

RZ 3776 (# Z1005-001) 05/10/2010
Electrical Engineering 11 pages

Research Report

Cache Injection for Private Cache Architectures (Concept Paper)

F. Auernhammer, P. Sagmeister

IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Cache Injection for Private Cache Architectures

(Concept paper)

Florian Auernhammer
IBM Zurich Research Laboratory

fau@zurich.ibm.com

Patricia Sagmeister
IBM Zurich Research Laboratory

psa@zurich.ibm.com

ABSTRACT
The memory wall is considered to be one of the biggest
challenges for multi- and many-core architectures. Putting
more and more cores on the processor die considerably in-
creases the required memory bandwidth far in excess of the
available memory subsystem bandwidth. The major bot-
tleneck for achievable memory bandwidth are limited off-
chip bandwidth and coherence requirements. Larger caches
and deeper cache hierarchies can alleviate the memory band-
width problem only to some extent.

For I/O-related operations, cache injection has the poten-
tial of mitigating the pressure on the memory subsystem by
reducing the number of necessary memory transfers. How-
ever, the mechanisms proposed so far are mainly aimed at
non-virtualized environments. In this paper we propose con-
cepts for cache injection in systems using private cache ar-
chitectures with special focus on providing support for heav-
ily virtualized devices. Therefore we study different aspects
of cache injection, i.e., the device-processor interaction, the
injection process in the cache-coherent processor fabric, as
well as the cache itself. The key characteristics of our pro-
posed methods are better directivity, less overhead on the
processor interconnect, and better control mechanisms for
cache injection.

1. INTRODUCTION
Cache injection is a well-known topic in computer archi-

tecture research. Nevertheless, little research applicable to
upcoming heavily virtualized many-core systems is available.
On the one hand, many proposed mechanisms focused on
bus-based rather than on today’s switched fabric processor
interconnect implementations, rendering many propositions
such as snarfing [3] impractical. On the other hand, they are
focused, for the most part, on single server communication.
With heavily virtualized devices, providing user-level inter-
faces, and large many-core systems, however, new challenges
but also new opportunities for cache-injection arise.

Today’s systems heavily use virtual machines (VMs) or
logical partitions (LPARs) to leverage multi-core processors.
The operating systems running in LPARs may not be aware
of where they are physically running and may also not be
running at the time a network device receives data for it.
This makes it difficult for cache injection to determine if
and where data should be injected as injudicious injection
may jeopardize the system performance.

Another challenge for cache injection is keeping overheads
in the processor fabric low. Many-core systems with dis-
tributed cache architectures use partitioned cache coherence

domains [8, 10], and will very likely resort to them ever more
heavily in the future in order to restrict coherence operations
to smaller domains of the system. Therefore, cache injection
should be able to place data in caches that are close to the
final consumer to mitigate the overhead and performance
impact [17] of coherence operations.

For traditional devices as well as for devices shared on a
virtual machine basis, directed cache injection can be sup-
ported efficiently in an IOMMU. For user-level interfaces,
however, we think that it is essential that the I/O device
be able to provide information for cache-injection purposes
when storing data to the system. We therefore propose two
mechanisms that allow I/O devices to use the processor in-
terconnect to improve the directivity of cache injection. We
further propose concepts aimed at reducing the overhead for
cache injection on the processor interconnect as well as con-
trolling the amount of data that may be injected into a cache
to limit destructive effects. Finally, we propose a doorbell
concept based on the injection concepts.

The remainder of the paper is organized as follows. In
Sections 2 and 3 we present the principles of user-level in-
terfacing and snooping-based cache coherent fabrics respec-
tively. Section 4 describes the different mechanisms we pro-
pose for cache injection in private cache architectures. Sec-
tion 5 presents related work, and we conclude in Section 6.

2. USER-LEVEL INTERFACES
User-level interfaces based on the Virtual Interface Ar-

chitecture (VIA) [2] are used for low-latency communica-
tion and multi-user support in network interface controllers.
VIA was first used in InfiniBand but is now also increasingly
being adopted in high-speed TCP/IP off-loading solutions.

The basic concept for user-level interfaces is the use of
asynchronous queues for the communication between user
and adapter. Therefore, one queue for send and one for
receive operations is created in main memory for each user-
level interface. The user puts send and receive requests, so-
called work requests, on the queues and notifies the adapter
of new work requests by ringing its doorbell. The requests
contain just address references that indicate where the ac-
tual payload data is to be fetched from or stored to.

The adapter maintains separate contexts for all active con-
nections. The contexts contain, on the one hand, informa-
tion on the state of the network connection and, on the other
hand, data related to the software interface. Compared with
traditional devices, contexts represent a major advantage for
virtualized devices as, by extending the context, additional
information for each interface can be stored, for example, by

1

(a) Socket interface (b) User-level interface

Figure 1: Potential of cache injection

which process it is used and also on which processing unit
(PU) the interfacing process is running.

Figure 1 shows the potential benefits of a user-level inter-
face combined with directed cache injection compared with a
socket implementation. In the traditional stack-based oper-
ation (Figure 1(a)), the I/O device DMAs receive data into
main memory (1). It is then fetched by the PU running the
TCP/IP process (2), and copied into a user buffer. Next,
the consumer process, which usually runs on a different PU,
fetches the data into its own cache (3). Cache injection can
be used to improve this flow and avoid the detour over mem-
ory by injecting the receive data directly into the cache of
the PU running the TCP/IP stack (4). This reduces com-
munication latency and avoids one memory transfer (2). Be-
cause of cache coherence requirements, the write-back of the
data (1) usually cannot be avoided. It is only deferred to a
later point in time and effected by the PU. The efficiency of
cache injection also depends on whether the line that has to
be cast out for an injected one is clean or dirty, and when it
is accessed again.

In contrast, a user-level interface with knowledge about
where the consumer process is currently running, can inject
the data directly into the consumer’s cache as shown in Fig-
ure 1(b), and thus avoid the transfer between the stack and
consumer PU ((3) in Figure 1(a)).

Table 1 summarizes the number of necessary memory trans-
fers for network payload data per cache line (CL) for differ-
ent payload transfer mechanisms. The case of a stack with
injection and buffer reuse (3.) assumes that receive buffers
are reused and that the new cache line arrives before the old
is written back to memory. This behavior, however, depends
on the temporal locality of the receive traffic, the cache size,
and the stack implementation.

The transfers shown in Figure 1 and Table 1 only consider
the optimal case using cache line-sized transfers. The trans-
fer picture may change significantly if partial stores are used.
Especially for cache injection that would bypass main mem-
ory, partial stores may annihilate all advantage from cache

Table 1: Memory transfers overview for receive data

injection as the remainder of the cache line data needs to
be brought into the cache to combine it with the new data.
Furthermore, there is a distinct latency and overhead dif-
ference between non-aligned, non-cache line-sized (partial)
and aligned, cache line-sized write operations in most pro-
cessor interconnects. Therefore, I/O devices using cache
injection need to take into consideration the processor ar-
chitecture, especially the cache line size, to achieve optimal
performance.

3. SNOOPING CACHE COHERENCE
In snooping-based cache coherent systems, snoop transac-

tions are used to maintain coherence of data, usually based
on a cache line granularity. It guarantees that processing
units are not working on stale data. Moreover, snoop trans-
actions are used for system management purposes, for ex-
ample, to maintain coherence of address translations and
routing of interrupt requests.

Figure 2: Interconnect transaction

Figure 2 shows the typical sequence of a processor inter-
connect transaction in a split-transaction protocol. First,
the requestor signals the request to the arbiter (1). The
snoop request usually contains the unit ID of the requestor,
the address of the data referenced and further control infor-
mation. The arbiter sends the request to all peers (2). Each
peer then checks whether it is affected by the request, i.e.,
if it has the referenced data in its cache or, in case of mem-
ory or I/O, if it is responsible for the corresponding address
as a last point of coherence. Based on this check and the
availability of transfer resources, the peer generates a partial
response (3). The arbiter then combines all responses into
one and broadcasts the final response (4). Thus, all units
within the scope of the transaction are aware of the snoop
result. Depending on the request type, that is whether it
requires a data transfer, the referenced data is then trans-
ferred from the requestor to the destination (6) for a write
request or sourced by a peer to the requestor (5) for a read
request. The data transfer itself is usually divided into sev-
eral smaller parts.

The snoop transaction thus serves three purposes: it main-
tains coherence in the system and, if applicable, determines
the counterpart of the data transfer and reserves resources
in the form of queue slots.

Figure 3 shows the structure of a typical snooping cache
coherent SMP with private caches [8]. Each processing unit
has a private L1 and L2 cache. The PUs, the memory con-
troller (M), the I/O controller (IOC) and the processor cou-
pling unit (PCU) are connected through a high-speed inter-
connect, which is used for both snoop and data transfers.

2

Figure 3: Cache-coherent SMP

Not shown in the figure are victim caches (i.e. L3 and L4)
that may be used to offer larger caches with slower access
times. The four chips in the figure are coupled together
through the processor coupling unit to form the processor
fabric (PF). Each unit in the processor fabric has its unique
identifier. As shown in Figure 6, this identifier can, for ex-
ample, consist of a node, chip, and unit field.

To reduce snoop traffic overheads, coherence domains, also
called partitions, with a limited scope can be defined. In the
presented system, a local snoop would only be sent to any
units on the same processor whereas a snoop with global
scope would be broadcast to all units.

For requests from I/O devices (IODs), the I/O controller
usually needs to use global snoops to guarantee coherence
in the fabric. If, however, an I/O device is only interfaced
from processing units within the same processor, and only
references memory from this processor, it is sufficient to use
snoops with a local scope. This restriction to the local do-
main can reduce the processor fabric traffic that is generated
by an I/O device considerably. However, the I/O controller
must be configurable to support this mode of operation on a
per-device basis, and software needs to guarantee that pro-
cesses interacting with the device are not running on PUs of
a remote coherence domain.

Virtualized I/O devices, on the other hand, can be inter-
faced directly by any user in the system. Therefore, they al-
ways need to use global snoop transactions as long as there is
no information available about where the consumer process
is running and whether data is cached in a remote processor
chip or not.

4. CACHE INJECTION MECHANISMS
For data injection in private cache architectures, there

arise two key problems: how to determine the destination
for the injection and how to incorporate the injection process
into the interconnect protocol. In the following, we present
different concepts for these two problems.

In Section 4.1, we show two mechanisms that help in iden-
tifying the destination cache for injections. These meth-
ods require interaction across the entire system as shown in
Figure 4, i.e. from the PU down to the I/O device. Sec-
tion 4.2 presents concepts for incorporating cache injection
in the protocol of a snooping-based cache-coherent intercon-
nect and how to keep its overhead low. We further propose
a concept for keeping track of and handling injected cache
lines within a cache in Section 4.3. Section 4.4 shows an
application that combines those three concepts for efficient

Figure 4: Proposed methods

in-system doorbell processing.

4.1 Identifying the right cache

4.1.1 Processor fabric knowledge forwarding
Our first solution for determining the destination of an

injection is to allow the I/O device to gather originator in-
formation, i.e. the unit identifier of the requestor in the
processor fabric, when a work request is posted. The de-
vice can use and forward this knowledge later when data is
injected into the system.

There are two possible implementations:
1. The first is initiated by the I/O device as shown in

Figure 5(a). In work request-oriented interfacing, the pro-
cessing unit issues a doorbell request to the I/O device (1).
This indicates the availability of a new receive work request.
The I/O device fetches the work request, usually comprised
in one cache line, and indicates in the DMA read request
(2) that it wants to obtain more information on the origin
of the data. The origin can be identified by the I/O con-
troller as this information is included in the transfer over
the processor interconnect (3). If the I/O device fetches the
work request soon enough after it has been issued, the orig-
inator is still the processing unit in which the work request
was generated.

(a) DMA read (b) MMIO write

Figure 5: PF knowledge forwarding

It can also be beneficial to provide the I/O device with
the possibility to request information about the location of
a cache line only, i.e. without the need to actually fetch
the data. In work request-oriented communication schemes,
the consumer frequently posts receive work requests that are
fetched from the I/O device only at a later point in time.
Thus, at this later point, the cache line has very probably
already been displaced in the system, e.g. moved to a victim
cache. In this case, the originator information is no longer

3

of value for the I/O device. A data-less transfer would al-
low the device to capture the originator information without
the need to actually transfer the data. The I/O controller
furthermore needs to make a pre-selection on the forwarded
originator information.

2. The second possibility for processor fabric knowl-
edge forwarding, shown in Figure 5(b), is to allow the user
itself to trigger the forwarding. An MMIO write request
is therefore tagged in a special way in the transfer on the
processor interconnect (1). When the I/O controller detects
the presence of such a transfer, it can automatically include
fabric information in the transfer of the data to the I/O de-
vice. Preferably, the originator information would not be
contained in every doorbell as this would inflict an overhead
on the external link as well as in the I/O device. Not pro-
viding the information often enough will, on the other hand,
reduce the accuracy of the information. The process issuing
the work request should therefore keep track of whether it
was moved to a different processing unit since it last pro-
vided originator information, and request the originator in-
formation inclusion accordingly.

Both mechanisms described provide information to the de-
vice about where data came from without requiring the de-
vice to be able to understand the information it is provided
with. However, the device needs to get the originator infor-
mation in order to make the mechanism scalable. Ordinary
non-virtualized devices interact mainly with one process in
the system, usually the software driver of the device. Vir-
tualized devices, on the other hand, may provide millions
of isolated user interfaces. The I/O controller, no matter
whether provided with virtualization features, defined for
example for PCI Express [12], cannot be implemented in a
way such that it allows efficient directed cache injection for
this kind of devices. The scalability therefore needs to be
provided by the device itself, and necessitates passing on
originator information in one of the ways described above.

Figure 6: Destination translation

When a device wants to store data, it now knows where
the destination process is/was recently running in the sys-
tem. The device can thus provide this information (O) with
the store request in order to indicate where the data is aimed
at. Furthermore, as shown in Figure 6, it can also add sup-
plemental information on a more abstract level in the form
of a hierarchy information (H). Thus, the device does not re-
quire any knowledge about the architecture of the processor
fabric. It merely provides the exact originator information
and adds an abstract hierarchy information, for example,
based on an indication included by software in the associ-

ated work request. The I/O controller is then responsible for
combining the provided information based on the processor
fabric architecture. The hierarchy information can include
information about the exact cache level the data shall go
into, e.g. L2, L3 or memory, as well as information related
to alternative destinations to allow/disallow degradation of
the indicated cache level, or inhibit use of system memory.
Furthermore, the I/O controller of a system that does not
have a requested cache level can determine an adequate des-
tination that should be used instead. Therefore this injec-
tion mechanism is independent of the system architecture
and can be used for standardized protocols that are used in
different processor architectures, such as PCI Express.

Originator information could also be maintained by the
hypervisor running in the system. This approach has the
disadvantage that the hypervisor has to update the informa-
tion for all affected connections explicitly every time there is
a change. This obviously inflicts lots of overhead. Therefore
we think it is more advantageous to transfer the manage-
ment of this task to hardware or the user himself.

4.1.2 Destination discovery
The mechanism described in the preceding section is based

on using originator information. The opposite mechanism
for directing cache injection would thus be letting the device
specify the destination for an injection.

Especially in virtualized systems it is interesting to use
a dynamic mechanism for cache injection based on the pro-
cesses currently running in the system. As mentioned above,
keeping the connection contexts in a virtualized I/O de-
vice up-to-date can be a tedious task, inflicting considerable
management overhead for the hypervisor. It is much eas-
ier to merely specify the destination for injections and make
the injection decision based on the run state of the receiving
process using hardware mechanisms.

Usually, snoop transactions maintain coherence in the pro-
cessor fabric. We can, however, also imagine using them for
different operations. For dynamic cache injection purposes a
new request type as shown in Figure 7 can be specified. This
request would then contain a destination ID instead of the
address usually used for data transfers. The process-specific
ID is used to detect whether and where a process is running
in the system.

Figure 7: Snoop structure

The destination ID value can be configured according to
the hardware architecture. In a multi-core system with hard-
ware virtualization it would contain a field indicating the
logical partition or virtual machine the injection is destined
for, a field indicating the process, and a field giving the in-
stance of the process. The process ID can be the same as
the process ID used by the operating system. As not all

4

processes use user-level interfaces and the number of bits
available for the destination ID is limited by the physical
address size, the process ID can also be managed separately.

Having run information it is possible to make a good deci-
sion on whether and where to inject data. On the one hand,
it is not very efficient to inject data for a process whose
LPAR is currently not running. On the other hand, if the
LPAR is running but the process is not, it may be better to
inject into a victim cache (L3) rather than the L2 cache of
a PU, also depending of course on their respective size and
whether the destination process is waiting to be woken up
upon reception of the data.

Figure 8: Process snoop schematic

For the destination discovery snoop transaction, shown
in Figure 8, the I/O controller receives the destination ID
from the I/O device along with the data. The destination
ID usually stays the same for the entire lifetime of a network
connection and is stored in the connection context in the de-
vice. The I/O controller then issues a snoop request with
the destination ID and global scope to the processor fab-
ric. All processing units in the system therefore implement
a local register for each of their hardware threads. These
registers hold the ID of the process currently running, and
are thus part of the processor context that needs to be saved
on a context switch. The processing units then compare the
destination ID of the incoming snoop request with the value
contained in the register(s) and generate a response depend-
ing on the matching degree. For the example configuration
in Figure 7, they generate different partial responses depend-
ing on whether there is an “LPAR”, an “LPAR+function”,
or an “LPAR+function+instance” match. As in the nor-
mal snoop process, each processing unit returns its par-
tial response, which is then combined by the arbiter into
a single final response. The priority used for combining
the responses is inverse to the sequence given above, an
“LPAR+function+instance” match having highest, and a
simple “LPAR” match having the lowest priority. Using this
mechanism, the I/O controller is now able to inject the re-
ceived data into the most appropriate cache in the system.

To increase the preciseness of injections, a directory of
scheduled but not running processes can be added to the
PUs, as shown in Figure 8. Therefore, the location of a
destination process can be determined even if it is not being
executed at the moment of the injection request.

The instance field enables load spreading for processes
that use a varying number of serving threads in many-to-
few relationships. This can, for example, be the case for
a TCP/IP process serving many connections. In a normal
load situation, it may use two threads to process the network

Figure 9: Dynamic load spreading

traffic, whereas, under high load, more threads are started
as shown in the upper and lower part of Figure 9.

Instead of changing the configuration in the device for half
of the connections to make best use of the available number
of threads, the instance identifier is used to distribute the
load among the threads. It is initialized when a connection
is initialized. The available instance identifiers may, e.g.,
be evenly distributed over all connections or reflect differ-
ent priority levels. When there are fewer threads running
than there are instance identifiers assigned in the device,
the requests need to be mapped to the number of threads
available. This can easily be implemented by applying a
mask or compare operation to the instance identifier part
of an injection request. In the upper part of the example
in Figure 9, only two TCP threads are running in the sys-
tem, but a 2-bit instance identifier is used. Therefore, each
thread processes the requests of two instances. Data of in-
jection requests with an instance value of “00” and “01” are
injected into the cache of thread 0, whereas those using “10”
and “11” are injected into the cache of thread 1. If more
threads are scheduled, the load can be distributed to all of
them by adapting the mask value as shown in the lower part
of Figure 9.

4.2 The Injection process
The mechanisms described so far help determine where

data should be injected. However, we not only need to de-
cide where to inject data, but also to invalidate stale data
in the system and reserve queue slots in the destination unit
of the transfer. As injection requests are much less frequent
than read and write operations from the PU, the additional
cost for an injection queue is not justifiable in most cases.
Therefore, our approach would be to design the snoop pro-
tocol such that it can reuse read queue slots for cache line
injections.

4.2.1 Two-step injection process
For injecting data based on the mode of operation of

a snooping-based fabric and without necessitating an in-
creased size for snoop requests, we propose a two-step mech-
anism as shown in Figure 10. The first step is a data-less,
short snoop transfer, the second a transfer including the
injection data. In the first step, the inject snoop (1), the
destination for the injection is determined based on one of
the mechanisms described above. This snoop transaction is
used to notify the injection destination that the data of the
subsequent transfer is destined for it. If there is no dedicated
injection queue, the destination unit can already initiate the
reservation of a read queue slot during this phase, as well

5

as effect necessary castouts to avoid retries during the data
transfer. After determination of the destination, a second
request (2) is sent with the address of the data, which (i)
invalidates all copies of the data in system caches and (ii) is
used to transfer the data to the destination unit.

If this two-step process is used for every cache line, cache
injection inflicts overhead on the processor interconnect. Com-
pared with a DMA-based operation, it requires one addi-
tional data-less snoop transaction (1), but in turn accesses
memory only once to write back the receive data to mem-
ory (3). As this memory access happens during the normal
castout operation, the burstiness of I/O traffic that is ob-
served by the memory subsystem is alleviated to some ex-
tent. However, if the data is not placed in the correct cache
during the data transfer (2), another additional snoop trans-
action compared with the DMA-based operation is needed.

Figure 10: Data transfer sequence using injection

We can exploit the distinct characteristics of I/O traffic,
especially network traffic, to reduce the overhead: network
traffic usually exhibits very good spatial locality. This means
that the data to be injected usually spans a consecutive ad-
dress range that is larger than one cache line. Bringing data
into the processor fabric intelligently should therefore also
take advantage of this fact by using block invalidations and
block transfers. A block transfer in this sense is a transfer
of several consecutive cache lines over the processor inter-
connect with a reduced need of additional snoop requests.

The second snoop transaction in the scheme shown in Fig-
ure 10, which includes the invalidation request, therefore not
only invalidates the first cache line of the transfer, but also
all consecutive cache lines used by the entire payload trans-
fer. For a maximum transfer unit-sized (MTU) data trans-
fer, this can typically be 12 cache lines for TCP/IP and
32 for InfiniBand for a cache line size of 128 bytes. Thus,
invalidations for every single cache line are avoided.

Unfortunately, the second snoop request is also used to
ensure that either an injection or a read queue slot in the
destination cache is reserved for the data transfer. There-
fore, those snoop transactions are still needed for reservation
purposes.

4.2.2 Buffering at the partition boundaries
To reduce the number of global snoops for block transfers,

a buffer in the processor coupling unit can be used such that
local snoop transactions are sufficient to get the data into
the cache of the destination unit.

For injections using multi-cache line invalidation, the in-

validation and data transfer request of the first CL ((2) in
Figure 10) can, at the same time, be used to reserve buffer
space in the remote processor coupling unit (rPCU) of the
destination unit. Therefore, the destination PU signals how
many read queue slots it was able to reserve (2) in the re-
sponse to the multi-cache line invalidation request. The pro-
cessor coupling unit then checks its buffer resources, reserves
the remaining number of cache lines in its buffer (+4), and
signals back to the requesting I/O controller the total num-
ber of cache lines that can be transferred without the need
for further snoop transactions (6). The first two cache lines
of the transfer are therefore directly forwarded to the desti-
nation PU (A), whereas the others are temporarily stored in
the PCU buffer (B). Meanwhile, the destination PU sched-
ules further read slots and fetches the data from the buffer
using local transfers (C) until the data for the entire injec-
tion has been transferred. To retain coherence during the
injection process, the coupling unit fences off all requests for
data that has been invalidated and not yet arrived from the
I/O device.

Figure 11: Multi-cache line invalidation and data
transfer transaction ((2) in Figure 10) using CL
buffering

Especially in High Performance Computing (HPC), con-
sumers frequently poll the last cache line of the expected
receive data to start processing immediately after it is re-
ceived. To avoid that they work on stale data, the last re-
ceive data store therefore has to be kept in order. The same
is true for a completion notification, which has to be issued
only after all payload writes have been finished.

On the external bus and thus also in the I/O controller,
on the other hand, the stores are related only by relatively
simple store ordering mechanisms, based on traffic classes
or tags. Especially for payload data, the available order-
ing rules are too strict as all but the last received payload
cache lines usually have no dependency and can be stored
unordered if contention is encountered by some stores.

Using multi-cache line transfer support in the processor,
which fences off read requests to invalid data, store ordering
problems for payload data can be avoided completely.

Therefore, if more of the request affiliation knowledge is
passed on to the I/O controller, the latter can optimize co-
herence transactions and resource reservation in the proces-
sor fabric much more efficiently. This would be possible
with the maximum payload size (MPS) specified in PCI Ex-
press. The problem is however that most root complexes
do not implement enough buffer space to allow transfers of

6

complete payload data chunks with one request. Thus, it
is again not possible to take full advantage of the complete
transfer knowledge.

Instead of for cache injection, the PCU buffer can also
be used for efficient remote memory stores. The problem
that arises in this context is the increasing pressure on the
memory subsystem due to the increasing number of PUs in
a processor. Together with the bursty nature of I/O traf-
fic, larger network transfers that are stored into consecutive
memory addresses are therefore increasingly susceptible to
experience backpressure in the form of retry responses from
memory controllers because of overflowing store queues. To
prevent the backpressure from propagating over the external
bus to the I/O device, the proposed PCU buffer can thus be
used for memory stores in the same way as was described
above for cache injection.

4.3 Controlling cache injection
Optimal for cache injection would be a method that allows

dividing a cache into I(nstruction)/D(ata)-cache and injec-
tion cache (e.g. at least 80% I/D and max. 20% injections).
This division could effectively limit cache thrashing. How-
ever, most caches are N-way set-associative and thus divided
into congruence classes (sets) with equal numbers (ways) of
cache lines, of which only one set can be used, based on the
memory address.

Therefore a mechanism is desirable in the caches that al-
lows the amount of data injected to be controlled. Taking
into account the cache architecture, cache injection can be
limited on a cache and/or set level. To be able to check
whether the limits are reached, however, we need to keep
track of the number of cache lines injected.

(a) cache-level

(b) set-level

(c) CL-level

Figure 12: Cache architecture enhancements

Accordingly, injected cache lines need to be marked in the
cache. This mechanism is shown in Figure 12(c). A cache
line is stored in a cache basically with two identifiers, the
tag/address, and the state of the cache line in the system,
indicated by the coherence bits. To indicate injected cache
lines either an explicit bit can be added to the available co-
herence bits (Inject bit(s) (IB)), or a new state coded with
the available coherence bits can be used. Injected cache
lines are, by definition, modified and exclusively owned by
the cache. Therefore one new state coded with the available
coherence bits would be sufficient. Adding one bit can how-
ever offer the possibility to use more sophisticated methods

for handling injected cache lines by storing additional infor-
mation.

The reused coherence bits can be used to distinguish the
nature of injected data, e.g., to differentiate between header
and payload data. If a device wants to use system caches
to cache some of its data (e.g. contexts), also this data can
be specially tagged. However, the characterization of the
data needs to be supplied by the originator of the injected
data, i.e. usually the I/O device. For receive data buffers, it
may also be interesting to specify that it will not be tagged
as dirty after it has been read by a PU because then the
payload has been copied into a user buffer and is no longer
needed. The buffer space can then be seen as a scratch-pad
region that, under normal circumstances, does not consume
memory bandwidth. Therefore it helps in making case (3) in
Table 1 the normal case for receive stack memory transfers.

A cache line conserves its inject state while it remains in
the cache and is not touched/read by a processor. Its state
can also be inherited by victim caches after castout from
the cache that was originally used. However, it is deleted
when the cache line ends up in main memory or a processor,
possibly also a remote one, reads the cache line. Then the
coherence bits are set according to the new state of the cache
line. Counters can be used to track the ratio of used to
unused injected data to allow for more dynamic control over
the injection process.

The information on injected cache lines can also be taken
into consideration for the castout and LRU algorithm. Cache
lines marked as injected can e.g. be included in or excluded
from the normal castout selection, depending, for example,
on the spatial locality of the code currently being executed.
On a read from the PU, different actions may be taken re-
garding the LRU position of the cache line. The LRU can
be updated as on a normal cache miss so that the cache line
will be at the end of the (pseudo-)LRU queue, the LRU can
be left unaltered, or the CL can even be moved to the front
of the queue [13].

To limit the total number of injected CLs, a global counter
as shown in Figure 12(a) can be used per cache to be able to
set a global inject limit for the respective cache. The counter
is incremented (inc) on injection of a CL, and decremented
(dec) when an injected CL is touched by a PU or cast out
of the cache without being replaced by a new injected CL.
Injection requests are thus only accepted as long as the in-
jection limit has not been reached.

On a per-set basis, a set injection bit can be stored along
with the LRU information as shown in Figure 12(b). This
per-set injection bit indicates that the maximum of injected
cache lines configured for the cache has been reached for the
according set. This enables a fast look-up for snoop opera-
tions to determine whether an injection should be allowed.
It only needs to be updated when a cache line is injected or
unmarked.

Two policies can be defined for inject requests if a limit has
been reached: either an older inject-marked CL is cast out in
favor of the new line, or the new one receives a “retry”/“try
other cache” response.

The lookups should already be made during the first step
of the injection process, i.e. the inject snoop phase shown
in Figure 10. This helps in avoiding late “retry”/“try other
cache” responses during the data transfer phase. Therefore
the inject snoop needs to already contain the necessary ad-
dress information to check whether the addressed cache set

7

has space left. As the number of sets may differ among
the caches of a system, the address part needs to be large
enough so that the cache with the largest number of sets can
determine the set the data will be stored into.

The global and per-set injection limits can be combined
to achieve more precise control over how the cache is used
for injected cache lines. Figure 13 exemplarily shows how
different settings for the two limits can influence the number
of injected cache lines. Setting a global limit only may have
destructive effects as it allows single sets to be completely
used for injected cache lines (see set 7). Only setting a small
per-set limit, on the other hand, may prevent reaping all
the benefits of cache injection if the injected data is poorly
distributed among the sets.

Figure 13: Injected CL distribution examples

In a system with a variety of caches, either attached to
PUs or in the form of victim caches, injection control can be
configured for each cache individually to best match their
respective needs. The cache of a PU used for TCP/IP pro-
cessing can therefore take many injected CLs, whereas that
of a PU running calculation-intensive tasks is configured to
accept only a very limited number. Furthermore, with mul-
tiple levels of caches, victim caches may be configured to
accept more inject data than higher-level caches.

4.4 Putting it all together
Apart from bringing I/O data into the system efficiently,

cache injection can also be leveraged for in-system purposes.
Today’s systems offer more and more cores to increase the

performance while the single-core performance almost stays
the same. Still it is not yet clear how to use the new re-
sources efficiently. One very popular approach to profit from
the increasing number of cores is onloading tasks that were
formerly offloaded to dedicated devices, e.g. network packet
processing. To cope with the increasing packet processing
needs for higher link speeds, concepts have been developed
that profit of the use of dedicated cores for network packet
processing. The biggest drawback of those concepts is that
the doorbell mechanism can so far not be implemented effi-
ciently in software.

In most cases, either a very expensive mechanism using
system-calls or constant polling on notification cache lines
is used. Polling is however inefficient in terms of processing
unit usage and power consumption and, at the same time,
inefficient if the number of consumers is large. Some proces-
sors today offer the possibility to wait on a CL modification
of the local cache and use it as a wakeup instruction. This
mechanism can be especially efficient in multi-threaded pro-
cessing units. On the other hand it can only be used for a

Figure 14: InfiniBand onloading using work request
injection

single cache line. For doorbell processing, the serving pro-
cess would thus be limited to using a single doorbell cache
line, which is not practical for protected multi-user serving,
or it has to know exactly where the next request will arrive,
which is again not possible in many-to-one communication
situations.

Therefore, an efficient doorbell and notification mecha-
nism for in-system use is desirable. The requirement for
such a mechanism is that it allows monitoring hundreds or
thousands of cache lines simultaneously. The only way to
achieve this scalability is a user-driven scheme: instead of
explicit doorbell address monitoring by the server, the user
therefore signals new requests using cache injection. An ap-
plication where this method can be used very efficiently is
onloading of InfiniBand packet processing. This example,
illustrated in Figure 14 is a typical N-to-1 communication.
The serving process is the IB doorbell process and the con-
sumers are processes that want to send or receive data.

Using in-system notification, the consumers can now in-
ject their cache line-sized requests directly into the cache of
the server processing unit without any operating system in-
teraction using one of the two injection concepts proposed
in Section 4.1, and the two-step injection process described
in Section 4.2.1. While there is no work to be done, all
threads in the serving processing unit are sleeping to save
power. On injection of a work request into the cache (1), the
cache line is marked as injected and containing a notifica-
tion, and subsequently presented to the doorbell thread (2).
The doorbell thread analyzes the first part of the data of
the request that is presented to it and attaches the request
to the correct queue for send or receive operation (3). The
cache line is then unmarked and, if present, the next request
can be handled by the scheduler. The send process watches
the head of the send queue and processes the request (4).
It therefore only needs to monitor 1 CL, as already possible
in today’s processors. At the same time, there is no cache
miss for the request as it usually still resides in the cache.
Therefore there is also no latency and no further overhead
inferred on the processor interconnect.

The fundamentally new concept in this approach is the
presentation of the notification to the destination thread
or threads. It is shown in more detail in Figure 15. Two
presentation modes are possible depending on the mode of
operation of the different threads. If a thread is running in
user-mode, i.e. it uses virtual addressing, the first part of

8

Figure 15: Thread notification

the cache line (for example 8 bytes) is presented to the pro-
cessor in a read-only register (2). If a thread is running in
real-mode, that is it can access physical addresses, it is also
possible to present the physical address (1) of the cache line
containing the notification information.

To reduce the number of threads the injected data is pre-
sented to, a pre-selection mechanism can be implemented,
which is for example based on some of the bits of the pre-
sented information in order to differentiate between noti-
fication types. Possible notifications are then encoded by
software and can include notifications for TCP/IP, Infini-
Band or the OS scheduler. Using different masks for the
different threads, representing the type of application that
is currently running on a thread, the presentation of the no-
tification data can be limited to threads that are possible
destinations for the notification.

Alternatively, the thread affiliation of a notification might
already be determinable during the destination processing
unit injection phase based on a matching destination ID
register. This information can then be stored along with
the cache line and the notification be limited to the actual
destination thread.

The presented notification data should allow the thread
to clearly determine the cause of the notification. For ex-
ample, in InfiniBand and using this mechanism as doorbell
mechanism, the presented part of the notification would in-
clude the queue pair number a work request is attached to.
This actually complies with the format of the work-requests
used in today’s InfiniBand implementations. Using the in-
formation of the notification, the destination thread can then
access the notification using virtual addresses. For threads
running in user-mode this is essential as it is not possible to
translate the physical address of the notification cache line
back into a virtual address that would be needed by such
a destination thread to finally access the notification. For
threads running in real mode, however, presentation of the
physical address of the injected cache line is an option as
the thread can also use this information directly. In some
cases it might however be favorable to present the first part
of the notification to the destination thread instead of the

physical address as the cache line then does not necessarily
need to be brought into the L1 cache of the processing unit
at once, but it can be fetched later-on when the rest of the
notification data is processed.

A cache line marked as notification is unmarked either
when it is accessed by a thread or it can be unmarked using
a special instruction/a write to the read-only register. It is
then not necessary to actually access the cache line.

A cache can be parsed efficiently for notification cache
lines if more than one cache line marked as notification is
present in a cache. Parsing for those cache lines should be in
reverse order of the congruence classes. Therefore, consec-
utive notifications of one requestor that will, in the normal
case, hit consecutive congruence classes are not served back-
to-back, increasing fairness for the serving of requests.

A major advantage of this new concept is further the possi-
bility to avoid system calls for notifications in asynchronous
communication models. System calls are one of the main
latencies in TCP/IP processing [7]. Therefore there is great
interest at the moment in reducing the need of those. Fur-
thermore, notifications can be processed quickly as cache
misses for requests or notifications are avoided as they are
at the same time used as doorbells. The main advantage
over today’s methods however is the possibility to monitor
an unlimited number of notifications while the number of si-
multaneous notifications is only limited by the cache size and
architecture (set-associativity). Last but not least, cache
line notifications allow every processing unit in the system
to act efficiently as an N-to-1 server, rendering specialized
units unnecessary.

The notification scheme can also be used for I/O to sched-
uler interaction. In many network-dependant applications a
process is descheduled when waiting for network data and
rescheduled when the data has arrived. Therefore, using the
presented method, a cache line can be defined that will be
written by the I/O device if data was received for the ac-
cording process such that it has to be woken up. The device
injects a notification with an indication that the notifica-
tion is addressed to the scheduler. Every time the scheduler
is called, it checks if there are outstanding notifications by
simply checking if there is any data presented in the accord-
ing register. If there was a wakeup notification, the accord-
ing process can be woken up and considered for scheduling.
Otherwise scheduling is continued as normal. The advan-
tage of this mechanism is that it supersedes the need for
interrupts and thus avoids interrupt overhead and direct OS
interaction. Nevertheless, any process that is woken up by
receive data can be considered for scheduling during the next
scheduling cycle.

5. RELATED WORK
Different mechanisms for cache injection have been stud-

ied so far.
The first and easiest way for cache injection is an update-

based cache coherence protocol. Actually this mechanism
would be suited best for user-level interfaces as the user
can easily get the data into its local cache [11]. There are
however also two major disadvantages. First, the user has to
touch the cache lines to be updated and therefore potentially
thrashes data that would be needed at an earlier point in
time for processing than the expected inject data. Second,
if the data the user wants to be injected into the cache does
not arrive in a timely manner, i.e., it does not have sufficient

9

temporal locality, the CLs will probably have already been
cast out, and no update will take place.

IRQ-directed [1] cache injection is mainly applicable for
centralized TCP/IP processing stacks where one or more
processing units in the system are dedicated to processing
of incoming TCP/IP packets. The processing unit receiving
the interrupt is thus also the one that will work on the data.

Finally, static cache injection [9], i.e. cache injection into
a predefined cache is well suited if an I/O device is served
by one process and the process is pinned to a PU. The work
by Leon et al. nevertheless shows how cache injection can
improve application performance and, at the same time, help
reduce memory bandwidth requirements.

The methods presented above are not well suited to sup-
port directed cache injection for user-level interfaces in a
private cache environment.

The work of Huggahalli et al. [4, 6] is the current state-of-
the-art in terms of cache injection implementation in a com-
mercial processor. This mechanism called Direct Cache Ac-
cess (DCA) is currently implemented as a hardware-initiated
prefetching assist. Therefore, the I/O device makes use of
the transfer tag in DMA write transactions to use it as a hint
for the destination of data injection. PCIe Gen3 will also
include such a hint mechanism in its specification. So far,
DCA hints are only used by Intel NICs and its full function-
ality is slowly released into general availability. The draw-
back of the current implementation is that it still writes the
data to main memory first and therefore does not make full
use of the potential of cache injection. Recent patent disclo-
sures [16, 14] however show that Intel is actively working on
cache injection with memory bypass. It will then be com-
bined with consumer-controlled write-back avoidance using
a cache line invalidation command, enabling scratch pad-like
use of cache space for TCP/IP receive data buffering.

For injection control, way limitation has been proposed
[6, 15]. Its disadvantage is its inability to exploit the possi-
bility of reducing cache thrashing by replacing invalid cache
lines present in a way other than the dedicated one. It also
allows for more flexible distribution of the injected data over
cache sets. We therefore believe that our proposed tagging
method offers more flexibility for controlling and limiting
cache injection.

6. SUMMARY
In this paper we present different aspects of and archi-

tectural concepts for cache injection in private cache ar-
chitectures, especially with respect to the requirements of
user-level interfaces. As the number of cores, virtualiza-
tion requirements, and dependence on network traffic in-
creases, cache injection will become a key enabler to allow
low latency communication and to reduce the pressure on
the memory subsystem. It can be used to reduce memory
bandwidth requirements for both stack-based and user-level
interfaces. At the same time, device requirements, proces-
sor fabric particularities, and effects on the caches have to
be taken into account. Therefore we define three major re-
quirements for cache injection from a processor perspective:

Directing mechanisms They need to support a large
number of private interfaces and private caches with-
out incurring additional management cost for the hy-
pervisor.

Bulk data transfer support For efficient use of cache

injection, directing mechanisms need to be combined
with processor interconnect bulk transfers. With the
increasing dependence on network traffic [5], more at-
tention needs to be paid to the requirements of bulk
data transfers for network traffic in the design of cache
coherence protocols.

Injection control It is needed in the caches to be able
to adapt the system to different workloads.

To analyze the effects, possibilities and pitfalls of cache
injection, not only a simulator for a system of adequate size
is needed but, more importantly, real-world applications and
workloads have to be analyzed to evaluate the potential ben-
efits. This is especially important as efficient cache injection
heavily depends on precise indications from the consumer
process, i.e. an efficient HW/SW interaction.

7. REFERENCES
[1] P. J. Bohrer, R. Rajamony, and H. Shafi. Method and

Apparatus for accelerating Input/Output Processing
using Cache Injections. United States Patent 6,711,650
B1, March 2004.

[2] Compaq, Intel, and M. Corporation. Virtual Interface
Architecture Specification, Version 1.0. December
1997.

[3] F. Dahlgren. Boosting the Performance of Hybrid
Snooping Cache Protocols. ACM SIGARCH Computer
Architecture News, 23(2):60–69, 1995.

[4] R. Huggahalli, R. Iyer, and S. Tetrick. Direct Cache
Access for High Bandwidth Network I/O. In
Proceedings of the 32nd Annual Int’l Symposium on
Computer Architecture (ISCA), pages 50–59, June
2005.

[5] M. Ko, D. Eisenhauer, and R. Recio. A Case for
Convergence Enhanced Ethernet: Requirements and
Applications. In Proceesings of the 44th Annual Int’l
Conference on Cummunications, pages 5702–5707,
May 2008.

[6] A. Kumar and R. Huggahalli. Impact of Cache
Coherence Protocols on the Processing of Network
Traffic. In Proceedings of the 40th Annual Int’l
Symposium on Microarchitecture (MICRO), pages
161–171, December 2007.

[7] S. Larsen, P. Sarangam, and R. Huggahalli.
Architectural breakdown of end-to-end latency in a
tcp/ip network. In Proceedings of the 19th Symposium
on Computer Architecture and High Performance
Computing (SBAC-PAD), pages 195–202, October
2007.

[8] H. Q. Le, W. J. Starke, S. J. Fields, F. P. O’Connell,
D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M.
Schwarz, and M. T. Vaden. IBM POWER6
Microarchitecture. IBM Journal of Research and
Development, 51(6):639–662, 2007.

[9] E. Leon and A. Maccabe. Reducing the Impact of the
Memory Wall for I/O Using Cache Injection. In
Proceedings of the 15th Annual Symposium on High
Performance Interconnects (HOTI), pages 143–150,
August 2007.

[10] M. R. Marty and M. D. Hill. Virtual Hierarchies to
support Server Consolidation. In Proceedings of the

10

34th Annual Int’l Symposium on Computer
Architecture (ISCA), pages 46–56, 2007.

[11] S. S. Mukherjee and M. D. Hill. Making Network
Interfaces Less Peripheral. IEEE Computer,
31(10):70–76, 1998.

[12] PCI-SIG. Single Root I/O Virtualization and Sharing
Specification Revision 1.0. September 2007.

[13] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive Insertion Policies for High
Performance Caching. In Proceedings of the 34th
Annual Int’l Symposium on Computer Architecture
(ISCA), pages 381–391, June 2007.

[14] D. Srivastava and J. Gilbert. Direct cache access in
multiple core processors. United States Patent
7,555,594 B2, June 2009.

[15] D. Tang, Y. Bao, W. Hu, and M. Chen. Dma cache:
Using on-chip storage to architecturally separate i/o
data from cpu data for improving i/o performance. In
Proceedings of the 19th Int’l Symposium on
High-Performance Computer Architecture (HPCA),
January 2010.

[16] A. Vasudevan, S. Sen, P. Sarangam, and
R. Huggahalli. Performing Direct Data Transactions
wit a Cache Memory. United States Patent
Application 11/823,519, June 2007.

[17] B. Veal and A. Foong. Performance Scalability of a
Multi-Core Web Server. In Proceedings of the Third
Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 57–66,
December 2007.

11

