
RZ 3758 (# 99768) 11/12/2009 
Computer Science 19 pages 
 
 

Research Report 
 
 
 
 
A Unifying Theory of Security Metrics with Applications 
 
 
Klaus Julisch 
 
IBM Research – Zurich  
8803 Rüschlikon 
Switzerland 
 
Email: kju@zurich.ibm.com 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIMITED DISTRIBUTION NOTICE 
 
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties).  Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home. 
 
 
 
 
  Research 

  Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich 



A Unifying Theory of Security Metrics
with Applications

Klaus Julisch
IBM Research

Zurich Research Laboratory
Switzerland

November 12, 2009

Abstract

A large number of measures have been proposed under the umbrella of ”security metrics”. Some of these
measures are percentages, others are frequencies, numbers, monetary amounts or other units. This absence
of a basic unit of measurement is aggravated by a general lack of theory and consistency in the field of
security metrics. This paper tries to fill the void by proposing a unifying theory of security metrics. Towards
this end, we define security metrics by the properties (validity, accuracy, and precision) they have to fulfill.
We clearly differentiate security metrics from the related concepts of risk metrics, compliance metrics, and
threat metrics. We further introduce a new classification scheme for security metrics, which helps us review
the prior work and identify pitfalls that metrics authors should be aware of. Finally, we show how the theory
developed in this paper can be applied to help managers make IT security decisions. Most importantly, the
presented theory implies two novel rules for deciding how much money to spend on security and how to
allocate this money among multiple systems.

1 Introduction

The term security metric is commonly used to denote a measure that quantifies some aspect of the security of
an IT system. Over the years, an abundance of quantities have been proposed as ”security metrics”, for example
[1, 2, 3, 4, 5]:

• Time required to break a password;

• Number of security incidents;

• Number of software vulnerabilities;

• IT security spending as percentage of IT budget;

• Percentage of individuals screened before being granted access to organizational information and infor-
mation systems;

• Extent (on 0, ..., 10 scale) to which security roles and responsibilities have been defined;

• Mean time from patch availability to patch approval to patch installation;

• Percentage of systems patched to the latest patch level;
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Several things are striking about these examples: First, there is no agreed scale on which security is measured.
Some of the above examples are percentages, others are times, numbers, frequencies, and so on. This is in stark
contrast to all physical phenomena such as distance, weight, brightness, or power, which have well-defined units
of measurement (meters, grams, lux, and watt, respectively). This lack of a basic unit of measurement renders
the comparison or combination of security metrics difficult or impossible. It also illustrates the immaturity of
the field because even a commonly accepted unit of measurement is missing.

The second observation to be made is that many of today’s security metrics are vastly under-specified. For
example, the ”time required to break a password” cannot be measured until one specifies what software and
hardware to use. Similarly, the ”percentage of individuals screened” is impossible to calculate until we are told
what constitutes a ”screening”.

A third observation is that many of these measures are difficult to interpret. For example, is it good or bad
if an organization spends 5% of its IT budget on security? Or, is it good or bad if on average our passwords take
30 minutes to break (assuming the procedure for measuring times has been fully specified)? As no reference
point has been defined, these metrics can only be interpreted in a relative sense where, for example, 40 minutes
to break a password is better than 30 minutes.

Last but not least, we are concerned that the validity of many of these metrics is unclear. For example, is it
more important to improve the ”average time to apply a patch, measured across all systems” or the ”percentage
of systems patched within one week”? There is evidence that the latter is more important from a security point
of view [6], but the authors of these metrics do not point this out. Or what good is a metric that measures the
”IT security spending” given that there is no evidence that businesses that spend more on security products
will necessarily experience a corresponding reduction in security incidents [7]. The general problem is that too
many security metrics have not been tested for their validity and relevance to IT security.

To summarize, today’s state of the art in security metrics is marked by ad-hoc metrics that lack a common
scale, tend to be ambiguously defined, difficult to interpret, and of limited validity. This paper proposes a
unifying theory for security metrics, which mitigates these shortcomings. Further novel contributions include
the application of this theory to determine the optimal amount of security spending and the optimal way of
splitting this spending among multiple systems. We further propose a novel classification of security metrics
and identify frequent pitfalls in the definition of security metrics.

The remainder of this paper is structured as follows: Section 2 defines security metrics and explains why
we chose this definition. Section 3 develops a classification scheme for security metrics. Section 4 contains
two applications of our theory: Firstly, we review and classify the prior art in security metrics; this leads us to
identify pitfalls that metrics authors must address in their work. Secondly, we show how the unifying theory
can be used to make information security investment decisions. Section 5 summarizes and concludes the paper.

2 Security Metrics Defined

It has been deplored [5, 8] that security metrics tend to become ends in themselves with no clear objective or
purpose. Before defining what security metrics are, it is therefore important to ask what they are to be used for,
i.e. what objective they serve [9] . The answer to this question can be gleaned from the popular phrase that
”you cannot manage what you cannot measure”: Metrics in general are tools for management, and security
metrics in particular, are a means to support and improve the management of information security.

In particular, there are three management task that information security managers seek help with: First,
managers want to measure and track their security over multiple time periods and relative to competitors or
industry averages. Second, managers want help with the investment decision of how much to spend on security
in general and how to allocate the security budget among various systems that need protection and technologies
that promise to deliver this protection. Third, managers want to know if the security mechanisms deployed are
adequate and effective, given their business needs [10]. The purpose of security metrics is to help managers
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perform these (and other) management tasks.
Next, we have to become more specific about what ”security” – this abstract thing we seek to measure

– really is. Most people find it difficult to define security let alone to formalize it. We therefore choose an
indirect approach and define security via its most concrete manifestation, namely the existence of losses when
security is absent. More formally, for a given IT system S, we calculate the expected loss (EL) from security
incidents. In a first approximation, EL = ∑loss P(loss)× size(loss). Section 2.1 refines this equation and proofs
the equation:

EL = value×E(Tm)× vulnerability(S) (1)

In this equation, value is the monetary value (in dollars or Euros) of the IT system S. The factor E(Tm) is
the expected malice of the threat environment in which S exists. It is important that this factor is entirely
determined by the threat environment of S; in particular, the expected malice E(Tm) has nothing to do with the
technical characteristics of system S itself. The last factor is a measure of how vulnerable the IT system S is.
This factor is a weighted sum of the frequency of vulnerabilities, multiplied by their severities, multiplied by
how easily they can be exploited. Specifically, system S is all the more vulnerable the more frequent, severe,
and easily exploitable its vulnerabilities are. Section 2.1 formalizes these matters.

Let us now return to our initial question: What is security? To answer this question, let us assume that
without changing the value of the IT system S, we make some changes to its architecture, which results in a
lower expected loss EL. This obviously means that we improved security – after all, reduced losses are the
manifestation of better security. However, this security improvement came about without changing the value
of the system S and without changing the expected malice E(Tm) of its threat environment. Therefore, the drop
in EL must be the result of the vulnerability(S) factor dropping. So, given our premise that the security of a
system manifests itself in the expected losses, we can conclude that the security of a system is inversely related
to its vulnerability. This gives rise to the following (still informal) definition:

Definition 2.1 (Security Metric, Informal) A security metric is a function that measures a system’s vulner-
ability and maps it to a real nonnegative number that is inversely related to the system’s vulnerability. The
purpose of a security metric is to help management make better information security decisions.

It is important to understand that this definition is not a law of nature, nor is it the only possible definition.
Rather, it is a sound definition that follows from Equation (1). Definition 2.1 is further consistent with the field
of software quality metrics. As explained by Kan [11], the number of ”bugs” is an important metric of software
quality. In operational terms, ”bugs” may be measured by the number of defects relative to the software size, the
mean time to failure, or by other means. Ultimately, however, many software quality metrics are tantamount
with ”bugginess metrics”. As vulnerabilities are a special kind of bugs (namely bugs, which undermine the
confidentiality, integrity, or availability of a system) we conclude that security metrics are a special case of
software quality metrics because they measure a form of bugginess (namely vulnerability). This result provides
further justification for Definition 2.1.

An important difference between bugs and vulnerabilities is that vulnerabilities are more multi-faceted.
Specifically, counting the number of vulnerabilities of a system says little about how vulnerable or secure it
really is. Counting bugs, by contrast, is an acceptable measure of software quality. This difference arises
because vulnerabilities differ in their severity (how much power an attacker gains by exploiting them) and
their ease of exploitation (how skilled an attacker has to be in order to exploit a vulnerability). Adding up
vulnerabilities of different severity or ease of exploitation is therefore a meaningless exercise. Rather, a measure
of vulnerability must weight vulnerabilities by their severity and ease of exploitation, as is done by the formula
derived in the following section.
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2.1 Derivation of the Expected Loss EL

This section derives Equation (1), according to which the expected loss EL in a system S abides by the equation
EL = value×E(Tm)× vulnerability(S). Two points are worth mentioning: First, the derivation is done in a
model, which simplifies some aspects of real IT systems, while maintaining their main characteristics. Second,
the derivation uses probabilities and other quantities that are difficult or impossible to obtain in practice. This
is not a problem as we do not intend to calculate the expected loss. Rather, we seek to establish the formal
relationship between the expected loss in an IT system and the system’s monetary value, its vulnerability, and
its threat environment. For this, it only matters that all quantities are well-defined and existent, which they are.

Our derivation of Equation (1) proceeds similar to [12], [13], and [14]: Let us consider an IT system S,
which has a set of vulnerabilities V and exists in a threat environment T. The threat environment is the set
of all actors (insiders and outsiders) who have access to system S and may damage it (either intentionally or
accidentally). Finally, let ξ be a time duration such as ”twelve hours”, ”one day”, or ”one month” . Our
objective is to calculate the expected loss EL from security incidents during a time period of duration ξ .

IT systems as well as threat environments are dynamic in the sense that new vulnerabilities and threats
emerge, while old ones get mitigated or disappear. To model this dynamism, we divide time into consecutive
intervals of duration ξ . In our model, a vulnerability V , V ∈ V, and a threat T , T ∈ T, are either present during
an entire ξ -interval or they are not present at all. Further, P(V ) is the probability that vulnerability V is present
during a given ξ -interval, and P(T ) is the probability of a threat being active during a given ξ -interval.

To damage system S, a threat has to target a vulnerability that the threat can exploit with its skill level.
Successful exploitation gives the threat certain privileges on system S, which it then uses to inflict damage on
S. The extent of damage inflicted depends on how malicious the threat is. For example, a ”hobby hacker” might
inflict no damage and merely enjoy the ”thrill of victory”. Economically or politically motivated threats, by
contrast, will be more malicious and may inflict noticeable damage to system S. To formalize these concepts,
we define:

System value value: The variable value denotes the worst case monetary loss that the owners of system S
can incur if S is compromised. This loss value includes direct repair costs, legal costs, reputation costs,
and all other potential costs. It is measure in dollars, Euros, or some other currency.

Malice Tm ∈ [0,1] of a threat T ∈ T: Some threats exploit vulnerabilities just for the thrill of victory, while
others do so in order to inflict damage on the target system S. Threats therefore differ with respect to
their malice, which we measure on a scale from 0 to 1. The interpretation is that a threat of malice x
would cause x percent of the maximum loss it can theoretically inflict.

Skill level Ts ∈ [0,1] of a threat T ∈ T: Every threat T has a different skill level reflecting its knowledge,
experience, access to hacking tools, and other factors. To define the skill level of a threat, first note that
both the sets V and T are finite sets because IT systems have a finite number of states and actors. Let
s(T ) := |{V ∈V : T can exploit V within ξ time units}|/|V| be the fraction of vulnerabilities in V that T
can exploit within ξ time units. The intuition is that the more skilled a threat T is, the larger its s(T ) and
vice versa. We now define the skill level Ts := |{t ∈ T : s(t) < s(T )}|/|T|. Note that Ts maintains the
same order of threats defined by s(), but it has the added property that 1−Ts equals the probability of a
threat having skill level Ts or larger. We will need this property below.

Privilege level Vp ∈ [0,1] attained by exploiting vulnerability V ∈ V: Vulnerabilities differ in the privilege
level an attacker can attain by exploiting them. For example, some vulnerabilities give the attacker root
privileges on the target system, while others only enable the attacker to read some data or slow down
some system function. We define the privilege level Vp to be the fraction of the system’s value that is
exposed when the vulnerability V is successfully exploited. The privilege level of a vulnerability is also
known as its severity.
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Difficulty Vd ∈ [0,1] of exploiting vulnerability V ∈ V: Vulnerabilities also differ in how easy or difficult
they are to exploit. Some vulnerabilities (e.g. race conditions) require considerable skill to exploit, while
other’s such as default passwords are much easier to exploit. Formally, we define the difficulty Vd of
exploitation as the skill level of the least skilled threat that can exploit vulnerability V , i.e. Vd = min(
Ts|T ∈ T and T can exploit V within ξ time units).

As has been mentioned earlier, it does not matter that we cannot calculate many of the above quantities. All
that matters is that they are well-defined and existent. Also note that the above definitions implicitly assume
a one-step attack model, i.e. we only consider the damage a threat can cause in one step by exploiting one
vulnerability. In reality, threats can propagate throughout systems by exploiting multiple vulnerabilities. Our
model does not capture this added complexity. We use the notation P(breach|T ∧V ) to designate the conditional
probability that a security breach occurs when the threat T and vulnerability V coincide. The expected loss EL
now follows as:

EL = ∑
T∈T

∑
V∈V

[P(T )×P(V )×P(breach|T ∧V )]× [value×Vp×Tm] (2)

= value× ∑
T∈T

{
P(T )×Tm× ∑

V∈V
[P(V )×Vp×P(breach|T ∧V )]

}
(3)

= value× ∑
T∈T

{
P(T )×Tm× ∑

V∈V∧Ts≥Vd

[P(V )×Vp]

}
(4)

= value×∑
Tm

∑
Ts

{
P(Tm∧Ts)×Tm× ∑

V∈V∧Ts≥Vd

P(V )×Vp

}
(5)

= value×

{
∑
Tm

P(Tm)×Tm

}
×

{
∑
Ts

P(Ts)× ∑
V∈V∧Ts≥Vd

P(V )×Vp

}
(6)

= value×

{
∑
Tm

P(Tm)×Tm

}
×

{
∑

V∈V
P(V )×Vp× ∑

Ts≥Vd

P(Ts)

}
(7)

= value×E(Tm)× ∑
V∈V

[P(V )×Vp× (1−Vd)] (8)

= value×E(Tm)× vulnerability(S) (9)

Let us consider these equations and transformations in detail: Equation (2) expresses the expected loss EL as
a sum over all threats T and all vulnerabilities V . Each summand is the product of two factors: The first factor
(i.e. P(T )×P(V )×P(breach|T ∧V )) is the probability that threat T and vulnerability V occur in the same
ξ -interval and that they result in a security breach. The second factor is the ensuing loss, which is the value
of system S multiplied by the percentage Vp of its value that is exposed when vulnerability V is exploited,
multiplied by the malice factor Tm of the threat. Equation (3) merely rearranges the terms.

Equation (4) follows from (3) if we assume that P(breach|T ∧V ) = 1 if the threat’s skill level exceeds
the vulnerability’s difficulty (i.e. Ts ≥ Vd) and P(breach|T ∧V ) = 0, otherwise. This modelling assumption
simplifies reality, but can be justified as follows: The condition Ts ≥ Vd means that threat T is capable of
exploiting at least as many vulnerabilities as another threat T ∗, which can exploit V . This means that in a
sense, threat T has superior skill to T ∗ and consequently should be capable of exploiting vulnerability V . This
is particularly so if the time interval ξ is large enough to allow T to learn new attack techniques that are
needed for vulnerability V . This argument falls short when V is a very peculiar vulnerability that only highly
specialized threats are capable of exploiting. In this case, model and reality diverge.
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Equation (5) replaces the sum ∑T∈T by two separate sums, a first sum over all malice levels Tm and a
second sum over all skill levels Ts. Equation (6) then follows if we make the modelling simplification that
P(Tm∧Ts) = P(Tm)×P(Ts). In words, this simplification means that the probability of a threat having malice
Tm and skill Ts is equal to the probability that a threat has malice Tm multiplied by the probability that a threat
has skill Ts. In our model, the malice and skill levels of a threat are therefore independent of each other.

Equation (7) rearranges the second factor of the Equation (6). Equation (8) makes two transformations:
First, it uses the fact that ∑Tm P(Tm)×Tm is the ”expected malice” E(Tm) of the threat environment T. Second,
it uses the fact that the sum ∑Ts≥Vd

P(Ts) equals the probability of a threat having a skill level of Vd or larger.
This probability was shown to equal 1−Vd (see page 4). Equation (9) replaces the last factor of Equation (8)
by the function vulnerability(S). This reflects the fact that the function

vulnerability(S) = ∑
V∈V

P(V )×Vp× (1−Vd) (10)

measures the degree of vulnerability of system S. As has been emphasized earlier, this measure weights the
three key factors that determine the degree of vulnerability of a system. These factors are first, the probability of
vulnerabilities, second, the privilege level Vp that a vulnerability confers, and third, the ease 1−Vd of exploiting
it.

In our model world, we could hence proof Equation (1). Using this equation, Section 2 had derived Defini-
tion 2.1, which defines a security metric as a function whose return value is inversely related to the vulnerability
of the measured system. Section 2 had further shown that this definition is consistent with the field of software
quality metrics. All this serves to justify Definition 2.1, which is why we will use it to further develop our
unified theory of security metrics.

2.2 Operational Properties of Metrics

So far, we have given a semantic characterization of what security metrics are. However, not every measure of
a system’s vulnerability is a security metric. Rather, measurement theory defines three operational properties
that any metric has to fulfill [5, 15]. These properties are:

Validity: Validity is the extent to which a metric adequately reflects the meaning of the concept it seeks to
measure. In other words, valid metrics are highly correlated to the concepts they try to measure. For
intangible concepts such as ”security”, ”trustworthiness”, or ”intelligence”, it is generally difficult to
define valid metrics because the underlying concepts are difficult to grasp. In the case of security, a
formal notion of validity follows from Definition 2.1 and Equation (10), as will be shown in Definition
2.2.

Accuracy: Metrics frequently measure things that are not readily observable. The accuracy of a metric is
the difference between the value determined by the metric and the ”true” or ”real” value of the object
measured. Measurement errors are the principal source of inaccuracies. For example, a metric that uses
a vulnerability scanner to measure the number of vulnerabilities in an IT system is accurate if its return
values match or are close to the actual number of vulnerabilities.

Precision: Precision assesses reproducibility of measurements. More precisely, it represents the amount of
variability among repeated measurements of the same object under similar conditions. For example, the
”number of virus alerts” is an imprecise metric of system security because consecutive measurements
can vary significantly depending on the threat environment. Specifically, when there are more or fewer
virus attacks, the ”number of virus alerts” will be higher or lower even though nothing in the system or
its security has changed.
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The requirement for precision demonstrates another important point: A metric is defined by its measurement
process, which is a detailed and unambiguous operational description of how the metric is calculated [5]. All
relevant conditions and constraints of how the metric is to be derived are defined in the measurement process.
The ”number of virus alerts” metric mentioned above fails to properly specify the measurement process. For
example, it does not specify which virus scanner to use or which threat environment to perform the measure-
ment in. While it is easy to specify a virus scanner for the measurement, the unspecified nature of the threat
environment poses a dilemma:

• If the threat environment is left unspecified, then the ”number of virus alerts” is a metric of poor precision
because it depends on random factors such as the mood, skill, and productivity of virus programmers.
(One can postulate that fluctuations in the threat environment average out over long enough measurement
intervals, and the ”number of virus alerts” should consequently be a precise metric when measured over
a sufficiently long time interval. This hypothesis, however, still has to be proven.)

• On the other hand side, trying to define the threat environment would mean that one conducts laboratory
experiments, which threatens to destroy the validity of the metric. This is because even a very insecure
system can score well in a laboratory experiments where the virus threat is low. But if an insecure system
scores high on a security metric, then this obviously means that the metric is not valid.

The conclusion is that ”number of virus alerts” is a poor security metric. It may be an interesting statistic
that managers are keen to monitor, but it is not a useful security metric. More generally, security metrics that
depend on empirical runtime measurements frequently suffer from the same dilemma that random factors (most
notably the presence of attackers) destroy precision if they are left uncontrolled; and they destroy validity if one
attempts to control them. This discussion is illustrative of the kind of analysis that is needed to differentiate
genuine security metrics from mere security statistics.

2.3 Formal Definition and Discussion

Definition 2.2 (Security Metric, Formal) A security metric is a function m() from the set of all IT systems to
the set of nonnegative real numbers. It further is valid, accurate, and precise in the following sense:

• Validity: For any two IT systems S1 and S2, the relationship m(S1) ≤ m(S2)⇔ vulnerability(S1) ≥
vulnerability(S2) holds with vulnerability() being the function defined in Equation (10). In other words,
validity requires that more vulnerable systems score lower values on the security metric.

• Accuracy: If S (m) is the specification of security metric m(), then m() is accurate if the difference
between its return values and the true values according to S (m) are small on average. Inaccuracies
arise when metrics use approximative procedures, either because the exact values cannot be calculated
or they are too expensive to calculate.

• Precision: For any given IT system S, repeated measurements under the conditions and constraints spec-
ified by the metric m() always return the same value m(S). (A weaker form of this requirement is that the
variance of repeat measurements has to be small.)

This is a good place to contrast our work to prevalent positions found in the literature on security and security
metrics.

• ”Security risk” [12, 16, 17, 18] is not a security metric (by our definition) because it mixes loss amounts
and loss probabilities into one measure. The loss probability, in turn, depends on a system’s intrinsic
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security as well as the threats it faces. This mixing of concepts conflicts with the theory developed in this
paper, which clearly distinguishes between peripheral factors such as threats or monetary system values
and the intrinsic security of a system. Security metrics are measures of the latter. By the same argument,
”Return on Security Investment (ROSI)” [5], is not a security metric because it is a ”mixed measure” that
combines a system’s intrinsic security, its threat environment, and its monetary value.

• We suggest introducing the notion of compliance metrics so they can be clearly distinguished from se-
curity metrics. For example, ”percentage of organizational units that use symmetric cryptography” [5]
is not a security metric as it is not valid: 100% adoption of symmetric cryptography may be insufficient
if keys cannot be protected properly, and 0% adoption of symmetric cryptography does not necessarily
imply poor security as asymmetric cryptography may have been used instead. The metric therefore has
virtually no security relevance. On the other hand side, for organizations that have the compliance ob-
jective [19] to ”use no symmetric cryptography” or to ”use only symmetric cryptography”, the above
metric is clearly a useful way of tracking and measuring their performance against this objective. We
therefore (informally) define: A compliance metric is an accurate and precise function that measures the
extent to which an IT system meets its compliance objectives. Note that compliance is easier to measure
than security because it assesses the extent to which checklists of specific methods and procedures are
implemented. Security metrics, by contrast, assess the result of such methods and procedures, which is
an abstract system property.

• We further propose introducing the concept of threat metrics. Equation (1) clearly shows that security
and threat are two different and independent concepts. Given that there has been some excellent research
on quantifying the threat environment [20, 21], we feel that the term threat metric is needed to reflect
the importance and independence of this concept. Informally, a threat metric is an accurate and precise
measure of the maliciousness of the environment.

3 Classification of Security Metrics

Section 2 pointed out that a metric is defined by its measurement process, which is a detailed and unambiguous
operational description of how a metric is calculated. In particular, the measurement process has to define the
inputs of a metric and the algorithm used to process those inputs. According to Definition 2.2, the input of a
security metric always is the IT system S for which the metric is calculated. While this is formally correct,
actual security metrics only observe aspects of real IT systems. This is a matter of practicality because real
IT systems are too large and complex to be analyzed in their entirety. Thus, when referring to the input of a
security metric we mean those aspects of IT systems that a security metric actually observes and analyzes.

When classifying security metrics, their inputs are of particular importance, even more so than the algo-
rithms used to process these inputs. This is because ”garbage in, garbage out” also holds here: When unsuit-
able inputs are chosen, no matter how sophisticated an algorithm is used to process them, the outcomes will
be flawed metrics of low validity, accuracy, and/or precision. It is for this reason that we chose the inputs of
metrics as the basis of our classification scheme.

To structure our analysis of the inputs used in security metrics, we will develop a simple model of IT
systems and the processes used to build and operate them. In this model, three operational processes are
involved: First, the Design & Build process builds IT systems; second, the Operate process runs them; and
third, the Maintain & Update process changes IT systems during their run-time. Each of the three operational
processes produces an output: The ”Design & Build” process produces ”IT Systems” as output. The ”Operate”
process, which executes the ”IT System”, produces ”Services” as output (which are consumed by ”Consume”
processes). Finally, the ”Maintain & Update” process produces a ”Changed System”, which the ”Operate”
process then executes.
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Figure 1 summarizes our model and shows the three operational processes (in grey) and their interactions.
For the sake of completeness, the figure also shows two exogenous processes on the right-hand side. The
functional and control logic that govern the operational processes is represented by the ”Logic” and ”Control”
boxes.

Figure 1: Simple Life-Cycle Model of IT Systems

Each of the three operational processes of Figure 1 can serve as input to security metrics, and we will consider
each of the three processes in turn. To begin with, the ”Operate” process, which executes the IT system that the
”Design & Build” process built, gives rise to three types of input:

• The first type of input is the static definition of the IT system, i.e. the binaries, source code, and configu-
ration files that are executed by the ”Operate” process.

• The second type of input is the execution trace of the running IT system, consisting of all system-internal
run-time events.

• The third type of input are the results that the running IT system delivers as output to its consumers.

The difference between the second and the third input type is that the second type includes all system-internal
run-time events, while the third type only ”sees” the IT system from the outside – just like a consumer would.
Also note that the first input type is used by metrics that treat IT systems as static objects while the second or
third input types are used by metrics that observe and analyze run-time behavior. For example, configuration
checkers use the first type of input while vulnerability scanners use the second input type.

We now turn to identifying four additional input types that have been used by security metrics. Note that
a good ”Design & Build” process results in more secure IT systems, and the same is true for the ”Maintain &
Update” process. Accordingly, security metrics can be defined to analyze the ”Design & Build” and ”Maintain
& Update” processes. Each of these processes, gives rise to two input types: First, the static process definition
of either process can serve as input to security metrics; and second, the run-time event trace of executing either
process can serve as input to security metrics. The output produced by either process is the IT system executed
by the ”Operate” process, which gives rise to the three input types discussed above.

Figure 2 summarizes our discussion and shows the resulting classification of security metrics. As stated
earlier, the reason for basing the classification on the types of inputs used by the security metrics is because the
input types have a particularly large impact on the validity, accuracy, and precision of security metrics. This
classification is further supported by the fact that it is useful in classifying prior work in the field of security
metrics. Section 4.1 further explores these points.
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Figure 2: Classification of Security Metrics by their Input Types

Previous work on classification schemes [22, 23, 24] had a tendency to mix security metrics (as defined
in this paper) with other security-related quantities such as risk, threat, or assurance. The above classification
avoids such imprecisions. Also, our work uses a new classification criteria, namely the input type. Previous
work, by contrast, has taken other classification criteria such as who the end user of a metric is or the purpose
of the artifact measured .

4 Applications

This section presents two applications of the theory developed in this paper: First, Section 4.1 reviews prior
work in security metrics and identifies pitfalls to avoid. Second, Section 4.2 shows how our theory can help
managers make better information security management decisions.

4.1 Review and Discussion of Prior Work

In our review of prior art, we will interpret the term ”security metric” in the loosest sense possible and also
include work that does not satisfy Definition 2.2. That way, we can offer a broad overview of the kind of work
that has been done in the field. Our review follows the classification of Section 3 and proceeds by input type:

Category M1: In software engineering, metrics of category M1 are known as maturity levels [25]. In the
present context, they measure the ”maturity” of the security engineering process. With a few exceptions
(most notably [26, 27]), little research has been focused on this category of security metrics. However,
given that the software development process has a major impact on the security of the resulting software
products [26, 28], we consider this to be an opportunity for future work.

Category M2: Metrics of sub-category M2.1 analyze the the static description of the ”Maintain & Update”
process, while metrics of sub-category M2.2 analyze its run-time behavior. Either way, metrics in cate-
gory M2 include the ”frequency of audit record review”, the ”mean-time to mitigate vulnerabilities”, the
”mean-time to patch”, the ”percent of changes with security review”, the ”number of formally approved
new accounts relative to all new accounts”, and the ”percentage of personnel that have receive security
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training each year” [2, 4, 29], to name some representative examples. The ISO/IEC 27004 standard
[10] also emphasizes the importance of measuring the effectiveness of information security management
systems.

Category M3.1: Metrics of category M3.1 include: (i) Measures of source code vulnerabilities [3, 30, 31, 32];
(ii) the attack surface [33, 34] consisting of the weighted number of exposed (but not necessarily vul-
nerable) system resources such as open sockets; (iii) various vulnerability indices that weight current or
historic vulnerabilities by their severity [35, 36]; or indices that weight the factors that affect the vulner-
ability of a system such as the patching frequency or password aging policy [37]; (iv) the probability of a
given security goal being violated in a formal model (such as a Markov model), which is built to represent
real IT systems [38, 39, 40, 41, 42, 43, 44, 45]; (v) metrics that seek to quantify erroneous application
settings and configuration mistakes [46]; (vi) numeric measures of the extent to which a system imple-
ments security best practices such as ”Percentage of systems that default to a fail-safe state in the event
of errors” [5], ”percentage of users with access to shared accounts” [4], or ”strength of authentication
mechanism” [47].

Category M3.2: Metrics of category M3.2 analyze run-time events pertaining to security incidents such as
the ”number of incidents”, the ”mean time between security incidents”, or the ”number of anomalous or
unexpected events” [2, 47]. Metrics derived from vulnerability scanners or penetration testing [48] also
fall into this category.

Category M3.3: Metrics in this category measure violations of Service Level Agreements between two
parties [49, 50, 51].

Let us critically appraise some of this prior art. We have emphasized repeatedly that a security metric has to be
valid, accurate, and precise as defined in Definition 2.2. Unfortunately, for many of the above ”metrics”, these
properties were never shown to hold. In many cases, the validity, accuracy, and precision even seem unlikely.
As such they are better characterized as ”security statistics”, rather than ”security metrics”. This criticism is
founded in the following basic challenges that authors of metrics have to overcome:

• Security metrics calculated over run-time events (e.g. ”number of incidents” [2]) are affected by changes
in the threat environment. This makes them inherently imprecise. For example, two subsequent mea-
surements of the ”number of incidents” in the same IT system may result in very different results, just
because the threat environment has changed between the measurements. As such, ”number of incidents”
is not a precise metric of an IT system’s security. More generally, all metrics in the categories M1.2,
M2.2, and M2.3 are affected by environmental influences that can destroy precision.

• For processes that are manual (as opposed to automated) metrics that analyze the static process descrip-
tion (categories M1.1 and M2.1) tend to be invalid. This is because manual processes are subject to
execution errors and omissions. These errors and omissions lead to a situation where the measured prop-
erties of the ”on-paper process” differ from the properties of the actual process that is being executed.
This is the hallmark of an invalid metric.

• For some metrics, accuracy is a challenge. For example, if the specification of a metric is ”number of
incidents” then accuracy becomes a problem in practice because only an estimated 10% of incidents are
detected [52]. Thus, whatever operational procedure we define to estimate the ”number of incidents” it
will be fairly inaccurate. One may be tempted to fix this problem by changing the metric to ”number of
incidents found by our security team”, but this metric creates imprecisions (what if a key team member
leaves?) and it raises questions about the validity (what do the team’s findings really say about the
system’s security?).
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• It is dangerous to take the validity of a metric for granted or to justify it merely with plausible arguments.
For example, both the ”average time to apply a patch, measured across all systems” and the ”percentage
of systems patched within one week” are both plausible metrics. However, the latter metric has stronger
bearing on the security of a system [6]. Similarly, many proposed metrics operate on such a micro-level
that it is unclear how relevant they are for the security of the overall IT system. In other words, their
validity is questionable. The ”percentage of users with access to shared accounts” is an example of such
a micro-level metric. A different view of this point is that micro-level metrics are difficult to interpret
and utilize because there are so many of them [29].

While these points identify important pitfalls that authors of metrics should avoid, there is ultimately only one
way to create a valid, accurate, and precise security metric, and that is to experimentally proof these properties.
In fact, it is our belief that the next big breakthrough in security metrics will be the development of empirical
validation tools, frameworks, and test beds. Recent research has also recognized the importance of experimental
validation [53, 29, 32].

4.2 Making Investment Decisions

Section 2 pointed out that the purpose of a security metric is to help managers make better information security
decisions. In this section, we use the theory developed in this paper to address the following management
problems:

1. How to minimize security-related losses;

2. How to split one’s security budget among multiple IT systems, all of which require protection;

3. How much to spend on security.

This list is obviously incomplete, and there are other important information security decisions that we cannot
consider here. In particular, the above decisions are from the perspective of the software consumer, rather than
the software vendor. The consumer’s and vendor’s views are different because software vendors must decide
how much security to build into their products, but in general, they do not bear the cost of security failures.

Management Problem #1 Minimizing security-related losses is a difficult problem because losses depend on
how suitable an IT system’s security is relative to its threat environment and its value. It is the interplay of those
three factors (value, threat, and security) that determine the actual losses. Among these factors, the ”value” of
an IT system is the factor that security managers are most capable of controlling. We therefore recommend
that companies keep the data they need for competitive advantage and purge the rest. This technique has been
called data minimization [54] and it is the most predictable way to minimize losses.

On the surface, it may seem that security managers are equally capable of minimizing losses by controlling
the security of their IT systems. This, however, is only partially true. The problem is that our ability to
understand the security of a system is very limited and our ability to assess if said security is sufficient given
the threat environment is even weaker. As a consequence, it is currently not possible to manage one’s security
in a manner that is proven to minimize losses.

As a practical work-around, some authors advocate observing where losses occur and improving security in
these places [7]. For example, when today’s security incidence data is categorized according to the number of
records exposed, the majority of incidents can be seen to relate to lost or stolen equipment or media [7]. A good
heuristic is to focus one’s security improvement efforts on these areas where losses concentrate. The problem
with this approach is that it assumes that security incidents are observable, which is generally not the case [52].
Moreover, it opens up the system to ”Black Swans”, i.e. rare but potentially catastrophic events, which nobody
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prepares for because they are not in the historic loss data. In a variant of this heuristic, CVSS scores have been
advocated as a means to prioritize security efforts [13].

Another best-practices approach for minimizing security-related losses is given by the ISO 27001 definition
of an information security management system [55]. The general philosophy of this standard is that security
follows if management teams implement the security management processes defined in the standard.

Beyond the above guidance, the sobering reality is that we do not understand how to manage IT security in
a manner that minimizes losses.

Management Problem #2 Here we consider the problem of two IT systems S1 and S2, and a manager who
has to allocate her security budget of B Euros between these two systems. We will propose a solution to this
problem, based on the following assumptions:

(1) We assume that the security manager wants to minimize the total expected losses, ELtotal = EL(S1)+
EL(S2) = value1×E(T 1m)× vulnerability(S1)+ value2×E(T 2m)× vulnerability(S2).

(2) We assume that the threat faced by a system is proportional to its value, i.e. E(T 1m) = α × value1 and
E(T 2m) = α× value2 for some positive real number α . This assumption models the fact that criminals
are attracted by valuable targets, because ”that is where the money is” [56].

(3) We assume that the productivity of security spending is equal for both system S1 and system S2. More-
over, we assume that spending b Euros on the security of either system will drive the system’s vulner-
ability score to equal vulnerability(S1/2) = 1/(β × b), for a constant β ∈ R+. This function models
the fact that vulnerability goes to infinity if no money is spent on security. As more money is spent on
security, the vulnerability of a system decreases and asymptotically approaches zero. The vulnerability
score approaches but never reaches zero because of diminishing returns on security spending. Further,
the constant β models the productivity of security spending: The smaller β the more money one has to
spend to achieve a desired level of vulnerability.

With these assumptions we can calculate the total expected losses when b Euros are spent on the security of
system S1 and B−b Euros are spent on the security of system S2:

ELtotal(b) = EL(S1)+EL(S2) (11)

= value1×E(T 1m)× vulnerability(S1)+
value2×E(T 2m)× vulnerability(S2) (12)

= α× value2
1×1/(β ×b)+

α× value2
2×1/(β × (B−b)) (13)

=
α×value1

2

β
×

(
1
b
+
(

value2

value1

)2

× 1
B−b

)
(14)

As stated in assumption (1), the goal is to minimize the total expected loss. The requirements EL′total(b) = 0
and EL′′total(b) > 0 yield the following solution, in which we use ϕ := value2/value1 for the relative value of
the two systems:

bopt =
B

1+ϕ
(15)

As expected, bopt = 0.5×B when both systems are equally valuable, i.e. when ϕ = 1. If system S1 is much
more valuable than system S2, then ϕ → 0 and bopt → B. This result is expected, as well. Finally, if system S2
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is two times as valuable as system S1, then the optimum amount of money to be spent on the security of S1 is
one third of the budget (i.e. bopt = B/3).

Given the modelling assumptions that went into deriving Equation (15), it is obviously not the only possible
answer to the question of budget allocation. It is, however, a well-reasoned guideline that managers can use
to inform budget allocation decisions. Moreover, Equation (15) is important because it uses two quantity (the
budget B and the relative systems value ϕ) that can be estimated easily and accurately. In particular, there is no
need to make guesses about the threat environment, and it can be argues that the relative value ϕ of two systems
is much easier to estimate than the absolute value of a system [53]. The simplicity and usability of Equation
(15) is therefore an important result of our work. Future research will assess the impact of our modelling
assumptions on this result.

Management Problem #3 The last management problem we address is how much money to spend on secu-
rity. To solve this problem, we search the spending level that minimizes the expected cost of security. Please
note that alternatively, we could have minimized the worst-case cost of security, which focuses on rare but
potentially devastating security incidents. Thus, just as above, there is no single ”right” answer to the question
of how much to spend on security. However, by optimizing the expected cost of security, we will be able to
derive a simple and practicable rule that managers can use to guide their investment decisions.

The expected cost of security is the sum of the expected losses EL and the security budget B that is spent on
avoiding such losses. Using Equation (1) for expected losses and the above assumption that vulnerability(S) =
1/(β ×B), β ∈R+ is the vulnerability score resulting from a security budget B, we obtain the expected cost of
security EC(B):

EC(B) = EL(S)+B (16)

= value×E(Tm)× 1
β ×B

+B (17)

This function has its minimum where the conditions EC′(B) = 0 and EC′′(B) > 0 hold. Resolving for B yields
the following optimum budget:

Bopt =

√
value×E(Tm)

β
(18)

An IT security manager who wants to use this equation to calculate the optimum budget would proceed as
follows: While operating the current IT system, the manager would determine the security budget Bactual and
the expected loss ELactual he observes. The expected loss ELactual is the average loss experienced over a couple
of successive time periods; it is an empiric value which can be determined accurately because every well-
run IT organization tracks the losses it incurs from security incidents. As such, ELactual can be calculated by
adding and averaging historic losses. According to Equation (1) and vulnerability(S) = 1/(β ×B), β ∈ R+,
the following holds:

ELactual = value×E(Tm)× 1
β ×Bactual

(19)

In this equation, value and E(Tm) are the same constants as in Equation (18). They represent the value of the
IT system and the expected malice of the system’s threat environment, respectively. By rearranging the terms
in Equation (19), it follows that √

value×E(Tm)
β

=
√

ELactual×Bactual (20)
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Note that the left-hand side of Equation (20) equals the right-hand side of Equation (18). This leads us to
conclude:

Bopt =
√

ELactual×Bactual (21)

In other words, the optimum amount of security spending is the geometric mean of today’s actual spending
Bactual and the expected loss ELactual that occurs at this spending level. This is a very simple rule, which
requires only measurements that are reasonably easy to obtain in any real-world context. Moreover, Equation
(21) implies that when security spending Bactual exceeds expected losses Eactual then too much money is spent
on security. This result is consistent with the result obtained in the seminal paper by Gordon and Loeb on the
economics of IT security spending [14]. Our future work will explore the robustness of Equation (21) with
respect to the assumptions made in its derivation.

5 Summary and Conclusion

This paper has defined that security metrics are accurate and precise functions whose return values are inversely
related to the vulnerability of the measured system. We justified this definition by showing that it is consistent
with the field of software quality metrics. Moreover, the definition follows from the formula for expected
losses, which we also derived in this paper. We further showed how security metrics are different from general
security statistics, risk metrics, threat metrics, and compliance metrics. As such, our work makes an important
contribution to simplifying and clarifying the terminology in the field of security.

Next, we introduced a new classification of security metrics. This classification – unlike previous ones – is
based on the input data analyzed by security metrics. The decision to use the input data as the basis of a new
classification was made because the input data has a particularly large influence on the validity, accuracy, and
precision of security metrics. The paper elaborates on this point, reviews related work, and uncovers important
pitfalls that authors of security metrics must be aware of.

Lastly, we turned to the use of metrics. The purpose of security metrics is to help management make better
information security management decisions. As such, we considered three security management problems and
approached them using the theory developed in this paper. Most importantly, we derive the following two
results:

1. The optimum security budget is Bopt =
√

ELactual×Bactual with Bactual being the current security budget
and ELactual being the empirically observed expected loss for this budget.

2. The optimum split of one’s security budget B between two systems S1 and S2 that need protection is to
spend B/(1+ϕ) on the security of system S1 and the rest on system S2. The parameter ϕ in this equation
is the value of system S2 divided by the value of system S1.

These are important results because they show that careful modelling can yield practical answers to very difficult
problems. In our future work, we will explore the robustness of these results with respect to the modelling
assumptions made.
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