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Abstract. We propose a new technique to analyze the control-flow, i.e., the work-
flow graph of a business process model, which we athbolic executiariWe
consider acyclic workflow graphs that may contain inclusive OR gatewagl de-
fine a symbolic execution for them that runs in quadratic time. The resutsllo
us to decide in quadratic time, for any pair of control-flow edges or taskseo
workflow graph, whether they are sometimes, never, or alway$hegaconcur-
rently. This has dferent applications in finding control- and data-flow errors. In
particular, we show how to decide soundness of an acyclic workflophgnath
inclusive OR gateways in quadratic time. Moreover, we show that syméxdic
cution provides diagnostic information that allows the usefiiciently deal with
spurious errors that arise due to over-approximation of the datatllesésions

in the process.

1 Introduction

With the increased use of business process models in sionylabde generation and
direct execution, it becomes more and more important traiptiocesses are free of
control- and data-flow errors. Various studies (see [1] fauevey) have shown that
such errors frequently occur in process models.

Some of these errors can be characterized in terms of nedijos between control-
flow edges or tasks of the process. For example, a processeiofdeadlockif any
two incoming edges of an AND-join are always marked coneulyeWe can say that
such a pair of edges &ways concurrentA process is free dack of synchronization
if any two incoming edges of an XOR-join aneutually exclusivgei.e., they never get
marked concurrently. A data-flow hazard may arise if two Gotifig operations on the
same data object are executed concurrently. That can hapbeif the tasks contain-
ing the data operations asemetimes concurrente., not mutually exclusive. Similar
relationships have also been proposed for a behavioral aasom of processes [2].

Such control-flow relations can be computed by enumeratlimgachable control-
flow states of the process by explicitly executingvtsrkflow graphi.e., its control-
flow representation. However, there can be exponentiallgynsaich states, resulting
in a worst-case exponential time algorithm. We propose ig aper a form of sym-
bolic execution of a workflow graph. We consider acyclic witmk graphs that may
contain inclusive OR (IOR) gateways and define a symboliceien of such graphs
that runs in quadratic time. It captures enough informatmallow us to decide, us-
ing a complementing graph analysis technique, the aboveioned relationships for
any pair of control-flow edges in quadratic time. In partizulve obtain a control-flow



analysis that decidesbundness.e., absence of deadlock and lack of synchronization
in quadratic time for any acyclic graph that may contain |GiRegvays.

The symbolic execution keeps track of which decision oute®mithin the process
flow lead to which edge being marked. Therefore, it can pminformation, in case of
a detected error, about which decisions potentially leatiecerror. We show how this
leads to more compact diagnostic information than obtaimidid prior techniques. In
particular, we show how this allows the user fhaently deal with spurious errors that
arise due to over-approximation of the data-based deaisiotihe process.

Some existing techniques can decide soundness of a workfph gvithout IOR
gateways, or equivalently a Free Choice Petri net, in patyiabtime: A technique
based on theank theorem3] in cubic time and techniques based on a complete re-
duction calculus [4] in more than cubic time. However, diasfic information is not
provided by the former technique and was not yet worked auhi® latter.

Techniques based atate space exploratia®turn arerror trace, i.e., an execution
that exhibits the control-flow error, but they have exporsmtorst-case time complex-
ity. It has been shown [5] for industrial processes with@RIgateways that the latter
problem can be féectively addressed in practice using various reductiohriiggies.
Various additional structural reduction techniques exishe literature, e.g., [6, 7].

Wynn et al. [8] provide a study of verifying processes with IOR gatewalisey
apply state space exploration and useftedént IOR-join semantics.

We are not aware of approaches that provide diagnostiair#tion to deal with the
over-approximation due to data abstraction in workflow geafExisting approaches to
check other notions of soundness suchetexed soundneg8] or weak soundneg&0]
have exponential complexity.

The paper is structured as follows: After setting the pridary notions, we intro-
duce symbolic execution in Sect. 3 and show how the reldtiprialways-concurrent’
and the absence of deadlock can be decided. Then, we dibeu's®imetimes-concur-
rent’ and ‘mutually-exclusive’ relationships and lack ghshronization in Sect. 4. In
Sect. 5, we show how the diagnostic information providedymlsolic execution can be
used to deal with the over-approximation that results fréastracting from data-based
decisions.

This research reports extends a conference paper [11] wottfpthat the confer-
ence paper omits to satisfy space constraints.

2 Preliminaries

In this section, we define preliminary notions which incluaerkflow graphs and their
soundness property.

2.1 Basic notions

Let U be a set. Amulti-setoverU is a mappingn : U — N. We write m[€] instead
of m(e). For two multi-setsm, mp, and eachx € U, we have : i + mp)[X] = my[X] +
mp[x] and (. — mp)[X] = my[X] — mp[X]. The scalar productis defined by, @ m, =



Z(ml[x] x mp[X]). By abuse of notation, we sometimes use ax%etU in a multi-set

xeU
context by settingX[x] = 1 if x € X andX[x] = 0 otherwise.

A directed graph G= (N, E) consists of a sell of nodesand a se€t of ordered
pairs (s, t) of nodes, writters — t. A directed multi-graph G= (N, E, ¢) consists of a
setN of nodes, a seff of edgesand a mapping : E — (N U {null}) x (N U {null}) that
maps each edge to an ordered pair of nodes or null valuemafpse € E to an ordered
pair (s,t) € N, thensis called thesourceof e, t is called theargetof e, eis anoutgoing
edge ofs, andeis anincomingedge oft. If s = null, then we say that is asourceof
the graph. Ift = null, then we say that is asink of the graph. For a node € N, the
set of incoming edges afis denoted byn. The set of outgoing edges pfis denoted
no. If nhas only one incoming edge°n denotes (on would denotge}). If n has only
one outgoing edg€, n° denote¥.

A path p= (X, ..., Xn) froman elemenik, to an elemenk, in a graphG = (N, E, ¢)
is an alternating sequence of elemeqts N and inE such that, for any elemert € E
with ¢(x) = (s, 1), if i # 0thens = x_; and ifi # nthent; = x,1. If Xis an element
of a pathp we say thap contains XA path istrivial, if it is contains only one element.
A cycleis a pathb = (Xg. .. Xy) such thatxy = X, andb is not trivial.

2.2  Workflow graphs
A workflow graph W= (N, E,c,|) con-

d
sists of a multi-graplG = (N, E, c) and a‘<§ z>h
a mappingl : N — {AND, XOR, IOR} XN—e Y
that associates lgic with every node —s b i
n € N, such that: 1. The workflow graph —@i J
has exactly one source and at least one f M

sink. 2. For each node € N, there ex-
ists a path from the source to one of the
sinks that contaings. W is cyclic if there
exists a cycle ilW.

Figure 1 depicts an acyclic workflow graph. A diamond coritajra plus symbol
represents a node with AND logic, an empty diamond represamtode with XOR
logic, and a diamond with a circle inside represents a nodle MR logic. A node
with a single incoming edge and multiple outgoing edgesliedasplit. A node with
multiple incoming edges and single outgoing edge is callgdira For the sake of
presentation simplicity, we use workflow graphs composeshbf splits and joins.

Let, in the rest of this sectiolly = (N, E, c,|) be an acyclic graph. Leg, X, € NUE
be two elements oW such that there is a path from to x,. We then say thak;
precedes x denotedx; < Xz, andx, follows x. Two elementsx;, X, € NU E of W
areunrelated denotedx; || %o, if X; # X and neitherx; < X, norx; < x;. A prefixof
W is a workflow graphw’ = (N, E’,c/,I’) such thatN’ c N, for each pair of nodes
ny, Nz € N, if n, € N” andn; < n, thenn; € N’, an edgee belongs tce’ if there exists a
noden € N’ such thakis adjacent ta, for each noda € N’, we havd’(n) = I(n), and
for each edge € E’, we havec'(e) = (S,t), c(e) = (s;t), s = st/ =tif te N/, and
t’ = null otherwise.

c t>

| g D

Fig. 1. A workflow graph.




The semantics of workflow graphs is, similarly to Petri neksfined as a token
game. Ifn has AND logic, executing removes one token from each of the incoming
edges ofh and adds one token to each of the outgoing edges kbfn has XOR logic,
executingn removes one token from one of the incoming edgesarid adds one token
to one of the outgoing edges of If n has IOR logicn can be executed if and only if
at least one of its incoming edges is marked and there is nkeda@dge that precedes
a non-marked incoming edge of Whenn executes, it removes one token from each
of its marked incoming edges and adds one token to a non-esupset of its outgoing
edges. This IOR semantics, which is explained in detail eteil2], complies with the
BPMN standard and BPEL's dead path elimination.

The outgoing edge or set of outgoing edges to which a tokeddsc&when exe-
cuting a node with XOR or IOR logic is non-deterministic, bizieh we abstract from
data-based or event-based decisions in the process. Ioltbwihg, this semantics is
defined formally.

A marking m: E — N of a workflow graph with edgek is a multi-set ovelE.
Whenme] = k, we say that the edgeis marked with k tokeria m. Whenm[e] > 0,
we say that the edge is markedn m. The initial marking m; of W is such that the
source edge is marked with one tokemigand no other edge is markedrim.

Let mandm be two markings ofV. A tuple (E1, n, E) is called atransition if
ne N, E; C on, andE, C no. A transition €3, n, Ey) is enabledin a markingm if for
each edge € E; we havem[e] > 0 and any of the following propositions:

— I(n) = AND, E; = on, andE; = no.

— I(n) = XOR, there exists an edgesuch thate; = {e}, and there exists an edge
such thate,; = {€}.

— I(n) = IOR, Ey, E; are non-emptyE; = {e € on | m(e) > 0}, and, for every edge
e e on\ E;, there exists no edg®, marked inm, such tha¥’ < e.

A transitionT can beexecutedn a markingmif T is enabled irm. WhenT is executed
in m, a markingn? results such thatt = m- E; + E,.

An execution sequenaef W is an alternate sequence = (Mg, Tg, My, Ty...) of
markingsm, of W and transitiond; = (E;, n;, E/) such that, for each> 0, T; is enabled
in m; andm,1 results from the execution df in m. An executiorof W is an execution
sequencer = (M, ..., My) of W such thatn > 0, my = mg and there is no transition
enabled imm,. As the transition between two markings can be easily detjwee often
omit the transitions when representing an execution or aowion sequence, i.e., we
write them as sequence of markings.

Let mbe a marking ofN, mis reachable froma markingm’ of W if there exists an
execution sequenee = {my, ..., m,) of W such thaimg = m" andm = m,. The marking
mis areachable markingf W if mis reachable fronms.

2.3 Soundness

A deadlock occurs when a token stays ‘blocked’ on one edgeeofvorkflow graph: A
deadlockof W is a reachable markingn of W such that there exists a non-sink edge
e € E that is marked irm ande is marked in all the markings reachable froamWe



say thatW containsa deadlock if and only if there exists a reachable markmgf
W such thatmis a deadlock. The workflow graph in Fig. 1 permits the executt =
{9,[a b,c],[b,c,d],[b,ch][b,f, h],[hil,[j]). The marking [] is a deadlock.

A lack of synchronizatioof W is a reachable marking of W such that there exists
an edgee € E that is marked by more than one tokeminWe say that a workflow graph
W containsa lack of synchronization if and only if there exists a redd@anarkingm
of W such thamis a lack of synchronization.

A workflow graph issoundif it contains neither a deadlock nor a lack of synchro-
nization. Note that this notion of soundness is equivaletii¢é notion presented by van
der Aalst [13] for workflow nets.

3 Symbolic Execution and Always-Concurrent Edges

In this section, we introduceymbolic executiomnd show how we use it to detect
deadlocks and determine whether two edges are always4centu\Ve start by giving
a characterization of deadlock, then introduce the symaotsthe propagation rules
of the symbols, we show how to compute a normal form of a symahdldiscuss the
complexity of the proposed technique.

Let, in this sectionWV = (N, E, ¢,1) be an acyclic workflow graph prefix that is free
of lack of synchronization. We describe in Sect. 4.3 how wterheine such prefix.

3.1 Equivalence of edges and a characterization of deadlock

A deadlock arises at an AND-join when one of its incoming edgés marked dur-
ing an executiorr- but another edge’ does not get marked during because, ag
never gets marked during, the AND-join cannot execute and the token markéng
is ‘blocked’. Thus, in order to have no deadlock, the incaygn#dges of an AND-join
need to get marked ‘together’ in each execution. We can ggccapture this through
edge equivalencer the notionalways-concurrentin an acyclic workflow graph, only
an AND-join can cancauséa deadlock. An IOR-join can ‘block’ a token if and only
if there exists a preceding node that blocks another tokans,Twhenever there is a
deadlock in an acyclic workflow graph, there exists an AND+with non-equivalent
incoming edges. Nodes that are nor AND-join or IOR-join aatniplock a token. To
introduce edge equivalence, we definefaeikh vectorof an execution, which records,
for each edge, the number of tokens that are produced ondyatdriring the execution.

Definition 1 (Parikh vector). TheParikh vectoiof an executiofr = {my, To, ...), Writ-
ten &, is the multi-set of edges such th@fs] = 1 for the source s ofW and otherwise
olel =ksuchthatks |[{i | Ty = (E,n,E’) Aec E'}.

For example, given the executien = ([9], ({s}, F,{a,b,c}), [a,b, ], ({a}, X, {d}),
[b,c.d], ({d}, Y. {h}), [b, ¢, hl, ({c}, 1. {f}), [b, £, h] ({b, T}, M, {i}), [, i], (th, i}, I {}}), [iD)
of the workflow graph of Fig. 1, we hav@[s] = &[a] = F[b] = &[c] = Z[d] = F[f]
= 7[h] = &#[i] = &[j] = 1 andJ[€] = F[g] = O.



Definition 2 (Edge equivalence, always-concurrent).

— Two edges arparallelin an executiornr if there is a marking inr- in which both
edges are marked. Two executians’ are interleaving equivalenif & = .
Two edges areoncurrenin ¢ if there is an execution”’ such thato- and o’ are
interleaving equivalent and the edges are parallelbih Two edges aralways-
concurrentf they are concurrent in every execution of W.

— Two edgesgand e of W areequivalentwritten g = e, if for any executionr of
W, we haver[er] = o[ey].

Two executions that are interleaving equivalent execwgesttme transitions; possi-
bly in a different order. Note that these definitions are founded onlgdpclic workflow
graphs.

Proposition 1. Two edges g, are always-concurrenffie; = e; and q || .

In the workflow graph depicted by Fig. 1, we hawes b = handa # d # g. Note
that we have discussed earlier an execution of the workflawlyof Fig. 1 wherer[a]
= &[d]. However, there exist another execution such #gd] # °[d] and therefore
a # d. Moreover,a is always-concurrent tb but not toh.

Proposition 2. W contains adeadlockiff there exist two incoming edges of an AND-
join of W that are not equivalent, or equivalently, that am always-concurrent.

In the workflow graph depicted by Fig. 1, the edgesdg are not always-concurrent.
Therefore, we get a deadlock at the AND-jdin

In the following, we show how we can compute edge equivalamcitherefore also
whether two edges are always-concurrent.

3.2 Symbolic execution
{d}

The first step to compute edge equiva- {S} z>{d9}

lence is the symbolic execution of the {e}

workflow graph. During symbolic execu-{s} © e}
tion, each edge is labeled with a symbol,” {1}

which is a set obutcome®f the workflow

graph. Anoutcomds the source edge, an

outgoing edge of an XOR-split, or an out-
going edge of an IOR-split in the graphfFig. 2. The assignment resulting from the
Figure 2 shows the labeling of the worksymbolic execution of the workflow graph
flow graph of Fig. 1 that results from itsof Fig. 1.

symbolic execution.

The symbolic execution starts with labeling the sousaeith {s}. All other edges
are yet unlabeled. If all incoming edges of a node are labeledmay label the out-
going edges of the node by applying one of the propagatiasrdépicted by Fig. 3,
depending on the logic of the node.

{f}

D




The intuition behind symbolic

S X {a} S {a}

execution is to label an edgavith a> ar
S S S

a setS of outcomes such that ﬁ<>“ 4@ @b}
is marked during an execution b b>
if and only if some of the out- g S, S,
comes inS get marked duringr. S,US, s1 S,US,
In general, the label of the outgo- < > g g — @ g
ing edges depends on the labels of % Sz, =
the incoming edges. However, if Fig. 3. The propagation rules.
the node is an XOR-split or an IOR-split, then the symbol ikassigned to one of
the outgoing edges only contains that outgoing edge. Théglassociated to the in-
coming edge of the node is then ignored. In case of an AND-}bim propagation rule
additionally requires the symbol labeling its incoming eslgo be equivalent (which
we will describe in Sect. 3.3) in order to be applied. The AMD rule then chooses
one of the labels of the incoming edges non-determinidyied the label for the out-
going edge. The symbol labeling an outgoing edge of a nodedhan XOR-join or
an IOR-join, is the union of the symbols labeling the incogn@tiges of the node. The

symbolic execution terminates when there is no progatitethat can be applied. In
the following, we define these propagation rules formally.

Definition 3 (Symbolic execution).An outcomeof W is the source, an outgoing edge
of some XOR-split, or an outgoing edge of some IOR-split oh®ymbolof W is a set
of outcomes of W. Aaissignmenis a mappingp that assigns a symbol to each edge of
some prefix of W. If e is an edge of that prefix, we say thatadeded undep.

For every node n of a workflow graph, we describe phepagatiorby the node n
from an assignment to an assignment’, written ¢ A ¢’. The propagationp A ¢ is
activatedwhen all the incoming edges of n are labeled ungdemd no outgoing edge
is labeled undek. Additionally, if n is an AND-join, the symbol associatedetach
incoming edges of n must be equivalent (according to Debr&hkt propagation to be
activated. If n is activated ip, we havey A ¢ wherey’ is obtained as follows, for
any edge e of W:

— If I(n) = AND and there exists an edgé @ on, theny’(e) = ¢(¢') for e € no and
¢’ (€) = ¢(e) otherwise.

— If nis an XOR-split or an IOR-split, thep'(€) = {e} for e € no and¢’(€) = ¢(€)
otherwise.

— If nis an XOR-join or an IOR-join, fop’(€) = Jgcon ¢(€)for e € no andy’(e) =
¢(€) otherwise.

As said above, the propagation rules establish that an edgenarked during an
executions if and only if some of the outcomes ig(€) are marked during:

Lemma 1. For any executior of W and any edge € E, & ® ¢(€) > 0 & &[e] > 0.

Proof. We perform an induction on the number of edges labaheldre. We increase
the number of edges labeled ungeusing propagation rules of Def. 3.



Base case:Only the source edge s of W is labeled undavith the symbols}. By the
definition of the Parikh vector (Def. 1¥[s] = 1. Trivially, we haved ® ¢(s) =
0 7[g =0.

Induction step: Assuming an assignmegtof W according to Def. 3 and that(e) ®
o = 0 & J[€] = 0 holds for each executiomr of W and edge e labeled under
¢. We want to show that, when labeling the outgoing edge(shpfmde ne N
according to the assignment propagation rules, i.e., apglyne transition rule to
increasep, *®¢(e) = 0 & &[] = 0for each execution of W and labeled edge e.
As the assigned symbols do not change, we only have to shdattérgroposition
for the freshly labeled edges.
For each executiomr, each incoming edge & on, and each outgoing edge & no
of n, we consider the four following cases:

1. When n is an XOR-split or IOR-split: By the assignment agapion rules
(Def. 3), we have(ep) = [ep]. Thus, it follows directly from the definition of
the Parikh vector (Def. 1) that(ep) ® & = &[eo].

2. When n is an XOR-join:
¢(e)® 0 =0
=3 Z o(e) ® & = 0, by the assignment propagation rules (Def. 3).

€keon
= Z olex] = 0, by the induction hypothesis.
ekeon
& 7[eo], by the workflow graph semantics.
3. When nis an IOR-join:
& ¢g(eg)® & =0,
& U (p(e)) ® & = 0, by the deadlock assignment propagation rule for the
e eon
IOR-join (Def. 3).
& for each edgejec on, ¢(e)® & =0
& > (pe)e @) =0.
€ eon
o Z (@[e]) = 0, by the induction hypothesis.
eeon
& [eo] = 0, by the workflow graph execution semantics and the assignmen
propagation rules, which requires that there is no deadiodke labeled prefix
of W because, for each AND-join j in the prefix, all the incagrédges of j are

equivalent.
4. When(n) = AND:
¢(e0)® T =0

& ¢(e) ® & = 0 because, by the assignment propagation rules (Def. 3)ether
exist an edge,esuch thatp(eg) = ¢(g)).

& [e] = 0, by the induction hypothesis.

& [eo] = 0, because the workflow graph semantics implies thaf[eg] =
mtq(&’[a]). Moreover, the assignment propagation rules requiresddjes es

on to be equivalent so that the propagation is activated. Tivashaver[g] =
o’leo] =0
O



3.3 A normal form for symbols

To detect a deadlock or to label the outgoing edge of an AND-jwe need to check
edge equivalence. If two incoming edges of an AND-join areaeguivalent, we have
found a deadlock.

We will exploit that the equivalence of edges correspondatequivalence of the
symbols they are labeled with. This symbol equivalence eatdiined as follows:

Definition 4 (Symbol equivalence)Two symbols § S, are equivalentw.r.t. W, writ-
ten S = S; if, for any executiomr of W, S ® 7 =0 S, ® & = 0.

As W is free of lack of synchronization, for any edgand for any executioor, we
have@[e] = 1 or &’[€] = 0. Thus, given two edges, e, labeled undep, the edges,;
ande;, are equivalent if and only if the symbajge;) andy(e;) are equivalent.

We will decide the equivalence of two symbols by computingoanmal form for
each of them. The normal form of a symi®lis the ‘largest’ set of outcomes that is
equivalent toS. Two symbols are equivalent if and only if they have the saorenal
form. To show this, we define:

Definition 5 (Maximal equivalent extension, Closure)Lety be an assignment of W
and e be an edge such that e is labeled ungddret O be the set of outcomes of W that
are labeled undegp.

— A maximal equivalent extensiasf ¢(e) w.r.t. ¢ is a setp*(€) € O such thaty*(e) =
¢(€) and there exist no other setSO such thaty*(e) ¢ S and S= ¢(e).

— Theclosureof p(€) w.r.t. ¢ is the smallest sef(e) such thaty(e) < ¢(€) and for
each XOR- or IOR-split n such thatis labeled undep for each é € no, we have

@(°n) € @(€) iff no C p(€).

The existence of a maximal equivalent extension is clearcalealso show that it
is unique.

Lemma 2. Let ¢ be an assignment of W and e an edge that is labeled upd€&hen
*(€) is unique.

Proof. There exists some maximal equivalent extensign@fbecause e is labeled
undery and ¢(€) is trivially equivalent top(e). Thus some outcomes can be added to
¢(€) until obtaining a maximal equivalent extension. As the nemolboutcomes is finite,
the size of the maximal equivalent extension is finite.

We show thap*(€), the maximal equivalent extensiongtg), is unique by contra-
diction: Suppose that there exist two sets of outcomean8 S such that $ # S, and
S; and S are both maximal equivalent extensiongy(d).

Because $# Sy, we can assume without loss of generality that there existzige
€ € S, \ S;. We show that SU S, = ¢(e) which contradicts the maximality of;S

As § and S are maximal equivalent extensionsg(g) (Def. 5), S = ¢(€) and
S, = ¢(e). It follows from the definition of equivalence (Def. 4) tHat, any execution
ocof W, 587 =0 ¢p(@e®c =0and $87 = 0 © ¢(e®c = 0. Thus, by definition
of the scalar product, for any executienof W,p(e) ® & = 0 & (Z e} @ =

e1€S;



0)A( Z (&)@ = 0). Moreover, by definition of the scalar prod8,US,)®c = 0 ©
[S1=7)
Z {e'}® & = 0. Thus, for any executian of W,p(€)® & = 0 & (S;US,)®F =0
e'eS,US,

which is the definition ap(e) = S; U S, (Def. 4). O

It is clear that the closure exists and is unique. We showttieatlosure of a symbol
o(e) is equivalent tap(e):

Lemma 3. Let W= (N, E, ¢, |) be an acyclic workflow graply be an assignment of W,
and e E be an edge labeled under We havep(e) = ¢(€)

Proof. By the workflow graph execution semantics we havampiXOR- or IOR-split
d,s°d =0 Z(?[e]) =0. Thus, by Lemma Iy(°d)@ & =0 & U pe®F =0.

ecdo ecdo
Which, by the assignment propagation rules (Def. 3), is\ajent top(°d) ® & = 0 &
(do)® & = 0. To compute the closure, we addlifithe symbol containg(°d) or we add
¢(°d) if the symbol containsd it is clear that we stay in the same equivalence class at
each operation needed to obtain the closure. O

We can now prove that the closure is equal to the maximal atgrivextension:

Theorem 1. Lety be an assignment of W. For every edge e that is labeled undee
havey*(€) = p(e).

Proof. We prove thap*(e) = ¢(€). By Lemma 3p(e) = ¢(€). Thus any edge iz(e) is
also ine*(€) by definition of the maximal equivalent extensiop@) (Def. 5). It is left
to show that each edge isf(e) is also ing(e).

We prove by contradiction that there exists no edgsueh that € € ¢*(e) and
€ ¢ p(e),i.e.,¢"(e) \ g(e) # 0.

Suppose that there exists an edgsweh that €€ ¢*(e) \ p(€).

We show how to build an executiorof W such that ®¢*(€) > OandF®p(€) = 0.
The existence of such an execution showsgh@ = ¢(e) (Def. 4), which contradicts
©*(€) = ¢(e) becauses(e) = ¢(€) by Lemma 3.

The construction of is performed in two steps: First, we define a path p from the
source to & Second, we construct the executioriself. The construction strategy is to
avoid taking any outcome i@(e) and thuso® ® p(e) = 0. The execution follows p to
ensure that a token reaches the edgare thus? ® ¢*(e) > 0.

1. The path p is defined inductively from its last edge e. THadtion stops when
reaching s. For each edge ef p, we ensure thag(ep) \ ¢(e) # 0.
As é € ¢*(e), € is an outcome, i.e.,’a@s the outgoing edge of an IOR-split or an
XOR-split. By the assignment propagation rules (Def¢8¥) = {€}. Therefore
o(€) \ (€) # 0 by assumption.
The previous elements on the path is defined based on thentetesment as fol-
lows:

— if the current element is an edge, ¢he previous element is the source node of
€.
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— if the current element is a node n, the previous element isattye incoming

edge eof n such thatp(g) \ ¢(€) # 0.

We show that an incoming edgeoé n such thatp(e) \ @(e) # 0 always exists.

By induction hypothesis of p there exists an outgoing edgef @ such that

(&) \ p(€) # 0. Let's consider three cases based on the type of n:

(a) IflI(n) = AND: By the assignment propagation rules (Def. 3), therstexi
an incoming edge;®f n such that(g) = ¢(&).

(b) XOR and IOR joins: By the assignment propagation rulesf(B),¢(e,) =
U o(g). Thus there exists an incoming edgefan such that(g)\ ¢(€) #

geon

0.

(c) XOR and IOR splits: The incoming edgasesuch thatp(e) \ ¢(e) # 0. If
it was not the case, thep(e) € »(e) and, by the definition of the closure
(Def. 5),¢(e;) C @(€) because ifp(e) < ¢(€), then r € (), which
contradictsp(e,) \ v(€) # 0

By the definition of workflow graph, for every edgeéW, there exists a path from
sto g. As W is acyclic, we can always build the finite path p starfiog s to é
such that, for every edgeg ef p, ¢(ep) \ @(€) # 0.

2. We build inductively an executiensuch thate ® g(e) = 0 and & ® ¢*(e) > 0.
The insight in buildingr is to not mark any edge i@(e) and to mark & For each
marking m ofr, we maintain that every edge enarked in mp(e,) \ v(e) # 0.

The execution starts with the initial markifg]. As¢(s) = {s} and sison p, & ¢(€)
and thusp(s) \ g(e) # 0.

We define how any activated node n is executed durinthe marking m changes
to the marking rhas follows:

— If n has AND logic, is an XOR-join, or an IOR-join: There is aigque exe-
cution step possible and the marking changes from m’tacoording to the
workflow graph semantics. Executing such type of hode canadt an edge
in p(e) because, by the assignment propagation rules (Def. 3),senigg(e)
are exclusively outcomes.

— If nis an XOR-split or an IOR-split: We distinguish two cases
(a) Ifthere is one of the outgoing edgesoén that is on p, then fr= m—[°n] +

[en], i.e., executing n propagates the token framto &. By construction
of p, & ¢ ¥(e).

(b) If there is no outgoing edge of n that is on p, we pick anyouke ¢
such that g ¢ ¢(€). Again m = m—[°n] + [eg]. By induction hypothesis
o(°n) ¢ o(e). Therefore, there is always an outgoing edgeoén such
that g, ¢ ¢(e) because, by definition of the closure (Def. 5), if for any edge
no C p(e), theny(°n) C p(e), which contradicts(°n) \ p(e) # 0.

O

That is, we obtain a unique normal form that is equivalenhveitgiven label of
an edge. We show in Sect. 3.4 that the closure can be computagakar time. Thus,
from the characterization as a closure, we can compute tlreatdorm in linear time.
Moreover, the normal form has the desired property:
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Theorem 2. ©(€) = ¢(€') whenever e and are equivalent.

We are now able to compute the closure for the edpési, andj of the example
from Fig. 2. We havép(9) = {g}, ¢(h) = ¢(i) = @(j) = {s.d.e f.g}. As(h) = &(i), h
andi are equivalent. Thus, there is no dead- @
lock at the AND-joinJ. On the contrary, {s} z>ide}
¢(g) differs fromp(j) which implies, by fe}

Thm. 2, thatg and j are not equivalent. RCS {s) {d e}
Therefore, we detect a deadlock located at {s.f)
the AND-join D.

When we detect a deadlock because
two incoming edges of an AND-join are not
equivalent, we say that the AND-join is the Flg- 4. Dlsplay ofa deadlock.
locationof the deadlock. To display the deadlock, we can, based aasignment, gen-
erate in linear time an execution, calledor trace, that exhibits the deadlock. Figure 4
depicts how we would display a deadlock: we highlight theatamn of the deadlock
and the error trace, i.e., the edges marked during the émadatding to the deadlock.
We discuss in Sect. 5 a form of diagnostic information and irgeraction that goes
beyond this error trace.

{f}

D

3.4 Complexity of the computation

In this section, we first describe an approach to computeltseie in linear time and
then discuss overall the complexity of symbolic execution.

Let, in this sectiony be an assignment of a workflow grahandD be the set of
IOR-splits and XOR-splits ofV such that, for every nodé € D, every edge irdo is
labeled under. We define aclosure operation ofa noded € D on a symbolS that
changess toa symbolS’ such thatS” = SU ¢(°d) U do. A closure operation of a node
n changingS to S’ is enabledwheny(°d) € S ordo € S andS # S’. The computation
of the closure comprises two phases:

1. We go through the nodes from the maximal to the minimal etgnn D w.r.t. the
precedence relatioq, i.e., from the right most nodes in the graph to the left most
nodes of the graph. For each nagave execute the closure operationrof it is
enabled.

2. We go through the nodes from the minimal to the maximal elgnn D w.r.t. the
precedence relatioa. For each node, we execute the closure operationnaf it
is enabled.

Itis clear that this computation requires linear time. Nbtg D must be sorted. This
sorting is obtained once and for all before performing syichexecution and requires
linear time with respect to the size of the workflow graph. Btaver, we show that the
this sequence of phases idlstient to ensure completeness of the closure computation:

Lemma 4. After performing phase 1 and phase 2 on a symbol S, theresexastode
n € D such that a closure operation of d is enabled on S..

12



Proof. We have to ensure that after the two phases there isane alosure operation
that is enabled:

We say that a closure operation of a nodesdD on a symbol S isight enabled
iffdo € S and S# S'. Itis left enabledff ¢(°d) € S and S# S'.

A closure operation of a node d is enabled only once becayséefinition of left
enabled and right enabled, an operation is enabled only i $’, a closure opera-
tion grows S by adding to ip(°d) U do, and S is monotonously growing during the
computation of the closure.

We show four propositions that help us in the proof:

1. Aright enabled closure operation ofadD on S to S cannot right enable a closure
operation of a node de D such that d< d’ because a right enabled closure
operation of d only adds to the symbol outcomes that precede d

2. Similarly, a left enabled closure operation oEd on S to S only adds outcomes
that follow d. Thus, it cannot left enable a closure openaitida node that precedes
d.

3. We show now that a left enabled closure operation canmgbtt ®nable a closure
operation: Assume that we perform a left enabled closureatjws of a node & D
on S to 3. We have S= S U do. For any d € D such that d# d’, we have
don do = 0. Thus it cannot right enable a closure operation of Moreover, it
cannot right enable a closure operation of d because a clsperation of a node
cannot be enabled twice.

4. By 1 and 3 we have that a closure operation of a node d canrighy enable a
node that precedes d.

We first show by contradiction that at the end of phhaé# the right enabled closure
operations are performed, i.ap closure operation is right enabled and it is not possible
to right enable a closure operation

Assume that there exists a right enabled closure operaticheaend of phasé.
Consider the node d that is the minimal node with respeetta.e., the left most node)
such that a closure operation of d is right enabled at the ehphasel. As a closure
operation of d is enabled only once, the closure operatios ma@ enabled when phase
1 visited d. Thus, a closure operation on a node preceding dbledaright the closure
operation of d, which is in contradiction with 4.

We have shown that there is no closure operation that is eglabled at the end of
phasel. Moreover, by 3 we have that there will not be right enablexsate operation
anymore.

We show now that the end of phase 2 there is no more left enabled closure-oper
tion. We again show this by contradiction:

Assume that at the end of phaBdhere exists a left enabled closure operation.
Consider the node d that is the maximal node with respeet g.e., the right most
node) such that a closure operation of d is left enabled atathé of phase. As a
closure operation of d is enabled only once, the closure ajgar was not enabled
when phase visited d. Thus, a closure operation on a node following doded left
the closure operation of d, which is in contradiction with 2dethat there will not be
right enabled closure operation anymore. O
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Symbolic execution needs just one traversal of the workfloaply. The closure is
the most expensive operation. We have shown how to competedkure of a symbol
in linear time with respect to the size &f. Therefore, each transition takes at most
linear time and the overall worst-case time complexity iadatic.

4 Lack of Synchronization and Sometimes-Concurrent Edges

The workflow graph depicted in Fig. 5 permits the executionr- ([g], [a,b], [b,d],
[d, €], [ed]. [g.d]....). The edgeay is marked by two tokens in the marking, fj]. Thus,
the workflow graph depicted by Fig. 5 contains a lack of syantmation. In this section,
we describe an algorithm that detects lack of synchrominatnd sometimes-concurrent
edges. The technique has quadratic time complexity.

We first give a characterization of c

lack of synchronization in terms dfan- a,@

dles of the graph and then show how X d g

handles can be computed in quadratie M t>
time. We describe how to combine the F e J
symbolic execution and handle detection b"@

to detect control-flow errors. Finally, we f

show how to compute whether two edgesig. 5. A workflow graph that contains a
are sometimes-concurrent, which has sdpek of synchronization.

arate applications such as data-flow analy-

SIS.

4.1 Handles and lack of synchronization

To characterize lack of synchronization, we follow the ititun that paths starting with
an IOR-split or an AND-split, should not be joined by an XGd#j In the following,
we formalize this characterization and show that such straalways leads to a lack
of synchronization in deadlock-free acyclic workflow graph

Definition 6 (Path with an AND-XOR or an IOR-XOR handle). Let p, = {ng, ..., N})
and p = (ng, ..., %) be two paths in a workflow graph W (N, E, c, ).

The paths pand p form apath with a handfeif p; is not trivial, p. N pe = {ng, Ni},
no = n, and n = n%. We say that pand  form a path with a handléom ng to n;. We
speak of gath Wit|!1 an IOR-XOR handli&ng is an IOR-split and nis an XOR-join. We
speak of gpath with an AND-XOR handlé ng is an AND-split, and nis an XOR-join.
In the rest of this document, we use handle instead of pathamtAND-XOR handle
or path with an IOR-XOR handle. The nodgis the start nodeof the handle and the
node nis theend nodeof the handle.

Definition 7 (Minimal handle). A handle h from gto ny is minimal iff there exists no
other handle hfrom ry, to rfJ such that l]] <n,orn = n} and rp < .

1 Strictly speaking, one path is the handle of the other path and vice versa.
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Theorem 3. In an acyclic workflow graph that contains no deadlock, thera lack of
synchronizationff there is a handle.

Proof. Let an acyclic workflow graph W (N, E, c, 1) that does not contain any dead-
lock.

=

We show that if there is a lack of synchronization in W, themetlis a handle in W.

Assume that there is a lack of synchronization in W, i.eretisea reachable mark-
ing nT such that an edge is marked with more than one tokeriin m

Therefore, there exists a reachable marking m such thaetisesin edge e E that
a is marked with more than one token in m and there exists rer otlarking m such
that an edge ‘ec E precedes e and is marked with more than one tokeri.in m

By the definition of reachable marking, there exists an ekata- of W such that
me o.

By the semantics of workflow graphs, the source node n of e ¥QiR-join. n
cannot be another type of node as if it was of another type riditave been executed
twice and thus a reachable marking mould exist with an edge’ @receding e such
that € is marked with more than one token ih.m

By the semantics of workflow graphs and as none of the edgesding e can be
marked with more than one token, there has to be two edges € on that are marked
with one token inr.

We user to define two pathspand p in W such that every edge in pr p; is
marked duringr. The path p and [ start at the source edge of W. The pathends
with (e, n), p, with (e, n). We define precursively from g p, recursively from g

Each node p e p; is defined by the edge #hat follows n in g such that pis the
source of ¢ Each edge g, € p1 is defined by the node ithat follows @_; in p; as
follows:

°ng if ng is an XOR-split, IOR-split, or an AND-split, (1)

e, if ngis an XOR-join or an IOR-join,gc ong, and there exists a
marking m in o such that g is marked in m, (2)

e, Iifngisan AND-join and ge on. (3)

&-1=

In case(1), py contains the only incoming edge qf. it follows from the workflow
graph semantics that if an outgoing edge pfisimarked duringr, then the incoming
edge of Ris marked duringr.

In case(2), p; contains g that was marked during-. By the workflow graph se-
mantics, g exists because there is a token on the outgoing edgg of n

In case(3), p1 contains any of the incoming edges qf By the workflow graph
semantics, every incoming edge pismarked duringr because the outgoing edge of
the rx is marked duringr.

Each node and edge o |5 defined similarly to pusing e instead of ¢ as basis
for the recursion.
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There exists a node f such that f belongs tcapd p, and there exists no node,
other than n, that follows f and that belongs tpand p.

It follows from the workflow graph semantics that f is an ANilit®r an IOR-split
because two of its outgoing edges get marked durimand, by assumption, there is no
edge preceding e that is marked with more than one token irea@gution of W.

Thus, there exist two paths between the AND-split f and thR-}J6ih n that are
disjoint aside from f and n. By Def. 6 they form a handle.

=

We show that if there is a handle in W, then there is a lack oflagmization in W.

Assume that there is a handle in W, i.e., there exist two gathgno, ey, ..., €11, M)
and g = (n;, &, ..., €,_;, ) such that g is an AND-split or an IOR-split, nis an XOR-
join, ng = ng, Ny, = ;. and the two paths are disjoint aside fromand n, (Def. 6).

By the definition of workflow graphs, there is a path from therse edge to g
Thus, as there is no deadlock, a markingwhere the incoming edge of is marked is
reachable in W.

By the semantics of workflow graph, can execute and its execution can result in
a marking m where g and € are marked.

There exists a set of marking M reachable from such that for each marking
m e M there exist an edge of p and an edge offfat are marked in m.

We show that there exists a reachable marking in M such thated €,_, are both
marked.

We show for any min M such that nie,-;] = 0 or m[e/_,] = 0, there exists a
transition that changes nnto a marking m,; that belongs to M.

As there is no deadlock, there is always at least one nodetriglztivated in m
such that n# n,,. Note that if p is activated in m there exists another node n activated
in m. This is because, by definition of,rthere is an edge;emarked prior to g_; or
€, _, and, as there is no cycle, there is no path frogtathe target t of ¢ Thus, the
execution of t cannot require the prior execution gfand, as there is no deadlock,
either t is activated in por a node prior to t is activated in m

By assumption on mthere exists an edge en p and an edgeen [ such that
both are marked in yrand either e+ €,-; or € # € _,.

We distinguish three cases:

1. g¢onandg¢on
Executing n in mresults in a marking m;. By the workflow graph semantics, e
and e are both marked in py because they are not incoming edges of n.

2. g€on e|{ ¢ on
By the definition of path, ag és in p, the target n is in p and at least one of its
outgoing edgeie; is in p. By the workflow graph semantics, there exists a ttemsi

T . .
T such that m— my, ;1 and €, , is marked in m .
By the workflow graph semantics j@emarked in m; becaused@s not an incoming
edge of n.
Thus, M1 isin M.
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3. §g¢o0n e{ € on
A similar reasoning as for the case e on g ¢ on can be applied to show that

. .. . T
there exists a transition T and a marking,me M such that m— m;,;.

Because W is acyclic, M is a finite set and we cannot reach tme saarking twice.
Therefore, a marking psuch that fe,_1] = 1 or my[€],_;] = 1is reachable.

By the definition of workflow graph semantics: In marking executing p once
results in a marking fwhere either g; or & are marked. Thusyran also be executed
in m{. Executing p twice results in the outgoing edge of heing marked with two
tokens. Thus exists a reachable state of W where an edge kedwaith more than one
token, i.e., there is a lack of synchronization in W. O

The outline of the ‘only if’ direction of the proof of Thm. 3 that, whenever there
is a handle, this handle can be ‘executed’ in the sense that #xists an execution
such that a token reaches the incoming edge of the start ridide loandle and then two
tokens can be propagated to reach two incoming edges of theaste of the handle to
create a lack of synchronization. We believe that, due tdiiext relationship with an
erroneous execution, the handle is an adequate error neefgatpe process modeler.
In Fig. 5, the handle corresponding to the lack of synchmtion is highlighted. We
say that the end node of the handle is lih@ation of the lack of synchronization. Note
that it is necessary that the workflow graph is deadlock-iinegrder to show that the
handle can be executed and thus a lack of synchronizatiobser@ed. However, even
if the workflow graph contains a deadlock, a handle is a desigor because, once
the deadlock is fixed, the handle can be executed and a lagkoffi®onization can be
observed.

Our notion of handles is similar to the one of Esparza anda3il¥] for Petri nets.
If we restrict ourselves to workflow graphs without IOR gaag®, one of the directions
of our characterization follows from a result of Esparza &ilda [14]. The converse
direction does not directly follow. Our notion of handlesHeeen described by van der
Aalst [13] who shows that, given a Petri nidt the absence of some type of handle
in N is a suficient condition to the existence of an initial markingf N such that
(N, i) is sound. He points out that path with handles can be cordpsiaig a maximum
flow approach. Various algorithms exist to compute the maxmnflow (see [15] for
a list). The complexity of these algorithms ranges betw®gi| - |E[?) and O(IN| -
|E| - log(IN])). The existence of a handle can be checked by applying annemiflow
algorithm to each pair of transition and place of the net.réfoge, the complexity of
detecting handles with such an approach is at O¢st|® - [E| - log(IN|).

4.2 Computing handles

Given an acyclic directed grapgh = (N, E) and four diferent nodes, s,,t1,t2 € N,
Perl and Shiloach [16] show how to detect two node-disjoathp froms; to t; and
from s, tot; in O(IN|-|E[). We extend their algorithm in order to detect two edgeerlit;j
paths between two nodes of an acyclic workflow graph. We bketic extension here
while the details can be found in a separate report [17].
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Perl and Shiloach ‘

[16] describe how A

to detect two node-

disjoint paths in a e e 0 e
directed graph where@_' g \@_» . a ‘
we want to detect e

two edge-disjoint paths ) o
in a workflow graph Fig. 6. The line graph for the workflow graph in Fig. 5.
which is a directed multi-graph. To do so, we transform thekflow graph into itdine
graph A line graphG’ of a graphG represents the adjacency between edgé€s &ach
edge ofG becomes a node @&’. Additionally, we carry over those nodes fr@ato G’
that can be start or end nodes of a handle, e, {x | x € NA x is an AND-split or
an IOR-split andT = {x | X € N A xis an XOR-joir}. The edges o5’ are such that
the adjacency s is reflected inG’. For the workflow graph in Fig. 5, we obtain the
line graph shown in Fig. 6. The line graph has two node-disjpaths from an AND-
or IOR-split to an XOR-join if and only if the workflow graph fi@ handle from that
split to that join.

To decide whether there are such two node-disjoint pathseitine graph, we can
now apply the approach by Perl and Shiloach [16], which istirestruction of a graph
that we call thestate graph To this end, we extend the partial orderia@f the nodes
in the line graph to a total ordering A node of the state graph is a pait (n) of nodes
of the line graph such that either=me SU T orn # mandn < m. There is an edge
in the state graph frorm(m) to (0", m) (or to (m, n’)) if there is an edge fromton’ in
the line graph.

(FF)

Cem

)

Fig. 7. A portion of the stateigraph for the line graph in Fig. 6

Figure 7 depicts a portion of the state graph for the line graph in Fig. 6. We
have two node-disjoint paths from an AND- or IOR-s@ito an XOR-joinj in the
line graph if and only if there is a path froms, €) to (], j) in the state graph. In Fig. 7,
one such path is highlighted which indicates two disjoirthpdrom the AND-splitF
to the XOR-joinM. The number of edges in the state graph i©fiflN| - |E|) and the
number of nodes is iI®(|NJ?) in terms of the line graph [16]. The entire algorithm can
be implemented to run in quadratic time in the size of the Wowkgraph, cf. [17].
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4.3 Combining symbolic execution with handle detection

Symbolic execution detects deadlocks in a prefix of the wovkfjraph that is free of
lack of synchronization. Therefore, we first check the wankfgraph for handles. We
use the end nodes of the handles to delimit a maximum prefikeofvorkflow graph
that is free of handles. We perform a symbolic execution @ pinefix. If a deadlock
is detected, we report the deadlock. If symbolic executitrels the incoming edges of
the end node of a handle, we report the corresponding lackrahsonization. If no
deadlock is detected and there is no handle detected, thdlawoigraph is sound.

4.4 Sometimes-concurrent

A data-flow hazard may arise if two conflicting operations lom $ame data object are
executed concurrently. This can happen only if the task$a@ming the data operations
are sometimes-concurrent. A task of a process is represastan edge in the corre-
sponding workflow graph. Thus for the purpose of data-flowhais we are interested

in detecting sometimes-concurrent edges for data-flowyaizal

Definition 8. Two edges aresometimes-concurreiftthere exists an execution in which
they are parallel. They armutually-exclusiveor never-concurrenf they are not some-
times-concurrent.

The notion of sometimes-concurrent edges is tightly rdl&adack of synchroniza-
tion: It follows from the proof of Thm. 3 that two incoming eglge, & of an XOR-join
are sometimes-concurrent if and only if there is handle i X©OR-join such that one
path goes througle and the other goes through. To decide whether two arbitrary
edges of a sound graph are sometimes-concurrent, we shdalltveing:

Lemma 5. In a sound prefix of the workflow graph W, if two edgg®gare sometimes-
concurrent, then g|| e.

Proof. We this lemma by contradiction: Without loss of gafi, assume thate< e,.
As g and e are sometimes-concurrent, there exists a reachable mgnkirsuch that
mier] = m[ey] = 1. As there is no deadlock, we can move the tokem@nehe path
to & until reaching a marking msuch that rf{e;] = 2. The marking rhis a lack of
synchronization which is ruled out by the soundness assampt O

by contradiction: Without loss of generality, assume that< e,. As e; ande, are
sometimes-concurrent, there exists a reachable mankisuch tham[e;] = mle,] = 1.
As there is no deadlock, we can move the tokemroon the path te, until reaching a
markingn such than[e;] = 2. The markingn' is a lack of synchronization which is
ruled out by the soundness assumption.

We can now determine whether two edges are sometimes-centuretW* be the
graph obtained by removing all the elements of the workfloapgrthat follow either
e, or e; and add an XOR-joix to be the target o§; ande,. The edge®; ande, are
sometimes-concurrent if and only xfis the end node of a handle WW*. As we can
check for handles in quadratic time with respect to the sizbeworkflow graph, we
obtain:
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Theorem 4. It can be decided in quadratic time in the size of the workflaaph
whether a given pair of edges is sometimes-concurrent.

Kovalyov and Esparza [18], propose a technique to detecesnras-concurrent
edges for sound workflow graphs that do not contain IOR lagizubic time.

5 Dealing with Over-Approximation

In this section, we show how the labeling that is computedédymbolic execution
can be leveraged to deal with errors that are detected indhicflaw graph but may not
arise in a real execution of the process due to the correlafidata-based decisions.

5.1 User interaction to deal with over-approximation

When we capture the control-flow of a process in a workflow grayghabstract from the
data-based conditions that are evaluated when executi@&asplit or an IOR-split
of the process. Such a data-based decision can be, for exas®bldCustomeciient).
The data-abstraction may result in errors that occur in thekflow graph but not in an
actual execution of the process. We use in the following the taotual executiono
refer to an execution of the real process as opposed to itsfleargraph, which is an
abstraction of the process.

For example, the graph in Fig. 8 contains a ©
deadlock located at. However, if the data-based {s}_<§ ¢
decisions in all actual executions are such that : {d}
outcomed is taken whenevee is taken, this {s}
deadlock would never occur in an actual execu- F {e}
tion. For example, the data-based condition on {§»<§
d could be exactly the same as enThe user b
should therefore have the opportunity to inspect Fig. 8. A deadlock.
the deadlock and decide whether outcomiesd
e are related as mentioned above and then dismiss the deadloalysis of the graph
should then continue.

To inspect a deadlock, we provide the AND-join, two incomadpese, € of the
join, and their non-equivalent labeige), o(€¢) to the user. Then, she has to decide
whether for each outconeee ¢(€) and each actual execution wheres taken, there is
an outcomeay’ € ¢(€¢') that is also taken in that execution and vice versa. If theg af
firms the latter, she can dismiss the deadlock. This bagicptistulates the

equivalence of the two symbols in actual execu- {c}

tions. Henceforth, we continue the symbolic exe- {s}

cution by treating, internally to the analysis, the {d}

AND-join as an IOR-join. s z> O>
To inspect a lack of synchronization, we pro- F {e}

vide the XOR-join that terminates the detected {f}

handle and the two incoming edges’ of the
XOR-join that are part of the handle to the useFig. 9. A lack of synchronization.
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Furthermore, we provide the labeiée), o(€'). Then, the user has to determine that for
each pair of outcomes € ¢(e) ando’ € ¢(€), we have thab is taken in an actual
execution implies that’ is not taken in that execution. If the usefians the latter,
she can dismiss the lack of synchronization. This basigaibtulates that ando’ are
mutually-exclusive in actual executions. If this is done &l incoming edges of the
XOR-join, we can henceforth continue the symbolic execulip treating, internally to

the analysis, the XOR-join as an IOR-join. Figure 9 shows»am®le with a lack of
synchronization located &t The user may dismiss it because for example, the condi-
tions onc ande are the same, i.ed, ande are mutually-exclusive.

Figure 10 shows another example where the {a)
deadlock can be dismissedifandc are deemed {s} by
to be equivalent. Once the user dismissed thé& A ° ¢ e
deadlock, we continue the symbolic execution {S} f d

and label the edgd with the symbol{b, ¢} ac-
cording to the IOR-join propagation rule. To di
miss the lack of synchronization M, the user
then has to check the pairb and the paig, ¢ for mutual exclusion.

The deadlock displayed on Fig. 4, can be dismissgdsfequivalent tcs, i.e.,g is
deemed to be marked in every execution of the process.

Note that, if we provided an execution, i.e., an error tragther than the symbolic
information to dismiss an error, we would present expodigtmany executions that
contain the same error in the worst case. The analysis of uteome sets precisely
gives the conditions under which one deadlock or one laclyélsronization occurs.
It does not contain information that is irrelevant for proihg the error.

&Fig. 10. A deadlock and a lack of
synchronization.

5.2 Relaxed soundness

In some cases, the user should not be allowed to dismiss an Eigure 11 shows a
deadlock that cannot be avoided unldsside are never taken which clearly indicates a
modeling error. This is related to the notionrefaxed soundneg8]. A workflow graph
is relaxed soundf for every edgee, there is asound executiothat markse, where an
execution issoundif no interleaving equivalent execution neither reachegadtbck
nor a lack of synchronization.

The graph in Fig. 11 is not relaxed sound. We e

do not know any polynomial-time algorithm to {§l<§
decide relaxed soundness for acyclic workflow N\

graphs. However, we provide here necessary cott {e§-|>g t>
ditions for relaxed soundness that can be checked " 0] e
in polynomial time. 'Q{f}

f

One necessary condition for relaxed sound-
ness is that for every AND-joinJ and every Fi9-11.Adeadlock located atthat
pair of incoming edges, € of J, e ande are Should notbe dismissed.
sometimes-concurrent. Likewise, for every XOR-jalrand every pair of incoming
edgese, € of J, e and€ must not be always-concurrent. Moreover, we have the fol-
lowing stronger necessary conditions:
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Theorem 5. Let W be an acyclic workflow graph.

1. If for an AND-join J, and a pair of incoming edgeseeof J and one outcome
0 € ¢(e), we have that all outcomes a ¢(€') are mutually-exclusive with o, then
W is not relaxed sound.

2. Iffor an XOR-join J, and a pair of incoming edgeg’eof J, we have(e) Ng(€) #

0, then W is not relaxed sound.

Proof.

1. Assume that there exist an AND-join J, and a pair of incgneidges g2’ of J and
one outcome @& ¢(€), we have that all outcomes a ¢(€') are mutually-exclusive
with 0. When o carries a token during an executionthen e carries a token by
Lemma 1. As the outcomesy(e’) are mutually exclusive with o; & not marked
during o. By Proposition 2, there is a deadlock located at J durindlhus, there
exists no sound execution that marks o, i.e., W is not relagadd. O

2. Assume that for an XOR-join J, and a pair of incoming edgesd J, we have
o(e) Ng(e) # 0. Then, there exists an outcome @(e) Np(¢). By Lemma 1, when
o is marked during an executian, e and é get marked duringr. And therefore
there exists an exectutiar that is interleaving equivalent tor which leads to a
lack of synchronization. Thus, there exists no sound exectitat marks o, i.e., W
is not relaxed sound. O

Based on the previous results in this paper, ©

we can compute these necessary conditions for (s} ¢
relaxed soundness in polynomial time. If one of a'x<}{g}_2c>>“
them is true, the corresponding error should nds} A
be dismissible. For example, the deadlock in the A {i}gg
workflow graph depicted by Fig. 11 cannot be di
missed becauseé and e are mutually-exclusive.
The lack of synchronization located atin the
workflow graph depicted by Fig. 12 cannot be dismissed beca(d) = {d} and
o(b) = {s,c,d} and thusp(e) N g(€) = 0.

Note that, deciding soundness and relaxed soundness aoemtleach other. If we
only decided relaxed soundness, we would not detect thdatgaithat may be present
in an actual execution of Fig. 8 for example.

l%ig. 12. A lack of synchronization
that should not be dismissed.

6 Conclusion

We have shown how basic relationships between control-fitiyes of a process can be
decided in polynomial time for acyclic workflow graphs withclusive OR gateways.
This has various applications, for example, to detect obfiow errors, to perform
data-flow analysis, or to compare processes at a behavawell Moreover, we have
proposed a control-flow analysis that decides soundnessgddrgtic time and gives
concise error information that precisely characterizemagle error. We outlined how
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the diagnostic information can be used fiaently dismiss spurious errors that may
not occur in actual executions of the process due to coeidata-based decisions.
Note that, to increase the applicability of this approach,a&n combine it with
workflow graph parsing using the Refined Process Structuge 9], which allows
us to decompose the workflow graph into fragments and to aeadgch fragment in
isolation (see [5] for details). Thus, our approach can leelus analyze every acyclic
fragment of a cyclic workflow graph. However, it has to be vaatlout how the user
interaction proposed in Sect. 5 can be extended to that @asse cyclic fragments can
be analyzed using suitable heuristics [20] which can beieghpt linear time. Moreover,
we would like to extend symbolic execution to cyclic workflgraphs in future work.
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