

RZ 3780 (# Z1012-002) 12/09/2010
Computer Science 24 pages

Research Report

Symbolic Execution of Acyclic Workflow Graphs

C. Favre, H. Völzer

IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

Symbolic Execution of Acyclic Workflow Graphs

Cédric Favre and Hagen V̈olzer

IBM Research — Zurich
{ced,hvo}@zurich.ibm.com

Abstract. We propose a new technique to analyze the control-flow, i.e., the work-
flow graph of a business process model, which we callsymbolic execution. We
consider acyclic workflow graphs that may contain inclusive OR gateways and de-
fine a symbolic execution for them that runs in quadratic time. The result allows
us to decide in quadratic time, for any pair of control-flow edges or tasks of the
workflow graph, whether they are sometimes, never, or always reached concur-
rently. This has different applications in finding control- and data-flow errors. In
particular, we show how to decide soundness of an acyclic workflow graph with
inclusive OR gateways in quadratic time. Moreover, we show that symbolicexe-
cution provides diagnostic information that allows the user to efficiently deal with
spurious errors that arise due to over-approximation of the data-based decisions
in the process.

1 Introduction

With the increased use of business process models in simulation, code generation and
direct execution, it becomes more and more important that the processes are free of
control- and data-flow errors. Various studies (see [1] for asurvey) have shown that
such errors frequently occur in process models.

Some of these errors can be characterized in terms of relationships between control-
flow edges or tasks of the process. For example, a process is free ofdeadlockif any
two incoming edges of an AND-join are always marked concurrently. We can say that
such a pair of edges isalways concurrent. A process is free oflack of synchronization
if any two incoming edges of an XOR-join aremutually exclusive, i.e., they never get
marked concurrently. A data-flow hazard may arise if two conflicting operations on the
same data object are executed concurrently. That can happenonly if the tasks contain-
ing the data operations aresometimes concurrent, i.e., not mutually exclusive. Similar
relationships have also been proposed for a behavioral comparison of processes [2].

Such control-flow relations can be computed by enumerating all reachable control-
flow states of the process by explicitly executing itsworkflow graph, i.e., its control-
flow representation. However, there can be exponentially many such states, resulting
in a worst-case exponential time algorithm. We propose in this paper a form of sym-
bolic execution of a workflow graph. We consider acyclic workflow graphs that may
contain inclusive OR (IOR) gateways and define a symbolic execution of such graphs
that runs in quadratic time. It captures enough informationto allow us to decide, us-
ing a complementing graph analysis technique, the above mentioned relationships for
any pair of control-flow edges in quadratic time. In particular, we obtain a control-flow

analysis that decidessoundness, i.e., absence of deadlock and lack of synchronization
in quadratic time for any acyclic graph that may contain IOR gateways.

The symbolic execution keeps track of which decision outcomes within the process
flow lead to which edge being marked. Therefore, it can provide information, in case of
a detected error, about which decisions potentially lead tothe error. We show how this
leads to more compact diagnostic information than obtainedwith prior techniques. In
particular, we show how this allows the user to efficiently deal with spurious errors that
arise due to over-approximation of the data-based decisions in the process.

Some existing techniques can decide soundness of a workflow graph without IOR
gateways, or equivalently a Free Choice Petri net, in polynomial time: A technique
based on therank theorem[3] in cubic time and techniques based on a complete re-
duction calculus [4] in more than cubic time. However, diagnostic information is not
provided by the former technique and was not yet worked out for the latter.

Techniques based onstate space explorationreturn anerror trace, i.e., an execution
that exhibits the control-flow error, but they have exponential worst-case time complex-
ity. It has been shown [5] for industrial processes without IOR gateways that the latter
problem can be effectively addressed in practice using various reduction techniques.
Various additional structural reduction techniques existin the literature, e.g., [6, 7].

Wynn et al. [8] provide a study of verifying processes with IOR gateways. They
apply state space exploration and use a different IOR-join semantics.

We are not aware of approaches that provide diagnostic information to deal with the
over-approximation due to data abstraction in workflow graphs. Existing approaches to
check other notions of soundness such asrelaxed soundness[9] or weak soundness[10]
have exponential complexity.

The paper is structured as follows: After setting the preliminary notions, we intro-
duce symbolic execution in Sect. 3 and show how the relationship ‘always-concurrent’
and the absence of deadlock can be decided. Then, we discuss the ‘sometimes-concur-
rent’ and ‘mutually-exclusive’ relationships and lack of synchronization in Sect. 4. In
Sect. 5, we show how the diagnostic information provided by symbolic execution can be
used to deal with the over-approximation that results from abstracting from data-based
decisions.

This research reports extends a conference paper [11] with proofs that the confer-
ence paper omits to satisfy space constraints.

2 Preliminaries

In this section, we define preliminary notions which includeworkflow graphs and their
soundness property.

2.1 Basic notions

Let U be a set. Amulti-setover U is a mappingm : U → N. We writem[e] instead
of m(e). For two multi-setsm1,m2, and eachx ∈ U, we have : (m1 +m2)[x] = m1[x] +
m2[x] and (m1 −m2)[x] = m1[x] −m2[x]. Thescalar productis defined bym1 ⊗m2 =

2

∑

x∈U

(m1[x] ×m2[x]). By abuse of notation, we sometimes use a setX ⊆ U in a multi-set

context by settingX[x] = 1 if x ∈ X andX[x] = 0 otherwise.
A directed graph G= (N,E) consists of a setN of nodesand a setE of ordered

pairs (s, t) of nodes, writtens→ t. A directed multi-graph G= (N,E, c) consists of a
setN of nodes, a setE of edgesand a mappingc : E→ (N ∪ {null}) × (N ∪ {null}) that
maps each edge to an ordered pair of nodes or null values. Ifc mapse ∈ E to an ordered
pair (s, t) ∈ N, thens is called thesourceof e, t is called thetargetof e, e is anoutgoing
edge ofs, ande is anincomingedge oft. If s = null, then we say thate is asourceof
the graph. Ift = null, then we say thate is asink of the graph. For a noden ∈ N, the
set of incoming edges ofn is denoted by◦n. The set of outgoing edges ofn is denoted
n◦. If n has only one incoming edgee, ◦n denotese (◦n would denote{e}). If n has only
one outgoing edgee′, n◦ denotese′.

A path p= 〈x0, ..., xn〉 from an elementx0 to an elementxn in a graphG = (N,E, c)
is an alternating sequence of elementsxi in N and inE such that, for any elementxi ∈ E
with c(xi) = (si , ti), if i , 0 thensi = xi−1 and if i , n thenti = xi+1. If x is an element
of a pathp we say thatp contains x. A path istrivial , if it is contains only one element.
A cycleis a pathb = 〈x0 . . . xn〉 such thatx0 = xn andb is not trivial.

2.2 Workflow graphs

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

Fig. 1.A workflow graph.

A workflow graph W= (N,E, c, l) con-
sists of a multi-graphG = (N,E, c) and
a mappingl : N → {AND,XOR, IOR}
that associates alogic with every node
n ∈ N, such that: 1. The workflow graph
has exactly one source and at least one
sink. 2. For each noden ∈ N, there ex-
ists a path from the source to one of the
sinks that containsn. W is cyclic if there
exists a cycle inW.

Figure 1 depicts an acyclic workflow graph. A diamond containing a plus symbol
represents a node with AND logic, an empty diamond represents a node with XOR
logic, and a diamond with a circle inside represents a node with IOR logic. A node
with a single incoming edge and multiple outgoing edges is called asplit. A node with
multiple incoming edges and single outgoing edge is called ajoin. For the sake of
presentation simplicity, we use workflow graphs composed ofonly splits and joins.

Let, in the rest of this section,W = (N,E, c, l) be an acyclic graph. Letx1, x2 ∈ N∪E
be two elements ofW such that there is a path fromx1 to x2. We then say thatx1

precedes x2, denotedx1 < x2, andx2 follows x1. Two elementsx1, x2 ∈ N ∪ E of W
areunrelated, denotedx1 || x2, if x1 , x2 and neitherx1 < x2 nor x2 < x1. A prefixof
W is a workflow graphW′ = (N′,E′, c′, l′) such thatN′ ⊆ N, for each pair of nodes
n1,n2 ∈ N, if n2 ∈ N′ andn1 < n2 thenn1 ∈ N′, an edgeebelongs toE′ if there exists a
noden ∈ N′ such thate is adjacent ton, for each noden ∈ N′, we havel′(n) = l(n), and
for each edgee ∈ E′, we havec′(e) = (s′, t′), c(e) = (s, t), s′ = s, t′ = t if t ∈ N′, and
t′ = null otherwise.

3

The semantics of workflow graphs is, similarly to Petri nets,defined as a token
game. Ifn has AND logic, executingn removes one token from each of the incoming
edges ofn and adds one token to each of the outgoing edges ofn. If n has XOR logic,
executingn removes one token from one of the incoming edges ofn and adds one token
to one of the outgoing edges ofn. If n has IOR logic,n can be executed if and only if
at least one of its incoming edges is marked and there is no marked edge that precedes
a non-marked incoming edge ofn. Whenn executes, it removes one token from each
of its marked incoming edges and adds one token to a non-emptysubset of its outgoing
edges. This IOR semantics, which is explained in detail elwhere [12], complies with the
BPMN standard and BPEL’s dead path elimination.

The outgoing edge or set of outgoing edges to which a token is added when exe-
cuting a node with XOR or IOR logic is non-deterministic, by which we abstract from
data-based or event-based decisions in the process. In the following, this semantics is
defined formally.

A marking m : E → N of a workflow graph with edgesE is a multi-set overE.
Whenm[e] = k, we say that the edgee is marked with k tokensin m. Whenm[e] > 0,
we say that the edgee is markedin m. The initial marking ms of W is such that the
source edge is marked with one token inms and no other edge is marked inms.

Let m andm′ be two markings ofW. A tuple (E1,n,E2) is called atransition if
n ∈ N, E1 ⊆ ◦n, andE2 ⊆ n◦. A transition (E1,n,E2) is enabledin a markingm if for
each edgee ∈ E1 we havem[e] > 0 and any of the following propositions:

– l(n) = AND, E1 = ◦n, andE2 = n◦.
– l(n) = XOR, there exists an edgee such thatE1 = {e}, and there exists an edgee′

such thatE2 = {e′}.
– l(n) = IOR, E1,E2 are non-empty,E1 = {e ∈ ◦n | m(e) > 0}, and, for every edge

e ∈ ◦n \ E1, there exists no edgee′, marked inm, such thate′ < e.

A transitionT can beexecutedin a markingm if T is enabled inm. WhenT is executed
in m, a markingm′ results such thatm′ = m− E1 + E2.

An execution sequenceof W is an alternate sequenceσ = 〈m0,T0,m1,T1...〉 of
markingsmi of W and transitionsTi = (Ei ,ni ,E′i) such that, for eachi ≥ 0,Ti is enabled
in mi andmi+1 results from the execution ofTi in mi . An executionof W is an execution
sequenceσ = 〈m0, ...,mn〉 of W such thatn > 0, m0 = ms and there is no transition
enabled inmn. As the transition between two markings can be easily deduced, we often
omit the transitions when representing an execution or an execution sequence, i.e., we
write them as sequence of markings.

Let m be a marking ofW, m is reachable froma markingm′ of W if there exists an
execution sequenceσ = 〈m0, ...,mn〉 of W such thatm0 = m′ andm= mn. The marking
m is areachable markingof W if m is reachable fromms.

2.3 Soundness

A deadlock occurs when a token stays ‘blocked’ on one edge of the workflow graph: A
deadlockof W is a reachable markingm of W such that there exists a non-sink edge
e ∈ E that is marked inm ande is marked in all the markings reachable fromm. We

4

say thatW containsa deadlock if and only if there exists a reachable markingm of
W such thatm is a deadlock. The workflow graph in Fig. 1 permits the executionσ =
〈[s], [a,b, c], [b, c,d], [b, c,h], [b, f ,h], [h, i], [j]〉. The marking [j] is a deadlock.

A lack of synchronizationof W is a reachable markingmof W such that there exists
an edgee ∈ E that is marked by more than one token inm. We say that a workflow graph
W containsa lack of synchronization if and only if there exists a reachable markingm
of W such thatm is a lack of synchronization.

A workflow graph issoundif it contains neither a deadlock nor a lack of synchro-
nization. Note that this notion of soundness is equivalent to the notion presented by van
der Aalst [13] for workflow nets.

3 Symbolic Execution and Always-Concurrent Edges

In this section, we introducesymbolic executionand show how we use it to detect
deadlocks and determine whether two edges are always-concurrent. We start by giving
a characterization of deadlock, then introduce the symbolsand the propagation rules
of the symbols, we show how to compute a normal form of a symboland discuss the
complexity of the proposed technique.

Let, in this section,W = (N,E, c, l) be an acyclic workflow graph prefix that is free
of lack of synchronization. We describe in Sect. 4.3 how we determine such prefix.

3.1 Equivalence of edges and a characterization of deadlock

A deadlock arises at an AND-join when one of its incoming edges e is marked dur-
ing an executionσ but another edgee′ does not get marked duringσ because, ase′

never gets marked duringσ, the AND-join cannot execute and the token markinge
is ‘blocked’. Thus, in order to have no deadlock, the incoming edges of an AND-join
need to get marked ‘together’ in each execution. We can precisely capture this through
edge equivalenceor the notionalways-concurrent. In an acyclic workflow graph, only
an AND-join can can ‘cause’ a deadlock. An IOR-join can ‘block’ a token if and only
if there exists a preceding node that blocks another token. Thus, whenever there is a
deadlock in an acyclic workflow graph, there exists an AND-join with non-equivalent
incoming edges. Nodes that are nor AND-join or IOR-join cannot block a token. To
introduce edge equivalence, we define theParikh vectorof an execution, which records,
for each edge, the number of tokens that are produced on that edge during the execution.

Definition 1 (Parikh vector). TheParikh vectorof an executionσ = 〈m0,T0, ...〉, writ-
ten #»
σ, is the multi-set of edges such that#»

σ[s] = 1 for the source s ofW and otherwise
#»
σ[e] = k such that k= |{i | Ti = (E,n,E′) ∧ e ∈ E′}|.

For example, given the executionσ = 〈[s], ({s}, F, {a,b, c}), [a,b, c], ({a},X, {d}),
[b, c,d], ({d},Y, {h}), [b, c,h], ({c}, I , { f }), [b, f ,h] ({b, f },M, {i}), [h, i], ({h, i}, J, { j}), [j]〉
of the workflow graph of Fig. 1, we have#»σ[s] = #»

σ[a] = #»
σ[b] = #»

σ[c] = #»
σ[d] = #»

σ[f]
=

#»
σ[h] = #»

σ[i] = #»
σ[j] = 1 and#»

σ[e] = #»
σ[g] = 0.

5

Definition 2 (Edge equivalence, always-concurrent).

– Two edges areparallel in an executionσ if there is a marking inσ in which both
edges are marked. Two executionsσ,σ′ are interleaving equivalentif #»

σ =
#»
σ
′.

Two edges areconcurrentin σ if there is an executionσ′ such thatσ andσ′ are
interleaving equivalent and the edges are parallel inσ′. Two edges arealways-
concurrentif they are concurrent in every execution of W.

– Two edges e1 and e2 of W areequivalent, written e1 ≡ e2, if for any executionσ of
W, we have#»σ[e1] = #»

σ[e2].

Two executions that are interleaving equivalent execute the same transitions; possi-
bly in a different order. Note that these definitions are founded only foracyclic workflow
graphs.

Proposition 1. Two edges e1,e2 are always-concurrent iff e1 ≡ e2 and e1 || e2.

In the workflow graph depicted by Fig. 1, we havea ≡ b ≡ h anda . d . g. Note
that we have discussed earlier an execution of the workflow graph of Fig. 1 where#»σ[a]
=

#»
σ[d]. However, there exist another execution such that#»

σ[a] , #»
σ[d] and therefore

a . d. Moreover,a is always-concurrent tob but not toh.

Proposition 2. W contains adeadlockiff there exist two incoming edges of an AND-
join of W that are not equivalent, or equivalently, that are not always-concurrent.

In the workflow graph depicted by Fig. 1, the edgesj andgare not always-concurrent.
Therefore, we get a deadlock at the AND-joinD.

In the following, we show how we can compute edge equivalenceand therefore also
whether two edges are always-concurrent.

3.2 Symbolic execution

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

{s}

{s}

{s}

{s}

{d}

{e}

{f}

{g}

{d,e}

{s,f}

{d,e}

Fig. 2. The assignment resulting from the
symbolic execution of the workflow graph
of Fig. 1.

The first step to compute edge equiva-
lence is the symbolic execution of the
workflow graph. During symbolic execu-
tion, each edge is labeled with a symbol,
which is a set ofoutcomesof the workflow
graph. Anoutcomeis the source edge, an
outgoing edge of an XOR-split, or an out-
going edge of an IOR-split in the graph.
Figure 2 shows the labeling of the work-
flow graph of Fig. 1 that results from its
symbolic execution.

The symbolic execution starts with labeling the sources with {s}. All other edges
are yet unlabeled. If all incoming edges of a node are labeled, we may label the out-
going edges of the node by applying one of the propagation rules depicted by Fig. 3,
depending on the logic of the node.

6

a

b

a

b

S

{a}

{b}

S

S

S

S

{a}

{b}

S1∪S2

S2

S1

S2

S1

S2

S1

S1∪S2S1

a

b
if S

1
 ≡ S

2

Fig. 3.The propagation rules.

The intuition behind symbolic
execution is to label an edgeewith
a setS of outcomes such thate
is marked during an executionσ
if and only if some of the out-
comes inS get marked duringσ.
In general, the label of the outgo-
ing edges depends on the labels of
the incoming edges. However, if
the node is an XOR-split or an IOR-split, then the symbol thatis assigned to one of
the outgoing edges only contains that outgoing edge. The symbol associated to the in-
coming edge of the node is then ignored. In case of an AND-join, the propagation rule
additionally requires the symbol labeling its incoming edges to be equivalent (which
we will describe in Sect. 3.3) in order to be applied. The AND-join rule then chooses
one of the labels of the incoming edges non-deterministically as the label for the out-
going edge. The symbol labeling an outgoing edge of a node that is an XOR-join or
an IOR-join, is the union of the symbols labeling the incoming edges of the node. The
symbolic execution terminates when there is no progation rule that can be applied. In
the following, we define these propagation rules formally.

Definition 3 (Symbolic execution).An outcomeof W is the source, an outgoing edge
of some XOR-split, or an outgoing edge of some IOR-split of W.A symbolof W is a set
of outcomes of W. Anassignmentis a mappingϕ that assigns a symbol to each edge of
some prefix of W. If e is an edge of that prefix, we say that e islabeled underϕ.

For every node n of a workflow graph, we describe thepropagationby the node n

from an assignmentϕ to an assignmentϕ′, writtenϕ
n
→ ϕ′. The propagationϕ

n
→ ϕ′ is

activatedwhen all the incoming edges of n are labeled underϕ and no outgoing edge
is labeled underϕ. Additionally, if n is an AND-join, the symbol associated toeach
incoming edges of n must be equivalent (according to Def. 4) for the propagation to be

activated. If n is activated inϕ, we haveϕ
n
→ ϕ′ whereϕ′ is obtained as follows, for

any edge e of W:

– If l (n) = AND and there exists an edge e′ ∈ ◦n, thenϕ′(e) = ϕ(e′) for e ∈ n◦ and
ϕ
′(e) = ϕ(e) otherwise.

– If n is an XOR-split or an IOR-split, thenϕ′(e) = {e} for e ∈ n◦ andϕ′(e) = ϕ(e)
otherwise.

– If n is an XOR-join or an IOR-join, forϕ′(e) =
⋃

e′∈◦n ϕ(e
′)for e ∈ n◦ andϕ′(e) =

ϕ(e) otherwise.

As said above, the propagation rules establish that an edgee is marked during an
executionσ if and only if some of the outcomes inϕ(e) are marked duringσ:

Lemma 1. For any executionσ of W and any edge e∈ E, #»
σ ⊗ ϕ(e) > 0⇔ #»

σ[e] > 0.

Proof. We perform an induction on the number of edges labeledunderϕ. We increase
the number of edges labeled underϕ using propagation rules of Def. 3.

7

Base case:Only the source edge s of W is labeled underϕ with the symbol{s}. By the
definition of the Parikh vector (Def. 1),#»σ[s] = 1. Trivially, we have#»

σ ⊗ ϕ(s) =
0⇔ #»

σ[s] = 0.
Induction step: Assuming an assignmentϕ of W according to Def. 3 and thatϕ(e) ⊗

#»
σ = 0 ⇔ #»

σ[e] = 0 holds for each executionσ of W and edge e labeled under
ϕ. We want to show that, when labeling the outgoing edge(s) of any node n∈ N
according to the assignment propagation rules, i.e., applying one transition rule to
increaseϕ, #»

σ⊗ϕ(e) = 0⇔ #»
σ[e] = 0 for each executionσ of W and labeled edge e.

As the assigned symbols do not change, we only have to show thelatter proposition
for the freshly labeled edges.
For each executionσ, each incoming edge eI ∈ ◦n, and each outgoing edge eO ∈ n◦
of n, we consider the four following cases:
1. When n is an XOR-split or IOR-split: By the assignment propagation rules

(Def. 3), we haveϕ(eO) = [eO]. Thus, it follows directly from the definition of
the Parikh vector (Def. 1) thatϕ(eO) ⊗ #»

σ =
#»
σ[eO].

2. When n is an XOR-join:
ϕ(eO) ⊗ #»

σ = 0
⇔
∑

eIk∈◦n

ϕ(eIk) ⊗ #»
σ = 0, by the assignment propagation rules (Def. 3).

⇔
∑

eIk∈◦n

#»
σ[eIk] = 0, by the induction hypothesis.

⇔ #»
σ[eO], by the workflow graph semantics.

3. When n is an IOR-join:
⇔ ϕ(eO) ⊗ #»

σ = 0,
⇔
⋃

eI∈◦n

(ϕ(eI)) ⊗
#»
σ = 0, by the deadlock assignment propagation rule for the

IOR-join (Def. 3).
⇔ for each edge eI ∈ ◦n,ϕ(eI) ⊗

#»
σ = 0

⇔
∑

eI∈◦n

(ϕ(eI) ⊗
#»
σ) = 0.

⇔
∑

eI∈◦n

(#»
σ[eI]) = 0, by the induction hypothesis.

⇔ #»
σ[eO] = 0, by the workflow graph execution semantics and the assignment

propagation rules, which requires that there is no deadlockin the labeled prefix
of W because, for each AND-join j in the prefix, all the incoming edges of j are
equivalent.

4. When l(n) = AND:
ϕ(eO) ⊗ #»

σ = 0
⇔ ϕ(eI) ⊗

#»
σ = 0 because, by the assignment propagation rules (Def. 3), there

exist an edge eI such thatϕ(eO) = ϕ(eI).
⇔ #»
σ[eI] = 0, by the induction hypothesis.

⇔ #»
σ[eO] = 0, because the workflow graph semantics implies that⇔ #»

σ[e0] =
min
eI∈◦n

(#»
σ[eI]). Moreover, the assignment propagation rules requires all edges e∈

◦n to be equivalent so that the propagation is activated. Thus, we have#»
σ[eI] =

#»
σ[eO] = 0

⊓⊔

8

3.3 A normal form for symbols

To detect a deadlock or to label the outgoing edge of an AND-join, we need to check
edge equivalence. If two incoming edges of an AND-join are not equivalent, we have
found a deadlock.

We will exploit that the equivalence of edges corresponds toan equivalence of the
symbols they are labeled with. This symbol equivalence can be defined as follows:

Definition 4 (Symbol equivalence).Two symbols S1,S2 are equivalentw.r.t. W, writ-
ten S1 ≡ S2 if, for any executionσ of W, S1 ⊗

#»
σ = 0⇔ S2 ⊗

#»
σ = 0.

As W is free of lack of synchronization, for any edgeeand for any executionσ, we
have #»

σ[e] = 1 or #»
σ[e] = 0. Thus, given two edgese1,e2 labeled underϕ, the edgese1

ande2 are equivalent if and only if the symbolsϕ(e1) andϕ(e2) are equivalent.
We will decide the equivalence of two symbols by computing a normal form for

each of them. The normal form of a symbolS is the ‘largest’ set of outcomes that is
equivalent toS. Two symbols are equivalent if and only if they have the same normal
form. To show this, we define:

Definition 5 (Maximal equivalent extension, Closure).Letϕ be an assignment of W
and e be an edge such that e is labeled underϕ. Let O be the set of outcomes of W that
are labeled underϕ.

– A maximal equivalent extensionof ϕ(e) w.r.t.ϕ is a setϕ∗(e) ⊆ O such thatϕ∗(e) ≡
ϕ(e) and there exist no other set S⊆ O such thatϕ∗(e) (S and S≡ ϕ(e).

– Theclosureof ϕ(e) w.r.t. ϕ is the smallest setϕ(e) such thatϕ(e) ⊆ ϕ(e) and for
each XOR- or IOR-split n such that e′ is labeled underϕ for each e′ ∈ n◦, we have
ϕ(◦n) ⊆ ϕ(e) iff n◦ ⊆ ϕ(e).

The existence of a maximal equivalent extension is clear. Wecan also show that it
is unique.

Lemma 2. Let ϕ be an assignment of W and e an edge that is labeled underϕ. Then
ϕ
∗(e) is unique.

Proof. There exists some maximal equivalent extension ofϕ(e) because e is labeled
underϕ andϕ(e) is trivially equivalent toϕ(e). Thus some outcomes can be added to
ϕ(e) until obtaining a maximal equivalent extension. As the number of outcomes is finite,
the size of the maximal equivalent extension is finite.

We show thatϕ∗(e), the maximal equivalent extension ofϕ(e), is unique by contra-
diction: Suppose that there exist two sets of outcomes S1 and S2 such that S1 , S2 and
S1 and S2 are both maximal equivalent extensions ofϕ(e).

Because S1 , S2, we can assume without loss of generality that there exists an edge
e′ ∈ S2 \ S1. We show that S1 ∪ S2 ≡ ϕ(e) which contradicts the maximality of S1.

As S1 and S2 are maximal equivalent extensions ofϕ(e) (Def. 5), S1 ≡ ϕ(e) and
S2 ≡ ϕ(e). It follows from the definition of equivalence (Def. 4) that,for any execution
σ of W, S1⊗

#»
σ = 0⇔ ϕ(e)⊗ #»

σ = 0 and S2⊗
#»
σ = 0⇔ ϕ(e)⊗ #»

σ = 0. Thus, by definition
of the scalar product, for any executionσ of W,ϕ(e) ⊗ #»

σ = 0 ⇔ (
∑

e1∈S1

{e1} ⊗
#»
σ =

9

0)∧(
∑

e2∈S2

{e2}⊗
#»
σ = 0). Moreover, by definition of the scalar product(S1∪S2)⊗ #»

σ = 0⇔

∑

e∗∈S1∪S2

{e∗}⊗ #»
σ = 0. Thus, for any executionσ of W,ϕ(e)⊗ #»

σ = 0⇔ (S1∪S2)⊗ #»
σ = 0

which is the definition ofϕ(e) ≡ S1 ∪ S2 (Def. 4). ⊓⊔

It is clear that the closure exists and is unique. We show thatthe closure of a symbol
ϕ(e) is equivalent toϕ(e):

Lemma 3. Let W= (N,E, c, l) be an acyclic workflow graph,ϕ be an assignment of W,
and e∈ E be an edge labeled underϕ. We haveϕ(e) ≡ ϕ(e)

Proof. By the workflow graph execution semantics we have, forany XOR- or IOR-split
d, #»
σ[◦d] = 0⇔

∑

e∈d◦

(#»
σ[e]) = 0. Thus, by Lemma 1,ϕ(◦d)⊗ #»

σ = 0⇔
⋃

e∈d◦

ϕ(e)⊗ #»
σ = 0.

Which, by the assignment propagation rules (Def. 3), is equivalent toϕ(◦d) ⊗ #»
σ = 0⇔

(d◦)⊗ #»
σ = 0. To compute the closure, we add d◦ if the symbol containsϕ(◦d) or we add

ϕ(◦d) if the symbol contains d◦, it is clear that we stay in the same equivalence class at
each operation needed to obtain the closure. ⊓⊔

We can now prove that the closure is equal to the maximal equivalent extension:

Theorem 1. Letϕ be an assignment of W. For every edge e that is labeled underϕ, we
haveϕ∗(e) = ϕ(e).

Proof. We prove thatϕ∗(e) = ϕ(e). By Lemma 3,ϕ(e) ≡ ϕ(e). Thus any edge inϕ(e) is
also inϕ∗(e) by definition of the maximal equivalent extension ofϕ(e) (Def. 5). It is left
to show that each edge inϕ∗(e) is also inϕ(e).

We prove by contradiction that there exists no edge e′ such that e′ ∈ ϕ∗(e) and
e′ < ϕ(e), i.e.,ϕ∗(e) \ ϕ(e) , ∅.

Suppose that there exists an edge e′ such that e′ ∈ ϕ∗(e) \ ϕ(e).
We show how to build an executionσ of W such that#»σ⊗ϕ∗(e) > 0 and #»

σ⊗ϕ(e) = 0.
The existence of such an execution shows thatϕ

∗(e) . ϕ(e) (Def. 4), which contradicts
ϕ
∗(e) ≡ ϕ(e) becauseϕ(e) ≡ ϕ(e) by Lemma 3.

The construction ofσ is performed in two steps: First, we define a path p from the
source to e′. Second, we construct the executionσ itself. The construction strategy is to
avoid taking any outcome inϕ(e) and thus#»

σ ⊗ ϕ(e) = 0. The execution follows p to
ensure that a token reaches the edge e′ and thus#»

σ ⊗ ϕ∗(e) > 0.

1. The path p is defined inductively from its last edge e. The induction stops when
reaching s. For each edge ep of p, we ensure thatϕ(ep) \ ϕ(e) , ∅.
As e′ ∈ ϕ∗(e), e′ is an outcome, i.e., e′ is the outgoing edge of an IOR-split or an
XOR-split. By the assignment propagation rules (Def. 3),ϕ(e′) = {e′}. Therefore
ϕ(e′) \ ϕ(e) , ∅ by assumption.
The previous elements on the path is defined based on the current element as fol-
lows:

– if the current element is an edge ec, the previous element is the source node of
ec.

10

– if the current element is a node n, the previous element is anyof the incoming
edge ei of n such thatϕ(ei) \ ϕ(e) , ∅.
We show that an incoming edge ei of n such thatϕ(ei) \ ϕ(e) , ∅ always exists.
By induction hypothesis of p there exists an outgoing edge eo of n such that
ϕ(eo) \ ϕ(e) , ∅. Let’s consider three cases based on the type of n:
(a) If l(n) = AND: By the assignment propagation rules (Def. 3), there exists

an incoming edge ei of n such thatϕ(ei) = ϕ(eo).
(b) XOR and IOR joins: By the assignment propagation rules (Def. 3),ϕ(eo) =
⋃

ei∈◦n

ϕ(ei). Thus there exists an incoming edge ei of n such thatϕ(ei)\ϕ(e) ,

∅.
(c) XOR and IOR splits: The incoming edge ei is such thatϕ(ei) \ ϕ(e) , ∅. If

it was not the case, thenϕ(ei) ⊆ ϕ(e) and, by the definition of the closure
(Def. 5),ϕ(eo) ⊆ ϕ(e) because ifϕ(ei) ⊆ ϕ(e), then n◦ ∈ ϕ(e), which
contradictsϕ(eo) \ ϕ(e) , ∅

By the definition of workflow graph, for every edge eg of W, there exists a path from
s to eg. As W is acyclic, we can always build the finite path p startingfrom s to e′

such that, for every edge ep of p,ϕ(ep) \ ϕ(e) , ∅.
2. We build inductively an executionσ such that#»σ ⊗ ϕ(e) = 0 and #»

σ ⊗ ϕ∗(e) > 0 .
The insight in buildingσ is to not mark any edge inϕ(e) and to mark e′. For each
marking m ofσ, we maintain that every edge eσ marked in mϕ(eσ) \ ϕ(e) , ∅.
The execution starts with the initial marking[s]. Asϕ(s) = {s} and s is on p, s< ϕ(e)
and thusϕ(s) \ ϕ(e) , ∅.
We define how any activated node n is executed duringσ. The marking m changes
to the marking m′ as follows:

– If n has AND logic, is an XOR-join, or an IOR-join: There is a unique exe-
cution step possible and the marking changes from m to m′ according to the
workflow graph semantics. Executing such type of node cannotmark an edge
in ϕ(e) because, by the assignment propagation rules (Def. 3), edges in ϕ(e)
are exclusively outcomes.

– If n is an XOR-split or an IOR-split: We distinguish two cases:
(a) If there is one of the outgoing edges eo of n that is on p, then m′ = m−[◦n]+

[e0], i.e., executing n propagates the token from◦n to e0. By construction
of p, eo < ϕ(e).

(b) If there is no outgoing edge of n that is on p, we pick any outcome eo
such that eo < ϕ(e). Again m′ = m− [◦n] + [e0]. By induction hypothesis
ϕ(◦n) * ϕ(e). Therefore, there is always an outgoing edge eo of n such
that eo < ϕ(e) because, by definition of the closure (Def. 5), if for any edge
n◦ ⊆ ϕ(e), thenϕ(◦n) ⊆ ϕ(e), which contradictsϕ(◦n) \ ϕ(e) , ∅.

⊓⊔

That is, we obtain a unique normal form that is equivalent with a given label of
an edge. We show in Sect. 3.4 that the closure can be computed in linear time. Thus,
from the characterization as a closure, we can compute the normal form in linear time.
Moreover, the normal form has the desired property:

11

Theorem 2. ϕ(e) = ϕ(e′) whenever e and e′ are equivalent.

We are now able to compute the closure for the edgesg, h, i, and j of the example
from Fig. 2. We haveϕ(g) = {g}, ϕ(h) = ϕ(i) = ϕ(j) = {s,d,e, f ,g}. As ϕ(h) = ϕ(i), h

F

M

J

D

a

c

b

f

i

j

g

s

t

X Y

d

e

h

I

{s}

{s}

{s}

{s}

{d}

{e}

{f}

{g}

{d,e}

{s,f}

{d,e}

Fig. 4.Display of a deadlock.

andi are equivalent. Thus, there is no dead-
lock at the AND-join J. On the contrary,
ϕ(g) differs from ϕ(j) which implies, by
Thm. 2, thatg and j are not equivalent.
Therefore, we detect a deadlock located at
the AND-join D.

When we detect a deadlock because
two incoming edges of an AND-join are not
equivalent, we say that the AND-join is the
locationof the deadlock. To display the deadlock, we can, based on theassignment, gen-
erate in linear time an execution, callederror trace, that exhibits the deadlock. Figure 4
depicts how we would display a deadlock: we highlight the location of the deadlock
and the error trace, i.e., the edges marked during the execution leading to the deadlock.
We discuss in Sect. 5 a form of diagnostic information and user interaction that goes
beyond this error trace.

3.4 Complexity of the computation

In this section, we first describe an approach to compute the closure in linear time and
then discuss overall the complexity of symbolic execution.

Let, in this section,ϕ be an assignment of a workflow graphW andD be the set of
IOR-splits and XOR-splits ofW such that, for every noded ∈ D, every edge ind◦ is
labeled underϕ. We define aclosure operation ofa noded ∈ D on a symbolS that
changesS toa symbolS′ such thatS′ = S∪ ϕ(◦d) ∪ d◦. A closure operation of a node
n changingS to S′ is enabledwhenϕ(◦d) ∈ S or d◦ ∈ S andS , S′. The computation
of the closure comprises two phases:

1. We go through the nodes from the maximal to the minimal element inD w.r.t. the
precedence relation<, i.e., from the right most nodes in the graph to the left most
nodes of the graph. For each noden, we execute the closure operation ofn if it is
enabled.

2. We go through the nodes from the minimal to the maximal element inD w.r.t. the
precedence relation<. For each noden, we execute the closure operation ofn if it
is enabled.

It is clear that this computation requires linear time. NotethatD must be sorted. This
sorting is obtained once and for all before performing symbolic execution and requires
linear time with respect to the size of the workflow graph. Moreover, we show that the
this sequence of phases is sufficient to ensure completeness of the closure computation:

Lemma 4. After performing phase 1 and phase 2 on a symbol S , there exists no node
n ∈ D such that a closure operation of d is enabled on S .

12

Proof. We have to ensure that after the two phases there is no more closure operation
that is enabled:

We say that a closure operation of a node d∈ D on a symbol S isright enabled
iff d◦ ⊆ S and S, S′. It is left enablediff ϕ(◦d) ⊆ S and S, S′.

A closure operation of a node d is enabled only once because, by definition of left
enabled and right enabled, an operation is enabled only if S, S′, a closure opera-
tion grows S by adding to itϕ(◦d) ∪ d◦, and S is monotonously growing during the
computation of the closure.

We show four propositions that help us in the proof:

1. A right enabled closure operation of d∈ D on S to S′ cannot right enable a closure
operation of a node d′ ∈ D such that d< d′ because a right enabled closure
operation of d only adds to the symbol outcomes that precede d.

2. Similarly, a left enabled closure operation of d∈ D on S to S′ only adds outcomes
that follow d. Thus, it cannot left enable a closure operation of a node that precedes
d.

3. We show now that a left enabled closure operation cannot right enable a closure
operation: Assume that we perform a left enabled closure operation of a node d∈ D
on S to S′. We have S′ = S ∪ d◦. For any d′ ∈ D such that d, d′, we have
d ◦ ∩ d′◦ = ∅. Thus it cannot right enable a closure operation of d′. Moreover, it
cannot right enable a closure operation of d because a closure operation of a node
cannot be enabled twice.

4. By 1 and 3 we have that a closure operation of a node d can onlyright enable a
node that precedes d.

We first show by contradiction that at the end of phase1 all the right enabled closure
operations are performed, i.e,no closure operation is right enabled and it is not possible
to right enable a closure operation:

Assume that there exists a right enabled closure operation at the end of phase1.
Consider the node d that is the minimal node with respect to< (,i.e., the left most node)
such that a closure operation of d is right enabled at the end of phase1. As a closure
operation of d is enabled only once, the closure operation was not enabled when phase
1 visited d. Thus, a closure operation on a node preceding d enabled right the closure
operation of d, which is in contradiction with 4.

We have shown that there is no closure operation that is rightenabled at the end of
phase1. Moreover, by 3 we have that there will not be right enabled closure operation
anymore.

We show now thatat the end of phase 2 there is no more left enabled closure opera-
tion. We again show this by contradiction:

Assume that at the end of phase2 there exists a left enabled closure operation.
Consider the node d that is the maximal node with respect to< (,i.e., the right most
node) such that a closure operation of d is left enabled at theend of phase2. As a
closure operation of d is enabled only once, the closure operation was not enabled
when phase2 visited d. Thus, a closure operation on a node following d enabled left
the closure operation of d, which is in contradiction with 2 and that there will not be
right enabled closure operation anymore. ⊓⊔

13

Symbolic execution needs just one traversal of the workflow graph. The closure is
the most expensive operation. We have shown how to compute the closure of a symbol
in linear time with respect to the size ofD. Therefore, each transition takes at most
linear time and the overall worst-case time complexity is quadratic.

4 Lack of Synchronization and Sometimes-Concurrent Edges

The workflow graph depicted in Fig. 5 permits the executionσ = 〈[s], [a,b], [b,d],
[d,e], [e,g], [g,g], ...〉. The edgeg is marked by two tokens in the marking [g,g]. Thus,
the workflow graph depicted by Fig. 5 contains a lack of synchronization. In this section,
we describe an algorithm that detects lack of synchronization and sometimes-concurrent
edges. The technique has quadratic time complexity.

S

"

J

$

%

a

e

f

g

t

X d

c

F

Fig. 5. A workflow graph that contains a
lack of synchronization.

We first give a characterization of
lack of synchronization in terms ofhan-
dles of the graph and then show how
handles can be computed in quadratic
time. We describe how to combine the
symbolic execution and handle detection
to detect control-flow errors. Finally, we
show how to compute whether two edges
are sometimes-concurrent, which has sep-
arate applications such as data-flow analy-
sis.

4.1 Handles and lack of synchronization

To characterize lack of synchronization, we follow the intuition that paths starting with
an IOR-split or an AND-split, should not be joined by an XOR-join. In the following,
we formalize this characterization and show that such structure always leads to a lack
of synchronization in deadlock-free acyclic workflow graphs.

Definition 6 (Path with an AND-XOR or an IOR-XOR handle). Let p1 = 〈n0, ...,ni〉

and p2 = 〈n′0, ...,n
′
j〉 be two paths in a workflow graph W= (N,E, c, l).

The paths p1 and p2 form apath with a handle1 if p1 is not trivial, p1∩ p2 = {n0,ni},
n0 = n′0, and ni = n′j . We say that p1 and p2 form a path with a handlefrom n0 to ni . We
speak of apath with an IOR-XOR handleif n0 is an IOR-split and ni is an XOR-join. We
speak of apath with an AND-XOR handleif n0 is an AND-split, and ni is an XOR-join.
In the rest of this document, we use handle instead of path with an AND-XOR handle
or path with an IOR-XOR handle. The node n0 is thestart nodeof the handle and the
node ni is theend nodeof the handle.

Definition 7 (Minimal handle). A handle h from n0 to ni is minimal iff there exists no
other handle h′ from n′0 to n′j such that n′j < ni , or ni = n′j and n0 < n′0.

1 Strictly speaking, one path is the handle of the other path and vice versa.

14

Theorem 3. In an acyclic workflow graph that contains no deadlock, thereis a lack of
synchronization iff there is a handle.

Proof. Let an acyclic workflow graph W= (N,E, c, l) that does not contain any dead-
lock.

⇒

We show that if there is a lack of synchronization in W, then there is a handle in W.
Assume that there is a lack of synchronization in W, i.e., there is a reachable mark-

ing m∗ such that an edge is marked with more than one token in m∗.
Therefore, there exists a reachable marking m such that there is an edge e∈ E that

a is marked with more than one token in m and there exists no other marking m′ such
that an edge e′ ∈ E precedes e and is marked with more than one token in m′.

By the definition of reachable marking, there exists an execution σ of W such that
m ∈ σ.

By the semantics of workflow graphs, the source node n of e is anXOR-join. n
cannot be another type of node as if it was of another type n would have been executed
twice and thus a reachable marking m′ would exist with an edge e′ preceding e such
that e′ is marked with more than one token in m′.

By the semantics of workflow graphs and as none of the edges preceding e can be
marked with more than one token, there has to be two edges e1,e2 ∈ ◦n that are marked
with one token inσ.

We useσ to define two paths p1 and p2 in W such that every edge in p1 or p2 is
marked duringσ. The path p1 and p2 start at the source edge of W. The path p1 ends
with 〈e1,n〉, p2 with 〈e2,n〉. We define p1 recursively from e1, p2 recursively from e2.

Each node nk ∈ p1 is defined by the edge ek that follows n in p1 such that ni is the
source of ei . Each edge ek−1 ∈ p1 is defined by the node nk that follows ek−1 in p1 as
follows:

ek−1 =







































◦nk if nk is an XOR-split, IOR-split, or an AND-split, (1)

en if nk is an XOR-join or an IOR-join, en ∈ ◦nk, and there exists a

marking mn in σ such that en is marked in mn, (2)

en if nk is an AND-join and en ∈ ◦nk. (3)

In case(1), p1 contains the only incoming edge of nk. It follows from the workflow
graph semantics that if an outgoing edge of nk is marked duringσ, then the incoming
edge of nk is marked duringσ.

In case(2), p1 contains en that was marked duringσ. By the workflow graph se-
mantics, en exists because there is a token on the outgoing edge of nk.

In case(3), p1 contains any of the incoming edges of nk. By the workflow graph
semantics, every incoming edge of nk is marked duringσ because the outgoing edge of
the nk is marked duringσ.

Each node and edge of p2 is defined similarly to p1 using e2 instead of e1 as basis
for the recursion.

15

There exists a node f such that f belongs to p1 and p2, and there exists no node,
other than n, that follows f and that belongs to p1 and p2.

It follows from the workflow graph semantics that f is an AND-split or an IOR-split
because two of its outgoing edges get marked duringσ and, by assumption, there is no
edge preceding e that is marked with more than one token in anyexecution of W.

Thus, there exist two paths between the AND-split f and the XOR-join n that are
disjoint aside from f and n. By Def. 6 they form a handle.

⇐

We show that if there is a handle in W, then there is a lack of synchronization in W.
Assume that there is a handle in W, i.e., there exist two pathsp = 〈n0,e0, ...,en−1,nn〉

and p′ = 〈n′0,e
′
0, ...,e

′
n−1,n

′
k〉 such that n0 is an AND-split or an IOR-split, nn is an XOR-

join, n0 = n′0, nn = n′k and the two paths are disjoint aside from n0 and nn (Def. 6).
By the definition of workflow graphs, there is a path from the source edge to n0.

Thus, as there is no deadlock, a marking m0 where the incoming edge of n0 is marked is
reachable in W.

By the semantics of workflow graph, n0 can execute and its execution can result in
a marking m1 where e0 and e′0 are marked.

There exists a set of marking M reachable from m1 such that for each marking
m ∈ M there exist an edge of p and an edge of p′ that are marked in m.

We show that there exists a reachable marking in M such that en−1 and e′n−1 are both
marked.

We show for any mi in M such that mi [en−1] = 0 or mi [e′n−1] = 0, there exists a
transition that changes mi into a marking mi+1 that belongs to M.

As there is no deadlock, there is always at least one node n that is activated in mi ,
such that n, nn. Note that if nn is activated in mi , there exists another node n activated
in mi . This is because, by definition of mi , there is an edge ej marked prior to en−1 or
e′n−1 and, as there is no cycle, there is no path from nn to the target t of ej . Thus, the
execution of t cannot require the prior execution of nn and, as there is no deadlock,
either t is activated in mi or a node prior to t is activated in mi .

By assumption on mi , there exists an edge ei on p and an edge e′i on p′ such that
both are marked in mi and either ei , en−1 or e′i , e′n−1.

We distinguish three cases:

1. ei < ◦n and e′i < ◦n
Executing n in mi results in a marking mi+1. By the workflow graph semantics, ei

and ei are both marked in mi+1 because they are not incoming edges of n.
2. ei ∈ ◦n e′i < ◦n

By the definition of path, as e′i is in p, the target n is in p and at least one of its
outgoing edge ei+1 is in p. By the workflow graph semantics, there exists a transition

T such that mi
T
→ mi+1 and e′i+1 is marked in mi+1.

By the workflow graph semantics, e′i is marked in mi+1 because e′i is not an incoming
edge of n.
Thus, mi+1 is in M.

16

3. ei < ◦n e′i ∈ ◦n
A similar reasoning as for the case ei ∈ ◦n e′i < ◦n can be applied to show that

there exists a transition T and a marking mi+1 ∈ M such that mi
T
→ mi+1.

Because W is acyclic, M is a finite set and we cannot reach the same marking twice.
Therefore, a marking mt such that mt[en−1] = 1 or mt[e′n−1] = 1 is reachable.

By the definition of workflow graph semantics: In marking mt, executing nn once
results in a marking m′t where either en−1 or ek are marked. Thus nn can also be executed
in m′t . Executing nn twice results in the outgoing edge of nn being marked with two
tokens. Thus exists a reachable state of W where an edge is marked with more than one
token, i.e., there is a lack of synchronization in W. ⊓⊔

The outline of the ‘only if’ direction of the proof of Thm. 3 isthat, whenever there
is a handle, this handle can be ‘executed’ in the sense that there exists an execution
such that a token reaches the incoming edge of the start node of the handle and then two
tokens can be propagated to reach two incoming edges of the end node of the handle to
create a lack of synchronization. We believe that, due to itsdirect relationship with an
erroneous execution, the handle is an adequate error message for the process modeler.
In Fig. 5, the handle corresponding to the lack of synchronization is highlighted. We
say that the end node of the handle is thelocationof the lack of synchronization. Note
that it is necessary that the workflow graph is deadlock-freein order to show that the
handle can be executed and thus a lack of synchronization be observed. However, even
if the workflow graph contains a deadlock, a handle is a designerror because, once
the deadlock is fixed, the handle can be executed and a lack of synchronization can be
observed.

Our notion of handles is similar to the one of Esparza and Silva [14] for Petri nets.
If we restrict ourselves to workflow graphs without IOR gateways, one of the directions
of our characterization follows from a result of Esparza andSilva [14]. The converse
direction does not directly follow. Our notion of handles has been described by van der
Aalst [13] who shows that, given a Petri netN, the absence of some type of handle
in N is a sufficient condition to the existence of an initial markingi of N such that
(N, i) is sound. He points out that path with handles can be computed using a maximum
flow approach. Various algorithms exist to compute the maximum flow (see [15] for
a list). The complexity of these algorithms ranges betweenO(|N| · |E|2) and O(|N| ·
|E| · log(|N|)). The existence of a handle can be checked by applying a maximum flow
algorithm to each pair of transition and place of the net. Therefore, the complexity of
detecting handles with such an approach is at bestO(|N|3 · |E| · log(|N|).

4.2 Computing handles

Given an acyclic directed graphG = (N,E) and four different nodess1, s2, t1, t2 ∈ N,
Perl and Shiloach [16] show how to detect two node-disjoint paths froms1 to t1 and
from s2 to t2 in O(|N|·|E|). We extend their algorithm in order to detect two edge-disjoint
paths between two nodes of an acyclic workflow graph. We sketch our extension here
while the details can be found in a separate report [17].

17

F

a

b S e

f

M g
s

c

d

t

Fig. 6.The line graph for the workflow graph in Fig. 5.

Perl and Shiloach
[16] describe how
to detect two node-
disjoint paths in a
directed graph whereas
we want to detect
two edge-disjoint paths
in a workflow graph
which is a directed multi-graph. To do so, we transform the workflow graph into itsline
graph. A line graphG′ of a graphG represents the adjacency between edges ofG. Each
edge ofG becomes a node ofG′. Additionally, we carry over those nodes fromG to G′

that can be start or end nodes of a handle, i.e.,S = {x | x ∈ N∧ x is an AND-split or
an IOR-split} andT = {x | x ∈ N ∧ x is an XOR-join}. The edges ofG′ are such that
the adjacency inG is reflected inG′. For the workflow graph in Fig. 5, we obtain the
line graph shown in Fig. 6. The line graph has two node-disjoint paths from an AND-
or IOR-split to an XOR-join if and only if the workflow graph has a handle from that
split to that join.

To decide whether there are such two node-disjoint paths in the line graph, we can
now apply the approach by Perl and Shiloach [16], which is theconstruction of a graph
that we call thestate graph. To this end, we extend the partial ordering< of the nodes
in the line graph to a total ordering≺. A node of the state graph is a pair (n,m) of nodes
of the line graph such that eithern = m ∈ S ∪ T or n , m andn ≺ m. There is an edge
in the state graph from (n,m) to (n′,m) (or to (m,n′)) if there is an edge fromn to n′ in
the line graph.

d

(F,F)

(F,a)

(F,b)

(M,M)

(d,c)
(c,M)

(a,M)

(d,M)
(b,a) (S,a)

(e,a)

(f,a)

(e,c)

(e,d)

(e,M)

(F,e)

(F,M)

Fig. 7.A portion of the state graph for the line graph in Fig. 6

Figure 7 depicts a portion of the state graph for the line linegraph in Fig. 6. We
have two node-disjoint paths from an AND- or IOR-splits to an XOR-join j in the
line graph if and only if there is a path from (s, s) to (j, j) in the state graph. In Fig. 7,
one such path is highlighted which indicates two disjoint paths from the AND-splitF
to the XOR-joinM. The number of edges in the state graph is inO(|N| · |E|) and the
number of nodes is inO(|N|2) in terms of the line graph [16]. The entire algorithm can
be implemented to run in quadratic time in the size of the workflow graph, cf. [17].

18

4.3 Combining symbolic execution with handle detection

Symbolic execution detects deadlocks in a prefix of the workflow graph that is free of
lack of synchronization. Therefore, we first check the workflow graph for handles. We
use the end nodes of the handles to delimit a maximum prefix of the workflow graph
that is free of handles. We perform a symbolic execution of this prefix. If a deadlock
is detected, we report the deadlock. If symbolic execution labels the incoming edges of
the end node of a handle, we report the corresponding lack of synchronization. If no
deadlock is detected and there is no handle detected, the workflow graph is sound.

4.4 Sometimes-concurrent

A data-flow hazard may arise if two conflicting operations on the same data object are
executed concurrently. This can happen only if the tasks containing the data operations
are sometimes-concurrent. A task of a process is represented as an edge in the corre-
sponding workflow graph. Thus for the purpose of data-flow analysis, we are interested
in detecting sometimes-concurrent edges for data-flow analysis.

Definition 8. Two edges aresometimes-concurrentif there exists an execution in which
they are parallel. They aremutually-exclusiveor never-concurrentif they are not some-
times-concurrent.

The notion of sometimes-concurrent edges is tightly related to lack of synchroniza-
tion: It follows from the proof of Thm. 3 that two incoming edgese,e′ of an XOR-join
are sometimes-concurrent if and only if there is handle to this XOR-join such that one
path goes throughe and the other goes throughe′. To decide whether two arbitrary
edges of a sound graph are sometimes-concurrent, we show thefollowing:

Lemma 5. In a sound prefix of the workflow graph W, if two edges e1,e2 are sometimes-
concurrent, then e1 || e2.

Proof. We this lemma by contradiction: Without loss of generality, assume that e1 < e2.
As e1 and e2 are sometimes-concurrent, there exists a reachable marking m such that
m[e1] = m[e2] = 1. As there is no deadlock, we can move the token on e1 on the path
to e2 until reaching a marking m′ such that m′[e2] = 2. The marking m′ is a lack of
synchronization which is ruled out by the soundness assumption. ⊓⊔

by contradiction: Without loss of generality, assume thate1 < e2. As e1 and e2 are
sometimes-concurrent, there exists a reachable markingmsuch thatm[e1] = m[e2] = 1.
As there is no deadlock, we can move the token one1 on the path toe2 until reaching a
markingm′ such thatm′[e2] = 2. The markingm′ is a lack of synchronization which is
ruled out by the soundness assumption.

We can now determine whether two edges are sometimes-concurrent: LetW∗ be the
graph obtained by removing all the elements of the workflow graph that follow either
e1 or e2 and add an XOR-joinx to be the target ofe1 ande2. The edgese1 ande2 are
sometimes-concurrent if and only ifx is the end node of a handle inW∗. As we can
check for handles in quadratic time with respect to the size of the workflow graph, we
obtain:

19

Theorem 4. It can be decided in quadratic time in the size of the workflow graph
whether a given pair of edges is sometimes-concurrent.

Kovalyov and Esparza [18], propose a technique to detect sometimes-concurrent
edges for sound workflow graphs that do not contain IOR logic in cubic time.

5 Dealing with Over-Approximation

In this section, we show how the labeling that is computed in the symbolic execution
can be leveraged to deal with errors that are detected in the workflow graph but may not
arise in a real execution of the process due to the correlation of data-based decisions.

5.1 User interaction to deal with over-approximation

When we capture the control-flow of a process in a workflow graph, we abstract from the
data-based conditions that are evaluated when executing anXOR-split or an IOR-split
of the process. Such a data-based decision can be, for example, isGoldCustomer(client).
The data-abstraction may result in errors that occur in the workflow graph but not in an
actual execution of the process. We use in the following the termactual executionto
refer to an execution of the real process as opposed to its workflow graph, which is an
abstraction of the process.

OJ

X

�

F

s

b

a

e

d

g t

c

f

{s}

{s}

{s}

{c}

{d}

{e}

{f}

Fig. 8.A deadlock.

For example, the graph in Fig. 8 contains a
deadlock located atJ. However, if the data-based
decisions in all actual executions are such that
outcomed is taken whenevere is taken, this
deadlock would never occur in an actual execu-
tion. For example, the data-based condition on
d could be exactly the same as one. The user
should therefore have the opportunity to inspect
the deadlock and decide whether outcomesd and
e are related as mentioned above and then dismiss the deadlock. Analysis of the graph
should then continue.

To inspect a deadlock, we provide the AND-join, two incomingedgese,e′ of the
join, and their non-equivalent labelsϕ(e), ϕ(e′) to the user. Then, she has to decide
whether for each outcomeo ∈ ϕ(e) and each actual execution whereo is taken, there is
an outcomeo′ ∈ ϕ(e′) that is also taken in that execution and vice versa. If the user af-
firms the latter, she can dismiss the deadlock. This basically postulates the

OJ

X

�

F

s

b

a

e

d

g t

c

f

{s}

{s}

{s}

{c}

{e}

{f}

{d}

Fig. 9.A lack of synchronization.

equivalence of the two symbols in actual execu-
tions. Henceforth, we continue the symbolic exe-
cution by treating, internally to the analysis, the
AND-join as an IOR-join.

To inspect a lack of synchronization, we pro-
vide the XOR-join that terminates the detected
handle and the two incoming edgese,e′ of the
XOR-join that are part of the handle to the user.

20

Furthermore, we provide the labelsϕ(e), ϕ(e′). Then, the user has to determine that for
each pair of outcomeso ∈ ϕ(e) ando′ ∈ ϕ(e′), we have thato is taken in an actual
execution implies thato′ is not taken in that execution. If the user affirms the latter,
she can dismiss the lack of synchronization. This basicallypostulates thato ando′ are
mutually-exclusive in actual executions. If this is done for all incoming edges of the
XOR-join, we can henceforth continue the symbolic execution by treating, internally to
the analysis, the XOR-join as an IOR-join. Figure 9 shows an example with a lack of
synchronization located atJ. The user may dismiss it because for example, the condi-
tions onc andeare the same, i.e.,d andeare mutually-exclusive.

S

�

M

a

b

d

s t

c

{s}

{a}

{b}

{c}

Fig. 10. A deadlock and a lack of
synchronization.

Figure 10 shows another example where the
deadlock can be dismissed ifb andc are deemed
to be equivalent. Once the user dismissed the
deadlock, we continue the symbolic execution
and label the edged with the symbol{b, c} ac-
cording to the IOR-join propagation rule. To dis-
miss the lack of synchronization atM, the user
then has to check the paira,b and the paira, c for mutual exclusion.

The deadlock displayed on Fig. 4, can be dismissed ifg is equivalent tos, i.e.,g is
deemed to be marked in every execution of the process.

Note that, if we provided an execution, i.e., an error trace,rather than the symbolic
information to dismiss an error, we would present exponentially many executions that
contain the same error in the worst case. The analysis of the outcome sets precisely
gives the conditions under which one deadlock or one lack of synchronization occurs.
It does not contain information that is irrelevant for producing the error.

5.2 Relaxed soundness

In some cases, the user should not be allowed to dismiss an error. Figure 11 shows a
deadlock that cannot be avoided unlessd andeare never taken which clearly indicates a
modeling error. This is related to the notion ofrelaxed soundness[9]. A workflow graph
is relaxed soundif for every edgee, there is asound executionthat markse, where an
execution issoundif no interleaving equivalent execution neither reaches a deadlock
nor a lack of synchronization.

OJ

X

�

F

s

b

a

e

d

g t

c

f

{s}

{a}

{b}

{c}

{d}

{e}

{f}

Fig. 11.A deadlock located atJ that
should not be dismissed.

The graph in Fig. 11 is not relaxed sound. We
do not know any polynomial-time algorithm to
decide relaxed soundness for acyclic workflow
graphs. However, we provide here necessary con-
ditions for relaxed soundness that can be checked
in polynomial time.

One necessary condition for relaxed sound-
ness is that for every AND-joinJ and every
pair of incoming edgese,e′ of J, e and e′ are
sometimes-concurrent. Likewise, for every XOR-joinJ and every pair of incoming
edgese,e′ of J, e ande′ must not be always-concurrent. Moreover, we have the fol-
lowing stronger necessary conditions:

21

Theorem 5. Let W be an acyclic workflow graph.

1. If for an AND-join J, and a pair of incoming edges e,e′ of J and one outcome
o ∈ ϕ(e), we have that all outcomes o′ ∈ ϕ(e′) are mutually-exclusive with o, then
W is not relaxed sound.

2. If for an XOR-join J, and a pair of incoming edges e,e′ of J, we haveϕ(e)∩ϕ(e′) ,
∅, then W is not relaxed sound.

Proof.

1. Assume that there exist an AND-join J, and a pair of incoming edges e,e′ of J and
one outcome o∈ ϕ(e), we have that all outcomes o′ ∈ ϕ(e′) are mutually-exclusive
with o. When o carries a token during an executionσ, then e carries a token by
Lemma 1. As the outcomes inϕ(e′) are mutually exclusive with o, e′ is not marked
duringσ. By Proposition 2, there is a deadlock located at J duringσ. Thus, there
exists no sound execution that marks o, i.e., W is not relaxedsound. ⊓⊔

2. Assume that for an XOR-join J, and a pair of incoming edges e,e′ of J, we have
ϕ(e)∩ϕ(e′) , ∅. Then, there exists an outcome o∈ ϕ(e)∩ϕ(e′). By Lemma 1, when
o is marked during an executionσ, e and e′ get marked duringσ. And therefore
there exists an exectutionσ′ that is interleaving equivalent toσ which leads to a
lack of synchronization. Thus, there exists no sound execution that marks o, i.e., W
is not relaxed sound. ⊓⊔

O

J

X

F

s

a

d

g

t

c

b

{d}

{s}

{s}

{s}

{c}

Fig. 12. A lack of synchronization
that should not be dismissed.

Based on the previous results in this paper,
we can compute these necessary conditions for
relaxed soundness in polynomial time. If one of
them is true, the corresponding error should not
be dismissible. For example, the deadlock in the
workflow graph depicted by Fig. 11 cannot be dis-
missed becaused and e are mutually-exclusive.
The lack of synchronization located atJ in the
workflow graph depicted by Fig. 12 cannot be dismissed because ϕ(d) = {d} and
ϕ(b) = {s, c,d} and thusϕ(e) ∩ ϕ(e′) , ∅.

Note that, deciding soundness and relaxed soundness complement each other. If we
only decided relaxed soundness, we would not detect the deadlock that may be present
in an actual execution of Fig. 8 for example.

6 Conclusion

We have shown how basic relationships between control-flow edges of a process can be
decided in polynomial time for acyclic workflow graphs with inclusive OR gateways.
This has various applications, for example, to detect control-flow errors, to perform
data-flow analysis, or to compare processes at a behavioral level. Moreover, we have
proposed a control-flow analysis that decides soundness in quadratic time and gives
concise error information that precisely characterizes a single error. We outlined how

22

the diagnostic information can be used to efficiently dismiss spurious errors that may
not occur in actual executions of the process due to correlated data-based decisions.

Note that, to increase the applicability of this approach, we can combine it with
workflow graph parsing using the Refined Process Structure Tree [19], which allows
us to decompose the workflow graph into fragments and to analyze each fragment in
isolation (see [5] for details). Thus, our approach can be used to analyze every acyclic
fragment of a cyclic workflow graph. However, it has to be worked out how the user
interaction proposed in Sect. 5 can be extended to that class. Some cyclic fragments can
be analyzed using suitable heuristics [20] which can be applied in linear time. Moreover,
we would like to extend symbolic execution to cyclic workflowgraphs in future work.

References

1. Mendling, J.: Empirical Studies in Process Model Verification. T. Petri Nets and Other
Models of Concurrency (ToPNoC)2 (2009) 208–224

2. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation of Causal
Behavioural Profiles using Structural Decomposition. Technical Report BPT 10, HPI (2010)

3. Desel, J., Esparza, J.: Free choice Petri nets. Volume 40 of Cambridge tracts in theoretical
computer science. Cambridge University Press, Cambridge (1995)

4. Esparza, J.: Reduction and synthesis of live and bounded free choice Petri nets. Information
and Computation114(1) (October 1994) 50–87

5. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann,N., Völzer, H., Wolf, K.: In-
stantaneous soundness checking of industrial business process models. In: BPM. Volume
5701 of LNCS., Springer (2009) 278–293

6. Sadiq, W., Orlowska, M.E.: Analyzing process models using graphreduction techniques. Inf.
Syst25(2) (2000) 117–134

7. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD
thesis, Vienna University of Economics and Business Administration, Vienna, Austria (2007)

8. Wynn, M., Verbeek, H., Aalst, W., Hofstede, A., Edmond, D.: Business process verification-
finally a reality! Business Process Management Journal15(1) (2009) 74–92

9. Dehnert, J., Rittgen, P.: Relaxed soundness of business processes. In: CAiSE. Volume 2068
of LNCS., Springer (2001) 157–170

10. Martens, A.: On compatibility of web services. Petri Net Newsletter65 (2003) 12–20
11. Favre, C., V̈olzer, H.: Symbolic execution of acyclic workflow graphs. In Hull, R., Mendling,

J., Tai, S., eds.: BPM. Volume 6336 of Lecture Notes in Computer Science., Springer (2010)
260–275

12. Völzer, H.: A new semantics for the inclusive converging gateway in safeprocesses. This
volume

13. van der Aalst, W.: Workflow verification: Finding control-flow errors using Petri-net-based
techniques. Lecture Notes in Computer Science (2000) 161–183

14. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. Advances in Petri nets483(1990)
210–242

15. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM35(4)
(1988) 921–940

16. Shiloach, Y., Perl, Y.: Finding two disjoint paths between two pairs of vertices in a graph.
Journal of the ACM (JACM)25(1) (1978) 1–9

17. Favre, C.: An efficient approach to detect lack of synchronization in acyclic workflow graphs.
In: ZEUS. Volume 563 of CEUR Workshop Proceedings. (2010) 57–64

23

18. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of
free-choice signal transition graphs, IEE

19. Vanhatalo, J., V̈olzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng.
68(9) (2009) 793–818

20. Vanhatalo, J.: Process Structure Trees: Decomposing a Business Process Model into a Hier-
archy of Single-Entry-Single-Exit Fragments. PhD thesis, Universität Stuttgart (2009)

24

