pages per block c. Utilization ! = 0.9.

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80

t

A

c =32
c = 16
c = 10
c = 8
c = 6
c = 4

Fig. 9: Write amplification A as function of the total number of blocks t for different values
of the number of pages per block c. Utilization ! = 0.95.

 22

We are able to compute at least a few cases for c = 32, but the state space for
the value of practical interest, c = 64, is just slightly too big for our analysis
program. As described in Sections 3.3 and 4, we have taken great care to come
up with an efficient state definition and recursive computation of the transition
probabilities of the Markov chain, so a fundamentally more efficient exact
analysis of the problem is hard to imagine. It is conceivable, though, that the
implementation of our analytic approach can be further optimized with respect to
both computation time and memory requirements. This will be the subject of
future work. A complementary approach also worth pursuing is to develop an
approximate solution that works for larger parameter ranges than the exact
model described in this paper.

Figures 10 and 11 address the dependency of A on c in a different form that
allows us to extrapolate the write amplification characteristics to relatively large
values of c. Figure 10 shows the write amplification A as a function of the number
of pages per block c for different values of the total number of blocks t at a
utilization of ! = 0.6. Because the curves level off for values of c > 30,
heuristically extrapolating the curves up to c = 64 appears to be justified.
Furthermore, the write amplification exhibits little increase as the total number of
blocks increases above 40. It is therefore pretty safe to estimate the write
amplification for c = 64 and large numbers of blocks to be around 1.46. This is in
agreement with the simulation results in [7].

The same considerations hold for the results shown in Fig. 11 for a utilization of
! = 0.8. For this utilization, the extrapolation of our results suggest a write
amplification of roughly 2.3 for c = 64 and large numbers of blocks.

Finally, we direct our attention to the “random” reclaimed-block selection scheme
discussed in Section 6. For c = 4 and t = 10, Fig. 12 shows the write amplification
for the greedy and the random scheme. It can be seen that the absolute and
relative differences between the two policies are minimum at low and high
utilizations. One way of looking at the results is to compare the “admissible”
utilizations, i.e., the values of ! that yield the same write amplification for the two
schemes. The horizontal distance between the two curves visualizes the gain in
terms of better use of the storage, or equivalently, in terms of storage size
savings achieved by putting intelligence into the selection algorithm. As the figure
shows, this gain is substantial, e.g., a factor of 2 in storage size for a write
amplification of approx. 1.3. Figure 13 shows the corresponding results for c =
10.

 23

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 10 20 30 40 50

c

A

t = 5

t = 10

t = 20

t = 60

Fig. 10: Write amplification A as function of the number of pages per block c for different
values of the total number of blocks t. Utilization ! = 0.6.

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0 10 20 30 40 50

c

A

t = 5
t = 10
t = 20
t = 40
t = 120

Fig. 11: Write amplification A as function of the number of pages per block c for different
values of the total number of blocks t. Utilization ! = 0.8.

 24

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rho

A

c = 4 random
c = 4 greedy

Fig. 12: Write amplification A as function of the utilization ! for t = 10 blocks and c = 4
pages per block for the greedy and the random reclaimed-block selection scheme.

7. Conclusions

In this paper, we developed an analytical model to describe the basic operation
of a flash-based SSD with the aim of quantifying the cost of its out-of-place write
and block-erase operations. Depending on the system parameters, e.g., the total
storage space, the fraction of the storage available for storing user data, and the
number of pages per block, write amplification, i.e., the ratio of system writes to
user writes, may significantly affect the lifetime of a device. A Markov chain
model of the SSD operation made it possible to study the sensitivity of the write
efficiency to the above parameters. The state description of the Markov chain
was optimized for minimum size and complexity of the state space, which made it
possible to perform an exact analysis of moderate-size systems.

Through an upper-bound result and heuristic extrapolation, we have been able to
estimate the write amplification beyond the limits of the exact solution.
Furthermore, we performed an analysis of a fictitious scheme, in which the
reclaimed blocks are selected randomly from the blocks with non-zero invalid
pages. This analysis provides a limit on the performance degradation resulting
from a sub-optimal reclamation policy.

 25

Acknowledgment

The work described in this paper has greatly benefited from being part of a broader
research project in which a flexible flash-based solid state drive system has been
architected, designed, and prototyped. The author is indebted to his colleagues involved
in this effort, in particular Roy Cideciyan, Evangelos Eleftheriou, Robert Haas, Xiao-Yu
Hu, Ilias Iliadis, Peter Müller, and Roman Pletka, for numerous insightful discussions. He
is grateful to Ilias Iliadis for providing a sample of simulation results to cross-check the
validity of the analysis. Last but not least, he would like to thank Christoph Hagleitner,
Haris Pozidis, and Martin Schmatz for their help in establishing the compute
environment for this work.

Appendices

A1: Size of the State Space

In this appendix, we derive a recursive formula for computing the number of
macro pre-reclamation states and upper- and lower-bounds for the number of all
states.

For non-negative integers x0,…, xn and s, and for positive integers m and n, let
M(m, n, s) be the set of vectors defined by

},|),...,,{(),,(
0 0

1 ∑ ∑
= =

===
m

i

m

i
iimo sixnxxxxsnmM . (A.1)

We split M(m, n, s) into 2 disjoint sets M0(m, n, s) and M1(m, n, s) as follows:

}0),,(),...,,(),...,,{(),,(0110 =∧∈= xsnmMxxxxxxsnmM momo

}0),,(),...,,(),...,,{(),,(0111 >∧∈= xsnmMxxxxxxsnmM momo . (A.2)

Next, let us map each vector (x0,…, xm) ∈ M0 onto a vector (x′0,…, x′m–1) by
setting

}1,...,1,0{' 1 −∈= + miforxx ii . (A.3)

Note that

∑∑
−

=

−

=

−=⋅=
1

0

1

0

''
m

i
i

m

i
i nsxidannx

 . (A.4)

Therefore the set of vectors (x′0,…, x′m–1) is equal to M(m–1, n, s–n) if m ≥ 2 and
s ≥ n.

 26

Secondly, we map each vector (x0,… ,xm) ∈ M1 onto a vector (x″0,…, x″m) by
setting

},...,1{"
1" 00

miforxx
xx

ii ∈=
−=

 . (A.5)

If n≥ 2, the set of vectors (x″0,…, x″m)) is equal to M(m, n – 1, s) because

∑∑
==

=⋅−=
m

i
i

m

i
i sxinx

00
"and1"

 . (A.6)

Because each element of M0(m, n, s) is mapped exactly onto one element of
M(m – 1, n, s – n) and each element of M1(m, n, s) exactly onto one element of
M(m, n-1, s), and since

0snmMsnmM
snmMsnmMsnmM

/=∩
=∪

),,(),,(
),,(),,(),,(

10

10 , (A.7)

we obtain for m, n ≥ 2 the following recursive relationship for the number of
elements N(m, n, s) of M(m, n, s):

⎩
⎨
⎧

≥−−+−
<−

=
nsifnsnmNsnmN
nsifsnmN

snmN
),,1(),1,(

),1,(
),,(. (A.8)

The initial values of N(m, n, s) for m = 1 and for n = 1 are given by

⎩
⎨
⎧

>
≤

=
nsif
nsif

snN
0
1

),,1((A.9)

⎩
⎨
⎧

>
≤

=
msif
msif

smN
0
1

),1,(.

The above equations lend themselves to a straightforward recursive computation
of N(m, n, s).

Macro pre-reclamation states (x0,…, xc) for a system with c pages per block, t
blocks in total, and u blocks available for user data are characterized by

∑∑
==

=⋅=
c

i
i

c

i
i cuxidantx

00 . (A.10)

 27

Therefore the number of macro pre-reclamation states is given by

),,(),,(cutcNutcG = . (A.11)

For the purpose of counting the total number of states, we group all valid states
(x0, x1,…, xc, y) with the same values for x0, x1,…, xc into a single so-called macro
state (x0,…, xc). From the definitions (3) and (4) of the system states and the
above definition of N(m, n, s), it can be seen that for a system with c pages per
block, a total number of t blocks, and u blocks available for storing user data, the
number of macro states is given by

∑
+

=

=
)1(

),,(),,(
uc

cus
stcNutcQ . (A.12)

Determining the number of all (“micro-”) states as defined in (3) and (4), is
possible but quite involved and will be omitted in this report. However, it is
relatively straightforward to upper- and lower-bound it as follows:

Let n(c, t, s) be the number of (micro-) states (x0,…, xc, y) as defined in (3) and
(4) with

∑
=

=
c

i
iixs

0
 . (A.13)

The total number of all (micro-) states is then given by

∑
+

=

=
)1(

),,(),,(
uc

cus
stcnutcq . (A.14)

For a given value of s, the number of different values that the state vector
element y can assume is upper-bounded by

⎩
⎨
⎧

+⋅−+⋅∈
−+⋅+⋅⋅∈−+⋅

=
)}1(,1)1({1

}2)1(,...,1,{)1(
),,(

ucucsfor
ucucucsforsuc

stck . (A.15)

This implies

)}1(,...,{),,(),,(),,(+∈⋅≤ uccusforstcNstckstcn . (A.16)

Therefore the number of all states is bounded by

),,(),,(),,(),,(
)1(

stcNstckutcqutcQ
uc

cus
⋅≤≤ ∑

+

=

 . (A.17)

 28

A.2: Upper Bound on the Write Amplification

In this appendix, we derive an upper bound on the write amplification A for the
greedy reclamation policy. We proceed by finding a sufficient condition on the
system parameters c, t, and u such that

 }1,...,1,0{0...0 10 −∈===> − ckforxxifx kk (A.18)

when the system is in a pre-reclamation state

 10;;0110

10

cyu;cxi xx xxwith

, y) , x,, x,, x(xs
c

1i
ikk

ckPR

≤≤⋅=⋅>==…==

……=

∑
=

−

 . (A.19)

For any k ∈ {0, 1,…, c – 1}, it follows from (A.18) and (A.19) that

 ∑
+=

−=
c

ki
ik xtx

1
 (A.20)

and

 ∑∑
+=+=

⋅−−−⋅−⋅=
c

ki
i

c

ki
i xkitkucx

11
)1(. (A.21)

Inserting (A.21) into (A.20) yields

 ∑
+=

⋅−−+⋅−⋅+=
c

ki
ik xkiuctkx

1
)1()1(. (A.22)

To enforce xk > 0, it is sufficient that

 0)1(>⋅−⋅+ uctk (A.23)

since 0)1(
1

≥⋅−−∑
+=

c

ki
ixki .

If condition (A.23) is met for all pre-reclamation states, then xk > 0 when all xi with
index i < k are equal to zero. This implies that there will never be more than k
valid pages that need to be rewritten during garbage collection. In other words,
the term

i

a

i
iq∑

=

0

1
π

in (12) is upper-bounded by k, and it follows from (12) and (A.23) that A is
bounded by

 }1,...,1,0{;1ˆˆ −∈
+

=<
−

=≤ ck
c

kif
kc

cAA ρρ . (A.24)

 29

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,

and Rina Panigrahy. Design tradeoffs for SSD performance. Proceedings of the
USENIX 2008 Annual Technical Conference, pp. 57-70, June 2008.

[2] Joe Brewer and Manzur Gill (eds.). Nonvolatile Memory Technologies with

Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash
Memory Devices, Wiley-IEEE Press, 2008.

[3] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage collection for flash-

memory storage systems of real-time embedded systems, ACM Transactions on
Embedded Computing Systems, Vol. 3, No. 4, June 2004, pp. 1-26.

[4] Li-Pin Chang. On efficient wear leveling for large-scale flash-memory storage

systems, Proceedings of the 2007 ACM Symposium on Applied Computing, Seoul,
Korea, pp. 1126-1130

[5] Eran Gal and Sivan Toledo. Algorithms and data structures for flash memories,

ACM Computing Surveys, Vol. 37, No. 2, June 2005, pp. 138-163.

[6] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory, Second

Edition, John Wiley & Sons, New York, 1985.

[7] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis, and Roman Pletka.

Write amplification analysis in flash-based solid state drives, Proceedings of The
Israeli Experimental Systems Conference "SYSTOR 2009," Haifa, Israel, Article
no. 10, ACM, May 2009.

[8] Jai Menon and Larry Stockmeyer. An age-threshold algorithm for garbage

collection in log-structured arrays and file systems, in J. Schaeffler, editor, High
Performance Computing Systems and Applications, Kluwer Academic Publishers,
pp. 119–132, 1998.

[9] Micron Technical Note NAND Flash 101: An Introduction to NAND Flash and How

to Design It into Your Next Product, 2006.

[10] M. Wu and Willy Zwaenepoel. eNVy: A non-volatile, main memory storage system.

Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 86-97, 1994.

