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Abstract. The Firing Squad Synchronization Problem (FSSP) is one of the best-studied problems
for Cellular Automata (CA) and is part of many more sophisticated algorithms. Solutions for it such
as the one from Mazoyer or Gerken use travelling signals, a basic technique of CA algorithms. Hence
in addition to their importance, they represent typical CA algorithms. Beside the interest in their
bandwidth following the definition of [1] they also serve well to study the methods for determining
the bandwidth in the first place. As was demonstrated, bandwidth calculation for CA is a complex
problem and requires the development of sophisticated algorithms. New approaches in this direction
are given and compared using selected FSSP algorithms.

1 Introduction

Cellular automata (CA) combine three aspects in one model: inherently parallel computa-
tion, a model for physical processes, and a possible structure for future computing devices.
For this reason the bandwidth necessary for proper operation of a given CA is of inter-
est when the CA is cut into parts. From a technical standpoint, the use of CA as a basic
technology requires the solution of this problem because inter-chip communication will have
lower bandwidth and higher latency than intra-chip communication for future technologies.
Furthermore, understanding communication requirements of CA combines storage, commu-
nication and computation capabilities in one model, which is accepted as being close to most
physical phenomena used for computation. In [1] and [2] bandwidth for CA is defined and
the complexity of basic enumeration pointed out. To find results for automata with higher
dimensions or more states better algorithms are needed. Most of the algorithmic options
rely on typical behavior rather than improving the worst case. For example, the incremen-
tal enumeration method described in Section 3 will be slower than the basic enumeration
algorithm when applied to a CA with linear transition function. This particular CA type
can easily be analyzed as described in [1]. The linearity of the transition function can be
detected with acceptable effort. Therefore, the bandwidth determination algorithms need
to be evaluated using typical CA algorithms. For one of the oldest problems of CA, namely
the synchronization of a continuous set of cells – called Firing Squad Synchronization Prob-
lems (FSSP) – a considerable number of algorithms has been proposed in the past. The
fundamental bandwidth requirements of the problem is easily derived. Hence, evaluating
various algorithms for this problem reveals both the portion of bandwidth associated with
the problem and that of the algorithm considered.

Even though bandwidth is a well-known concept it is not straight-forward how to define
it in the domain of CA. A CA consists of a (potentially infinite) set of cells, which are
connected in a regular fashion, called topology. In the case of the FSSP the automata
are indexed by integers and each cell is connected with the two cells according to the
successor and predecessor of its own location. The cells are finite-state machines that switch
synchronously. Each cell uses its own and its neighbors’ states as an input to determine its
new state. For the definition of bandwidth, the CA is divided into two sets of cells. For the



problem considered here, the sets are those with negative and non-negative indexes. To carry
out the computation of a CA, information needs to be exchanged between the parts. For
instance the cell with index 0 has the two neighbors with indexes 1 and −1, where the latter
is in a different set. Hence at every step, the state of the cell −1 needs to be transmitted to
the other CA part and vice versa. However because the state of a cell depends on its own and
its neighbors’ preceding states, redundancy between the data transmitted in adjacent time
steps is expected. Furthermore, depending on the transition function and the state of the
receiving side, only partial information is needed. In effect, a compression of the information
transmitted is possible. As it is pointed out in [2], one can consider protocols with different
numbers of data exchanges. In this paper a two-way protocol is assumed: in a first step
the receiving side tells the send side, which kind of information is needed, in a second step
the send side compresses the information accordingly. The bandwidth a connection between
the two chips needs to provide depends therefore on the maximum number of different
images in the cells denoted Result Configuration. This set of images is generated for any
fixed configuration of the receive side cells, while varying the send side configurations. If
compression is done over more time steps a lower maximal bandwidth can result. To obtain
bandwidth numbers in bit/step units, the logarithm of the image size divided by the number
of steps would be used. For better discussion of the algorithmic options, mainly image-size
arguments are used in this paper.

Fig. 1. A calculation of a cut CA: one part is considered receiving data for its computation.

In the next section, the FSSP is introduced in more detail and its intrinsic bandwidth
is discussed. Then Sections 3 and 4 introduce two new algorithmic approaches. In Section 5
background information on the implementation of the algorithms and FSSP examples is
provided. Section 6 gives the results, and in the final section an outlook on further options
for widening the approach and designing even more powerful algorithms is given.

2 Firing Squad Synchronization Problem and Algorithms

As pointed out, the FSSP is based on a one-dimensional, direct neighborhood topology. Its
input is based on three states, called border, quiet and general. A finite section of cells is
marked by border cells on each end. On the right end (larger position coordinate), the cell
next to the border within the section turns into the general state to start the algorithm. All
other cells within the section start with the quiet state. The FSSP requires that all states
within the section be turned into another defined state, called fire, at the same time. Before
that no cell may take on this fire state. In short, a configuration of the form “$qqq. . . qg$” has
to be translated into “$fff. . . f$”, without hitting ‘f’ before. In [3] a survey of the history and



solutions of the FSSP is given. Historic solutions are investigated by extensive simulations
and some minor flaws found in them are corrected. These corrected versions have been used
for this paper.

Further solutions (7 states) are found in [4], which are also used. They are interesting
because they use a different basic principle than the best solution by Mazoyer [5] with 6
states. In total, 5 FSSP solutions are used in this paper, namely those by Mazoyer, by Balzer,
by Gerken and the two by Yunès. For comparison, in [6] a FSSP solution is presented that
can operate with only 1 bit of data transmission per step, but requires 78 states.

Considering the problem from an abstract point of view, every deterministic algorithm
will translate the distance between the two borders into a time span after which the cells fire.
Hence, this distance is the essential input. Note that all algorithms only use cells between
the two borders. We only need to consider the case when the two borders are in different
parts of the divided CA. In this case, exactly the distance of the corresponding border
symbol to the cut between the two parts is needed by the other part. If both parts have
this information from the other part, they can translate the total distance into the time
the algorithm would need in the undivided case and fire after that time. In this way, both
parts will fire synchronously, as required. Therefore, for larger distances of the border, the
bandwidth required is log k/k if redundancies that are more than k cells deep are exploited.
However, for short distances, the values need to be transferred faster to allow the algorithm
to react in time. As several published algorithms assume anyway a minimum distance for
correct operation, this detail is not discussed further here.

3 Incremental Enumeration Algorithm

The basic enumeration algorithm exhaustively searches a configuration of the receiving
side, such that the number of resulting images is maximum when the send side assumes all
possible configurations. Both aspects, the search for the maximum and the determination
of the image set size are done by enumerating all possible configurations. This results in a
high computation effort: for a one-dimensional CA with direct neighborhood such as those
in the FSSP problem, it is (2t−1)ts3t cell transitions because for the configuration of t cells
after t computation steps the configuration of 3t cells is needed, where each cell can take s
states.

Because the bandwidth is defined as a maximum it is not necessary to enumerate all
configurations on the receiving side, as long as two subtasks can be solved:

1. Find the receive-side configuration that leads to the maximum data transmission, and
2. prove that there are no other configurations with higher bandwidth.

The basic idea behind the incremental algorithm is estimating the bandwidth for a higher
temporal depth from the results of a lower one. As computing the bandwidth for the lower
temporal depth is much faster, at relatively low cost the receive side configuration resulting
in the maximum bandwidth is found much faster. The correlation of the bandwidth for a
lower temporal depth and a higher one is intuitively clear from several points of views. It
is illustrated by the dashed lines in Figure 1. Considering the data transmission in several
steps, it is clear that in three steps not more data can be transmitted than the sum of the
maximum achievable data transmission of 1 and 2 steps. Considering the size of images of a
function f , we deal with a decomposition of f into f(x1, x2, x3) = f1(f2(x1, x2), f3(x3)). By
knowing the image space size of f2 and f3, an upper bound for the number of images of f is
given. In terms of the CA-bandwidth definition, the bandwidth for temporal depth 1 and n
provides information on the achievable bandwidth after n+1 steps. In particular, when the
maximum bandwidth b for a receive side configuration of size 2∗n is known, the bandwidth



after extending it by 2 cells cannot be higher than b ∗ b1, with b1 the maximum bandwidth
for temporal depth one (based on two receive side cells). One could consider keeping also
the set of resulting configurations from the previous configurations, which would save some
cone computations but would require much more storage. The algorithm maintains a data
structure that contains the receive side configurations for a given configuration sorted by
the bandwidth they allow.

The entire algorithm is sketched in Figure 2.

incremental(CA,td)

{
(bestconf[1],sorted configurations) := enum imagesize(CA,1);// base enumeration algorithm

FOREACH depth ∈ {2, . . . , td}
bestconf[depth] := 0;

FOREACH conf ∈ sorted configurations // high-to-low bandwidth order

IF conf.bw < bestconf[depth]/bestconf[1] THEN break;

FOREACH conf extension ∈ ReceiveSide(2*depth,2*depth+1)

h := enum imagesize conf(CA,conf & conf extension,depth);

new sorted configurations[h].append(conf & conf extension);

bestconf[depth] := max(bestconf[depth],h);

Fig. 2. Incremental bandwidth enumeration algorithm

Consider for example the FSSP algorithm by Mazoyer [5]. When investigating all con-
figurations for a temporal depth of 1, the following image sizes result:

Image set size 5 4 3 2
Number of Configurations 2 11 7 15

The incremental algorithm will first determine this distribution by full enumeration.
This needs the handling of s3 = 256 configurations. Note that Mazoyer’s algorithm is given
in the literature with 6 states; however, without including the border state; an illegal state
was needed as well (see Section 5). Following this, the algorithm starts with the two con-
figurations resulting in 5 images (aa and bb) and extends them by two more states. In the
best case, 25 images could result, but the actual maximum found has 11 images for babb.
Because of this result, all configurations that result in 1 or 2 images need to be considered
because they cannot result in more than 10 images. The history of a computation with 4
levels can be found in Figure 3. One can see how the algorithm at generation 3 stopped the
computation of successors for the five lower sets.

Fig. 3. Four generations of the incremental algorithm. The area of the circles is proportional to the logarithm of
the number of configurations with the same number of images. The lines mark from which configurations in the
preceding generation the new ones are derived



4 BDD-Based Image Size Determination

Whereas the incremental enumeration method can typically reduce the number of receive-
side configuration evaluations tremendously, using enumeration of all send-side configura-
tions contributes a factor std for a one-dimensional topology to the running time of the
bandwidth determination. This can be considered a special case of the analysis of a finite
function’s image space size. Surprisingly, I was not able to find any advanced algorithmic re-
sults on this topic. Therefore, several approaches for representing a finite function resulting
from composition and pairing of simpler functions were investigated. The result, a BDD-
based algorithm, is introduced here. As it turns out, it provides a substantial acceleration of
the bandwidth determination. Because BDDs were not primarily designed for this purpose,
it can be expected that there are other more efficient methods than the one described in
the following.

A Binary Decision Diagram is a data type based on the so-called Shannon operator
s(v, a, b) = va + v̄b. Although it was known much earlier, the paper by Bryant [7] triggered
intensive research and application of this data type. A BDD represents a Boolean function
with several input and output variables as an acyclic graph. For one particular type, the
reduced ordered BDD, the representation is canonical, i.e. the BDDs of two functions are
identical iff the functions are the same. Therefore, already the creation of a BDD solves
the satisfyability problem, a known hard problem. In the worst case this takes exponential
time and space, but BDDs behave quite well for typical functions. BDDs can be constructed
incrementally by starting with variables or the constants One and Zero by using elemen-
tary operations such as AND, XOR, and function concatenation. As the considered FSSP
algorithms were both published and represented by tables in the analysis program, the
translation of an investigated transition function f into the BDD representation was done
as shown in Figure 4. Note that the configuration consisting of several state fields is handled
like a bit vector, same for the result.

int logs := log2 |states|;
int confsize := logs*3; // for our 1-dimensional topology

BDD p;

BDD[logs] res;

res := (false,. . .,false);
FOR conf ∈ states

p := true;

FOR i ∈ {0, . . . , confsize− 1}
IF conf[i] THEN p := p & v[i]; ELSE p := p & !v[i];

FOR i ∈ {0, . . . , logs− 1}
IF f(conf)[i] THEN res[i] := res[i] + p;

return res;

Fig. 4. Algorithm for converting a CA’s transition function into a BDD

For the FSSP algorithms considered, the BDD representation is considerable small. The
generation itself took less than 1 s for all examples. To determine the bandwidth, the con-
catenation of several instances of the transition function is needed; for example, when consid-
ering two generations, the resulting function for the cell with index 0 is (a2, a1, a0, c1, c2 7→
f(f(a2, a1, a0), f(a1, a0, c1), f(a0, c1, c2)). The calculation time of the BDDs for the entire
computation cone depending on the number of generations is given in Table 1.

Given an m-bit function f in BDD representation, the recursive algorithm in Figure 5
(invoked as imagesize(f,true,0) determines the size of f ’s image space. Note that the



algorithm does not use any BDD-specific operations. It requires the ability to combine
functions with Boolean operations and the test whether the function is constant-false.

imagesize(f,cond,ix)

{
IF ix ≥ m THEN return 1;

h1:=0;h2:=0;

IF (c * f[i] != 0) THEN h1=imagesize(f,c*f[i],i+1);

IF (c * !f[i] != 0) THEN h2=imagesize(f,c*!f[i],i+1);

return h1+h2;

}

Fig. 5. Algorithm for determining the image space of a function

Algorithm 2 3 4 5

Balzer 0.08 1.0 7.8 52
Gerken 0.05 0.6 4.1 32
Mazoyer 0.01 0.1 0.89 4.5
Yunès 1 0.06 1.0 11.5 124
Yunès 2 0.08 1.5 13.3 116

Table 1. Running time in seconds to create the BDD for the calculation cone with varying temporal depth

As the function result is obtained by adding the constant 1 returned in the first case, the
running time of the algorithm is at least linear with the number of images of the function.
For the FSSP with a comparably low bandwidth, which corresponds to a small image size,
the algorithm is quite fast. For other applications or with other CA, it might be quite
inefficient. For those cases another BDD-based algorithm is in work.

5 Implementation

The algorithms for bandwidth determination (base enumeration, incremental enumeration,
and BDD-based image size) were implemented in C++ using the Standard Template Li-
braries, the Xerxes-C Library (Apache Project) and the BDD-library CUDD [8]. The pro-
gram was developed using mainly Microsoft Visual C++ on Windows XP, but the mea-
surements were carried out on a Intel-processor-based server running Linux. During the
implementation several compromises had to be made; hereby the following priorities were
applied:
detailed reporting > generality > speed > memory.
XML is used for the configuration that covers the CA, the analysis algorithm, and the re-
porting details. Also the results are created in XML format, including the illustration in
Scalable Vector Graphics. The measurement of the runtime is finished before the report files
are generated; the report data collected during the execution of the algorithm is done in
data structures such as arrays and hash tables. Of course the data collection will have an
impact of the running time of the algorithms investigated. For the various features, pro-
gram options allow selectively activation of the recording to avoid memory overflow of these
structures with high temporal depth computations.

To allow arbitrary topologies in a fast algorithm, an indexing structure is used as interme-
diate data type. This allows an abstract representation in program code or the configuration
file, and the overhead for finding the neighbor is only one level of indirection. The index-
ing structure is based on a breadth-first-search enumeration starting at the cell positions



that hold the destination image configuration. For the index of cells in the receiving parti-
tion positive indexes are used; the sender-side positions are indexed with negative integers.
Therefore, the same indexing structure can be used for all generations in the calculation
cone, even though they differ in size. For each index an array with the indexes of the neigh-
bors is also created. Two tables provide translation between a display view and the indexing
structure. This allows the resulting configurations to be displayed in a format that corre-
sponds to the original topology representation. As simplest processing method, the CA can
run from a given starting configuration. This was used to ensure that the implementation of
the examples corresponds to its publication. For the states from the definition of the FSSP,
the same characters were used to allow test runs with all example algorithms from the same
starting string.

Several example FSSP algorithms are incompletely given. However, the analysis algo-
rithms have to enumerate the entire domain. Therefore, an additional state “invalid” was
added, and any undefined places in the transition function were filled with that state. Also,
all transitions that include the invalid state as an input result in the invalid state again,
except for the border states which were considered to be stable. The existence of these don’t-
care places raises the questions which assignment using the existing states would result in
the same bandwidth as the one that uses the illegal state. For the BDD-based algorithm even
more completion is necessary. As the restriction of a multi-bit input representing one state
value would be difficult to combine with the image set determination algorithm, the values
between the number of states and the next power-of-two also have to be filled accordingly.

Otherwise the implementation is straight forward, and will serve to investigate more
algorithms and problems.

6 Bandwidth Results and Performance

The results were obtained by batch runs on a xSeries server with dual Xeon 3.6 GHz pro-
cessors and 8 GByte main memory running a 32-bit Linux kernel. The code was compiled
with “-g -O6” settings. The BDD library was built with the standard settings.

The Table 2 shows the bandwidth values and running times for various depth values and,
for comparison, the running time for the basic enumeration algorithm for depths 2 and 3.

Algorithm BDD-based algorithm runtime, image size,
normalized bandwidth

runtime of basic enumera-
tion

1 2 3 4 5 2 3

Balzer 0 0.7 18.9 414 14940 4
6 18 42 91 183
2.6 2.1 1.8 1.6 1.5

Gerken 0 0.4 11 69 433 2 1122
7 27 67 164 404
2.8 2.4 2.0 1.6 1.7

Mazoyer 0 0.1 4.2 109 2918 0.6
5 11 21 39 70
2.3 1.7 1.5 1.3 1.2

Yunès I 0 0.5 23 1004 29087 1.8 1128
6 14 28 46 79
2.6 1.9 1.6 1.4 1.3

Yunès II 0 0.5 12 149 1724 2.6 1128
8 35 114 321 843
3.0 2.6 2.3 2.1 1.9

Table 2. Bandwidth and runtime results using the BDD-image combined with incremental enumeration. For com-
parison, the run time for the basic enumeration algorithm.



7 Summary and Outlook

The results of this paper are twofold. First, results for the bandwidth requirements of FSSP
algorithms from the literature are determined. As it turns out, several algorithms with a
higher number of states require also a higher bandwidth, independently of the previously
published number on the state change complexity or the number of rules. Therefore, these
algorithms do not use their higher number of states to do more work locally.

The second contribution is the new algorithms for bandwidth determination. They allow
much more complex instances to be analyzed in a realistic time. They still can be strongly
improved:
A The incremental algorithm still analyzes many configurations that later on are not used.
Furthermore, it could happen that it has cut off the calculation in a low generation too
early. If in higher generations the number of images got smaller even though a wider send
side configuration is used, configurations from previously “too bad” configurations would
have to be considered. The algorithm can easily detect this if the break-off point is stored
with the set of sorted configurations. For FSSP this does not happen, but one can construct
CA that exhibit such a behavior. Both effects are a result of the generation-by-generation
construction of the algorithm. This approach was chosen, because it has low intermediate
memory requirements. For reference, the BDD-based incremental algorithm needs approxi-
mately 1 GByte of memory for the algorithm Yunès I at temporal depth 5 when the logging
of information is minimal. Both deficiencies can be overcome with an inter-generation search
front. However, it might well be that this requires more memory, and the algorithm would
certainly be more complex.
B Consider the shaded cell-timestep fields in Figure 1. It turns out that the resulting images
only depend on those states. These are fewer cells than the space of the original configuration.
Therefore, an algorithm that first determines the set of possible configurations on these cells,
and bases the incremental enumeration on them will have a tremendously smaller search
space. This is also applicable in higher dimensions. However, the determination of which
cells form these particular set at which time step is more complex, in particular an automatic
determination with the breadth-first-search algorithm.
C As mentioned, another BDD-based algorithm for determining the image space size is in
work.
D To handle CA with a two-dimensional topology (including Conway’s Game of Life), a two-
step approach is under development. It first handles slices of configurations orthogonal to the
cutting edge. Then, based on limitations to the neighboring slices (match on the receiving
side, orthogonality of the configuration partitions on the sending side), a graph is formed.
The bandwidth is a maximum-weight path in this graph. It needs to be investigated whether
it is preferable to ignore the send-side condition first and add it after path determination,
which would result in a smaller graph but a higher number of pathes, or to include it, which
would have the opposite effect.
E Determine the bandwidth for a one-way and for three-way protocols.

Furthermore, several questions stated in [1] are still open.
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