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Abstract
The cloud computing paradigm with its elastic pay-
as-you-go model, “infinite” scalability and “always-on”
availability arguably changes the landscape of services
and systems. However, so far, cloud proliferation has not
lived up to expectations in the enterprise segment. Often
cited issues include confidentiality and integrity, but also
reliability and consistency.

In this paper, we argue for the Intercloud as the sec-
ond layer in the cloud computing stack, with the goal of
building more dependable cloud services and systems. In
the Intercloud layer, we foresee client-centric distributed
protocols to complement more provider-centric, large-
scale ones in the (Intra)cloud layer. These client-centric
protocols orchestrate multiple clouds to boost depend-
ability by leveraging inherent cloud heterogeneity and
failure independence.

We also discuss the design of Intercloud storage,
which we currently are implementing, as a primer for
dependable services in the Intercloud. Intercloud Stor-
age precisely addresses and improves the CIRC attributes
(confidentiality, integrity, reliability and consistency) of
today’s cloud storage services.

1 Introduction

Cloud computing promises to the client an elastic pay-
as-you-go model, “infinite” scalability and “always-on”
availability, which renders it appealing for data and com-
putation outsourcing, both for consumers that want to
share their pictures with friends and for enterprises that
want to reduce their IT budgets.

However, there are obvious dependability and security
concerns associated with outsourcing data and computa-
tion to a potentially untrusted third-party (cloud). Even
if the cloud provider is itself trusted by the client, issues
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like multi-tenancy entail vulnerabilities. More specifi-
cally, often cited problems include data confidentiality
and integrity, but also reliability and consistency of the
contracted service (we collectively refer to these four di-
mensions as CIRC).

We believe that a promising solution for improved
cloud security and dependability lies in the Intercloud1,
the cloud of clouds, and goes beyond adding perfection
to single, isolated clouds. In this paper, we first argue
for the Intercloud as the second layer in the dependable
cloud computing stack for the next-generation cloud.
The upcoming Intercloud and today’s single-provider
clouds are two separate layers in the cloud computing
stack of tomorrow (Fig. 1) that complement each other.
The Intercloud offers promising solutions for enhanced
dependability. Secondly, we present the design of a ser-
vice in the Intercloud, which exploits the unique features
of this model: An Interclud storage (ICStore) service that
is currently under development and addresses the CIRC
dimensions through a layered architecture (Sec. 3).

2 Dependable Cloud Computing Stack

In this section, we first overview the single-domain cloud
layer and its dependability limitations and then argue for
looking at Intercloud for solutions.

2.1 Single-Domain Cloud and Limitations
This layer encompasses most of the cloud computing
systems to date, and consists of distributed protocols de-
signed to run in a single administrative domain, typically
under the control of one service provider (e.g., Amazon
AWS2, Google Apps 3, Nirvanix4). Distributed protocols
used in this context are intended for wide-area systems,

1http://www.google.com/search?q=intercloud
2http://aws.amazon.com/
3http://www.google.com/a/
4http://www.nirvanix.com/
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Figure 1: Dependable cloud computing stack.

with scalability to a very large number of clients and high
availability as their most important goals [18].

The dependability and security of a single-domain
cloud, especially its integrity, confidentiality, and isola-
tion for data and computations in a multi-tenant model,
are receiving increased attention (e.g., [5, 16]). However,
devising a dependable service while relying on offerings
of a single cloud provider P has its inherent limitations,
since all trust in the system reduces to trusting P . Con-
sider for example, encryption as the classical way for
achieving data confidentiality. Encryption creates keys
to be managed: but if a client solely relies on offerings
of provider P , it would have to store encryption keys
through a service offered by provider P as well, which
immediately defeats the benefits of encryption. On the
other hand, we consider storing the encryption keys lo-
cally at fault-prone clients to be an unacceptable solu-
tion, since losing a key implies losing the encrypted data.
Moreover, when data and computation are outsourced to
an untrusted cloud, integrity of data and computation can
be guaranteed only to a certain extent [7].

Other limitations in relying on a single cloud
provider’s services are related to data reliability and
consistency. While clouds are designed to be highly
available, outages may and do occur at any individual
provider (see, e.g., [1] for details). In addition, the net-
work to a cloud provider remains a single point of fail-
ure, especially in the case of cloud providers that do not
geographically diversify their services. Moreover, net-
work connections are particularly vulnerable when the
client resides outside North America and Western Eu-
rope, where high-bandwidth connections might not be
readily available. Finally, eventual consistency offered
by many cloud providers, which comes as a byproduct
of high availability goals [18], might not be sufficient for
some applications. Single-cloud solutions may give an
incentive for a client to locally cache data, in order to
avoid consistency problems. But this complicates con-
current access to the service or may completely defeat
the very purpose of outsourcing data to the cloud.

To cope with these and other single-cloud dependabil-

ity issues, we propose to look at the Intercloud.

2.2 Intercloud Layer

We advocate to leverage a multitude of cloud providers
for addressing dependability issues and limitations of
isolated single-domain clouds. These multiple cloud
providers form the Intercloud, which we expect to be-
come an increasingly relevant layer in the cloud comput-
ing model at large, which resides on top of the single-
domain cloud layer.

The Intercloud layer offers a unique environment for
building dependable services. Consider, for example,
fault-tolerance as one of the key aspects of dependabil-
ity. A fundamental assumption, on which virtually all
fault-tolerant dependable systems rely, is the failure in-
dependence assumption. This assumption comes in dif-
ferent flavors, ranging from classical threshold failure as-
sumptions to non-threshold failure models (e.g., [12]). In
the first case, failure independence is reflected through
the assumption that only the number of faulty processes
counts, i.e., up to t but not t + 1 or more processes may
fail; in the second case, failure independence is assumed
across different fault-prone sets. However, the cover-
age of this assumption in practice is sometimes small.
This remains a weak point of many dependable systems,
and results in the assumption often being criticized. In
this aspect, the Intercloud is without precedent: it comes
with diversity in geographical locations, power supplies,
internal cloud architectures, separate administrative do-
mains and different proprietary middleware and applica-
tion implementations. Best of all, this diversity comes to
the client essentially for free, because the maintenance
of such diversified (yet semantically similar) services is
not the responsibility of a client, but is in the hands
of the separate cloud providers. Since cloud-provided
resources are a commodity, their cost is absorbed by
many clients for different tasks. In contrast, maintain-
ing enough diversity for a single task “in-house,” which
could include (but is not limited to) hardware and operat-
ing systems diversity, n-version programming and soft-
ware maintenance, and administration know-how, is pro-
hibitively expensive. Furthermore, trusting the ensemble
of diversified clouds by distributing trust across differ-
ent cloud domains is an appealing alternative to trusting
(possibly critical) data to a single cloud provider.

Clearly, the Intercloud layer does not replace the
single-cloud layer, but greatly expands its scope. We ex-
pect that dependable protocols in the Intercloud will be
client-centric first, where client-side proxies orchestrate
multiple clouds. This will be followed by more sophis-
ticated services involving communication among differ-
ent cloud services (this is not easily possible today due
to lack of standardization). We envisage that protocols
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in the Intercloud add considerable value over the single
cloud, because they maximize various QoS metrics, in-
cluding dependability in the broad sense, and CIRC in
particular. Of course, large-scale provider-centric single-
domain clouds will continue to become more depend-
able; but Intercloud protocols are orthogonal to these ef-
forts and directly benefit from them.

Intercloud applications already exist as mash-ups,
which are used to build new web services leveraging ap-
plications from multiple providers (e.g., using Google
Maps to geo-tag other web services, not necessarily re-
lated to Google). However, with respect to dependabil-
ity, the Intercloud still is in its infancy. A pioneering
recent work on dependable Intercloud services is RACS
(Redundant Array of Cloud Storage) [1], which, roughly
speaking, casts traditional RAID data availability tech-
niques to the Intercloud model and offers better protec-
tion against lock-in to a single cloud storage vendor. In
the next section, we present our design for Intercloud
storage (ICStore) with dependability goals that exceed
those of RACS, notably in terms of improving confiden-
tiality, integrity and consistency, but also with respect to
the client fault-tolerance.

3 Intercloud Storage (ICStore)

Our high-level design of ICStore is depicted in Figure 2.
At its heart is an ICStore client which orchestrates multi-
ple commodity cloud storage services of the Intercloud
(e.g., Amazon S3, Eucalyptus/Walrus [15], Nirvanix)
and provides a transparent storage service to the end
client who does not need to be aware of the ICStore de-
tails, such as the number of different clouds and their
APIs. The ICStore client offers to the end client a key-
value store with simple read and write operations, which
is a common base service offered by commodity cloud
storage providers. Our initial implementation views
this ICStore/client interface as a subset of the Amazon
S3 interface (including, e.g., put(key, version, value),
get(key) and delete(key) operations). Eventually, we
plan to replace this interface with a standard “simple”
storage API, e.g., the SimpleCloud API5. With this de-
sign, the ICStore client appears to the end client as a sin-
gle virtual cloud, which simplifies the porting of exist-
ing cloud storage applications (e.g., those built on top of
Amazon S3) to ICStore. Multiple end clients can access
ICStore through its own ICStore client.

At the other end, i.e., in the Intercloud back-end, the
ICStore client connects to separate commodity storage
vendors, shielding the end client from their API diver-
sity. New cloud storage vendors can be added modu-
larly by writing adaptors for individual vendor APIs to

5http://www.simplecloud.org/

Figure 2: High level design of Intercloud storage.

the more standardized API that follows the one the IC-
Store exposes to the end client.

Finally, ICStore client consists of three core layers that
target different dependability aspects: i) confidentiality,
ii) integrity and iii) reliability and consistency (RC). This
layered approach allows individual layers to be switched
“on” and “off” to provide different levels of dependabil-
ity that are to be matched with client’s goals, also with
performance and possibly even monetary constraints in
mind. In addition, each layer can be individually tuned,
as we detail in the following. Note that the ICStore
client functionality does not need to be implemented on
the client-side. Namely, ICStore client could reside re-
motely, acting as a separate service and as a gateway to
the Intercloud. However, in our initial prototype, ICStore
clients are implemented as a library on the end clients.

Confidentiality. In this layer, the client performs a
simple symmetric key encryption of the data (i.e., blob
value) received from the client. The critical challenge
in this layer is key management. To this end, our de-
sign supports the use of enterprise-level key managers
[4] assuming that such managers are properly replicated
to provide a desired level of fault-tolerance.6

However, ICStore also supports “in-band” key man-
agement, suitable for a fault-prone client scenario we
discussed in Section 2.1. Here, a key is split (i.e., secret
shared [17]) upon encryption, and key shares are attached
as metadata to the pieces of data destined to individual
clouds. The number of shares needed to reconstruct the
key is a parameter that depends on the number of avail-
able clouds and desired resilience and is related to the re-
liability protocols used in the RC layer. Here we make a
rather realistic assumption that different cloud providers
do not, in principle, collude to violate data confidential-
ity. This approach demonstrates how confidentiality is-
sues in a single-domain cloud (mentioned before) can be
mitigated by distributing trust in the Intercloud.

6Note that this approach to key management is also applicable to a
single-domain cloud.
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Our approach here is to project the (theoretical) solu-
tion of [9] to the (Inter)cloud. The challenge in adapt-
ing techniques of [9] to fit our needs lies in the fact that
end storage “nodes” (clouds) cannot perform arbitrary
computations on data, because their APIs do not support
this.7 Moreover, commodity cloud storage “nodes” can-
not initiate communication among each other.

Integrity. The integrity layer provides cryptographic
protection against unauthorized data modification. When
only a single client accesses the untrusted cloud storage,
data integrity can basically be realized with hash trees.
For allowing multiple readers and writers to the stored
data, the integrity layer relies on a public-key infrastruc-
ture at the clients. They issue signatures on the roots of
hash trees over the data and exchange those via the un-
trusted cloud. No extra client-to-client communication
needs to be introduced for this purpose.

When multiple clients concurrently access some data
maintained by ICstore, a storage-integrity protocol based
on fork-linearizability [14] that realizes fail-aware stor-
age [6] is employed. These methods guarantee that data
in the cloud cannot be modified without the clients de-
tecting this, even when only one, single-provider cloud
is present. Moreover, in the Intercloud, these methods
can leverage correct clouds to mask faulty ones and offer
full data integrity beyond fork-linearizability.

Reliability and Consistency (RC). The RC layer con-
sists of fault-tolerant distributed protocols that disperse
data to the Intercloud after the data (optionally) passes
through the confidentiality and integrity layers. In the
RC layer, we plan to support a variety of data dispersal
protocols which are to be selected depending on the goals
of the end application, again respecting performance and
monetary constraints.

The simplest reliability-enhancing distributed protocol
consists of data replication across multiple clouds. How-
ever, as this approach may be prohibitively costly we
also envision support for erasure coding techniques (e.g.,
RAID 5) in the vein of RACS [1] or HAIL [5]. How-
ever, we believe that casting techniques such as RAID
into cloud may lead to vulnerabilities because these tech-
niques were designed with a synchronous communica-
tion model in mind, along with the RAID controller as a
single point of failure. In contrast, cloud and Intercloud
storage involves communication among WANs, which
may lead to (transient) network availability issues as dis-
cussed. Moreover, we believe that supporting fault-prone
client (proxies) is critical in the Intercloud. To this end,

7Here we initially aim to avoid bringing up a virtual machine (in
e.g., Amazon EC2 or Eucalyptus) to perform the computation, because
of the related cost and management overhead. Instead we want to rely
on pure commodity storage clouds in the Intercloud back-end. How-
ever, exploiting VMs to perform computation on data in the Intercloud
remains a viable path to explore.

we extend the approach of RACS by supporting asyn-
chronous communication and fault-prone client proxies
by applying fault-tolerant asynchronous distributed stor-
age protocols to boost reliability; such protocols can be
seen as a generalization of RAID protocols (see e.g., [8]
for an overview). In this context and because of limita-
tions in the computational and communication capabili-
ties of cloud storage “nodes,” our first ICStore prototype
focuses on (variants of) client-driven protocols (e.g., [3])
rather than on more sophisticated protocols that require
a lot of computation on storage nodes and mutual com-
munication among them (e.g., [11]).

Furthermore, such asynchronous storage protocols
come with different consistency guarantees and a va-
riety of fault-tolerance guarantees (e.g., crash or arbi-
trary/Byzantine faults). In addition to improving relia-
bility, we plan to boost consistency of Intercloud storage
by leveraging fault-tolerance techniques; for example, an
inconsistent reply coming from one cloud can be masked
by waiting for a sufficient number of consistent replies,
or even by declaring an inconsistent (i.e., a stale) reply as
Byzantine and leverage Byzantine fault-tolerance tech-
niques to mask such a reply. Clearly, there is a (very
small) possibility that all replies from eventually consis-
tent “base” clouds are inconsistent, in which case the
ICStore client cannot detect such replies are stale. In
such cases, ICStore gracefully degrades to eventual con-
sistency.

Our preliminary experiments indicate that employing
a strongly consistent, atomic storage emulation (e.g., [3])
might simply be an overkill for ICStore, especially be-
cause such protocols require readers to write back some
portion of data to storage nodes. In addition to the in-
creased cost of such an approach, this raises issues re-
garding the proper configuration of access control on
base clouds. Instead, simpler and more lightweight pro-
tocols that aim at regular [13] consistency are more suit-
able. This trend is also present in recent single-domain
cloud storage implementations, e.g, [2], which are de-
signed to provide regular (eventual) consistency for a sin-
gle cloud. Finally, in the later stages of our implemen-
tation, we plan to add support for erasure coding to our
client-driven storage protocols.

4 Related Work

For lack of space, we omit a comprehensive comparison
of our ICStore with all relevant storage systems and fo-
cus on the work that is most directly related.

Many commercial cloud storage providers offer geo-
graphical diversity (e.g., Amazon S3, Cleversafe8, EMC

8http://www.cleversafe.com/
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Atmos9, Nirvanix, Wuala10), either by employing full
replication or erasure coding. This approach obviously
contributes to better failure independence and depend-
ability, but falls short of the failure independence in the
Intercloud, which also provides different implementa-
tions and administrative/trust domains. Some providers,
e.g., Wuala, also encrypt data on the client side and em-
ploy “out-of-band” key management on the client-side
[10] to ensure data confidentiality on the cloud. In con-
trast, we propose an “in-band” key management in IC-
Store in which keys are split among cloud providers with
shares attached as metadata to data (chunks).

HAIL [5] uses erasure coding to disperse data over
multiple providers, of which a fraction may collude
against the user. It combines cryptographically sound
proofs for the retrievability of the data (so that the
provider cannot only pretend to have stored it) with the
erasure-coded distributed storage. For data integrity,
HAIL relies on a symmetric-key MAC, which the users
must keep secret. The retrievability methods of HAIL
may be combined with our ICStore architecture, but our
integrity guarantees are stronger.

Our approach is closest to that of RACS [1], which
casts RAID techniques to the Intercloud, as we have al-
ready discussed. However, ICStore goes beyond RACS
in dependability guarantees by addressing confidential-
ity, integrity and consistency and also allows for client
failures and asynchrony by employing asynchronous
fault-tolerant client-driven storage protocols [8].

5 Conclusion

Intercloud is a promising second layer in the depend-
able cloud computing stack. We presented the design
for Intercloud storage (ICStore), which aims to address
dependability issues in cloud computing, such as con-
fidentiality, integrity, reliability and consistency. In the
near future, we plan to complete the implementation of
our ICStore prototype and evaluate its costs and benefits.
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