
 

 

RZ 3778 (# Z1005-003)  05/18/2010 
Computer Science 12 pages 
 
 

Research Report 
 
 
 
 
OS Streaming Deployment 
 
 
 
D. Clerc, L. Garcés-Erice, S. Rooney 
 
IBM Research – Zurich  
8803 Rüschlikon 
Switzerland 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LIMITED DISTRIBUTION NOTICE 
 
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.  It has 
been issued as a Research Report for early dissemination of its contents.  In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.  After 
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties).  Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home. 
 
 
 
 
  Research 

  Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich 



OS Streaming Deployment

David Clerc, Luis Garćes-Erice, Sean Rooney
IBM Research, Zurich Laboratory 8803 Rüschlikon, Switzerland

E-mail: {dcl,lga,sro}@zurich.ibm.com

Abstract

A network deployment of generally available operating
systems (OS) can take in the order of tens of minutes.
This is prohibitive in an environment in which OSs must
be dynamically and frequently provisioned in response to
external requests. By exploiting the fact that in general
only a small part of an OS image is actually required to
be present to perform useful tasks, we demonstrate how
an OS can perform work shortly after a deployment has
begun. This requires the insertion of a streaming device
between the operating system and the disk. We have im-
plemented such a device for Windows∗ and Linux∗. We
show that such anOS streaming deploymentreduces sig-
nificantly (i.e., to a few seconds) the time between the
start of the deployment and the moment at which the
OS is available. Furthermore, we demonstrate that the
performance overhead of using the OS during streaming
is negligible as the penalty introduced by the streaming
device is minor and the I/O performance is completely
dominated by the multiple caches between the applica-
tion and the disk.

1 Introduction

Since the standardization of the Pre Boot execution En-
vironment (PXE) [2], it has been possible to deploy op-
erating systems over the network onto x86 architecture
machines. Commercial products have built on PXE to
load and execute dedicated environments for OS con-
figuration and installation. These environments enable
a great deal of flexibility in OS deployment, allowing the
automated installation of an OS image over a large num-
ber of heterogeneous machines. An alternative approach
to OS installation and maintenance of large numbers of
clients is the use of a Storage Area Network (SAN). In
a SAN, the OS image remains resident on a logical disk
on the server, but the disk may be accessed over the net-
work by the client machines, where it appears as a local

disk. This method of provisioning machines is termed
OS streaming, and has typically been used with diskless
workstations. The standardization of iSCSI [14] has al-
lowed this to be achieved with commodity servers and
clients over any IP network.

SANs have the advantage of fast availability over a tra-
ditional network deployment as the OS may boot using
the remote disk on the server as soon as the association
with the server has been established. The relative perfor-
mance of using a remote disk over a local one depends on
their respective disk bandwidths and the network latency.
For a sufficiently fast server disk and network, remote
disk accesses may actually be faster than local ones. The
main disadvantage of SANs is that the client is always
dependent on uninterrupted access to the server. Net-
work connectivity and server availability are required at
all times for the correct functioning of the clients. In ad-
dition, SANs suffer from a problem of scalability: as the
number of clients grows the server infrastructure must be
correctly dimensioned to support the increasing load.

We describe a hybrid of these two approaches that we
term OS streaming deployment. In such a deployment,
the sectors of a logical disk in the server are transmitted
across the network to the client when they are read for
the first time, and then stored locally on the client’s disk.
Further accesses to these sectors are then obtained from
the clients’ local disk, removing load from the server.
The stored sectors are laid out on the client’s disk follow-
ing the layout of the original image on the server. When
all sectors have been copied, the client is no longer de-
pendent on the server: all accesses to the disk are local,
and the machine can be rebooted from the contents of
its own disk. The end result is identical to a traditional
OS deployment, but the OS is available for use during
the deployment itself. Our implementation makes use of
a streaming block device driver that controls the trans-
mission of sectors from the server and their storage on
the local disk. Once the machine has been deployed, all
traces of the streaming deployment driver are removed

1



work
(sectors copied)

native performance
(sectors are local)

boot image
deployment work enabled by 

streaming deployment

streaming

traditional

deployment type

timetraditional deployment

reduced performance

Figure 1: The earlier utilization of resources with streaming deployment results in more work done faster.

and the OS may be rebooted from its own disk contain-
ing the original image.

First, in Section 2 we motivate the benefits of stream-
ing deployment by measuring the number of distinct disk
sector accesses required to perform various application-
level tasks. From this, we can quantify the benefit of OS
streaming deployment for a set of representative scenar-
ios. In Section 3, we describe our implementation of an
OS streaming deployment system covering both the im-
plementation of the driver for Linux and Windows and
the means by which an OS image is prepared for stream-
ing at the server. The driver introduces some additional
processing with regard to accessing the disk, in Section 4
we report on the cost of this overhead using both a worst
case disk access pattern and industry benchmarks. Fi-
nally, Section 5 provides an overview of related work in
the field of OS streaming.

2 Motivation

An OS streaming deployment decreases the time during
which a machine is unavailable by enabling the execu-
tion of the operating system shortly after the deploy-
ment has begun. Figure 1 presents graphically the ad-
vantage of using a streaming deployment. Fast deploy-
ment is most beneficial in an environment in which im-
ages are deployed frequently, for example in response to
user requests in a cloud computing environment. While
many streaming solutions are available for virtual ma-
chines, e.g. [16], the novelty of our approach is to enable
streaming for physical as well as virtual machines. Thus,

we can perform a streaming deployment of the hyper-
visor itself, provided that the virtualization platform sup-
ports the streaming driver (e.g., KVM [8], included in the
Linux kernel, or Hyper-V [7] on Microsoft Windows). In
production environment often a mixture of physical and
virtual machines are used. While virtualization has many
advantages, it also has costs in terms of performance and
software management. In addition, for commercial Vir-
tual Machine Monitors (VMM) there is also a monetary
cost.

We compare an OS streaming deployment with both a
conventional networked deployment and with a pure re-
mote boot SAN environment. In the former case the end
result is the same, i.e. a fully deployed operating system
is running on a physical machine. The latter case is not
qualitatively the same as the client can never disconnect
from the sever. However, it is interesting to compare with
a streaming deployment as it is an alternative method of
attaining fast availability.

2.1 Benefit over a Conventional Deploy-
ment

The benefit of a streaming deployment over a classical
deployment is governed by the fraction of the disk that
needs to be accessed before useful work can be per-
formed. Copying less of the disk before being able to
execute tasks has two distinct advantages. First, if the
operating system is short lived or if its function is lim-
ited then it may be the case that much of the disk is never
accessed and copying the unaccessed sectors would sim-

2



ply have been a waste. Second, during a classical de-
ployment the resources are under used as the machine is
mainly blocked waiting on I/O and the processor is idle.
In a streaming deployment the operating system can be
used to fully control and exploit the resources of the ma-
chine during the deployment itself.

In order to quantify the benefit of a streaming deploy-
ment, we measure the total number of distinct 512-byte
sectors that are accessed from the start of the machine
boot until the point at which some application-level task
is running.

We use an installation of RedHat Enterprise Linux
(RHEL) Server 5.5, totaling 4 GB. Among other things
this particular OS image features a web server (Apache
2.2.3), a mail server (using Sendmail 8.13.8 for SMTP
and Dovecot 1.0.7 for POP), and a database (PostgreSQL
8.1.18). These are examples of applications that are typ-
ically provided as services in the cloud. All applications
are left with their default settings. We only customize
the server installation to ensure the applications above
are selected and accessories like games and image ma-
nipulation programs are not installed.

Table 1: Disk sectors needed to run certain applications
and processes, as a percentage of the original image.

Application Sectors used (%)
Kernel + RAM disk 0.16
Login (Gnome) 7.81
Web server 8.22
Mail server 8.09
Database 8.27

Table 1 shows the percentage of the total sectors from
the original image that are required for the different ap-
plications to run from the moment the machine boots.
Each application is run in an independent boot of the ma-
chine, so that one application cannot benefit from sectors
accessed by another. In addition, we show the size of the
Linux kernel and the initial RAM disk, these together
form the minimum image required to boot Linux. The
number of blocks accessed until the user is logged into
the machine is also given. The login takes place through
the Gnome graphical interface as run-level 5 is the de-
fault for RHEL 5 Server.

It can be seen from Table 1 that most of the sectors re-
quired by many commonly used application are accessed
during the boot process (i.e., after the kernel is loaded
and until the log in occurs). That is the time where all
the OS services are loaded, and the most important sys-
tem libraries are accessed for the first time. Even when
using a GUI, less than 8% of the image is required. Actu-
ally running the application adds less than 1% of sectors
to the total accessed. Note that the number of the sec-

tors does not include any data, as we consider that the
applications are either deployed in a state where one can
start using them, or they generate data as part of a larger
system.

Our experience with Windows 7 yields similar results:
from a default installation image of 5 GB, 0.7% is needed
for the machine to start booting, and 4% of the sectors are
required to log in.

To summarize, for many applications only a small part
of an OS image needs to be present to execute. More-
over, a streaming deployment can start doing useful work
(booting the machine) after a small fraction (0.16% of
the total in the measured RHEL 5 case) has been copied
to the client machine. The transfer of this small frac-
tion corresponds to the “boot image deployment” phase
in Figure 1. Note that, given that this boot image is
the minimum required by the OS to boot, a streaming
deployment is arguably the fastest way to boot an ini-
tially empty machine on its own OS: we have measured
the time required to go from the bare metal to having
RHEL 5 boot to be less than 30 seconds (see Section 4.1
for a description of the experimental setup). The absolute
lower bound for anyconventionaldeployment system is
given by the time required to transfer the OS image to
the client machine over the network. By way of refer-
ence, we measured this absolute lower bound as being
around 390 seconds on the same OS and infrastructure
(usingdd over an SSH tunnel, the performance bottle-
neck being the client’s disk). The absolute lower bound
does not correspond to actual OS deployment times, as
many other functions such as device insertion, configura-
tion, software installation are required to install a generic
image on a heterogeneous set of machines. These often
necessitate the loading of a reduced image (e.g., Win-
dows Pre-installation Environment) before the target im-
age is installed as the manipulations performed require
high-level knowledge of the OS’s structure. For ex-
ample, report [12] benchmarks the installation of Win-
dows Server 2008 on high-end hardware in the absolute
best case at more than 28 minutes. This corresponds
to our experience with other commercial products: de-
ploying the aforementioned RHEL 5 image on the ma-
chines of our experimental setup took roughly half an
hour. This deployment is much simpler than the one de-
scribed in [12], but is also performed on much less pow-
erful hardware. The lower performance of conventional
deployments with respect to the lower bound seems to be
caused by the transferring of data at the file level, instead
of at the disk sector level, and requiring the machine to
reboot several times to configure the OS.

3



2.2 Benefit over a SAN Remote Boot

In a pure SAN environment, all disk accesses are trans-
ported over the network. The performance is in large
part governed by the file system cache at the client. An
application that can frequently be served from the cache
will have performance characteristics similar to that of
a streaming deployment, whereas applications that often
need to read/write from disk will produce a larger load
at the server. TheFilebenchbenchmark suite [10] allows
the workload of a wide class of networked applications
to be emulated. We use the Linux port of the 1.4.8 ver-
sion of the Filebench benchmark to give an indication of
the reduction in server load when a local disk is avail-
able for storing already accessed sectors in addition to
the memory cache. From the set of available workloads
we select:

• varmail, which is a multithreaded extension of the
well known Postmark mail-server benchmark;

• oltp, which emulates a database server handling on-
line transaction processing;

• webserver; which is inspired by the SPEC bench-
mark for webservers.

Table 2: Disk accesses over the network in 512-byte sec-
tors

Total reads Total writes
Workload Average CoV Average CoV
varmail 734 56% 4,740,000 3%

webserver 317,000 48% 425,000 15%
oltp 250,000 5% 1,640,000 5%

We use the default setting in all cases and measure
the number of disk sectors that are read or written over
the network using iSCSI. The client machine is Redhat
Linux 5.4 with a standard ext3 file system.

Table 2 shows the total iSCSI accesses transported to
the server after running the test for a duration of 10 min-
utes and given to the first three significant figures. The
results are averaged over ten runs. The caches are emp-
tied at the end of every run of the test. There is a large
degree of non-determinism in the tests as witnessed by
the Coefficient of Variation (CoV). The total file-set for
varmail and webserveris approximately 16 MB (1000
files with average size of 16 K), which comfortably fits
into the 500 MB of RAM available on the test machine.
This can be seen in the number of disk reads measured
for varmail. In the mail server, data is written before it
is read and hence is always in cache. The webserver logs
information at some frequency, meaning that the large
log-file must be read and written across the network.

The online transaction processing benchmark performs
many small read and writes on very large files that do
not fit into RAM. This again is reflected in the read fig-
ure. The normalized disk bandwidth required per client
at the server can be inferred from the figures in the table.
For example, forvarmailapproximately 4 megabytes per
second must be written to the server’s disk. Assuming a
high performance server disk with a bandwidth of 100
MB/s, this would limit the number of clients to fewer
than 25. This ignores other factors, such as the network
bandwidth, the cost of iSCSI packet processing, the in-
terference between clients etc.

The scalability of the SAN server could be enhanced
if the clients were equipped with a local disk such that
application data was stored there. To an extent that is
what an OS streaming deployment does, except that the
existence of the local and remote disk is hidden from the
OS by the streaming device and that the contents of the
remote disk are replicated on the local disk as and when
necessary. The performance of a streaming deployed OS
becomes less like that of an OS on a SAN and more like
that of a conventionally deployed OS over time.

3 Overview

The streaming deployment process is divided into four
distinct phases:PXE boot, boot image installation, disk
initialization, andOS boot. First we detail the activities
that take place in each of these phases. Then we describe
the way in which an OS image must be prepared prior
to streaming. Finally, we outline our implementation of
the streaming device. Figure 2 shows the phases of a
streaming deployment.

3.1 Streaming Deployment Process

PXE boot See Figure 2(a). In this first phase, the client
does a PXE boot, using DHCP to obtains its IP address
and the address of a TFTP server. The client downloads
a deployment agent from the TFTP server and executes
it. The deployment agent prepares the machine during
the pre-boot phase, e.g., by writing the iSCSI configura-
tion to the standard BIOS location. The agent is a small
(several hundreds of KB) program that runs in the BIOS
environment.

Boot image installation See Figure 2(b). The agent
can be instructed remotely to download a small boot im-
age corresponding to the OS image to be deployed on the
machine. The boot image contains, among other things,
the kernel of the OS of choice, device drivers that suit
the machine (network card, etc.), an iSCSI initiator, and
the streaming device. The agent downloads the boot im-

4



OS Image for Streaming

Server Client

Boot image

PXE Install

(a) Booting PXE

OS Image for Streaming

Server Client

Boot image

Root Device

(b) Installing the boot image

OS Image for Streaming

Server Client

Kernel

Root Device

Sector Table

iSCSI 

Expand FS

(c) Initializing the disk

OS Image for Streaming

Server Client

Boot image

Root Device

Sector Table

iSCSI 

Boot Process

(d) Booting the OS

Figure 2: The distinct phases of a streaming deployment

age (writing it to disk if necessary) and executes it, ef-
fectively starting the booting of the OS. Early in the OS
boot phase, the iSCSI initiator is started and the stream-
ing device is installed as the OS’s root device.

Disk initialization See Figure 2(c). The file system on
the root device is then customized so that its size corre-
sponds to that of the local disk. By performing this cus-
tomization over the device itself, all the file system meta
data is read and thus is copied to the local disk. All mod-
ern filesystems support resizing (e.g., ext3 on Linux and
NTFS on Windows). Other disk preparation operations
may be performed in this phase, for example, creating
partitions or the installation of a bootloader. A sector
table is created on disk that records which sectors are
available locally and which still have to be copied. The
streaming device only creates this sector table if it does
not already exists; otherwise it reads the existing table to
determine which sectors had already been copied during
a previous session.

OS boot See Figure 2(d). In phase four the OS com-
pletes the full boot process. The first read of a sector on
the streaming device is carried across the network from
the image stored on the server using iSCSI. The sector
is then stored locally on the disk at the same position it
holds on the remote image, and the sector table is up-

dated. Further accesses to this sector are served locally.
At the end of this phase, the OS has booted and all the
necessary data are available on the local disk.

After the boot is completed, the operating system is
available for use, although only the sectors already ac-
cessed are actually on the local disk. Starting applica-
tions provokes transfers of additional sectors from the
remote image to the local disk. To speed up the com-
pletion of the deployment, the system may copy sectors
opportunistically when the client and server would oth-
erwise be idle. When all sectors have been copied, the
system is in the same state as if it had been convention-
ally deployed. Note that a full deployment may not ever
be needed if all the data necessary for the machine to
perform its current tasks are available on the local disk.
The deployment could end at that moment, and the ma-
chine could reboot autonomously and continue doing the
same work without server dependencies. Determining
that no single further sector from the server image is ever
going to be needed is a difficult task that falls outside
the scope of this paper. A possible solution would be to
obtain the list of sectors in use by the filesystem (filesys-
tem bitmap), thus determining when all allocated sectors
have been transferred to the local disk.

5



3.2 Boot Image preparation

Generally speaking, an image is the source material used
by a deployment engine to create a fully working OS on
the target disk. An image contains the bits of data (con-
sisting of an OS, and perhaps applications and/or data)
that need to be written on the target disk, but it can also
contain metadata needed to create or prepare the target
machine. Prior to the streaming deployment, an image
must undergo a preparation process. This does not result
in the image being modified more than what is required
in a conventional deployment (e.g., network configura-
tion). In addition, a small boot image is extracted from
the original image to be deployed, following a number of
steps that are dependent on the OS.

For Linux, we create a customized initial RAM disk
from the initial OS image. This RAM disk includes the
necessary drivers for the hardware of the target machine,
and the streaming deployment driver and scripts. To-
gether with the unmodified kernel contained in the im-
age, these two elements form the boot image. Whereas
within Linux the boot process separates naturally into
two phases, i.e., the initial part using the RAM disk and
the switch to the final root device, this is not the case for
Windows. We define the initial part of the Windows boot
process as the period when the network is not available;
at the end of this period, the network is available and we
can use the streaming device as the root device. We must
create the equivalent of the RAM disk manually, by de-
termining which sectors are accessed during the initial
part of the boot process and ensuring that these sectors
are present on the physical disk before the OS boots.

This is achieved by analyzing the configuration of
Windows to determine the list of files that the Windows
kernel loader will need to load the kernel and the stream-
ing driver in memory, and mapping this list of files into
a list of disk sectors. This operation is performed in a
special environment called Windows Preinstallation En-
vironment (PE), with read access to the image to be ana-
lyzed. The Windows PE environment is loaded in mem-
ory through a PXE boot (ramdisk boot). Windows PE is
a minimal installation environment with reduced services
that is used to install modern versions of Windows.

The necessary drivers for the client machine can be ob-
tained from an inventory in which the machines charac-
teristics are stored; alternatively, the deployment can take
place in the actual physical machine so that the hardware
can be detected. Note that in the latter case, although an
actual deployment is needed, this is required only once
per typeof machine and that a data-center usually fea-
tures many units of a few machine models. In the worst
case, all drivers in the Linux kernel can be packaged into
a single initial RAM disk, ensuring that the machine, if
supported, finds everything it requires.

3.3 The Streaming Device

The streaming device is part of the initial boot image and
is installed as the root device after network connectiv-
ity has been established and before the first access to the
local disk. The streaming device intercepts both control
and data operations for the local disk. Asector tablecon-
tains the information about which sectors are currently
available on the local disk. For read operations, the de-
vice determines using the sector table if the required sec-
tor is already present on disk. In that case the sector is
simply read from the local disk. If the required sector
is not present on the local disk, the streaming device re-
quests its transfer across the network. Once the data has
arrived the device stores it on the local disk, updates the
sector table, and returns the contents of the read sector
to the application. All further reads of that sector will
take place locally. Write operations are always exclu-
sively applied to the local disk, and never written back
to the server. If the written sector has never been ac-
cessed before, the sector table is updated to indicate that
the sector is now available locally. The sector table is
conveniently implemented as a bitmap, such that each bit
indicates whether a 512-byte sector is present on the lo-
cal disk. Hence there is a ratio of approximately 4000:1
between the size of the disk and that of the sector table;
so that for for a Terabyte disk, for example, we require
250 Megabytes to hold the sector table. Owing to mem-
ory allocation constraints in the kernel, it is not feasible
to hold the entire sector table simultaneously in RAM.
Instead, we use a paging system such that the sector ta-
ble is written at the end of the local disk and fixed-size
chunks of the sector table are paged in and out as re-
quired. The choice of a bitmap for the sector table over
more compact representations is driven by the need for
paging. The state of a given sector is located at a given
location on disk and theworst-casecost of reading that
state is fixed, i.e., the cost of paging out an in-memory
chunk to disk and paging in the chunk containing the re-
quired part of the sector table. The amount of memory
dedicated to the paging system is dictated by the stan-
dard caching tradeoff between size and performance. In
Section 4 we perform a worst case analysis and give the
performance overhead for actual configurations.

We choose to use the SAN protocol iSCSI [14] for
reading sectors of the remote device over the network as
there is wide support for this protocol on all targeted plat-
forms. Recently gPXE [5] has added additional protocol
support within the pre-execution environment, in partic-
ular it is possible for the BIOS to initiate a remote boot
using iSCSI. In this way the boot image itself may be de-
ployed using iSCSI and the streaming device could use
the remote disk without having to include an initiator in
the boot image. The transfer of state, e.g., the IP address

6



Read
N .. M

Write
P .. Q

Read
X ..Y

(1) Place I/O Operation in Queue

(2) Check Locations
of Sectors

(3)Perform I/O Operation
on Local/Remote Disk

(4) Remote Read Requires
Local Write, add new operation

(5) Update Bitmap
and Notify OS that
Operation is Complete

Streaming Device

Operating System

Local/Remote Disk

Worker
Thread

Sector Table
Bitmap

Block I/O Queue

Chunk

Figure 3: The streaming device driver

of the iSCSI server, between the pre-boot and boot phase
is enabled by the standardization of a table containing
this state, the iSCSI Boot Firmware Table (iBFT, as de-
fined in [3]), which may be written during the pre-boot
phase for the OS to read.

In the system described the streaming device copies
sectors from a single server. Unlike in a conventional
SAN it never writes to the logical unit at the server,
meaning that with suitable extensions, the same disk can
be shared among many clients. Moreover, the client may
get different parts of a disk from different servers, if the
servers all have identical copies. This requires that aux-
iliary iSCSI targets are identified using some additional
management process in addition to that identified in the
iBFT. Moreover, clients that implement an iSCSI target
can serve disk sectors to other clients. Interestingly, the
distribution of an OS image can then be treated in a sim-
ilar way to that of a large file in a BitTorrent like file
sharing system. These ideas are further developed in pa-
per [13].

We have implemented such a device for the Linux 2.6
kernel and Windows 7. Although the frameworks for
Linux and Windows are rather different, there are sim-
ilarities in the constraints imposed by the kernel envi-
ronment, leading to a common programming model. In
both OSs, the device driver works as a router for I/O op-
erations between the iSCSI disk, the local disk and the
filesystem driver above. I/O operations received on the
streaming device are submitted to the appropriate disk
for processing and a callback is executed upon comple-
tion. These callbacks are required to execute without

blocking in both Windows and Linux, meaning that they
are extremely limited in the computation they perform:
they cannot perform other I/O operations, allocate mem-
ory, or even read from the sector table as this may pro-
voke paging. In consequence, we have an event-driven
model in which callbacks generate events that get placed
in queues and a dedicated worker thread executing in
process context reads these queues and performs the re-
quired computation.

Figure 3 summarizes the activities of the device when
the OS requests that a sector I/O operation be performed
on the disk.

The Linux driver makes use of the device-mapper
framework that has been part of the kernel since version
2.6. The device-mapper allows operations on one block
device to be mapped to another. Ourdm-streamloadable
module implements the device-mapper interface. This
device takes as parameters the names of the local disk
device and the iSCSI device, and uses the device-mapper
framework to issue operations on them. The boot script
inside the RAM disk uses the device-mapper to make
dm-streamvisible as a mapped device; this mapped de-
vice is then set as the root device.

The Windows driver is implemented as anUpper
Class Filter Driverfor the disk class within the Windows
Driver Framework model. The Windows model allows
the filter driver to discover the iSCSI and local device
through the Plug and Play (PnP) facility.

7



4 Performance

The use of the streaming device driver implies some
overhead when compared with using the local disk di-
rectly because a sector must be read across the network
and written to disk the first time it is accessed. Moreover,
it is necessary to check the local availability of a sector
on every read access, which in turn may involve paging
out a chunk of the bitmap to disk and paging in another.
We follow the guidelines given in [15] and quantify the
actual cost of using the device driver in two ways.

First, we construct a test which gives the worst-case
overhead for the driver when compared with native ac-
cess, i.e. when it is necessary to page in and out chunks
of the sector table on every disk operation. Note that this
is theworst casein a relative sense and not the worst case
in absolute throughput: we measure the largestpenalty
incurred. In fact, as we shall see, the read throughput
for the worst-case test pattern may, under certain circum-
stances, be greater than reading through the file system.

In addition, we report the performance difference be-
tween running an industry file system benchmark over
the native disk and over the streaming device driver.

4.1 Test Setup

All experiments are performed in the following infras-
tructure: We set up an iSCSI target on a blade server
with 2 Intel∗ Xeon∗ processors at 3.20 GHz with Hyper-
Threading, 1024K L2 cache and 2 GB of RAM running
RHEL5. The iSCSI target is IET 1.4.18. The target ex-
ports an OS image (i.e., a file) on a SCSI disk (model
Seagate ST973401LC) as an iSCSI disk. The client blade
is similar to the first, but features 2 Xeon processors at
3 GHz with Hyper-Threading, 512K L2 cache and an
IDE disk (model Fujitsu MHT2040AS). We believe that
this setup reflects the most typical scenario of an image
being exported by a server having more powerful storage
than the client. The two blades are connected through a
Gigabit Ethernet switch.

4.2 Worst-Case Streaming Driver Over-
head

The least favorable sector access pattern for our mecha-
nism is the one that triggers the need for a new chunk of
the sector table bitmap at every access. To generate this
pattern, we access one sector at intervals whose length is
equal to the number of sectors contained in a fixed-size
bitmap chunk. When the sector is accessed for the first
time, it must be copied from the remote disk and the in-
memory bitmap chunk is updated. When the next sector
in the series is accessed, this triggers the writing to disk
of the previous chunk (as it has been modified) and the

retrieval of the next. Consequently, during the first pass,
on every disk access, we must read and write an entire
chunk. On successive passes over the same sectors we do
not need to update the bitmap so no writing of the chunk
is required, and no network access need be performed.

To perform the experiment we use an iSCSI initiator
on the client blade running a Fedora 11 (kernel 2.6.29)
with our streaming driver. For simplicity of analysis,
we configure the device to allow only a single chunk
in memory. Allowing more simultaneous in-memory
chunks would reduce the I/O overhead, but increase the
kernel memory usage of the device.

The resulting measurements are shown in Table 3.
ColumnFirst accessshows the I/O throughput measured
when accessing the sectors for the first time. This shows
that the performance for both the local disk and the
streaming device is low, e.g., less than 5 MB/s for all
chunk sizes. There is no noticeable difference between
the performance of the streaming device and the local
disk, because in this configuration the disk cache plays
no role, and performance is driven entirely by seek times;
disk seek times are two orders of magnitude slower than
the network latency.

In ColumnSteady stateshows the I/O throughput mea-
sured when sectors are accessed repeatedly. In this case,
the local disk provides good performance, e.g., more
than 100 MB/s. This is because of the on-device disk
cache (8 MB according to the disk specification). For
the streaming device, the performance penalty in can be
as high as 56% (32 KB chunk). In this case, most of the
work being done is retrieving and writing the sector table
chunks from the disk (each 4 KB of read data requires 8
times as much meta-data to be retrieved). The perfor-
mance penalty is reduced to∼11% when the chunk size
is 4 KB.

For a specific disk access pattern we could configure
the chunk size and number of chunks such that the over-
head of paging is negligible. For example, when there
is high locality in disk accesses, large chunk sizes will
be beneficial. If there is a small number of distinct lo-
cations on disk that are often accessed, then choosing a
number of chunks equal to that number will give good
performance. The figures reported show that even when
the paging configuration is entirely inappropriate for the
access pattern, the penalty is no more than a factor differ-
ence over native access. These measurements do not al-
low us to infer anything about the I/O throughput that an
application will observe. In the next section, we examine
the performance of the driver in more realistic scenarios
by using an industry benchmark.

8



Table 3: Performance of worst-case reads over the device with normal access (MB/s).
Local disk Streaming device

Chunk size (KB) First access Steady state First access Steady state
32 4.58 112.42 4.20 49.28
16 3.41 129.65 4.63 70.64
8 3.13 138.26 4.72 95.62
4 3.40 113.72 4.05 100.69

Table 4: Operations tested with iozone
Operation Test description
Write Write a file sequentially
Read Read an already created file sequentially
Rewrite Write an already created file sequentially
Reread Read an already read file sequentially
Randwrite Write to a file at random locations
Randread Read from a file at random locations

4.3 File System Benchmark

We use theiozonemicro benchmark [11] to compare
the performance of a file system mounted on the driver
against mounting it directly on the disk. We chooseio-
zonebecause it is simple and available for both Windows
and Linux. iozone is designed to allow the detection
of performance bottlenecks, it measures a range of file
operations performed on files of varying sizes and us-
ing records of varying length. It also allows the tester
to control the options used when performing the opera-
tion, e.g., synchronous against asynchronous writes. In
all cases we use the default options foriozoneand select
some subset of file operations; Table 4 summarizes these
operations. Note that as a file is always written before it
is read, all sectors of the file are written locally and then
read locally, i.e. the remote device is never accessed and
what is tested is the overhead of having to go through the
device before accessing the local disk. We only consider
files which are too large to fit into the L2 data cache of
the processor (512 KB).

Figure 4 shows the cost of performing various file op-
erations for Windows and Linux on a file of size 524 KB
that fits comfortably into the 2 GB of memory avail-
able, but which is large enough to require multiple lev-
els of block indirection within the inode. The micro-
benchmarks are highly deterministic, and the standard
deviation is less than 1% of the average in all cases
recorded.

The performance of the different types ofread are
governed by the file system cache and are identically for
both the native and streaming device. Forwrite opera-
tions, the native disk allows faster throughput than the
driver although this is never more than 10%. We only

show the results for a fixed record length of 128 KB
because while additional caching effects are observable
for different record sizes, e.g. file system read ahead,
both the native and the stream device benefit from them
equally.

Interestingly, in the Windows case, the writing per-
formance seems to be better than when using Linux,
whereas the reading performance is better for Linux.
These different behaviors are governed by different
caching policies and filesystem design decisions in the
operating systems. Otherwise, the results for both Win-
dows 7 and the Fedora 11 show the same picture with
respect to the overhead introduced by the driver.

Figure 5(a) and 5(b) show the cost of performing var-
ious file operations on a file of size 3 GB that can-
not fit into memory. We give a detailed view showing
how the performance changes across a range of record
sizes. We omit the results for Windows because, as Fig-
ure 4 showed, it behaves very similarly. The perfor-
mance of thewrite operations is similar to the previous
case, with the native disk doing slightly better than the
driver. Theread performance is much less than that in
the previous case because the benefits of the cache dis-
appear and reading and writing are broadly similar. The
random-write is worse than sequentialwrite for small
records sizes, presumably because the disk head must
move much more. As the record size increases, the
overhead per byte of moving the disk head reduces and
random-writethen approaches the performance ofwrite.
The random-readbehaves similarly, but with the differ-
ence that for arandom-readthere is some probability
that the record sought is in the cache, whereas for a se-
quentialread the probability is zero, as the file is bigger
than the cache and when repeatedly read sequentially the
cache always misses. Consequently, as the overhead of
disk head movement reduces with increasing record size,
the benefit of caching starts to manifest itself and the
random-readactually out performs the sequentialread.
This effect is observed for both the driver and the native
case.

Also note that the observed read throughput for both
the native disk and device driver is significantly less than
that reported in Section 4.2 when the disk was being ac-
cessed directly. This shows the overhead of accessing

9



 10000

 100000

 1e+06

 1e+07

randread

randwrite

reread

rewrite

read
write

kB
/S

ec

File operation

Comparison of driver to native performance on Linux 2.6 using ext3 
 for a File 524288K and records of 128K

streaming driver
native disk

(a) Linux 2.6 results

 10000

 100000

 1e+06

 1e+07

randread

randwrite

reread

rewrite

read
write

kB
/S

ec

File operation

Comparison of driver to native performance on Windows 7 Professional using NTFS 
 for a File 524288K and records of 128K

streaming driver
native disk

(b) Windows 7 results

Figure 4: Performance of iozone micro-benchmarks on a file that fits into the system cache

the sectors of a large file via the file system when many
meta-data blocks must be read to identify the data blocks.

In summary, the observed performance of file I/O is
governed mainly by the caches at the file-system level
(and above). The overhead of using the driver can be
observed for file write operations on large files, but the
effect is less than 10% on all observed cases. We em-
phasize that the penalty of using the driver is only expe-
rienced during the OS deployment, subsequent to this all
disk accesses will be native.

5 Related Work

Thedm-cachesystem described in [6] allows sectors that
are accessed from a storage area network to be locally

cached on disk so that further accesses to those sectors
are performed efficiently. It is a Linux-specific solution
and make uses of the device-mapper to create a driver.
dm-cache uses its own caching format to lay sectors on
disk, meaning that it is never possible to disconnect from
the server. The totality of the cache meta-data is retained
in memory, i.e. there is no equivalent of our sector table
paging system. For dm-cache, this is a not a concern
because the cache is small relative to the size of the disk
and the cache contents can be lost without affecting the
functioning of the system.

The Citrix provisioning server [9] allows multiple
clients to boot off a virtual disk (vDisk) held on a server.
The client may be running on either virtual or phys-
ical machines. The clients contain a special device
that allows transparent access to the remote virtual disk.

10



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 64  128  256  512  1024  2048  4096  8192  16384

kB
/S

ec

kB Record

Performance of driver measured with iozone, 
 File Size is 3 Gb

Random Read
Read

Reread
Write

Rewrite
Random write

(a) Driver

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 64  128  256  512  1024  2048  4096  8192  16384

kB
/S

ec

kB Record

Performance of  native disk measured with iozone, 
 File Size is 3 Gb

Random Read
Read

Reread
Write

Rewrite
Random write

(b) Native Disk

Figure 5: Performance of iozone micro-benchmarks on a file that does not fit in the system cache (Fedora 11 Linux
2.6 results)

Clients have only read access to the vDisk, allowing mul-
tiple clients to share the same image. Write access to the
vDisk is achieved by storing written blocks separately;
this cache of written blocks may be held at either the
server or the client itself. The objective of the Citrix
provisioning server is not to physically deploy OS im-
ages but to simplify their management; consequently the
server can never be removed.

iBoot [1] enables a machine to boot from a remote
disk. This approach allows centralized management of
the disks. iBoot is thus marketed as a disk-less work-
station solution. iBoot consists of a ROM image, which
contains iSCSI client code, a TCP/IP stack, and BIOS
interrupt code. Upon boot, the BIOS disk I/O inter-
rupt goes through the iBoot code to communicate di-

rectly with the remote iSCSI target, providing seamless
access to the SCSI logical units. iBoot is now part of the
firmware of IBM’s PowerPC∗ based blade servers.

CCBoot [18] is a means of creating a disk-less ver-
sion of Windows based on a combination of iSCSI and
an extended form of PXE — gPXE [5]. gPXE extends
the standard configuration of the BIOS to support iSCSI
as well as other protocols. This means that Windows
can be configured to boottransparentlyfrom a remote
disk. gPXE can either be flashed in the ROM of the na-
tive BIOS or installed on an externally pluggable device.
Alternatively, PXE can be used to install gPXE, which
then can modify the PXE environment. The latter is the
mode that CCBoot uses.

VMWare has a number of technologies using stream-

11



ing methods.ThinApp[17] delivers application data to a
computer as the application is being executed. The inter-
est of ThinApp is being able to run applications without
having to install them or running a virtual machine. The
applications may require changes in the registry, environ-
ment variables, etc, these are performed in a sand-box
in which the application runs rather than in the VM it-
self. Paper [4] propose something similar for physical
machines enabled by redirecting Windows’ system calls.
After the application has completed no trace is left be-
hind. ThinApp uses streaming to load the applications
from a shared repository.VM Streamingis a feature in-
troduced in VMWare Workstation 6.5 [16] that enables
booting a VM from a virtual disk by providing its URL;
the contents will be downloaded as needed by the execu-
tion. As in essence the virtual disk is a file, VM Stream-
ing copies the file across the network, such that it is ulti-
mately available on the machine on which the VM is ex-
ecuted. Our work also allows the streaming of a virtual
machine, but unlike VM Streaming it is independent of
the Virtual Machine Monitor used. Moreover, when ker-
nel based hypervisors such as KVM [8] or Hyper-V [7].
are used our system enables the streaming deployment of
the hypervisor itself onto the bare metal.

6 Conclusion

We have shown how operating systems can be made
available for use during their deployment. This is
of increasing importance in environments in which
many different types of OS are deployed in response
to user-driven demand. Our solution is to perform a
streaming deployment in which sectors are transferred
on their first request. Compared with a conventional
network deployment, this decreases the time during
which the machine is unavailable by an order of mag-
nitude. We have reported on our implementation of an
OS Streaming deployment system, describing the means
by which it is implemented on two widely available
operating systems, namely Windows 7 and Linux 2.6,
and provided relevant performance results.

* Linux is a registered trademark of Linus Torvalds in the United

States, other countries, or both. Windows is a trademark of Microsoft

Corporation in the United States, other countries, or both.Intel and

Intel Xeon are trademarks or registered trademarks of Intel Corpora-

tion or its subsidiaries in the United States and other countries. IBM

and PowerPC are registered trademarks of International Business Ma-

chines Corporation in the United States, other countries, or both. Other

product and service names might be trademarks of other companies.

References

[1] iBoot: Remote boot over iSCSI.http://www.haifa.ibm.
com/projects/storage/iboot/index.html.

[2] Pre Boot Execution Environment (PXE) Specification, v2.1,
September 1999. http://www.intel.com/design/
archives/wfm/downloads/pxespec.htm.

[3] Advanced Configuration and Power Interface (ACPI) Specifi-
cation, Revision 3.0b, October 2006. http://www.acpi.
info/spec30b.htm.

[4] A LPERN, B., AUERBACH, J., BALA , V., FRAUENHOFER, T.,
MUMMERT, T., AND PIGOTT, M. PDS: a virtual execution en-
vironment for software deployment. InIn Proceedings of the
1st International Conference on Virtual Execution Environments
(Chicago, IL, USA, June 2005), ACM Press, pp. 175–185.

[5] A NVIN , P., AND CONNOR, M. x86 Network Booting: Integrat-
ing gPXE and PXELINUX. InProceedings of the Linux Sympo-
sium(Ontario, Canada, July 2008).

[6] HENSBERGEN, E. V., AND ZHAO, M. Dynamic policy disk
caching for storage neteworks.IBM Research Report RC24123
(November 2006).

[7] K APPEL, J. A., VELTE, A., AND VELTE, T. Microsoft Virtual-
ization with Hyper-V. McGraw-Hill, Inc., New York, NY, USA,
2010.

[8] K IVITY , A., KAMAY , Y., LAOR, D., LUBLIN , U., AND

L IGUORI, A. KVM: the Linux virtual machine monitor. InPro-
ceedings of the 2007 Linux Symposium(Ottawa, ON, Canada,
June 2007), vol. 1, pp. 225–230.

[9] M ADDEN, B. A better way to manage Citrix servers: centralized
block-level disk image streaming.Citrix White paper(March
2006).

[10] MCDOUGAL, R. Filebench: a prototype model based
workload for file systems, work in progress. Sun Mi-
crosystems. http://www.solarisinternals.com/si/
tools/filebench/filebench_nasconf.pdf.

[11] NORCOTT, W., AND CAPPS, D. Iozone Filesystem Benchmark,
March 2010.http://www.iozone.org.

[12] PRINCIPLED TECHNOLOGIES, TEST REPORTCOMMISSIONED

BY DELL. Time Comparison for OS deployment, Dell United
Server Configuator version 1.1 vs HP SmartStart version 8.25
x64, August 2009.

[13] ROONEY, S.,AND GARCÉS-ERICE, L. Parallelizing OS deploy-
ment through streaming.Submitted as a Brief Announcement to
PODC 2010(2010).

[14] SATRAN , J., METH, K., SAPUNTZAKIS, C., CHADALAPAKA ,
M., AND ZEIDNER, E. Internet Small Computer Systems Inter-
face. Network Working Group RFC, April 2004.

[15] TRAEGER, A., ZADOK , E., JOUKOV, N., AND WRIGHT, C. P.
A nine year study of file system and storage benchmarking.ACM
Transactions on Storage 4, 2 (2008), 1–56.

[16] VMWARE, INC. Virtual Machine Streaming, August
2008.http://www.vmware.com/products/beta/ws/
releasewwws_ws65_beta.html.

[17] VMWARE, INC. Streaming Execution Mode – Applica-
tion Streaming with VMware ThinApp, June 2009. http:
//www.vmware.com/files/pdf/VMware_ThinApp_
Streaming_Execution_Mode_Information_Guide.
pdf.

[18] YOUNGSSOFT. CCBoot diskless boot
WinXP/Win2003/Vista/Win2008. Youngssoft User Manual
(October 2009).

12


