
RZ 3763 (# 99773) 01/27/2010
Computer Science 18 pages

Research Report

Dynamic Computation of Change Operations in Version
Management of Business Process Models

Jochen M. Küster,1 Christian Gerth,1,2 and Gregor Engels2

1IBM Research – Zurich
8803 Rüschlikon
Switzerland

2Department of Computer Science
University of Paderborn
Germany

Emails: jku@zurich.ibm.com, {gerth,engels}@upb.de

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



Dynamic Computation of Change Operations in Version
Management of Business Process Models

Jochen M. Küster1, Christian Gerth1,2, and Gregor Engels2

1 IBM Research - Zurich, Säumerstr. 4
8803 Rüschlikon, Switzerland {jku,cge}@zurich.ibm.com

2 Department of Computer Science, University of Paderborn, Germany
{gerth,engels}@upb.de

Abstract. Version management of business process models requires that changes
can be resolved by applying change operations. In order to avoid user intervention
and enable the user to follow an arbitrary order when resolving changes, position
parameters of change operations need to be computed dynamically. In such an ap-
proach, change operations with computed position parameters must be applicable
on the model and dependencies of change operations must be taken into account
because otherwise invalid models can be constructed. In this paper, we study the
concept of partially specified change operations where parameters are computed
dynamically. We provide a formalization for partially specified change operations
using graph transformation and provide a concept for their applicability. Based
on this, we study potential dependencies and conflicts of change operations and
show how these can be taken into account within change resolution.

1 Introduction

Version management of models typically comprises change detection as well as change
resolution. Change detection produces a list of change operations which can then be in-
spected by the user. Within change resolution, the user makes decisions which change
operations should be applied in order to produce a consolidated model. Existing ap-
proaches to version management of models allow the computation of change operations
(e.g. by using technology such as EMF Compare [6]) and provide a set of techniques
for model matching under different circumstances (see e.g. [1, 10]).

Version management of process models poses specific requirements on change op-
erations: Compound change operations [14, 23] are used which always produce a con-
nected process model and abstract from individual edge changes. Position parameter of
change operations specify the place where a change is applied, i.e. direct predecessor
and successor of the element that is changed. Iterative application of change operations
requires a concept of change operations where position parameters are dynamically
computed [14] in order to give the user maximal flexibility in the selection of change
operations to apply.

If position parameters of change operations are dynamically computed then it has to
be ensured that the change operations obtained are applicable on the model and produce

C. Gerth is funded by the International Graduate School of Dynamic Intelligent Systems at the
University of Paderborn



again a connected process model. In addition, potential dependencies and conflicts of
change operations must be taken into account. Otherwise it can happen that a user
applies a change operation which cannot be properly applied, leading to a potentially
unconnected model and problems when applying following change operations.

Existing approaches to dependency and conflict computation of change operations
rely on the computation of a dependency and conflict matrix which allows to determine
whether two operations are dependent [16, 13]. These approaches require that change
operations are fully specified and cannot be applied in the situation that parameters are
dynamically computed.

In this paper, we distinguish between partially specified and fully specified change
operations and study the transition from partially to fully specified operations. For this
purpose, we formalize change operations using graph transformation. We introduce the
concept of an applicable change operation which ensures that a change operation pro-
duces a connected model. We establish the concept of an enabled operation which does
not have any dependencies on another operation. We show that an enabled operation is
always applicable and use this result to ensure that a connected process model is pro-
duced. We show how dependencies can be efficiently computed even for partially speci-
fied change operations based on an underlying decomposition of the process model into
a process structure tree [22]. Using this decomposition, also conflict detection between
change operations in distributed scenarios can be improved by reducing the number of
required operation comparisons.

Throughout the paper, we present the theory for our approach along process models.
However, we believe that the fundamental techniques can also be applied for other
behavioral models where a tree-based representation of the model can be computed
(such as statecharts).

The paper is organized as follows: We first introduce an example scenario where
version management of business process models is demonstrated with a set of change
operations. We then provide a formal model for change operations in Section 3 and
explain our approach for computing position parameters of change operations. This
provides the basis for introducing dependencies in Section 4 and conflicts in Section 5.
We briefly report about tool support in Section 6 and conclude with related work and
conclusions.

2 Business Process Model Version Management

We use business process models as our domain for model version management. In the
following, we first introduce an example and then explain our approach which relies on
the process structure tree to compute changes.

Figure 1 shows an example business process model V from the insurance domain
using Business Process Model Notation (BPMN) [18]: Nodes can be Activities, Gate-
ways, or Events such as Start and End. Gateways contain Exclusive/Inclusive/Complex
Decision and Merge, and Parallel Fork and Join. Nodes are connected by control flow
edges. In the example in Figure 1, an insurance claim is first checked, then it is recorded
and then a decision is made whether to settle or reject it. Figure 1 also shows a decom-
position of the models into fragments (e.g. fZ , fX ,..). A fragment can either be an

2



Parallel-
Fork

Parallel-
JoinV1

fA1 fB1 fC1

fD1

fE1
fI1

fJ1

fG1

fF1 fH1

Check
Claim

Record
Claim

Reject
Claim

Update
Cust. Record

Send Rej.
Letter

Close
Claim

X X

Settle
Claim

Authorize
Accounting Dept.

+ + Pay
Out

Calculate
Loss Amount

Recalc. Cust.
Contribution

Start Activity

Exclusive-
Decision

Exclusive-
Merge

End

V

fA

fB

fC

fD

X XCheck
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

+
+

+
xx

V2

x x

Record
Claim Check

Claim

Retrieve
add. Data

Settle
Claim

Reject
Claim

Update
Cust. Record

Send
Confirmation

Pay
Out

Calculate
Loss Amount

Recalc. Cust.
Contribution

fD

fF

fG

fI

fH

fJ

fE
fC

fB

fY

fZ

fA

Editing Operations ∆(V,V2)

Editing Operations ∆(V,V1)

Source
Model

fX

X X

Fig. 1. An example scenario

alternative fragment consisting of an Exclusive Decision and an Exclusive Merge node,
a concurrent fragment consisting of a Parallel Fork and a Parallel Join node or further
types of fragments including unstructured or complex fragments which allow to express
all combinations of gateways. Fragments can be organized into a Process Structure Tree
(PST) of the process model [22].

In a distributed modeling scenario, the process model V (Figure 1) might have been
created by the process model representative in an enterprise and then stored in a reposi-
tory for further elaboration. During this elaboration period, two colleagues individually
manipulate V to create new versions, e.g., V1 and V2. In our approach, changes per-
formed by the colleagues to obtain V1 and V2 will be detected and collected in terms of
change operations in a change log ∆(V, V1) and ∆(V, V2).

We have previously proposed change operations for process models [14] as follows:
InsertActivity, DeleteActivity or MoveActivity operations allow to insert, delete or modify
activities and always produce a connected process model as output. Similarly, Insert-
Fragment and DeleteFragment operations can be used for inserting or deleting a complete

3



fragment of the process model. Figure 2 shows an overview of the change operations
that are supported by our approach. Given an operation op we denote by type(op) the
type of the operation and assume the type as indicated in Figure 2. These change opera-
tions are computed by comparing the PSTs of two process models and identifying newly
inserted, deleted and moved nodes in the PSTs (see [14] for a detailed introduction).

Effects on Process Model VChange Operation op

Deletion of fragment f1 between c and d from process model V and 
reconnection of control flow.

Insertion of a new fragment f1 between two succeeding elements a and b in 
process model V and reconnection of control flow.

Movement of activity x from its old position between element c and d into its 
new position between two succeeding elements a and b in process model V 
and reconnection of control flow.

Deletion of activity x between c and d and reconnection of control flow.

Insertion of a new activity x (by copying activity y) between two succeeding 
elements a and b in process model V and reconnection of control flow.

DELETEFRAG

INSERTFRAG

MOVEACT

DELETEACT

INSERTACT

MoveActivity(x, c, d, a, b)

DeleteFragment(f1, c, d)

InsertFragment(f1, a, b)

DeleteActivity(x, c, d)

InsertActivity(x, a, b)

type(op)

Fig. 2. Change operations for process models [14]

∆(V, V1):
a) MoveActivity(”Check Claim”, -, -, -, -)
b) InsertFragment(fE1, -, -)
c) InsertActivity(”Pay Out”, -, -)
d) InsertActivity(”Authorize Accounting Dept.”, -, -)
e) InsertFragment(fH1, -, -)
f) InsertActivity(”Calculate Loss Amount”, -, -)
g) InsertActivity(”Recalc. Cust. Contribution”, -, -)
h) InsertActivity(”Update Cust. Record”, -, -)
i) InsertActivity(”Send Rej. Letter”, -, -)

Fig. 3. Change log ∆(V, V 1)

In the case of the elaboration of V into
V1 in our example (Figure 1), we obtain the
change operations given in the change log
∆(V, V 1) in Figure 3. These change opera-
tions are initially partially specified. For ex-
ample, for c) InsertActivity(”Pay Out”,-,-) the
last two parameters are not fixed yet. These
parameters which we denote as position pa-
rameters will be computed dynamically.

The operations in the change log can then be used to create a consolidated model
V ′ out of V , V1 and V2. That means, the process model representative in the distributed
modeling scenario, will inspect each change and decide which change to apply in or-
der to construct a consolidated model V ′. Thereby, he applies the changes in an iterative
way and continues to do so until he is satisfied with the resulting model V ′. With regards
to Figure 1, the process model representative might first apply operation i) InsertActiv-
ity(”Send Rej. Letter”,-,-) and then operation h) InsertActivity(”Update Cust. Record”,-,-). In
this approach, the order of operation application leads to different position parameters
of the change operations requiring dynamic computation of position parameters.

In contrast to that, fixing the position parameters in advance in terms of fully spec-
ified change operations restricts the order of application to one particular order and
thereby restricts the user in creating a consolidated version. Figure 4 gives an example,
assuming that operations h) and i) have not yet been applied. The fully specified oper-
ations h) InsertActivity(”Update Cust. Record”, ”Reject Claim”, ”Close Claim”) and i) Inser-
tActivity(”Send Rej. Letter”, ”Update Cust. Record”, ”Close Claim”) restrict the application
order to h), i). In addition, it is not possible to apply only the operation i) InsertActiv-
ity(”Send Rej. Letter”, ”Update Cust. Record”, ”Close Claim”).

4



fD

X X
Reject
Claim

Close
Claim

h) InsertActivity(”Update Cust. Record”, 
“Reject Claim”, “Close Claim”)

i) InsertActivity(”Send Rej. Letter”, 
“Update Cust. Record”, “Close Claim”)

… …

… …

Update
Cust. Record

Send Rej.
Letter

Fig. 4. Fully specified Change Operations restrict the Execution Order

One requirement for iterative change resolution is that when computing position
parameters of change operations it must be ensured that they yield a change operation
that can be applied on the process model. Further, a dependency concept for change
operations is needed to ensure that only operations that do not depend on other opera-
tions can be applied. Otherwise it can happen that applying a change operation leads to
a potentially unconnected model and problems when applying following change oper-
ations. For example, inserting an activity into a fragment that does not exist yet leads
to problems when later inserting the fragment. Furthermore, in a concurrent modeling
scenario as described above, an approach for computing conflicts is required as well. In
the following sections, we will present our approach for addressing these problems.

3 Partially and Fully Specified Change Operations

In this section, we formalize change operations using typed attributed graph transfor-
mation, distinguishing between fully specified and partially specified ones. Using this
formalization, we define whether a fully specified change operation obtained from a
partially specified one is applicable on the model.

3.1 Formalization of Change Operations

Each change operation op for a model V can be viewed as a model transformation rule
on the model V transforming it to a model V ′. A model transformation rule can be
formalized as a typed attributed graph transformation rule [12, 5, 17]. We distinguish
between change operation type and a concrete change operation: A change operation
type (such as InsertActivity(x,a,b)) describes a set of concrete change operations. By re-
placing the parameters of a change operation type with model elements of the model
V and V ′, a concrete change operation is obtained. Figure 5 b) shows a sequence of
concrete change operations.

The behavior (or semantics) of a change operation type op is specified using a typed
attributed graph transformation rule opr. A typed graph transformation rule opr : L →
R consists of a pair of typed instance graphs L,R such that the union is defined. A

graph transformation step from a graph G to a graph H , denoted by G
opr(o)
=⇒ H , is

given by a graph homomorphism o : L ∪ R → G ∪ H , called occurrence, such that
the left hand side is embedded into G and the right hand side is embedded into H and

5



a:Node e1:Edge b:Node a:Node e1:Edge x:Activity e2:Edge b:Node

InsertActivity(x,a,b)

f:Fragment f:Fragment
a)

b)

∆(V, V1):
1. MoveActivity(”Check Claim”, “Start”, “Record Claim”, “Record Claim”, “Exclusive Decision”)
2. InsertFragment(fD, ”Settle Claim”, “Exclusive Merge”)
3. InsertActivity(”Pay Out”, “Parallel Fork”, “Parallel Join”)
4. InsertActivity(”Authorize Accounting Dept.”, “Parallel Fork”, “Parallel Join”)
5. InsertFragment(fI, “Parallel Fork”, “Pay Out”)
6. InsertActivity(”Calculate Loss Amount”, “Parallel Fork:2”, “Parallel Join:2”)
7. InsertActivity(”Recalc. Cust. Contribution”, “Parallel Fork:2”, “Parallel Join:2”)
8. InsertActivity(”Update Cust. Record”, “Reject Claim”, “Close Claim”)
9. InsertActivity(”Send Rej. Letter”, “Update Cust. Record”, “Close Claim”)

Fig. 5. Change operation type and concrete change operations

precisely that part of G is deleted which is matched by elements of L not belonging to
R, and, that part of H is added which is matched by elements new in R. Figure 5 a)
shows the typed attributed graph transformation rule for InsertActivity(x,a,b).

The theory of graph transformation provides the basis for defining the semantics of
a change operation type as follows: Given a change operation type op together with its
rule opr, a concrete change operation on a model V leading to a model V ′ conforming
to the type op is modelled by a change operation application of the rule opr to V trans-

forming it to V ′. Formally, this is represented by a graph transformation G
opr(o)
=⇒ H

where opr is applied at an occurrence o to the graph G leading to a new graph H
(where G and H are the type graphs obtained from the models V and V ′). We also

write V
op
=⇒ V ′ or V

op(o)
=⇒ V ′. To represent a concrete change operation, we write

op(o).

Formally, the occurrence morphism o represents a binding between the change op-
eration type and the models V and V ′. It maps nodes and edges of L and R to G
and H . An occurrence morphism can be specified by a set of parameters x1, ..., xn in
the change operation type op and their instantiation in the change operation op(o). We
also write op(x1, .., xn) for a change operation type and op(X1, ..., Xn) for a concrete
change operation op(o). For each rule opr, we distinguish between parameters that are
preserved, deleted or newly created, so xi ∈ pres(opr) ∪ del(opr) ∪ new(opr).

As an example, consider the change operation type InsertActivity(x,a,b) and the
change operation InsertActivity(X,A,B). This implies an occurrence morphism mapping
x to X , a to A and b to B where X,A,B are model elements in model V and/or V ′,
and x is newly created whereas a and b are preserved elements. When designing a set
of change operation types, we use a shorthand which only includes those elements of
the occurrence morphism such that the morphism is uniquely determined. For example,
we write InsertActivity(x,a,b) instead of InsertActivity(f,a,e1,b,x,e2) where f, a, e1, b, x, e2
refers to the elements defined in the transformation rule (see Figure 5 a)).

6



In model version management, an important concept is change operation applica-
bility: Given a change operation op(X1, .., Xn), we want to reason whether this change
operation is applicable to a model V or not:

Definition 1 (Applicable Change Operations) Let a change operation op(X1, .., Xn)
of a change operation type op(x1, .., xn), its rule opr and a model V be given, with
Xi ∈ V if xi ∈ pres(opr)∪ del(opr). Then we say that op(X1, .., Xn) is applicable to

V if there exists a model V ′ with V
opr(o)
=⇒ V ′ for an occurrence o such that xi 7→ Xi ∈

V if xi ∈ pres(opr) ∪ del(opr) and xi 7→ Xi ∈ V ′ if xi ∈ new(opr). Otherwise, we
say that op(X1, .., Xn) is not applicable on V .

Figure 5 b) shows examples of applicable and non-applicable change operations.
For example, InsertActivity(”Pay Out”, ”Parallel Fork”, ”Parallel Join”) is not applicable
if ParallelFork and ParallelJoin do not exist in the model or are not connected by
an edge as required by opr. In other words, the applicability of the change operation
InsertActivity(”Pay Out”, ”Parallel Fork”, ”Parallel Join”) depends on the chosen position
parameters and might also be dependent on the application of another operation. Choos-
ing correct position parameters is discussed in the following.

3.2 Correct Specification and Computation of Position Parameters

If all parameters of a concrete change operation are specified, we call the change
operation fully specified. Otherwise, it is called partially specified. For example,
InsertActivity(X,-,-) is a partially specified change operation because only x has been
specified and a, b are not specified yet.

Fully specified change operations are obtained from partially specified ones by com-
puting position parameters. In the following, we explain how the PSTs can be used for
computing position parameters of change operations. Given two process structure trees
PST (V ), PST (V1) and correspondences between their nodes, a joint PST, denoted as
J −PST (V, V1), can be constructed which contains both process structure trees where
corresponding nodes have been identified [14]. A J-PST can be annotated with change
operations where each change operation is associated to the fragment node in the J-PST
in which it occurs. In addition, for InsertFragment or DeleteFragment operations, we de-
note with fragment(op) the newly inserted or deleted fragment. Figure 6 shows the
annotated J-PST of the example.

When transitioning from a partially specified to a fully specified change operation,
we require that parameters are chosen inside the parent fragment of an operation as
follows:

Definition 2 (Correct specification) Given a partially specified change operation op
in a J-PST, a full specification of op is said to be correct, if the position parameters are
chosen inside the parent fragment.

With regards to Figure 6, a correct full specification of the InsertActivity operation
ensures that the position parameters are chosen inside fragment fI and not outside.

7



fA1

root 
fragment

fB1

alternative
fragment

fC1 fD1

fE1

alternative
fragment

fI1 fJ1
InsertActivity

(“Calculate Loss Amount“, -, -)

InsertActivity
(“Recalc. Customer Contribution“, -, -)

InsertFragment
(fE1, -, -)

InsertActivity
(“Send Rej. Letter“, -, -)

fF1 fG1

InsertActivity
(“Pay Out“, -, -)

InsertActivity
(“Authorize Account. Dept.“, -, -)

MoveActivity
(“Check Claim“, -, -, -, -)

fH1

concurrent
fragment

InsertFragment
(fH1, -, -)

Fig. 6. The J-PST of the example

For applying a partially specified change operation, Algorithm 1 shows how to com-
pute the position parameters. This algorithm starts at the element which is affected by
the change operation and then searches backward and forward until a node is reached
that exists in both process models. Note that this algorithm always returns a correct
specification.

Although Algorithm 1 always returns a fully specified change operation, this does
not ensure that the operation obtained is also correct according to Def. 2. For ensuring
their correctness, dependencies between change operations must be taken into account
which we will discuss in the next section.

4 Dependencies of Change Operations

In this section, we introduce concepts for dependencies of change operations. We first
review dependencies for fully specified change operations and then elaborate on par-
tially specified change operations.

As a fully specified change operation op is formally defined by a graph transforma-
tion rule opr, we can directly apply the dependency concept from graph transformation
(see e.g. [3, 17, 9, 13]): Informally, if two changes are dependent, then the second one
requires the application of the first one. This is usually the case if the first change creates
model structures that are required by the second change. Formally, we define:

Definition 3 (TR-Dependent Change Operations) Let two fully specified change op-
erations op1 and op2 be given such that V

op1
=⇒ V ′ and V ′ op2

=⇒ V ′′. Then we call op2
transformation rule dependent (TR-dependent) on op1 if op2 is not applicable on V and
op2 is applicable on V ′.

Dependencies can be computed for change operations by applying existing theory
for establishing a so-called dependency matrix (see [13] for an overview). An entry in

8



Algorithm 1 Computation of position parameters of a change operation op in model V
and V1

Procedure computePositionParameter(op,V ,V1):
x = op.element;
{Old Position Parameters of x in Model V }
if op is DeleteActivity/Fragment or MoveActivity then

c = direct predecessor of x ∈ V ; d = direct successor of x ∈ V ;
{New Position Parameters of x in Model V }
if op is InsertActivity/Fragment or MoveActivity then

a = getPredecessor(x,V ,V1); b = getSuccessor(x,V ,V1);
if a, b ̸= null then

if a is not directly connected to b then
select an edge i between a and b; a = i.source; b = i.target;

else
select an edge i in V in the parent fragment of op; a = i.source; B = i.target;

return a, b, c, d;

{Computation of Predecessor}
Procedure getPredecessor(x,V ,V1):
determine predecessor p of x in V1

if p exists in V ∧ p is not affected by a Move operation then
return p;

else
return getPredecessor(p,V ,V1)

return null;

{Computation of Successor}
Procedure getSuccessor(x,V ,V1):
determine successor s of x in V1

if s exists in V ∧ s is not affected by a Move operation then
return s

else
return getSuccessor(s,V ,V1)

return null

this matrix then states the conditions under which two fully specified change operations
are dependent.

Dependencies of partially specified change operations cannot be computed using
the dependency matrix because parameters are missing. One possibility would be to
apply dependency computation only to fully specified change operations, leading to
the situation that dependencies are only detected late in the change resolution phase.
Another approach is to use the annotated J-PST (see Figure 6) for defining dependencies
of change operations as follows:

Definition 4 (J-PST Dependencies and Enabled Change Operations) Let a J-PST
annotated with change operations OPS be given. For each op ∈ OPS, we denote

9



with depops(op) all operations that are dependent on op. We define dependencies on
the change operations as follows:

– Let a change operation op be given with type(op) = INSERTFRAG and let OPC
be the set of all operations associated to a child of fragment(op). Then every
opi ∈ OPC is dependent on op and therefore depops(op) = {opi ∈ OPC}.

– Let a change operation op be given with type(op) = DELETEFRAG and let OPC
be the set of all operations associated to a child of fragment(op). Then every
opi ∈ OPC is a prerequisite of op and therefore op ∈ depops(opi).

We call a partially specified change operation op enabled if depops(op) = ∅.

fI1 fJ1

InsertActivity
(“Calculate Loss Amount“, -, -)

InsertActivity
(“Recalc. Customer Contribution“, -, -)

…

fH1

concurrent
fragment

InsertFragment
(fH1, -, -)

fF1

f2 f3

DeleteActivity
(“Y“, -, -)

MoveActivity
(“X“, -, -, -, -)

…

fDEL

fragment

DeleteFragment
(fDEL, -, -)

f1

a) b)

“op1 dependents on op2”

op1 op2

Fig. 7. Dependencies in the J-PST

The idea behind these dependencies is that a change operation that is dependent
on an InsertFragment operation can only be applied if the InsertFragment operation has
previously been applied to create the fragment. Similarly, a DeleteFragment operation is
dependent on all other operations that affect the fragment deleted. This ensures that first
all operations within the deleted fragment are applied before the fragment is deleted.
Figure 7 a) shows an extract of the J-PST introduced earlier and the two InsertActivity
change operations which are both dependent on the InsertFragment change operation.
Figure 7 b) shows an example for DeleteFragment dependencies.

J-PST dependencies yield a dependency concept for change operations that are par-
tially (or fully) specified. J-PST dependencies can be easily computed by traversing
the J-PST and, for each fragment, computing dependencies between all operations as-
sociated to the fragment and operations associated to the grandfather fragment. J-PST
dependencies have an important property by definition that we show in the following:

Lemma 1 (Acyclic J-PST dependencies). Let a J-PST annotated with change opera-
tions be given. Then the J-PST dependencies are acyclic.

In our approach, J-PST dependencies together with the concept of a correct specifi-
cation can be used to show that an enabled operation is also applicable. The following
theorem shows this:

10



Theorem 1 (Applicability of Enabled Operations). Let a fragment f in the J-PST
together with a change operation op be given. If op is enabled then it is also applicable
if its position parameters are computed by Algorithm 1.

For our application in model version management, it is important to know whether
we can run into a dependency when applying fully specified change operations. The fol-
lowing theorem shows that it is sufficient to compute J-PST dependencies if operations
are associated to different fragments in the J-PST:

Theorem 2 (TR-independence). Let a J-PST annotated with change operations be
given and let opi and opj be two operations. Assume further that opi and opj are
attached to different fragments. If opi and opj are not J-PST dependent then opi and
opj are not TR-dependent on each other.

The previous theorem enables us to apply operations in different fragments without
running into dependency problems. For change operations associated to the same frag-
ment, the order of change operation application can lead to different results. However,
by Theorem 1, each enabled operation is always applicable. This ensures that after ap-
plying an operation re-computation of position parameters of other operations leads to
applicable operations again.

The previous theorems have the following consequences for iterative change res-
olution: All enabled operations are applicable which means that there exists a model
V ′ obtained from V when applying an enabled change operation. As all transformation
rules of our change operations produce connected process models, V ′ is always con-
nected. Further, the order in which enabled operations are applied which are contained
in different fragments does not matter.

In the next section, we will elaborate on conflicts that can arise when a process
model has been changed concurrently by two persons.

5 Conflicts of Change Operations

In this section, we consider conflicts between change operations. Similar to the previous
section about dependencies, we first introduce conflicts between fully specified change
operations and then show how the J-PST can be used to ease up conflict computation.

Conflicts between change operations arise in scenarios where changes are applied
independently on different versions of a process model. Our running example (see Fig-
ure 1) illustrates such a scenario where an original process model V is manipulated
independently into two new versions V1 and V2.

In general, two changes are in conflict if only one of the two can be applied. This
is the case if the two changes involve the same model structure and manipulate it in a
different way. Typical conflicting pairs of change operations include the movement of
an element in one model (e.g., MoveActivity(”Check Claim”,-,-,-,-)) and its deletion (e.g.,
DeleteActivity(”Check Claim”,-,-)) in the other model. Formally, we define:

Definition 5 (TR-Conflicting Change Operations) Let two fully specified change op-
erations op1 and op2 be given such that V

op1
=⇒ V ′ and V

op2
=⇒ V ′′. Then we call op1

11



and op2 transformation rule conflicting (TR-conflicting) if op2 is not applicable on V ′

and op2 is applicable on V .

Conflicts between fully specified change operations can be computed by applying
existing theory, e.g., by establishing a conflict matrix (see [16, 13]) which specifies
conditions under which two fully specified change operations are conflicting.

In contrast to dependencies, conflicts cannot be computed on partially specified
change operations. However, using the J-PST still simplifies the conflict detection by
decreasing the number of change operations, which need to be compared. Using the
J-PST, conflicts can be computed by inspecting the set of enabled change operations
between ∆(V, V1) and ∆(V, V2), instead of comparing all fully specified operations.

Given two joint process structure trees J − PST (V, V1), J − PST (V, V2), we
first compute position parameters for enabled operations in the J-PSTs and then use the
conflict matrix to identify conflicting operations. In the case that a conflicting operations
is assigned to a fragment, all children are also marked as conflicting. Formally, we
define conflicts of change operations in the J-PST:

Definition 6 (J-PST Conflicts) Let two joint process structure trees J − PST (V, V1)
and J−PST (V, V2), both annotated with operations, be given. Then we define conflicts
on the change operations as follows:

– Two enabled change operations opV 1 ∈ ∆(V, V1) and opV 2 ∈ ∆(V, V2) are con-
flicting if they are TR-conflicting according to Definition 5.

– For two conflicting change operation opV 1 and opV 2 of the type(opV 1) =
INSERTFRAG,DELETEFRAG, let OPCV 1 be the set of all operations associated
to a child of fragment(opV 1). Then every opi ∈ OPCV 1 is dependent on opV 2.

– For two conflicting change operation opV 1 and opV 2 of the type(opV 2) =
INSERTFRAG,DELETEFRAG, let OPCV 2 be the set of all operations associated
to a child of fragment(opV 2). Then every opi ∈ OPCV 2 is dependent on opV 1.

Using the J-PSTs for conflict detection reduces the number of required compar-
isons to the set of enabled operations. There is no need to compare all operations with
each other. Figure 8 gives an example. The J − PST (V, V1) illustrates the alterna-
tive fragment fE1 which was inserted into process model V1 (see our running example
in Figure 1) and J − PST (V, V2) depicts the inserted concurrent fragment fE2 in V2.
The change operations InsertFragment(fE1,-,-) and InsertFragment(fE2,-,-) that insert these
fragments into V1 and V2 are enabled and conflicting according to Definition 6, since
only one of the operations can be applied in the merged version. Depending on the res-
olution of this conflict, the child operations contained in these fragments may also be
conflicting. Thus, they are marked preventively as conflicting, as required by Defini-
tion 6.

In the following theorem we show that the number of conflicts in the J-PST con-
stitute an upper bound for conflicting transformations, i.e. if two operations are not
conflicting in the J-PST then they cannot be transformation conflicting.

Theorem 3 (TR-Conflicts are limited by J-PST Conflicts). Let a J-PST annotated
with operations be given and let opi be an operation. Then no J-PST conflict between
opi and any other opj induces that opi is not transformation conflicting.

12



fE1

alternative
fragment

fI1 fJ1

InsertActivity
(“Calc. Loss Amount“, -, -)

InsertActivity
(“Recalc. Cust. Contrib.“, -, -)

fF1 fG1

InsertActivity
(“Pay Out“, -, -)

InsertActivity
(“Authorize Account. Dept.“, -, -)

fH1

concurrent
fragment

InsertFragment
(fH1, -, -)

…

fC1

InsertFragment
(fE1, “Settle Claim”, “Merge”)

J-PST(V,V1):

fE2

concurrent
fragment

InsertActivity
(“Calc. Loss Amount“, -, -)

InsertActivity
(“Recalc. Cust. Contrib.“, -, -)

fF2 fI2

InsertActivity
(“Pay Out“, -, -)

InsertActivity
(“Send Confirmation“, -, -)

…

fC2

InsertFragment
(fE2, “Settle Claim”, “Merge”)

fG2 fH2 fJ2

J-PST(V,V2):

J-PST Conflicts

Fig. 8. Conflicts between Change Operations in the J − PST (V, V1) and J − PST (V, V2)

Other than for dependencies, conflicts in the J-PST are not an abstraction but only
an approximation of conflicts on the transformation rules and provide an upper bound of
the overall number of conflicting transformation rules. This means that if two operations
are conflicting in the J-PST then they may be giving rise to conflicting transformations
but this is not always the case. For instance in Figure 8, the resolution of the conflict be-
tween the two enabled InsertFragment(fE1,-,-) InsertFragment(fE2,-,-) operations, which
is not known prior to resolving the conflict (see [13] for several options of conflict res-
olution), determines possible conflicts between child operations. To avoid problems,
we make all the child operations conflicting and recompute conflicts after resolving the
conflict between enabled operations.

6 Tool Support

Our approach has been implemented in a prototype for process model version manage-
ment in the IBM WebSphere Business Modeler and the IBM WebSphere Integration
Developer. For an architectural overview we refer to [8]. In Figure 9 iterative change
resolution is illustrated. In this view, only enabled change operations can be selected
and applied, whereas all other operations are grayed-out. After the application of an en-
abled operation, the set of enabled operations is recomputed. Internally, the prototype
uses the algorithms described above for computing position parameters and dependen-
cies of partially specified change operations.

7 Related Work

One area of related work is concerned with model composition and model versioning.
Alanen and Porres [1] describe an algorithm how to compute elementary change oper-
ations. Kolovos et al. [11] describe the Epsilon merging language which can be used to

13



Fig. 9. Screenshot of our prototype in WebSphere Business Modeler

specify how models should be merged. Kelter et al. [10] present a generic model differ-
encing algorithm. In the IBM Rational Software Architect [15] or using the EMF Com-
pare technology [6], dependencies and conflicts between versions are computed based
on elementary changes. These approaches to model versioning deal with the problem of
model merging but they do not make use of a model stucture tree (such as our process
structure tree). This enables us to compute position parameters for partially specified
change operations and thereby realize iterative change resolution.

In the area of software evolution, Fluri et al. [7] describe how to use abstract syn-
tax trees and tree differencing for extracting changes and better understanding change
types. Our work uses the process structure trees on the modeling level. One difference
can be seen in the way change resolution is performed because on the modeling level
more flexibility is needed which is incorporated by the concept of partially specified
change operations.

Dependencies of transformation rules have been studied in the literature: Mens et
al. [17] analyze refactorings for dependencies using critical pair analysis. They first
express refactorings as graph transformations and then detect dependencies using the
AGG tool [21]. Graph transformations have also been used extensively for defining
and parsing visual languages [19] where rules are used as parsing rules. Further, graph

14



transformation rules have been used in various model transformation approaches (see
e.g. [4, 2]), as a formal foundation as well as in transformation engines executing a
model transformation. In these approaches, a transformation rule is matched and ap-
plied along existing theory of graph transformation [3]. In contrast to these approaches,
we study dependencies of change operations that are partially specified using J-PST
dependencies and establish a relationship to TR-dependencies. In our earlier work [13],
we assumed that all change operations are fully specified.

Within the process modeling community, Rinderle et al. [20] have studied disjoint
and overlapping process model changes in the context of the problem of migrating
process instances but have not considered dependencies between changes and different
forms of change resolution.

8 Conclusion

Version management of behavioral models such as process models or statecharts poses
specific requirements on change operations: Typically, a user cannot be forced to resolve
changes in a certain order and further he/she is supposed to select those changes that
are to be resolved. This requires the identification of dependencies of change operations
and dynamic computation of position parameters of change operations.

In this paper, we have introduced the concept of a partially specified change oper-
ation where position parameters are dynamically computed on demand. We have es-
tablished a formal model for partially specified and fully specified change operations,
based on the theory of graph transformation. We have then introduced an approach for
computing dependencies and conflicts of change operations based on an underlying
tree-based decomposition of the model which greatly reduces the number of compar-
isons needed. We have shown how to use these dependencies within iterative change
resolution.

There are several directions of future work: An interesting question is how our ap-
proach can be extended to other models such as statecharts. Further, as our change
operations are essentially model transformations with changing parameters it arises the
question whether dynamic computation of model transformation parameters are also
required in other application scenarios.

Acknowledgements: The authors wish to thank Jana Koehler for valuable feedback
on an earlier version of this paper.

References

1. M. Alanen and I. Porres. Difference and Union of Models. In P. Stevens, J. Whittle, and
G. Booch, editors, UML 2003, volume 2863 of LNCS, pages 2–17. Springer, 2003.

2. E. Biermann, C. Ermel, and G. Taentzer. Precise semantics of emf model transformations
by graph transformation. In K. Czarnecki, I. Ober, J. Bruel, A. Uhl, and M. Völter, editors,
MoDELS, volume 5301 of Lecture Notes in Computer Science, pages 53–67. Springer, 2008.

3. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic Ap-
proaches to Graph Transformation Part I: Basic Concepts and Double Pushout Approach. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Volume 1: Foundations, pages 163–245. World Scientific, 1997.

15



4. G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA: Visual
Automated Transformations for Formal Verification and Validation of UML Models . In
Proceedings ASE’02, pages 267–270, September 2002.

5. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Attributed graph
transformation with node type inheritance. Theor. Comput. Sci., 376(3):139–163, 2007.

6. Eclipse Foundation. EMF Compare. http://www.eclipse.org/modeling/emft/?project=compare.
7. B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change Distilling: Tree Differencing for

Fine-Grained Source Code Change Extraction. IEEE Trans. Software Eng., 33(11):725–743,
2007.

8. C. Gerth, J. M. Küster, and G. Engels. Language-Independent Change Management of Pro-
cess Models. In A. Schürr and B. Selic, editors, MODELS’09, volume 5795 of LNCS, pages
152–166. Springer, 2009.

9. J. H. Hausmann, R. Heckel, and G. Taentzer. Detection of conflicting functional requirements
in a use case-driven approach: a static analysis technique based on graph transformation. In
Proceedings ICSE’02, pages 105–115. ACM, 2002.

10. U. Kelter, J. Wehren, and J. Niere. A Generic Difference Algorithm for UML Models. In
P. Liggesmeyer, K. Pohl, and M. Goedicke, editors, Software Engineering 2005, Fachtagung
des GI-Fachbereichs Softwaretechnik, 8.-11.3.2005 in Essen, volume 64 of LNI, pages 105–
116. GI, 2005.

11. D. S. Kolovos, R. Paige, and F. Polack. Merging Models with the Epsilon Merging Language
(EML). In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, MoDELS 2006, volume
4199 of LNCS, pages 215–229. Springer, 2006.

12. J. M. Küster. Definition and validation of model transformations. Software and Systems
Modeling, 5(3):233–259, 2006.

13. J. M. Küster, C. Gerth, and G. Engels. Dependent and Conflicting Change Operations of
Process Models. In R. Paige, A. Hartman, and A. Rensink, editors, ECMDA-FA’09, volume
5562 of LNCS, pages 158–173. Springer-Verlag, 2009.

14. J. M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and Resolving Process Model
Differences in the Absence of a Change Log. In M. Dumas and M. Reichert, editors,
BPM’08, volume 5240 of LNCS, pages 244–260. Springer-Verlag, 2008.

15. K. Letkeman. Comparing and merging UML models in IBM Rational Software Architect :
Part 3. A deeper understanding of model merging. IBM Developerworks, 2005.

16. T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Trans. Software Eng.,
28(5):449–462, 2002.

17. T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies using graph trans-
formation. Software and System Modeling, 6(3):269–285, 2007.

18. Object Management Group (OMG). Business Process Modeling Notation (BPMN).
http://www.omg.org/spec/BPMN/1.2.

19. J. Rekers and Andy Schürr. Defining and Parsing Visual Languages with Layered Graph
Grammars. J. Vis. Lang. Comput., 8(1):27–55, 1997.

20. S. Rinderle, M. Reichert, and P. Dadam. Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In R. Meersman and Z. Tari, editors, CoopIS’04, volume
3290 of LNCS, pages 101–120. Springer, 2004.

21. G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of
Software. In AGTIVE, volume 3062 of LNCS, pages 446–453, 2003.

22. J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In ICSOC 2007, volume 4749
of LNCS, pages 43–55. Springer, 2007.

23. B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support Features in
Process-Aware Information Systems. In J. Krogstie, A. L. Opdahl, and G. Sindre, editors,
CAiSE’07, volume 4495 of LNCS, pages 574–588. Springer, 2007.

16



A Proofs

Proof Sketch of Lemma 1: Proof by contradiction. According to the definition, there
are two types of J-PST dependency edges, either INSERTFRAG or DELETEFRAG. As-
sume that there exists a cycle in the dependencies i.e. ⟨op1, .., opk⟩ such that opj+1 ∈
depops(opj) for j = 1, ..k − 1 and op1 ∈ depops(opk). Label each dependency
edge with the type. The cycle cannot consist of DELETEFRAG or INSERTFRAG edges
only because these edges either go downward in the J-PST or upward. Therefore there
must be one opi in the cycle that has an incoming DELETEFRAG and an outgoing
INSERTFRAG edge or vice versa. The first case cannot occur because this implies that
opi has both types which is a contradiction. In the second case, this leads to the situation
that at some point in the cycle the first case must occur which again is a contradiction.

Proof Sketch of Theorem 1: If an operation op is enabled, we compute its full spec-
ification by Algorithm 1. This full specification is a correct specification, because the
parent fragment of an enabled operation exists in the process model. Thus, Algorithm 1
will return position parameters inside the parent fragment. For showing that op is ap-
plicable, we consider its transformation rule. For applicability we have to ensure that
opr : L → R can be applied and that the properties of the occurrence o are fulfilled,
see Definition 1. This has to be shown for each rule opr separately. In the following,
we consider InsertActivity(x,a,b). Due to the algorithm, the computed position parame-
ters are model elements in V . x has been computed by the change operation detection
algorithm and is a model element in V1. We can therefore define an occurrence o which
conforms to Definition 1. What remains to be shown is that there is indeed a match in
V for o and opr. For InsertActivity(x,a,b), L requires that f contains a and b directly
connected by an edge (see Figure 5 a)). As this is the postcondition of the algorithm 1
this is fulfilled. For other change operation types, the proof follows the same line of
argumentation.

Proof Sketch of Theorem 2: Proof by Contradiction. Assume that two operations in
different fragments exist and that no J-PST dependency exists between them. Let us now
assume that they are TR-dependent on each other when their position parameters are
fixed. We consider the dependency matrix in [13] which shows the TR-dependencies
of two operations opi and opj . The entries of the matrix specify when two opera-
tions are TR-dependent. Each entry requires that the two operations have at least
one common parameter. This ensures for all combinations where opi and opj are In-
sert/Delete/MoveActivity operations that the operations are associated to the same frag-
ment node in the J-PST which is a contradiction. For all other combinations involving
InsertFragment or DeleteFragment, the common parameter ensures that the two opera-
tions are associated to the same fragment node or it is the case that an entry(F ) or
exit(F ) occurs in the parameters where F is the fragment manipulated by InsertFrag-
ment or DeleteFragment. In this case, by Definition 4, a J-PST dependency must exist
between the two operations which is again a contradiction.

Proof Sketch of Theorem 3: Proof by contradiction. We can distinguish two cases:
Operation opi is either enabled (is not dependent on any other opj) or opi is not enabled
and requires the application of another opj before it becomes enabled.

17



Case 1. If opi is enabled, let us assume that opi has no J-PST conflict, although its
transformation is conflicting to another transformation of another enabled operation
opx. Since opi is not J-PST conflicting, we can deduce that the position parameters
of opi do not overlap with the position parameters of any other enabled operation ac-
cording to the conflict matrix in [13] by Definition 6. This means that no other enabled
operation modifies the process model in that particular place, thus opi cannot be trans-
formation conflicting with opx which is a contradiction.

Case 2. If opi is not enabled, let us assume that opi has no conflict in the J-PST, al-
though its transformation is conflicting. Since opi is not enabled, there exists at least
one operation opj which has to applied before opi becomes applicable, i.e. opi is de-
pendent on opj . Hence, the type of opj is type(opj) = ”INSERTFRAG”, otherwise
opi would not depend on opj according to Definition 4. Without loss of generaliza-
tion, we assume that opj is enabled. According to Definition 6 opj cannot be conflict-
ing in the J-PST or on the transformation level (Case 1.), otherwise opi as a child of
fragment(opj) would be conflicting too. Since the position parameter of opi must be
inside its parent fragment fragment(opj), opi cannot be transformation conflicting
which is a contradiction.

18


