
RZ 3767 (# 99777) 02/25/2010
Computer Science 18 pages

Research Report

Detection of Semantically Equivalent Fragments for
Business Process Model Change Management

Christian Gerth,1,2 Markus Luckey,1 Jochen M. Küster,2 and Gregor Engels1

1Department of Computer Science
University of Paderborn
Germany

{gerth,luckey,engels}@upb.de

2IBM Research – Zurich
8803 Rüschlikon
Switzerland

{cge,jku}@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich

Detection of Semantically Equivalent Fragments
for Business Process Model Change Management

Christian Gerth1,2, Markus Luckey1, Jochen M. K̈uster2, and Gregor Engels1

1 Department of Computer Science, University of Paderborn, Germany
{gerth,luckey,engels}@upb.de

2 IBM Research - Zurich, S̈aumerstr. 4
8803 R̈uschlikon, Switzerland{cge,jku}@zurich.ibm.com

Abstract. Modern business process modeling environments support distributed
development by means of model version control, i. e. comparison andmerging
of two different model versions. This is a challenging task since most modeling
languages support an almost arbitrary creation of process models. Thus, in multi-
developer environments, process models or parts of them are often syntactically
very different but semantically equivalent. Hence, the comparison of business
process models must be performed on a semantic level rather then on asyntactic
level. For the domain of business process modeling, this problem is yet unsolved.
This paper describes an approach that allows the semantic comparison of differ-
ent business process models using a normal form. For that purpose, the process
models are fully automatically translated into process model terms and normal-
ized using a term rewriting system. The resulting normal forms can be efficiently
compared. Our approach enables the semantic comparison of business process
models ignoring syntactic redundancies.

1 Introduction

In model-driven development approaches, business processmodels are used at different
levels in the development process. For instance, they are used to specify the behavior of
involved components or to describe the choreography of services in Service-Oriented
Architectures (SOA) [7]. In addition, business process models help to obtain a closer
alignment of business and IT requirements [12].

Similar to other software artifacts, business process models are created and refined
by many different business modelers and software architects. This results in different
versions of models that have to be compared and merged with each other at some point
in time to obtain a integrated version [13].

Comparing and merging different process model versions requires the knowledge
whether two models or individual parts of them are equivalent. In general, there are
two different ways to decide their equivalence. First, two models can be compared syn-
tactically. Syntactic comparison has the benefit of being hardly time-consuming. The

C. Gerth is funded by the International Graduate School of Dynamic Intelligent Systems at the
University of Paderborn

second approach is the semantic comparison, e.g. by using a notion of equivalence such
as trace equivalence [24]. While these semantic approaches are too time-consuming due
to the need to check all possible paths, syntactic comparison seems to be too weak to
detect equivalences between different models.

This problem results from the fact that well-established modeling languages such
as the Business Process Modeling Notation (BPMN) [17] or Activity Diagrams (UML-
AD) [18] generally allow the user to connect elements such asActions and Gateways
in an arbitrary way. Together with modeling tools that support free-hand editing, this
favors the construction of syntactically very different process models, which are at the
same time semantically equivalent regarding their execution logic and execution order.

Using current syntactic comparison techniques, two of those syntactically different
business process models would incorrectly not be shown to beequal. The target of our
approach is to reduce this kind of false-positives in the results of the comparison of
structured and unstructured business process models.

In this paper, we propose an approach for deciding equivalence of structured and
unstructured business process models and individual partsof them. Our approach com-
bines the benefits from both the syntactic and semantic comparison. Individual parts
of business processes are transformed into a semantically enriched term representation,
which is normalized using a term rewriting system. The rulesof the term rewriting
systems reduce syntactically different but semantically equivalent terms of two process
models into their normal form by preserving their behavior.Based on the normal forms,
we can decide whether the two parts of a process models are semantically equivalent
by comparing their syntactical structure. The approach is in particular useful in dis-
tributed process modeling scenarios, to answer the question whether independently ap-
plied changes result in semantically equivalent structures in the process models or give
rise to conflicts. In addition, the normal form can directly be adopted in the merged
version of the process model to achieve a simple to understand and reduced process
model.

The remainder of this paper is structured as follows: In Section 2 we introduce
a typical scenario for business process model change management. We present a term
representation for process models in Section 3. In Section 4we develop a term rewriting
system and consider its correct functional behavior. Then,we present a case study and
normalize two process model terms to decide equivalence in Section 5. Finally, we
conclude with a discussion of related work and give an outlook on future work.

2 Business Process Model Change Management

Our scenario is inspired by the business process model change management in the
IBM WebSphere Business Modeler [9]. Figure 1 shows an example business process
model M from the insurance domain. In the example, a claim is checked. Depending
on whether the claim is covered by the insurance it is either settled or rejected. In a
distributed modeling scenario, the process modelM might have been created as an ini-
tial process model, which is then independently refined intothe versionsM1 and M2

by different users. Afterwards, the need arises to integrate the different versions of the
models to obtain a merged versionMM. Typically, this includes the detection of differ-

2

ences, dependencies and conflicts between the versions. In general, difference detection
between business process models requires a matching to identify corresponding model
elements, e.g.,′Check Claim′ in modelM1 corresponds to′Check Claim′ in M2. Model
matching is an area of research in its own right with a lot of interest [4, 11, 10] and is
not in the scope of this paper. For the remainder, we assume that model elements with
equal names correspond to each other and thus no further matching is needed.

+
Send

Confirmation

+
+ Recalc. Cust.

Contribution

+
Calculate

Loss Amount

Pay Out

Check
Claim

Calculate
Loss Amount

Recalc. Cust.
Contribution

+
+

+

Pay Out
Send

Confirmation

Check
Claim

x x
Retrieve

add. Data

Record
Claim x x

Record
Claim xx

Close
Claim

Reject
Claim

Update Cust.
Record

Reject
Claim

Record
Claim

Check
Claim xx

Close
Claim

Reject
Claim

Settle
Claim

M1

M2

M

Settle
Claim

Settle
Claim

Fig. 1.Change Management Scenario

Although the different process model versions (M1 andM2) look similar, a purely
syntactical comparison of these models results in lots of differences and even conflicts,
among them many false positives. For instance, the highlighted parts in Figure 1 are
semantically equivalent, i. e. the same set of actions can beapplied in the same order.
However, since their syntactical representation is different, a syntax-based comparison
results in differences and conflicts that need to be resolved manually to obtain a merged
versionMM. In addition, the matching of the Actions (e.g.,’Pay Out’) in M1 andM2 is
difficult, since it is unclear whether they are inserted at the same position. To avoid these
problems, the comparison of business process models must consider the semantics of
the models.

A widely used approach to decide semantic equivalence of business process mod-
els is by using trace equivalence [24]. Computing trace equivalence can be complex,
in particular for concurrent structures or cyclic structures in process models and has
exponential complexity in the general case. Even if traces are computed only for parts

3

of a process model the number of traces that need to be compared can be high. E.g., in
the small example in Figure 1 the four activities in the highlighted parts of the process
models result in 12 different traces. These sets of traces need to be compared to decide
the equivalence of the highlighted parts. In the case, that two process models are not
trace equivalent, sets of different traces are returned that are hardly understandable to
the user who merges the business process models. Thus, thesedifferent traces need to
be analyzed in order to identify the actual differences between the two models.

Business Process
ModelM1

≈

≈
?

Business Process
ModelM2

Process Model
TermtM1

Process Model
TermtM2

Normal Form
NF(tM1)

Normal Form
NF(tM2)

1. Formalization

2. Normalization

Fig. 2.Approach Overview

Based on our recent work [8] and a de-
composition of process models into their hi-
erarchical structure [25], we propose a more
efficient way to decide equivalence between
process models that overcomes the shortcom-
ings of trace equivalence. Our approach is il-
lustrated in Figure 2. To decide equivalence
between two business process models (or parts
of the models), we compute process structure
trees from the process models that reflect the
models hierarchical structure [8, 25]. Using a
tree walk algorithm, the process structure tree
is transformed into a term notation. The resulting process model terms capture seman-
tical information concerning the execution order and the execution logic (such as AND,
OR, XOR) of the business process models. In a second step, theprocess model terms are
normalized into their normal form using a semantic preserving term rewriting system.
Based on a comparison of the normal forms, we can efficiently decide the equivalence
of the business process models.

In addition, the normal form can directly be used to adopt changes in the integrated
process modelMM. This potentially results in fewer changes that need to be applied to
merge two process models and improves the understandability of the merged model. A
detailed example can be found in Section 5.

In the following, we introduce the term notation for business process models. Then
we present the term rewriting system in Section 4.

3 Process Model Terms

In this section we first introduce process models and its decomposition into fragments.
Then we develop a process model term notation and show how process models are
transformed into terms that can be compared using the term rewriting system from
Section 4.

3.1 Process Models and the Process Structure Tree

For the following discussions, we assume a business processmodelM to be expressed
using the basic workflow graphs described in [21, 25] and define the semantics of pro-
cess models similar to the semantics of Petri nets [16] in terms of token flows. In our
recent work [8], we have shown how concrete BPMN models can beabstracted to such

4

process models and described the behavior of particular process model nodes in detail.
Figure 3 (a) shows a simple process model.

To enable a comparison of individual parts of two process models, they are de-
composed into single-entry-single-exit fragments [25]. Such a fragment is a non-empty
subgraph in the process model with a single entry and a singleexit edge. Based on
the decomposition into fragments we are able to decide equivalence between pairs of
fragments instead of relying on the complete process model.

Among all possible fragments, we consider only so called canonical fragments
which are not overlapping and denote them withF (M) for a process modelM. The
canonical fragments of a process modelM can be organized into a corresponding PST
representing the hierarchical structure of the fragments.

Figure 3 gives an example. The canonical fragments of the process modelM1 in
Figure 3 (a) are visualized by a surrounding of dotted lines and its corresponding PST
is given in Figure 3 (b).

A

Action

AND-
Split

AND-
Join

Final
Node

σroot π

Initial
Node

+ +
X

Z

Y

+
σ1

σ2

σ3

σ4

M1

b)a)
σroot

π

σ1

X

AND-
Split

AND-
Join

AInitial
Node

Final
Node

σ2

Y

σ3σ4

Z

AND-
Split

Fig. 3. (a) Process ModelM1 decomposed into Fragments and (b) its Process Structure Tree

Given a fragmentf ∈ F (M), we distinguish bytype(f) the following fragment
types (similar to [25]):

– a sequenceσ has no AND/XOR/Undefined-ControlNodes as children. Further, a
sequence is maximal, i.e., neither a preceding nor a succeeding model element can
be added to the sequences. For example, in Figure 3 (a),σroot, σ1, σ2, σ3, andσ4

are sequences.

– a parallel fragmentπ does not contain any cycles and has no XOR/Undefined-
ControlNodes as children. For example, in Figure 3 (a),π is a parallel fragment.

– an alternative fragmentα and an alternative loopλ have no AND/Undefined-
ControlNodes as children.

– acomplex fragmentι is any other fragment that is none of the above.

Further, a fragment is considered as beingstructuredif it consists of matching pairs
of nodes that split and join the control flow. Otherwise, it isconsidered as beingun-
structured. In the following we introduce process model terms and show how process
models and their corresponding PST can be formalized.

5

3.2 Transformation of Process Models into Terms

A term representation of process models needs to capture precise information about the
contained model elements, their hierarchical structure interms of fragments, as well as
information about the execution order of the elements.

PST Element Term
InitialNode, FinalNode, Actionν ν

Sequenceσ σ(...)
Parallel Fragmentπ π(...)
Alternative Fragmentα α(...)
Alternative Loop Fragmentλ λ(...)
Complex Fragmentι ι(...)

Fig. 4. Transformation of Process Models into
Terms

Figure 4 summarizes the transla-
tion of PST elements of process mod-
els to their corresponding term repre-
sentation. ControlNodes are not added
to process model terms, since they are
already represented by their surround-
ing fragments. Figure 5 shows the gram-
mar for valid terms.

t ∈ T F Frag O

Frag F π(Seqs) | α(Seqs) | λ(Seqs) | ι(Seqs) | Seq
FragsF Frag , Frags | Frag
Seq F σ(Frags) | σ(Nodes)
Seqs F Seq, Seqs| Seq
Node F ν | Frag | ǫ
NodesF Node, Nodes| Node
O F Seq× Seq

Fig. 5.Grammar for Process Model Terms

tM1 = σ(′InitialNode′,′ A′,

π(σ1(′X′), σ2(′Y′),

σ3(), σ4(′Z′)),
′FinalNode′)

OM1 = {σ1 < σ2, σ1 < σ3}

Fig. 6.Example

The transformation of process models into terms is straight-forward by traversing
its PST using the infix approach. We defineO to be the partial order set over the
carrier setSeq, i. e. the set of sequences.O specifies the execution order of branches
within fragments that is necessary to decide equivalence ofunstructured parallel and
alternative fragments. For instance, within the parallel fragmentπ in Figure 3 (a),
the sequenceσ1 is executed before sequencesσ2 andσ3, resulting in a partial order
O = {σ1 < σ2, σ1 < σ3}. We do not explicitly specify the execution order of ele-
ments within sequences, since it is given implicitly. The partial order within a fragment
can be obtained easily by traversing all branches of each fragment using the depth first
approach.

Let s ∈ F (M) be a sequence of the process modelM andσ ∈ Seqbe its corre-
sponding sequence in the process model termtM. We defineOPre(σ) = {(σi , σ) ∈ O}
to be the preset ofσ containing tuplesσi < σ, i.e., the sequencesσi that are executed
directly beforeσ, andO∗Pre(σ) contain all preceding sequences reachable fromσ in its
parent fragment. Analogously, we defineOPost(σ) = {(σ,σ j) ∈ O} to be the postset of
σ containing tuplesσ < σ j , i.e., the sequencesσ j that are executed directly afterσ,
andO∗Post(σ) contain all succeeding sequences reachable fromσ in its parent fragment.
We denote the union of both sets asO(σ) = OPre(σ) ∪ OPost(σ).

6

The business process modelM1 and its PST introduced in Figure 3 (b) result in the
process model termtM1 and execution orderOM1 shown in Figure 6. We use indices for
sequences for short. For instance, we useσ1(′X′) in the process model term and refer to
this particular sequence usingσ1 in the partial order. However, the sequence indices are
not part of the original grammar but are only used for the sakeof brevity. The variable
ν ranges over the nodes in the process models.

Process model terms can be syntactically compared very efficiently. However, to
compare the semantic equivalence of syntactically different models, their correspond-
ing terms have to be transformed into a normal form to be considered equivalent, since
syntactically different models result in different terms regardless their semantic mean-
ing. The term rewriting system for this transformation is introduced in the next section.

4 Term Rewriting System for Process Model Terms

In this section we introduce a term rewriting system [1] for process model terms to
enable semantic comparison of business process models. Thesystem consists of a set
of rules, which reduce process model terms to a normal form. Then, we consider the
correct functional behavior of the rewriting system. Finally, we define equivalence of
process models based on the normal form of process model terms.

4.1 Term Rewriting System

The term rewriting system consists of rules for the reduction of sequencesσ, parallel
fragmentsπ, and alternative fragmentsα in structured and unstructured form. Overall
the rule system consists of 16 reduction rules. Some of the rules are inspired by the rules
presented in [23, 15, 3, 5]. We do not intent the set of reduction rules to be complete,
in the sense that by using the rules, equivalence can be decided for all fragments of
process model. However, fragments whose equivalence cannot be decided using our
approach are known in advance. For these cases, trace equivalence is leveraged that
additionally is speeded up, since traces only need to be computed for fragments, which
are significantly smaller compared to the whole process model.

In the following, we present the rules and give graphical examples for clarification.
Further, we briefly consider their correctness.

Rule Par 1 (Elimination of Empty Sequences) Given a parallel fragmentπ containing
at least two sequences. If one of the contained sequences is emptyσǫ it is removed and
the partial execution order is aligned in such a way that allσi < σǫ andσǫ < σ j are
replaced by new restrictionsσi < σ j .

(par1)
π(σ1, . . . , σǫ , . . . , σn) O

π(σ1, . . . , σn) ((O \ P) \ S) ∪ N

where P = {(σi , σǫ) ∈ O | σi < σǫ}

S = {(σǫ , σ j) ∈ O | σǫ < σ j}

N = {(σi , σ j) | (σi ,) ∈ S ∧ (, σ j) ∈ P}

7

Rule Par 1 removes one empty sequence of a parallel fragment at a time and is
applied until all empty sequences are eliminated. Figure 7 gives an example, where
the empty sequenceσ3 is removed by applying Rule Par 1. The removal of an empty
sequence in a parallel fragment is semantic preserving, since traces are not changed and
empty sequences can be neglected in process models.

Rule Par 2 (Concatenation of Sequences) Given a parallel fragmentπ containing two
sequencesσ1(a, ..,n) andσ2(m, .., z) with the execution orderσ1 < σ2 and no other
restriction of the formσ1 < σi and σi < σ2. Thenσ1(a, ..,n) and σ2(m, .., z) are
concatenated intoσ⋆(a, ..,n,m, .., z) and the partial execution order is aligned in such
a way that allσi < σ1 andσ2 < σ j are replaced by new restrictionsσi < σ⋆ and
σ⋆ < σ j .

(par2)
π(x, σ1(a, . . . ,n), σ2(m, . . . , z), y) O

π(x, σ⋆(a, . . . ,n,m, . . . , z), y) O′

where O′ = O \ ({(σ1, σ2)} ∪ OPre(σ1) ∪ OPost(σ2)) ∪ P ∪ S
P = {(σi , σ⋆) | (σi , σ1) ∈ OPre(σ1)}
S = {(σ⋆, σ j) | (σ2, σ j) ∈ OPost(σ2)}

Figure 7 gives an example. The unstructured parallel fragment π contains four se-
quencesσ1 . . . σ4. After the deletion of sequenceσ3 (by the application of Rule Par 1),
Rule Par 2 becomes applicable, which concatenates the sequencesσ1 andσ2 into σ⋆.
Rule Par 2 preserves the behavior of the process model since all actions are obviously
executed in the same order.

+ +
A

C

… …

B

+
σ1

π σ2

σ3

σ4

Par 1 + +
A

C

… …

B

+
σ1

π σ2

σ4

Par 2 + +
A

C

… …

σ
*

π

σ4

B

π(σ1(A), σ2(B), σ3(), σ4(C)),
{σ1 < σ2, σ1 < σ3}

π(σ1(A), σ2(B), σ4(C)),
{σ1 < σ2}

π(σ*(A, B), σ4(C)), { }

Fig. 7.Example for the Application of Rule Par 1 and Par 2

Rule Par 3 (Resolution of Empty Parallel Fragments) Given a parallel fragmentπ that
contains one single sequenceσ. Then the parallel fragment can be dropped regardless
of any given partial order.

8

(par3)
π(σ) O

σ O

Figure 8 gives an example. Similar to the former rule, after the removal of the empty
sequenceσ2 by Rule Par 1, Rule Par 3 becomes applicable that removes the parallel
fragmentπ and integratesσ1 into the enclosing sequenceσ. Also Rule Par 1 is behavior
preserving since the contained sequence is still executed at the same position.

Rule Seq 1 (Resolution of Nested Sequences) Given a sequence that contains another
sequence. Then the inner sequence may be dropped and its components are inserted
into the outer sequence.

(seq1)
σ(x, σ(a . . . n), y) O

σ(x,a, . . . ,n, y) O

The application of Rule Seq 1 is shown in Figure 8. Here, the inner sequenceσ1 is
removed and its contained elements are integrated into the enclosing sequenceσ. Since
Rule Seq 1 changes only the fragment hierarchy of the model and not the model itself,
it is semantic preserving.

Par 1 Par 3+… …

σ1
π

σ2

A

+

σ

+… …

σ1
π

A

+

σ

… …

σ

A
σ1

σ(…, π(σ1(A), σ2()), …), { } σ(…, π(σ1(A)), …), { }

σ(…, σ1(A), …), { }

Seq 1 … …
σ

A

σ(…, A, …), { }

Fig. 8.Example for the Application of Rule Par 1, Par 3, and Seq 1

Rule Seq 2 (Extraction of Sequences from parallel Fragments) Given a parallel frag-
mentπ and a setS comprising all sequencesσ directly contained inπ. We assume that
a non empty sequenceσi ∈ S exists that is executedafter all other sequencesσ j ∈ S,
i.e.∀σ j ∈ S \ {σi} : ∃(σ j , σi) ∈ O. We denote this set withP. Thenσi is extracted from
π and inserted directly afterπ in the surrounding parent fragmentσ.

Analogously, Rule Seq 2(b) is applicable in cases, whereσi is executedbefore all
other sequencesσ j ∈ S, i.e.,∀σ j ∈ S \ {σi} : ∃(σi , σ j) ∈ O. Again, we denote this set
withP.

(seq2a)
σ(x, π(σ1, .., σi , .., σn), y) O

σ(x, π(σ1, .., σn), σi , y) O \ P
(seq2b)

σ(x, π(σ1, .., σi , .., σn), y) O

σ(x, σi , π(σ1, .., σn), y) O \ P

Figure 9 gives an example. The sequenceσ4 is removed by Rule Par 1. Then Rule
Seq 2(b) becomes applicable, since sequenceσ1 is executed before all other sequences
in π. : The Rule Seq 2 is semantic preserving since all traces in the origin process model
execute the moved action in the end of the parallel fragment which is obviously the case
after extracting the action from the parallel fragment.

9

+
A

… …

B
σ1

π σ2

σ3

σ4

Par 1

σ(π(σ1(A), σ2(B), σ3(C), σ4())),
{σ1 < σ2, σ1 < σ3}

σ

C
+

+ +
A

… …

B
σ1

π σ2

σ3

σ(π(σ1(A), σ2(B), σ3(C))),
{σ1 < σ2, σ1 < σ3}

σ

C
+

+ Seq 2b … …

B
σ1

π σ2

σ3

σ(σ1(A), π(σ2(B), σ3(C))), { }

C

+ +

σ

A

Fig. 9.Example for the Application of Rule Par 1 and Seq 2(b)

Rule Par 4 (Resolution of Nested Parallel Fragments) Given a sequenceσ in a par-
allel fragmentπ1. If σ contains only a well-formed1 parallel fragmentπ2 then the se-
quenceσ andπ2 are dropped and the contained sequences ofπ2 are inserted into the
outer parallel fragmentπ1.

Rule Alt 1 (Resolution of Nested Alternative Fragments) Analogously, Rule Alt 1 aligns
nested alternative fragments.

(par4)
π1(x, σ(π2(z)), y) O

π1(x, z, y) O

where ∀σ ∈ π2 : O(σ) = ∅

(alt1)
α1(x, σ(α2(z)), y) O

α1(x, z, y) O

where ∀σ ∈ α2 : O(σ) = ∅

An example for Rule Par 4 can be found in Figure 10. There, a structured parallel
fragmentπ2 is enclosed by a sequenceσ1, which is otherwise empty. Since,σ1 is in
turn located in a parallel fragment, Rule Par 4 can be applied. The application removes
π2 and replacesσ1 with the contained sequencesσ2 andσ3 of π2. Nested parallel and
alternative fragments that are structured are resolved by Rule Par 4 and Rule Alt 1 in
a semantic preserving way, since the process model is not changed at all, but only its
representation in the PST.

+
C

… …

+

σ1
π1

σ2

σ3

σ4

Par 4

A

C

… …B

σ2
π1

σ3

σ4

+ B

+
A

π2

+ +

π1(σ1(π2(σ2(A), σ3(B))), σ4(C)), {…} π1(σ2(A), σ3(B), σ4(C)), {…}

Fig. 10.Example for the Application of Rule Par 4

1 Note that structured fragmentsf are indicated by empty partial order set, i.e.,O(f) = ∅.

10

Rule Alt 2 (Elimination of Doubled Sequences) Given an alternative fragmentα that
contains two sequencesσ1(z) andσ2(z) that equal each other (e. g. they are empty).
Furthermore, they need to be in the exact same ordering relation, that is, ifσ1 is exe-
cuted before someσs and after someσp, thenσ2 is executed beforeσs and afterσp,
too. Then one of them may be dropped.

(alt2)
α(x, σ1(z), σ2(z), y) O

α(x, σ1(z), y) O \ O(σ2) where O(σ1) = O(σ2)

Rule Alt 3 (Elimination of Empty Sequences in Alternative Fragments)Let an alterna-
tive fragmentα containing an empty sequencesσǫ be given. If either the presetOPre(σǫ)
or the postset POPost(σǫ) ofσǫ are not empty. Then,σǫ can be removed and the partial
order relationO is aligned as follows:

(alt3)
α(x, σǫ , y) O

α(x, y) O
′

where O
′

= O \ OPre(σǫ), if OPost(σǫ) = ∅
O
′

= O \ OPost(σǫ), if OPre(σǫ) = ∅
O
′

= (O \ O(σǫ)) ∪ S, otherwise
S = {(σi , σ j) | (σi , σǫ) ∈ OPre(σǫ)
∧(σǫ , σ j) ∈ OPost(σǫ)}

Figure 11 shows two examples for the application of Rule Alt 3. In both cases,
sequenceσ4 is removed.

Alt 3

A

… …

σ1
α

x xσ2
B

σ3
C

x σ4

A

… …

σ1

x x
σ2

B

σ3
C

A

… …x
σ2

B

σ3
C

σ4 x
xAlt 3

σ1

α(σ1(A), σ2(B), σ3(C), σ4()),
{σ2 < σ4, σ3 < σ4}

α(σ1(A), σ2(B), σ3(C), σ4()),
{σ4 < σ2, σ4 < σ3}

α(σ1(A), σ2(B), σ3(C)), { }

α α

Fig. 11.Two Examples for the Application of Rule Alt 3

Rule Alt 4 (Extraction of Activities out of Alternative Fragments) Let an alternative
fragmentα containing sequencesσ1 to σi be given. If all of the sequences start with
the same activity A and their presets are equal (OPre(σ1) = ... = OPre(σi)). Then, the
activity A can be extracted from the sequencesσ1 toσi and is inserted in the preceding
sequenceσ.

(alt4a)
σ(α(σ1(A, ...), ..., σi(A, ...))) O

σ(A, α(σ1(...), ..., σi(...))) O

where OPre(σ1) = OPre(σ2) = ... = OPre(σi)

11

In the top part of Figure 12 an examples for the application ofRule Alt 4 is shown.
There, the ActivityA is extracted from the sequencesσ1 to σi that succeed the entry
XOR-Splitof the alternative fragmentα. Afterwards,A is inserted in the preceding
sequenceσ.

In a similar way, variants of this rule extract activities atthe end of alternative frag-
ments (Rule Alt 4b) and from several sequences within an alternative fragmentinto
their preceding sequence (Rule Alt 5a/b) as shown in the bottom of Figure 12.

Alt 4a

A

…

σ1

σi
A

σ(α(σ1(A,…),…,σi(A,…),…)),O

…

…

A…

σ1

σi

…

…

σ σ

Alt 5a

A

…

σ1
α

σi
A

…

…

σ A… x
σi

…

…

σ1
α

σ

…x

α

α(σ(…),σ1(A,…), …,
σi(A,…),…), O

α

…x …

…x

σ(A,α(σ1(…),…,σi(…),…)),O

α(σ(…,A),σ1(…), …,
σi(…),…), O

Fig. 12.Two Examples for the Extraction of an Activity by Rule Alt 4 and Rule Alt 5

The following commutativity rules reorder sequences within concurrent and alter-
native fragments.

Rule Com 1 (Reordering of Sequences) Given a parallel fragmentπ and two contained
sequencesσ1 andσ2. Further, letσ1 andσ2 have the same set of preceding and suc-
ceeding sequences in the partial order relation, i.e.,∀(σi , σ1) ∈ O : ∃(σi , σ2) ∈ O and
∀(σ1, σ j) ∈ O : ∃(σ2, σ j) ∈ O and vice versa. Then, the two sequences can swap their
positions within their parent fragmentπ.

Analogously, Rule Com 1b reorders sequences contained in alternative fragments.

(com1a)
π(x, σ1(u), σ2(v), y) O

π(x, σ2(v), σ1(u), y) O
(com1b)

α(x, σ1(u), σ2(v), y) O

α(x, σ2(v), σ1(u), y) O

Rules Par, Alt, and Seq constitute the rule system which is used to transform process
model terms into a normal form. Rules Com 1(a) and (b) are applied after the normal-
ization to align process model terms for a syntactical comparison. In the next section,
we consider the correct functional behavior of the term rewriting system.

4.2 Functional Behavior of the Term Rewriting System

The term rewriting system can be considered as an algorithm that reduces a given pro-
cess model term into its normal form. This algorithm has a correct functional behavior

12

if it terminates (Termination) and results in a unique normal form (Confluence) for a
process model. Functional behavior can be achieved by ensuring a set of criteria, well-
known from the theory of abstract reduction systems [1]. In the following we examine
termination and confluence for the rewriting system for process model terms.

Termination Concerning termination, we have to guarantee that no rule isapplied in-
finitely often. One way to show termination is by giving a so-called monotone measure
function [1]. This function shows that the application of the rules reduces a certain value
which is limited from below.

In the case of our term rewriting system, a potential candidate for the monotone
reduction function is the number of fragments in a process model term, which is limited
by the number of fragments contained in a process model. Rules Par, Alt, and Seq 1
reduce a process model termt by exactly one fragment, thus the maximum number of
applicable rules is limited by the number of fragments within a process model termt.
Rules Seq 2(a) and (b) do not reduce the number of fragments. However, the application
of these rules is also limited by the number of fragments, since each application moves
a sequence from a parallel fragment into the surrounding sequence. Rules Com 1(a) and
(b) are applied after the normalization to reorder sequences within fragments and can
theoretically be applied infinitely often. However, by logging the reordered sequences,
we take care that each sequence is reordered only once.

Confluence Confluence ensures that in cases where multiple rules are applicable the
choice of the rule does not matter. For terminating rewriting systems confluence follows

from the weaker local confluence2. This requires if there are two direct rulest1
r1
←− t

r2
−→

t2, t1 andt2 can be joined again, i.e., they have a common successor. In such scenarios,
where multiple rules are applicable on a termt, it can happen that the application of
rules overlap, and the application of one rule turns the other one inapplicable. All of
these so-called critical pairs need to be considered for confluence by analysing whether
they have a common successor, i.e. they are harmless.

In case of our term rewriting system for process models we first overlap each pair
of the left-hand sides of the rules to identify critical pairs. Then, for each critical pair
we show that it is harmless.

Figure 13 provides an example for a critical pair. The fragment is transformed into
the initial termt on the right-hand side. First, the empty sequenceσ2 is removed by
applying Rule Par 1. Then, two rules are applicable, either Rule Par 1 on the empty
sequenceσ3 or Rule Par 2 to concatenate the sequencesσ1 andσ3. If one rule is applied
the other one is no longer applicable. However, since the resulting terms are equal (σ1 =

σ13∗) the critical pair is harmless. Further harmless critical pairs can be obtained by
overlapping Rule Par 1 and Rule Seq 2.

In this section we have examined the correct functional behavior of our term rewrit-
ing system for process model terms using the existing theoryfor abstract reduction
systems.

2 This result is usually known as Newman’s Lemma [1].

13

σ1

σ4

+ +

A

B

…

π

+
σ3

σ2
…

π (σ1(‘A’),σ2(), σ3(), σ4(‘B’)), O

π (σ1(‘A’), σ3(), σ4(‘B’)), O

π (σ1(‘A’), σ4(‘B’)), O π (σ13*(‘A’), σ4(‘B’)), O

Rule Par 1 on σ2

Rule Par 1 on σ3 Rule Par 2 on σ1 and σ3

Fig. 13.Example for a Critical Pair obtained by overlapping Rule Par 1 and Rule Par2

4.3 Equivalence of Process Models and Fragments

Based on the normalized process model terms we define equivalence of process models
as follows.

Definition 1 (Process Model Equivalence) Given two process models M1 and M2 and
their representation in process model terms tM1 and tM2, M1 and M2 are considered to
be equivalent, if each fragment f1 in the normalized term tM1 has an equivalent fragment
f2 in the normalized term tM2 and vice versa.

Definition 2 (Fragment Equivalence) Two fragments f1 ∈ tM1 and f2 ∈ tM2 are con-
sidered to be equivalent, if they have the same type (type(f1) = type(f2)), their con-
tained elements (nodes or fragments) correspond to each other, and they have the same
execution order specified in their partial order relations (O(f1) = O(f2)).

This definition of equivalence relies on a matching of the process models to identify
corresponding model elements. As mentioned earlier, we assume that model elements
with equal names correspond to each other and correspondingfragments are determined
based on their type and their contained model elements as well as sub-fragments.

In the next section, we will apply our term rewriting system to our example intro-
duced above to decide equivalence.

5 Detection of Semantically Equivalent Fragments

The top of Figure 14 shows the highlighted structures of the process model in Figure 1
which would be shown to be different using the current approach without term rewrit-
ing. Our approach allows the efficient comparison of these two model fragments while
considering their semantics.

Using a simple traversal algorithm, the two modelsM1 andM2 are transformed into
their corresponding term representationTM1 andTM2. The complexity of this step in our
approach is linear to the size of the process model.3 The resulting process model terms
are exact representations of the corresponding process models regarding their syntax.
Applying our rule system to both terms results in their corresponding normalizations,
i. e. a canonical version of the original term that has not been changed regarding its

3 Cf. the complexity of an infix tree (PST) traversal and a depth first graph (PM) search.

14

tM1 = … π (σ(Recalc), σ(Calc), σ(), σ(Send), σ(Pay)) …
OM1 = {σ(Send) < σ(Pay)}

NF(tM1) = … π (σ(Recalc), σ(Calc), σ(Send, Pay)) …
OM1 = {}

NF(tM2) = … π(σ(Calc), σ(Recalc), σ(Send, Pay)) …
OM2 = {}

≈C

≈
?

1. Transformation into
Process Model Terms

2. Reduction into
Normal Form

+
Send

Confirmation

+
+ Recalc. Cust.

Contribution

+
Calculate

Loss Amount

Pay Out

M2

… …

Calculate
Loss Amount

Recalc. Cust.
Contribution

+

+

+

Pay Out
Send

Confirmation

M1

…
…

tM2 = … π (σ(π(σ(Calc), σ(Recalc))), σ(Send, Pay)) …
OM2 = {}

rules:
par1, par2

rules:
par4

Fig. 14.Deciding Equivalence of Process Models

semantics. The term normalization is linear to the length ofthe term, and thus, linear to
the size of the corresponding process model, since every application of a rule decreases
the length of the term.

The last step in our approach is the comparison of two normal forms (see bottom
of Figure 14). According to Definition 1, we decide equivalence of the process model
terms based on the equivalence of their contained fragments. The comparison of se-
quences is straight-forward. The comparison of parallel and alternative fragments has
to be performed under the consideration of the commutativity Rule COM 1.

In the case of our example, the parallel fragments in Figure 14, turned out to be
semantically equivalent, since they have the same normal form.

+
Send

Confirmation

+ Recalc. Cust.
Contribution

Calculate
Loss Amount

Pay Out

MM

… …

Fig. 15. Visual Representation
of the Normal Form

This information can be used to resolve the con-
flict between the two fragments. In addition, the vi-
sualization of the normalized process model term (shown
in Figure 15) can directly be adopted in the consoli-
dated versionMM of the process model. The fragment
in Figure 15 results in less changes compared to the
highlighted fragments in Figure 14 and is more read-
able. Whether the normal form is always more under-
standable and can be adopted with fewer (or at least equal) changes than the non reduced
fragment is part of future work.

6 Related Work

For the comparison of process models, several different approaches exist. In [14], Li
et al. measure distance and similarity of process models based on change operations.
Bae et al. [2] measure the similarity between process modelsusing a tree representation
and compare its block similarity. Eder et al. [5] provide an equivalence definition for

15

workflow graphs and describe a set of structural modifications to workflow graphs that
are semantic preserving. In contrast to our work, they focuson block-structured models.

Van der Aalst et al. [20] compute a quantified equivalence. Weidlich et al. [26]
compare process models based on so called behaviour profiles, which reflect different
relations between nodes (strict order, exclusiveness and concurrency). Both approaches
rely on the existence of execution traces of a process model.

Ehrig et al. [6] compute a combined similarity value consisting of syntactic, linguis-
tic, and structural similarity of elements in process models. The execution order of the
elements is not considered.

In [22], van Dongen et al. related process elements with their directly preceding
and succeeding elements which they call footprints to measure the similarity between
EPC processes. In contrast to our work, their approach does not support the notion of
equivalence for parts of a process models.

For the purpose of process model verification, reduction rules are used in different
scenarios. E.g., in [19], Sadiq et al. check soundness properties of process models (such
as deadlock and lack of synchronization) by iteratively removing sound structures until
the model is completely reduced. In [23, 15, 3], reduction rules are applied to EPCs that
remove sound functions, events, and connectors in order to reduce the state space and
speed up the verification process. However, in our scenario,sound structures cannot be
removed, since they are essential to decide equivalence.

7 Conclusion and Outlook

In this paper we have shown a formalism to detect equivalent business process models
based on the detection of equivalent fragments contained inthe models. First, we have
transformed business process models into a process model term. We presented a term
rewriting system consisting of several rules that transform process model terms into a
normal form. Finally, we have compared the normalized termsto identify equivalent
fragments and process models.

Our initial results have shown that a comparison of businessprocess models in their
normal form reduce the number of false-positive differences and conflicts in model
management.

We intent to integrate the term rewriting system for business process models into our
existing tool support for model merging in the IBM WebSphereBusiness Modeler [9].
Future work also includes to establish a new similarity value for business process mod-
els based on the semantical equivalence of process models.

References

1. F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press, Cam-
bridge, 1998.

2. J. Bae, J. Caverlee, L. Liu, and H. Yan. Process Mining by Measuring Process Block Simi-
larity. In J. Eder and S. Dustdar, editors,Business Process Management Workshops, volume
4103 ofLNCS, pages 141–152. Springer, 2006.

16

3. R. M. Dijkman. Diagnosing Differences between Business Process Models. In Marlon
Dumas, Manfred Reichert, and Ming-Chien Shan, editors,BPM, volume 5240 ofLecture
Notes in Computer Science, pages 261–277. Springer, 2008.

4. Eclipse Foundation. EMF Compare. http://www.eclipse.org/modeling/emft/?project=compare.
5. J. Eder, W. Gruber, and H. Pichler. Transforming Workflow Graphs. InINTEROP-ESA’05,

pages 203–214, Genf, Switzerland, 2 2005. Springer London.
6. M. Ehrig, A. Koschmider, and A. Oberweis. Measuring Similarity between Semantic Busi-

ness Process Models. In J. F. Roddick and A. Hinze, editors,APCCM, volume 67 ofCRPIT,
pages 71–80. Australian Computer Society, 2007.

7. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.

8. C. Gerth, J. M. K̈uster, and G. Engels. Language-Independent Change Management of Pro-
cess Models. In A. Scḧurr and B. Selic, editors,MODELS’09, volume 5795 ofLNCS, pages
152–166. Springer, 2009.

9. International Business Machines Corp. (IBM). IBM WebSphere Business Modeler.
http://www.ibm.com/software/integration/wbimodeler/.

10. G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, W. Schwinger,
and M. Wimmer. Lifting Metamodels to Ontologies: A Step to the Semantic Integration
of Modeling Languages. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors,
MoDELS, volume 4199 ofLNCS, pages 528–542. Springer, 2006.

11. U. Kelter, J. Wehren, and J. Niere. A Generic Difference Algorithm for UML Models. In
P. Liggesmeyer, K. Pohl, and M. Goedicke, editors,Software Engineering 2005, volume 64
of LNI, pages 105–116. GI, 2005.

12. J. Koehler, R. Hauser, J. Küster, K. Ryndina, J. Vanhatalo, and M. Wahler. The Role of Visual
Modeling and Model Transformations in Business-Driven Development. In Proceedings of
GT-VMT’06, pages 1–12, 2006.

13. J. M. K̈uster, C. Gerth, A. F̈orster, and G. Engels. Detecting and Resolving Process Model
Differences in the Absence of a Change Log. In M. Dumas and M. Reichert,editors,BPM’08,
volume 5240 ofLNCS, pages 244–260. Springer-Verlag, 2008.

14. C. Li, M. Reichert, and A. Wombacher. On Measuring Process Model Similarity Based on
High-Level Change Operations. In Q. Li, S. Spaccapietra, E. S. K. Yu, and A. Oliv́e, editors,
ER, volume 5231 ofLecture Notes in Computer Science, pages 248–264. Springer, 2008.

15. J. Mendling and W. M. P. van der Aalst. Formalization and Verification of EPCs with OR-
Joins Based on State and Context. In J. Krogstie, A. L. Opdahl, and G. Sindre, editors,
CAiSE, volume 4495 ofLNCS, pages 439–453. Springer, 2007.

16. T. Murata. Petri Nets: Properties, Analysis and Applications.Proceedings of the IEEE,
77(4):541–580, 1989.

17. Object Management Group (OMG). Business Process Modeling Notation (BPMN).
http://www.omg.org/spec/BPMN/1.2.

18. Object Management Group (OMG). Unified Modeling Language (UML): Superstructure.
http://www.uml.org, 2005.

19. W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Reduction Tech-
niques.Inf. Syst., 25(2):117–134, 2000.

20. W. M. P. van der Aalst, A. K. A. de Medeiros, and A. J. M. M. Weijters. Process Equivalence:
Comparing Two Process Models Based on Observed Behavior. In S. Dustdar, J. L. Fiadeiro,
and A. P. Sheth, editors,BPM’09, volume 4102 ofLNCS, pages 129–144. Springer, 2006.

21. W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek. An Alternative Way to Analyze
Workflow Graphs. In A. Banks Pidduck, J. Mylopoulos, C. C. Woo, and M. TamerÖzsu,
editors,CAiSE, volume 2348 ofLNCS, pages 535–552. Springer, 2002.

17

22. B. F. van Dongen, R. M. Dijkman, and J. Mendling. Measuring Similarity between Business
Process Models. In Z. Bellahsene and M. Léonard, editors,CAiSE, volume 5074 ofLecture
Notes in Computer Science, pages 450–464. Springer, 2008.

23. B. F. van Dongen, W. M. P. van der Aalst, and H. M. W. Verbeek. Verification of EPCs:
Using Reduction Rules and Petri Nets. In Oscar Pastor and João Falc̃ao e Cunha, editors,
CAiSE, volume 3520 ofLecture Notes in Computer Science, pages 372–386. Springer, 2005.

24. R.J. van Glabbeek. The Linear Time-Branching Time Spectrum I - The Semantics of Con-
crete, Sequential Processes. InHandbook of Process Algebra, Chapter 1, pages 3–99. Else-
vier.

25. J. Vanhatalo, H. V̈olzer, and F. Leymann. Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. InICSOC 2007, volume 4749
of LNCS, pages 43–55. Springer, 2007.

26. M. Weidlich, M. Weske, and J. Mendling. Change Propagation in Process Models Using
Behavioural Profiles. InIEEE SCC, pages 33–40. IEEE Computer Society, 2009.

18

