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Abstract—Based on a realistic, yet simple cost model, we
compute the switch radix that minimizes the cost of a fat tree
network to support a given number of end nodes. The cost
model comprises two parameters indicating the relative cost of
a crosspoint vs. a link, and the crosspoint-independent base cost
of a switch. These parameters can be adapted to represent a
given technology used to implement links and switches. Based on
these inputs, the resulting model allows a quick evaluation of the
switch radix that minimizes the overall cost of the network. We
demonstrate that the optimum radix depends most strongly on
the relative cost of a link, and turns out to be largely independent
of the network size. Using a first-order cost bounds analysis
based on current CMOS and link technology, our model suggests
that the optimum switch radix is in the range of hundreds of
ports, rather than the tens of ports being offered today by most
commercial switch products.

I. INTRODUCTION

Interconnection networks for supercomputers and data cen-
ters often employ a topology from the family of topologies col-
lectively referred to as fat trees. Examples are supercomputers
such as the Connection Machine CM-5 [1], IBM’s Roadrunner
at LANL, MareNostrum at Barcelona Supercomputing Center,
and the JUROPA and HPC-FF systems at Jülich Supercom-
puting Centre. The fat tree is also currently the preferred
topology for InfiniBand networks. Moreover, fat trees have
recently attracted increasing attention for use in commercial
data center networks [5], [6].

An HPC or data center installation generally comprises
end nodes, which source and sink data (e.g., compute nodes,
storage servers, database servers, etc.) and an interconnection
network, which serves to transport data between end nodes.
Because systems are becoming increasingly distributed in
nature, the importance of the interconnection network has been
on the rise, and is currently one of the key factors determining
overall system performance. The flip side of this is that the
interconnect also accounts for an increasingly substantial part
of the cost of the overall system.

Based on this premise, this paper answers a straightforward
question: To interconnect a given number of end nodes with a
fat tree network, what is the switch radix r that minimizes the
overall network cost? By switch radix we mean the number
of ports per switch, assuming that all switches in the network
have the same radix.

The authors of [7] also performed a study of switch radix
optimization, but with a different objective, namely that of
minimizing the end-to-end latency, based on the premise that

for a given technology the aggregate switch bandwidth is a
given, raising the question whether to divide this aggregate
up into fewer faster ports or more slower ports. Their main
conclusion was that, given technology trends, the optimum
switch radix is increasing from the point of view of minimum
end-to-end latency. Here, on the other hand, we focus on
optimizing overall network cost rather than latency.

We first review the definition of a fat tree, or more specif-
ically k-ary n-tree, in Sec. II. In Sec. III, we propose a cost
model for the network as a whole based on a simple switch
cost model that is quadratic in r. We use the cost model to
obtain the optimum switch radix as a function of the number
of nodes n and cost-model parameters a and b for single-sized
and double-sized fat trees in Secs. IV and V, respectively. We
conclude in Sec. VII.

II. FAT TREES

Fat tree networks were introduced by Leiserson [2] as k-ary
tree topologies, in which the upward links at each level are
a factor k faster than the downward links to ensure that the
bisection bandwidth remains constant, see Fig. 1(a). The main
problem with implementing such a tree is that the switch port
rates become unmanagably high towards its root.

(a) Binary 4-level fat tree. (b) Binary 4-tree.

Fig. 1. Fat trees.

A more practical and scalable variant of such trees requiring
only switches with the same radix and the same port speed
at all levels are k-ary n-trees [3], see Fig. 1(b). Formally,
these topologies and their slimmed versions (i.e., those not
providing full bisectional bandwidth) belong to the family
of extended generalized fat trees (XGFTs) [4]. This family
includes many popular multi-stage interconnection networks,
such as m-ary complete trees, k-ary n-trees, Leiserson’s fat
trees, and slimmed k-ary n-trees. Here, we use the term “fat
tree” as a synonym for k-ary n-tree.
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(a) Css vs. its smoothed version bCss for n from
256 to 64K, a = 10, b = 100.
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(b) Cost error ratio bCss/Css as a function of r with
a as a parameter, for n = 1,024 and b = 100.
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(c) bropt,a as a function of a (b = 0); bropt,b and
ropt-est,b as a function of b (a = 0).

Fig. 2. Smoothed cost function bCss.

An XGFT(h;m1, ...,mh;w1, ..., wh) of height h has h+1
levels, divided into N =

∏h
i=1 mi end nodes (leaves of the

tree) at level l = 0, and switching nodes at levels 1 ≤ l ≤ h
(inner nodes of the tree). Each non-leaf node in level i has mi

children, and each non-root has wi+1 parents [4]. XGFTs are
constructed recursively, with each sub-tree at level l having
parents numbered from 0 to (wl+1 − 1).

III. COST MODEL

Here, we will specifically consider k-ary l-trees,1 which can
be described using the XGFT specification shown above as
XGFT(l; k, . . . , k; 1, k, . . . , k). In such a network, the radix r
of each switch at level 1 ≤ i < l equals r = mi +wi+1 = 2k.
We assume that the switches at level l also have radix r =
2k, with the upward-facing ports being unconnected to allow
for future network extension. Later on, we will use the term
“single-sized” fat tree to distinguish this network from the
“double-sized” one in which the upward ports of the top stage
are used to connect kn−1 additional subtrees, thus doubling
the total number of end nodes. Note that k-ary l-trees have
constant bisection bandwidth.

The number of end nodes N(r, l) supported by a (single-
sized) k-ary l-tree equals

N(r, l) = (r/2)l, r = 2k. (1)

Using (1), we derive simple expressions for several basic
complexity metrics for a fat tree network that supports n end
nodes using switches with radix r.

L(r, n) =
⌈

log(n)
log (br/2c)

⌉
(2)

S(r, n) = L(r, n) ·
⌈

n

br/2c

⌉
(3)

I(r, n) = n · (L(r, n)− 1) (4)
Csw(r, b) = r2 + b (5)

1In literature the term “k-ary n-tree” is normally used, but from here on we
prefer to use l to indicate the number of levels and n the number of nodes.

Equations (2)–(5) express the number of levels L(r, n), the
number of switches S(r, n), the number of links I(r, n), and
the switch cost function Csw(r, n) of such a fat tree. Note
that L(r, n) counts only the number of switch levels and
that I(r, n) counts the number of bidirectional inter-switch
links, not including the links between end nodes and switches,
because this number is independent of the topology.

The switch cost function C(r, n) is quadratic in r, under
the assumption that each switching node is implemented in a
single-stage fashion. The complexity of single-stage switch-
ing nodes always scales quadratically with r in some way,
regardless of their specific implementation:

• The number of crosspoints in an unbuffered or buffered
crossbar equals r2.

• In an input-queued switch with virtual output queues
(VOQs), the number of VOQs equals r2.

• In a purely output-queued switch, the aggregate write
bandwidth into the output queues equals r2 times the
port rate.

• In an output-queued shared-memory switch, the aggregate
write bandwidth into the output queues equals r2 times
the packet rate times the address width. Moreover, the
wiring complexity of the shared memory scales with
r2, as there is at least one memory location per port,
which needs to be connected to each input and output.
In practice, the wiring complexity is more likely to be in
the order of b · r3, where b is the data-path width [8].

• In a combined-input-output-queued switch, a combination
of the above quadratic complexities arises.

Because the term r2 corresponds to the number of cross-
points in a crossbar, we refer to it as crosspoint complexity,
with the cost of a crosspoint being normalized to unity. In
this context the term crosspoint is being used generically, and
should not be equated with a crosspoint in a crossbar switch.
This implies that the unit crosspoint cost depends strongly
on switch architecture and implementation and needs to be
assessed accordingly.

To allow for some flexibility in the switch cost function and
account for a fixed per-switch overhead, we include a base
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(a) Cost function Css as a function of r for n from
256 to 64M, a = 10, b = 100.
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(b) Optimum switch radix ropt as a function of a
and b with n as a parameter.
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(c) Optimum switch radix ropt averaged over all b
as a function of n with a as a parameter.

Fig. 3. Cost function Css.

cost component b that is independent of r. Note that per-port
cost components such as tranceivers can be associated with
the links and should therefore be incorporated in the per-link
cost factor a, which is also the reason that we do not include
a linear term in the switch cost function. Parameters a and b
are normalized with respect to the unit cost of a crosspoint;
in practice, they can be expected to be greater than one.

Note that, although some plots may show functions as being
continuous in radix r, there is clearly no practical relevance
of non-integer radices. Moreover, as fat trees with constant
bisection bandwidth also necessitate even radices, we always
round up to the nearest even radix.

The overall fat tree cost function is given by (6):

Css(r, n, a, b) = a · I(r, n) + Csw(r, b) · S(r, n), (6)

wherein a is a parameter that allows tuning of the relative cost
of a link versus the relative cost of a crosspoint and a switch.

The above functions are only valid for n ≥ 2 and 4 ≤ r ≤
2n. The case r = 2n corresponds to a single switch connecting
all n nodes (and having n unconnected upward ports). It does
not make sense to choose r > 2n, because then there will be
unconnected downward ports.

Figure 3(a) shows Css(r, n, a, b) for a large range of n,
with a = 10 and b = 100. Each curve clearly exhibits a cost
minimum at around r = 16, almost independent of n.

We varied both a and b from 100 to 104 for n ranging
from 28 to 264 and determined for each combination of these
parameters the optimum switch radix ropt that minimizes Css.
Figure 3(b) displays the results in a 3D plot, with a and b
along the x- and y-axes and n as a parameter, i.e., one surface
for each n. The results indicate that as a and b increase,
ropt also increases. In addition, the effect of increasing a is
significantly stronger than that of increasing b. Moreover, these
results confirm that the value of ropt does not vary much with
n as long as a < 103.

To illustrate this point, we averaged ropt over all values of b
and plotted the result as a function of n with a as a parameter,
see Fig. 3(c) (a increases from the bottom to the top curve). For
small values of a, the curves are almost flat. As a increases, the

curves exhibit a “see-saw” pattern, which is due to the ceiling
operations in (2) and (3). Nevertheless, even for large a, the
amplitude of the see-saw decreases as n increases, converging
on a limit value, which we will compute in the next section.

A. Differentiable cost function

To explore the behavior of Css in more depth, we proceed
by rendering (5) differentiable by removing the ceiling and
floor operations, thus eliminating the discontinuities in its
derivative:

L̂(r, n) =
log(n)

log(r/2)
, (7)

Ŝ(r, n) = L̂(r, n) · n

r/2
, (8)

Î(r, n) = n · (L̂(r, n)− 1). (9)

The “smoothed” cost function Ĉss(r, n, a, b) is given by
(10):

Ĉss(r, n, a, b) = a · Î(r, n) + Csw(r, b) · Ŝ(r, n), (10)

Substituting (5), (7), (8), and (9) into (10) yields (11):

Ĉss(r, n, a, b) = a · n ·
(

log(n)
log(r/2)

− 1
)

+(r2 + b) · 2 · n · log(n)
r · log(r/2)

. (11)

Figure 2(a) compares Ĉss and CFT for n ranging from 256
to 64K nodes. We observe that Ĉss tends to underestimate
the actual cost. The main cause is that the smoothing allows
fractional tree levels and switches, which obviously does not
correspond to reality. Figure 2(b) illustrates this effect by
plotting the relative cost error 1 − bCss

Css
as a function of r for

n = 1,024 and b = 100, and different values for a. It can be
shown that (for 4 ≤ r ≤ 2n) the error reaches its maximum
at r = 2(n−1) and that this maximum value approaches 0.75
for large n. However, Fig. 2(b) also shows that for realistic
values of n, r, a, and b, the error can be expected to be below
20%.



1 2 5 10 20 50 100 200 500 1e3 2e3 5e3 1e4
4

8

16

32

64

128

256

512

1024

2048

 a

O
pt

im
um

 s
w

itc
h 

ra
di

x 
 r

op
t

(a) bropt as a function of a.
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(b) bropt as a function of b.
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(c) bropt as a function of a and b.
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(d) bropt vs. ropt, a = 1.
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(e) bropt vs. ropt, a = 102.
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(f) bropt vs. ropt, a = 104.

Fig. 4. Optimum switch radix bropt as a function of a and b; comparison with ropt.

IV. SINGLE-SIZED FAT TREE

To determine the switch radix r̂opt that minimizes cost
function (10), we differentiate (11) with respect to r, which
yields (12):

d Ĉss

d r
=

2 · n · log(n)
log(r/2)

·
{

2−
(r2 + b) · (log(r/2) + 1) + a·r

2 )
r2 · log(r/2)

}
(12)

and then solve

d Ĉss

d r
= 0. (13)

To find a solution to (13), note that the first product term
of (12) is only zero when n = 1, which is not a meaningful
solution. Therefore, to obtain useful solutions, we need to find
the roots of fbropt(r, a, b), as defined by (14):

fbropt(r, a, b) = r2 · (1− log(r/2))

+
a · r
2

+ b · (1 + log(r/2)). (14)

Note that r ≥ 4, a ≥ 0, b ≥ 0 must hold. We first treat the
special cases b = 0 and a = 0, before proceeding with the
general case.

A. Case a > 0, b = 0
The special case b = 0 happens to have an elegant, closed-

form solution for the optimum radix r̂opt,a, given by (15):

r̂opt,a =
a

2 · W
(

a
4·e

) , (15)

where W(z) is the Lambert W-function, for which holds z =
W(z) · eW(z), for all complex numbers z.

Most notably, (15) is independent of n, i.e., the optimum
switch radix depends only on the cost factor a, but not on the
size of the network.

B. Case a = 0, b > 0
If a = 0, the optimum radix r̂opt,b can be shown to be equal

to the solution to (16):

b = r̂2
opt,b ·

log(r̂opt,b/2)− 1
log(r̂opt,b/2) + 1

. (16)

Using a first-order approximation for log(x) around x = 1,
we can approximate the term log(r/2)−1

log(r/2)+1 by 1− 4
r . Substituting

this in (16) and solving for r yields (17):

r̂opt,b ≈ ropt-est,b = 2 +
√

b + 4. (17)

Figure 2(c) plots r̂opt,a, r̂opt,b, and ropt-est,b. We exploited
the fact that r̂opt,a and r̂opt,b provide reasonable estimates of
r̂opt to seed the zero-finding process of the general case (see
Sec. IV-C). This technique was also used to find the actual
values for r̂opt,b shown in Fig. 2(c).
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(c) brds-opt as a function of n and a, with b as a
parameter.
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(d) brds-opt vs. rds-opt, a = 1.
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(e) brds-opt vs. rds-opt, a = 102.
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(f) brds-opt vs. rds-opt, a = 104.

Fig. 5. Double-sized fat tree: cost function, derivate cost function, and optimum switch radix.

C. Case a > 0, b > 0

To solve the general case, we used MatlabTM to numerically
find the root of (14) for any given combination of n, a, and b.
As Matlab’s fzero() function requires a seed value for the
root, we seeded it with (15) if a > b or with (17) otherwise.

Figures 4(a,b) show the results for n ranging from 28 to 264

and a and b from 100 to 104. Both subplots display the same
data set, but Fig. 4(a) plots ropt as a function of a with b as
a parameter, whereas Fig. 4(b) is the opposite. The values of
a and b increase from left to right (x-axis) or bottom to top
(curves within same plot).

Figures 4(d,e,f) plot r̂opt and ropt as a function of n with b
as a parameter for a = 1, 102, and 104, respectively. These
figures clearly demonstrate that for given a and b the values
of r̂opt and ropt converge as n increases. In addition, the
decreasing dependence on b as a increases is also obvious
from comparing Figs. 4(d,e,f) against each other.

V. DOUBLE-SIZED FAT TREE

The fat tree configuration considered up to here left half
the ports of the top level switches unconnected. We will now
consider a fat tree in which these top-level ports are connected
to another subtree of height h − 1, so that the total number
of end nodes is doubled; hence, we refer to this topology as
the double-sized fat tree. In XGFT terms, this corresponds
to an XGFT(l; k, . . . , k, 2k; 1, k, . . . , k), with k = r/2. This
topology gives rise to slightly different expressions for the

number of nodes (18), levels (19), switches (20), and links
(21):

Nds(r, l) = r · (r/2)l−1, r = 2k, (18)

Lds(r, n) = 1 +
⌈

log(n/r)
log (br/2c)

⌉
, (19)

Sds(r, n) = (Lds(r, n)− 1) ·
⌈

n

br/2c

⌉
+

⌈n

r

⌉
, (20)

Ids(r, n) = n · (Lds(r, n)− 1), (21)

with the overall cost function Cds(r, n, a, b) given by (22):

Cds(r, n, a, b) = a · Ids(r, n) + Csw(r, b) · Sds(r, n). (22)

In a similar approach to Sec. IV, we derive a smoothed cost
function Ĉds and follow a similar procedure to find its minima
for given n, a, and b. In this case, 4 ≤ r ≤ n should hold.

Figure 5(a) shows Ĉds as a function of r for a large range
of n and a = 10, b = 100. Upon close inspection, it appears
that the minima occur at different values of n, suggesting that,
unlike the single-sized fat tree, the optimum radix depends on
n. Figure 5(b) confirms this notion: it plots the derivative of
Ĉds with respect to r for the same parameters, zooming in to
the range where the roots are. Here, we can clearly see how
the roots move left as n increases, from about 22 for n =
256 down to just over 19 for n = 64M. However, we shall
demonstrate that, as n increases, the roots converge to those
of the single-sized case.



TABLE I
ESTIMATED OPTIMUM RADIX BASED ON CURRENT CMOS AND LINK

TECHNOLOGY.

low end high end
pkts/crosspoint 8 80
bits/crosspoint 4,096 40,960
FETs/SRAM cell 6 6
FETs/crosspoint 24,576 245,760
cost/crosspoint ($) 4.9·10−4 4.9·10−3

link 4 pins 10 Gb/s optical
link cost ($) 0.4 25
overhead in gates 1·105 2·105

FETs per gate 4 4
overhead cost ($) 4·10−3 8·10−3

rel. link cost a 8.1·102 5.1·103

rel. switch ovhd b 16.3 1.63
optimum radix ropt ∼130 ∼550

Equation (23) shows the derivative of Ĉds(r, n, a, b) with
respect to r; unfortunately, it does not have the clean product
form of (12). As a consequence, the zeroes of (22) are indeed
not independent of n in this case. Note that the optimum
switch radix actually decreases as n increases.
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Taking the limit n →∞ of (23) yields (24):

lim
n→∞
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Hence, for asymptotically large n we can obtain the opti-
mum switch radix ropt by finding the roots of fbrds-opt(r, a, b):

fbrds-opt(r, a, b) = 1− log
(r

2

)
+

a

2r
+

b

r2
·
(
1 + log

(r

2

))
,

which by making use of (14) can be rewritten as

fbropt(r, a, b) = r2 · fbrds-opt(r, a, b). (25)

Therefore, any root r > 0 of fbropt(r, a, b) is also a root of
fbrds-opt(r, a, b) and vice versa. It follows that for large n and
given a and b the double- and single-sized fat tree networks
have the same optimum switch radix.

Figure 5(c) plots r̂ds-opt as a function of a and n, with b as a
parameter, i.e., there is one surface for each value of b. These
results confirm that r̂ds-opt declines slightly as n increases and
grows with increasing a and b.

VI. ESTIMATED OPTIMUM RADIX FOR CURRENT
TECHNOLOGY

In this section we apply our theory to get an insight into
what would be a good choice for the radix based on current
technology. A comprehensive analysis that accurately reflects
all the choices of architecture, chip technology, packaging,
board- and link technology is beyond the scope of this paper.
Instead, we perform a first order bounds analysis by analyzing
two extreme cases. For the lower bound case we assume a low-
cost, entry-level switch and link system. We further assume
that it is based on a buffered-crossbar architecture which is
implemented in a chip. For a buffered crossbar the cost is
dominated by the crosspoint memory. To achieve entry-level
performance we assume an 8 packet crosspoint memory with
a packet length of 64 bytes. To calculate the cost, we use the
transistor cost of $1e-8 for current CMOS technology [9]. We
assume SRAM technology using 6 transistors per memory bit.
To account for the additional SRAM control and crosspoint
control and arbitration we simply double the crosspoint cost.
For the chip overhead we assume 100k gates that implement
configuration, control, and other overheads. For our entry-level
link technology, we only account for the per-pin cost of the
chip package. We assume a high-pin-count package required
for switching chips having a cost of around 10 cents per pin.

For the second bound, we investigate a high-end system
consisting of a high-performance switch using optical link
technology. We assume a crosspoint with 10 times the packet
storage capacity of the entry-level system. Here, we assume
$25 cost for a 10 Gb/s connection as provided with current
technology.

Table I shows the resulting costs in dollars of crosspoint,
link, and switch overhead for both switch implementations.
Based on these numbers, we can compute the link cost and
switch overhead in relation to the crosspoint cost, corre-
sponding to the model variables a and b. This enables us to
determine the optimum switch radix using the model presented
in Sec. IV. Thus, for the entry-level we obtain an optimum
radix of about 130, whereas for the high-end case it is around
550. The latter result is overly optimistic, because such a large
switch is no longer feasible in a single chip. However, we do
conclude that the optimum radix should be in the order of
several hundred ports, somewhere inbetween the two extreme
cases.

Our bounds analysis, admittedly presenting an oversimpli-
fied version of reality, clearly shows that even in the low-end
case, where the link costs are only a few cents, the optimum
radix is quite high. For the high-end case, with substantially
higher link costs, closer to the reality of today’s systems, the
radix is even higher than the entry level case.

At present, switch vendors offer radices in the order of a few
tens of ports only. We believe this is a result of optimizing the
cost of a single chip, rather than optimizing cost at the system
level. HPC system designers, however, base their technology
choices on system cost. The cost of transistors will continue
to decrease exponentially, whereas the cost of links generally



decreases at a much slower pace. Given our analysis, the
radices of current switch products are too small. We believe
that a 200–400 port single-stage 10G Ethernet L2 switch for
would offer optimum cost in medium to large data centers and
supercomputers.

VII. CONCLUSIONS

Using a straightforward cost model for fat tree (k-ary l-
tree) topologies with full bisectional bandwidth and same-
radix (r = 2k) switches at every level, we demonstrated that
the optimum switch radix ropt is independent of the number
of end nodes n, with n = kl. In the “double-sized” case
(n = 2kl), the optimum radix does depend on n: interestingly,
it slightly decreases as n increases, converging on the optimum
for the single-sized case (n = kl) as n →∞.

Regarding the relative cost parameters a and b, which
represent the fixed per-link and per-switch costs, we observed
that the optimum radix increases as either a or b increases.
Moreover, the optimum radix is more sensitive to a; as a
increases, the dependence on b decreases.

Specific values for a and b depend on the implementation
of the switching nodes and links, including choices for tech-
nology and architecture. We derived values for a and b using
a cost analysis based on current CMOS and link technology
under some reasonable assumptions on switch implementation,
which showed that the optimum switch radix is currently in
the range of hundreds of ports. Moreover, as historically link
costs have decreased at a much slower rate than logic gate
costs, a can be expected to increase further, implying that the
optimum switch radix can be expected to grow as well.

These results should be of interest to switch manufacturers,
who, based on an assessment of values for a and b based on
the target technology for a specific switch implementation, can
determine which switch radix is most attractive. This applies
in particular to networking technologies such as InfiniBand,
10G Ethernet (also known as Convergence Enhanced Ether-
net (CEE)), MyrinetTM, and QsNetTM, which are networking
technologies often employed in HPC and DC installations.
Our work indicates that optimizing costs at the level of the
individual (single-stage!) switch, which leads to the current
commercial offerings radices in the range of tens of ports, is
clearly sub-optimal from a cost perspective at the system level.

Of course, the design of an interconnection network is
not only driven by cost; for instance, requirements regarding
performance (latency, bandwidth) and power may impose
certain boundaries that limit the choice of switch radix. As
an example, for a fixed n, a larger switch radix will reduce
the number of stages and thus reduce latency. However, fat
trees generally have a relatively low diameter (compared to k-
ary n-meshes and -cubes) and per-hop zero-load latency can
be minimized by using cut-through switches, so the latency
penalty of adding stages is small.

Nevertheless, as the cost of the interconnection network
accounts for a substantial share of the total cost of a supercom-
puter or data center and this share can be expected to grow,
optimizing interconnect cost is a worthwhile endeavor.

We intend to continue this work by determining reasonable
estimates for a and b based on actual commercial switch
implementations, as well as apply the same methodology to
other popular topologies, such as k-ary n-meshes and k-ary
n-cubes.
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