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Samuel J. Burri∗,†, Günter Karjoth∗, and David Basin†

∗IBM Research – Zurich, Switzerland
†ETH Zurich, Department of Computer Science, Switzerland

Abstract

We introduce the concept of Separation of Duties (SoD) as a Service, a new approach to enforce SoD
requirements on workflows and thereby prevent fraud and errors. SoD as a Service facilitates a separation of
concern between business experts and security professionals. Moreover, it allows enterprises to address the
need for internal controls and to quickly adapt to organizational, regulatory, and technological changes, which
are common characteristics of today’s dynamic business environments. We describe our implementation of
SoD as a Service, which extends a widespread, commercial workflow system. We validate our approach and
implementation with a realistic case study, a drug dispensation workflow deployed in a hospital.

1 Introduction

New technologies and methodologies, such as Service-Oriented Architectures (SOAs), facilitate the integration
of legacy information systems with new system components and the dynamic outsourcing of business func-
tionality. This enables organizations to concentrate on mission-critical and value-generating business activities
and to outsource less central activities. Software as a Service (SaaS) is a new software delivery model that
is motivated by these technical advances and new business models [27]. SaaS decouples the ownership and
the use of software by providing its functionality as a service and facilitates a demand-driven, late binding of
system components. Along with this decomposition and distribution of work comes the need to structure and
organize business tasks, which is typically done in the form of business processes, modeled as workflows.

The second trend that motivates our work is the increasing effort of organizations to enforce internal controls
in order to fight fraud and to comply with regulatory requirements. For example, regulations such as the
Sarbanes-Oxley Act [1] mandate companies to document their business processes, to identify fraud and security
vulnerabilities, and to apply appropriate countermeasures. Most security requirements for business processes
are concerned with human activities, as the most severe security risks stem from human interaction [10].
Separation of Duties (SoD) is a popular class of constraints on human activities that prevent a single user
from executing all critical tasks in a workflow. Therefore, the collusion of at least two users is required to
commit fraud. Various frameworks have been developed for specifying and analyzing authorization constraints
for business processes. However, they are limited in the kinds of constraints they can handle and typically
force a tight coupling of the workflow and constraint definition. The SoD algebra (SoDA) of Li and Wang [18]
constitutes a notable exception. It allows one to model expressive SoD constraints decoupled from a workflow
definition.

In this paper, we address both the trend towards loosely-coupled, service-oriented architectures and the
increasing need for internal, process-oriented controls. A common characteristics of these two developments is
change. SaaS is motivated by fast-changing business environments and internal controls must quickly adapt
to changing regulations and threats. Past research has largely ignored the impact of changing authorizations
on running business processes. A prominent example of the relevance of these dynamic aspects is the loss of
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4.9 billion euros that the French bank Société Générale suffered due to unauthorized trades of its employee
Jérôme Kerviel who exploited the authorizations of his former job role, which were not revoked [8]. The
European fraud survey of Ernest & Young confirms that organizational changes, triggered by acquisitions and
job cuts, are among the major sources of fraud [10]. To counter such problems, Basin et. al. bridge the gap
between workflow-independent SoD constraints, formalized as SoDA terms, and their enforcement in a general
workflow model [5]. Their approach also accounts for changing authorizations and thereby generalizes the
original SoDA semantics [18].

We report on the implementation and validation of the results of [5] in a SOA-based workflow environ-
ment. We illustrate how off-the-shelf, widespread software products can be combined and extended to improve
internal control, while remaining flexible with respect to change. We compare the runtime complexity of our
implementation to the runtime complexity of the underlying formal models and explain how we achieve an
acceptable runtime performance in practice. Through an extensive and realistic case study, we test the appli-
cability of our approach to a real-world scenario and we use a series of performance measurements to confirm
the results of our complexity analysis.

Overall, our contributions are as follows. First, we empirical validate the applicability of the theoretical
models in [5] to a realistic business setting. Second, we introduce the concept of SoD as a Service, which is an
instance of SaaS, providing SoD enforcement as a service. SoD as a Service has a number of attractive properties.
It enables a loose coupling between a workflow engine that executes the business logic, a user repository that
administers users and their authorizations, and the enforcement of abstract SoD constraints. Loose coupling
and the employment of the service concept in turn facilitates a separation of concerns. Business experts can
focus on modeling business processes, managers on the organizational design, and security professionals on
the enforcement of internal controls – each of them requiring minimal interaction with the other two. Our
architecture is also well-suited for enforcing SoD constraints on legacy systems. By accepting a moderate
increase of communication, our architecture allows a reduction of implementation costs and configuration
efforts. At the same time, changing legal requirements or organizational changes can quickly be reflected in
the IT infrastructure.

We proceed in Section 2 with a brief introduction to the formal prerequisites of this paper: CSP, workflows,
authorizations, and SoDA. We describe the implementation of our prototype system in Section 3, including our
design goals, a complexity analysis, and a discussion of the design decisions. We introduce a real-world scenario,
the enforcement of SoD constraints on a drug dispensation workflow deployed in a hospital, together with our
performance measurements in Section 4. After discussing related work in Section 5, we draw conclusions in
Section 6. Supporting documentation is given in the appendix.

2 Background

Our work builds on the models of [5]. In particular, we also model workflow systems using the process algebra
CSP [22]. In CSP, systems are described by communicating processes. An event is the smallest unit of activity;
let Σ denote the set of all events. Events can be structured using channels. For a set A and a channel c, we
say that c is of type A if {c.a | a ∈ A} ⊆ Σ. For a tuple (a1, a2, . . . an) we write c.a1.a2. . . . .an. A sequence of
events, written 〈e1, e2, . . . , en〉, is called a trace and Σ∗ is the set of all traces over Σ. For two traces i1 and i2,
we denote their concatenation by i1ˆ i2.

A process describes a communication pattern. The denotational semantics of CSP defines the behavior of
a process in terms of a set of traces. Formally, for a process P , T(P ) ⊆ Σ∗ is a prefix-closed set of traces,
each describing a possible execution of P . For a trace i and an event e, if i ∈ T(P ) we say that P accepts
i and if î 〈e〉 ∈ T(P ) we say that P engages in e after P accepted i. Processes can be parametrized. For a
variable v, P (v) describes a class of processes, where the behavior of an instance of P (v) depends on the value
of v. Finally, for two processes P and Q and a set of events E, P ‖

E

Q is the parallel process that engages in

an event e ∈ E if both P and Q engage in e, and it engages in an event e /∈ E if P or Q engages in e.
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2.1 Workflows

We call a unit of work a task. Because SoD constraints are defined with respect to human activities, we
concentrate on tasks that are executed by humans, either directly or through the execution of a program on
their behalf. A workflow models the temporal ordering and causal dependencies of a set of tasks that together
implement a business objective.

The execution of a workflow by a workflow engine is a called a workflow instance. A workflow engine may
execute multiple instances of the same workflow in parallel. The execution of a task in a workflow instance is
called a task instance. Let U be a set of users and T a set of tasks. We use the channel b of type T × U to
model the execution of tasks. For a task t ∈ T , and a user u ∈ U , we call the event b.t.u a business event. It
describes the execution of t by u, i.e. a task instance of t. Let ΣB be the set of all business events.

In addition to business events, we use the event done to denote that a workflow has finished. Given
a workflow w, we model w as a process W . Every trace i ∈ T(W ) corresponds to a workflow instance
of w. For a trace i ∈ Σ∗, the function users(i) returns the set of users contained in business events in i
– that is, the function users extracts the users who executed a task in a workflow instance. For example,
users(〈b.t1.Bob, b.t2.Claire, b.t3.Bob, done〉) = {Bob, Claire}.

2.2 Authorizations

We use Role-based Access Control (RBAC) [11] to model authorizations. Let a set of roles R, a user-assignment
(relation) UA ⊆ U ×R, and a role-assignment (relation) PA ⊆ R× T be given. We call a tuple (UA,PA) an
RBAC configuration. A user u is authorized to execute a task t if there exists a role r ∈ R such that (u, r) ∈ UA
and (r, t) ∈ PA. We say that u acts in role r if (u, r) ∈ UA. We do not consider sessions but they could be
modeled with the administrative commands introduced below. In an enterprise environment, users and their
credentials, including their role assignments, are typically stored and administrated in a user repository.

For a user assignment UA and a permission assignment PA, the RBAC process RBAC(UA,PA) models the
enforcement of role-based authorizations and the administration of UA. The process RBAC(UA,PA) engages
in a business event b.t.u if u is authorized to execute t with respect to UA and PA. Furthermore, we model the
administration of user-assignment relations with a set of admin events ΣA that are communicated over a channel
a. For every user u ∈ U and every role r ∈ R, ΣA contains the admin events a.rmUA.u.r and a.addUA.u.r. The
RBAC process RBAC(UA,PA) engages in a.addUA.u.r and behaves like RBAC(UA ∪ {(u, r)}, PA) afterward.
Similarly, it engages in a.rmUA.u.r and behaves like RBAC(UA \ {(u, r)}, PA) afterward. In other words,
a.addUA.u.r adds the user assignment (u, r) to UA and a.rmUA.u.r removes it from UA.

2.3 Separation of Duty Algebra

Li and Wang’s separation of duty algebra (SoDA) describes SoD constraints independent of workflows. This
decouples workflow definitions and SoD enforcement and naturally fits our SoD as a Service approach. In this
paper, we merely motivate SoDA by giving a few examples. See [18] for a complete language definition.

SoDA formalizes SoD constraints as terms. Let a term φ and a user assignment UA be given. A set of users
U satisfies φ with respect to UA, written U `UA φ, if the users in U and their role assignments contained in
UA comply with the SoD constraint described by φ.

For example, consider the terms: φ1 = All ⊗ All ⊗ All, φ2 = Pharmacist t (Nurse ⊗ Nurse), and φ3 =
(Therapist⊗ Nurse) u (¬Patient u ¬{Bob, Claire})+. The term φ1 is satisfied by every set containing three
users; i.e., φ1 requires the separation of duties between three arbitrary users. The term φ2 is satisfied by
either a user acting as Pharmacist or two different users, both acting as Nurse. Under the assumption that
a Pharmacist has more medical knowledge than a Nurse, this constraint could be used to ensure that the
medical decisions of a Nurse are double-checked by another Nurse while a Pharmacist’s decision need not be
checked by a second user. The term φ3 requires a user acting as Therapist and another user acting as Nurse.
In addition, both users must not act as Patient and be neither Bob nor Claire. These examples illustrate
how SoDA can be used to express quantitative and qualitative restrictions. Terms define both the number of
users and the kinds of users that are required for the execution of a set of tasks.
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Figure 1: From theory to practice Figure 2: Architecture

Basin et. al. generalize the original SoDA semantics to a trace semantics that also accounts for changing
authorizations [5]. Thereby, they close the gap between the workflow-independent, abstract specification of
SoD constraints and their enforcement on workflows. Given a user assignment UA and a term φ, they describe
the construction of a process SODφ(UA), called SoD-enforcement process, that engages in all business events
that correspond to a satisfying set of users for φ with respect to UA. Additionally, SODφ(UA) also engages in
admin events that modify its user assignment UA. The relation between the satisfaction of φ by a set of users
and the acceptance of a trace by SODφ(UA) can be summarized as follows: For all terms φ, all user-assignment
relations UA, and all traces i ∈ Σ∗B, if î 〈done〉 ∈ T(SODφ(UA)), then users(i) `UA φ.

Let a process W that models a workflow be given. Let φ be a term that formalizes an SoD constraint, UA
a user assignment, and PA a permission assignment. We call the parallel, partially synchronized composition
of W , the RBAC process, and the SoD-enforcement process SODφ the SoD-secure (workflow) process SSW φ.
Formally,

SSW φ(UA,PA) = (W ‖
ΣB

RBAC(UA,PA)) ‖
Σ

SODφ(UA) .

If SSW φ(UA,PA) engages in a business event b.t.u, then t is one of the next tasks in the workflow W , u is
allowed to execute t with respect to UA and PA, and u is also authorized to execute a task according to the
SoD-policy φ with respect to UA. In addition, RBAC and SODφ can synchronously engage in an admin event
and change their user assignments accordingly.

3 Implementation

As motivated in the introduction, we want to empirically validate that an SoD-secure workflow process can be
mapped to a scalable implementation that is employable for a realistic use case. Furthermore, our implemen-
tation demonstrates the concept of SoD as a Service and serves as basis for its assessment.

The mapping from an SoD-secure workflow process to software components is illustrated in Figure 1. We
proceed by implementing W by a workflow engine, RBAC by a user repository, and SODφ by a program that
we call an SoD-enforcement monitor. Workflow engines and user repositories are well-established concepts and
therefore we use off-the-shelf components to realize them. The standalone SoD-enforcement monitor, however,
is a new concept, which we implemented from scratch (indicated by dark gray in Figure 1).

3.1 Technical Objectives

We aim at realizing an effective, practical, and efficient implementation. By effective we mean that the im-
plementation fulfills its purpose. Namely, it should support the execution of arbitrary workflows, facilitate
changing RBAC configurations, and correctly enforce SoD constraints that are specified as SoDA terms.
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We understand practicability in the sense that the integration and configuration effort is moderate. The
main components of our system should be loosely coupled in order to reduce the cost of integration and to
allow the integration of pre-existing components, such as a legacy workflow system. Furthermore, the system
should be configurable using standard means, e.g. a workflow definition, an RBAC configuration, and an SoD
policy, rather than requiring additional, labor-intensive settings.

The performance of our implementation is a critical success factor for this work. We call the runtime of
a system with a workflow engine and a user repository but without an SoD-enforcement monitor the runtime
baseline. Our objective is to enforce SoD constraints efficiently, that is with a low overhead compared to the
runtime baseline.

3.2 Architecture

Figure 1 shows our general approach to mapping the processes W, RBAC, and SODφ to three individual system
components. The concrete software tools we use and their intercommunication is illustrated in Figure 2. Gray
boxes again indicate the components that we developed versus those that are standardly available.

Workflow engine: We use the IBM WebSphere Process Server (WPS) [17] as workflow engine. WPS runs
on top of the IBM WebSphere Application Server (WAS) [16], IBM’s Java EE application server [13].

User repository: The IBM Tivoli Directory Server (TDS) [15] serves as a user repository. TDS is an LDAP
server [28] whose LDAP schema we configured to support the RBAC relations.

SoD enforcement monitor: We implemented the SoD-enforcement monitor in Java and wrapped it as a
web service, using Apache Axis [25], which runs on top of Apache Tomcat [26].

Along with the various web-service standards, many semi-formal business processes modeling languages have
emerged. Among the high-level languages, the Business Process Modeling Notation (BPMN) [20] has gained
considerable attention. Backed by numerous software vendors, the Web Service Business Process Execution
Language (WS-BPEL) [3], or BPEL for short, is a popular standard for describing business processes at
the implementation-level. A BPEL process definition can be directly executed by a workflow engine. The
BPEL4People standard [2] is an extension of BPEL for describing human tasks. At design time, we define a
workflow in BPEL, including BPEL4People extensions, and deploy it to WPS.

LDAP supports RBAC with the object class accessRole. Instances of this class represent a role and store
the distinguished name of their members, typically instances of inetOrgPerson, in the field member. We send
U , R, and UA, encoded in the LDIF format [28], to TDS or we administer them directly through the TDS web
interface.

Using an ASCII version of the SoDA grammar, we encode SoDA terms as character strings. We send
them to the SoD-enforcement monitor with a standalone client. The interface of our SoD-enforcement monitor
implementation is described in detail in Appendix A.

By adopting a service-oriented architecture, we achieve a loose coupling between our three main system
components. This allows us to integrate two off-the-shelf components and the newly developed SoD-enforcement
monitor. Hence, we achieve the flexibility described in Section 3.1.

The downside of the SOA approach is the increased communication and serialization overhead. In order
to determine whether a user is authorized to execute a task instance with respect to an SoD constraint, the
SoD-enforcement monitor requires context information, which must be sent across the network. Our design
decisions in this regard are explained in Section 3.5. As the performance measurements in Section 4.3 will
show, the communication overhead is acceptable.

Similar trade-offs between flexible, distributed architectures with an increased communication overhead
versus monolithic architectures with a smaller communication overhead have been made in the past. For
example, the Hierarchical Resource Profile for XACML [4] proposes sending the hierarchy, based on which
an access control decision is made, to the access control monitor along with the access request. As with our
architecture, the access control monitor needs considerable context information to compute the access decision.
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3.3 Enforcement of SoD Constraints

In this section, we explain how our prototype system implements an SoD-secure workflow process SSW φ.
The process SSW φ engages in three kinds of events: business events, admin events, and the event done.
The implementation and handling of admin events and the event done is straightforward and therefore not
discussed. We take a closer look at business events and explain why every execution of a task instance in our
system corresponds to a business event that is accepted by SSW φ. A business event corresponds to a sequence
of steps in our implementation.

Consider the SoD-secure workflow process

SSW φ(UA,PA) = (W ‖
ΣB

RBAC(UA,PA)) ‖
Σ

SODφ(UA),

for a SoDA term φ, a user assignment UA, a permission assignment PA, and a workflow process W that models
a workflow w. Assume that i ∈ T(SSW φ(UA,PA)) corresponds to an unfinished workflow instance of w. Let
UA′ be the user assignment after executing the administrative events in i.1 Assume that t is a task in w.
Furthermore, assume that ti, an instance of t, is the next task instance that is executed. We now look at the
state transitions of ti.

Instantiation The creation of ti is either triggered by the termination of the preceding task instance, corre-
sponding to the rightmost business event in i or by the creation of the workflow instance i itself.

RBAC Authorization In SSW φ, authorization decisions are only made by the RBAC and the SODφ

process and W simply defines the order that tasks must be executed. This is different in our system and also
in most commercial workflow systems. For example, BPEL4People requires the definition of a query, called
people link, for every task. When the workflow engine instantiates the task, it also executes the respective
query against the user repository. The users who are returned are candidates for executing the newly created
task instance.

For a user u, the process RBAC(UA′, PA) accepts the business event b.t.u if u is assigned to one of the
roles in Rt = {r ∈ R | (r, t) ∈ PA} according to UA′. Therefore, during design time, we specify t’s people
link in such a way that the user repository returns all users who are assigned to a role in Rt. In other words,
the user repository keeps track of the user-assignment relation UA and the workflow definition specifies the
permission-assignment relation PA. Implicitly, we assume a one-to-one relation between permissions and tasks.

WPS evaluates t’s people link after every instantiation of t. Initially, the people link is sent to TDS (Arrow 1
in Figure 2). Afterwards, TDS returns the set of users U1 = {u ∈ U | ∃r ∈ Rt . (u, r) ∈ UA′} to WPS (Arrow 2
in Figure 2).

Refine to SoD-compliant Users Next, we select those users from U1 who are allowed to execute ti with
respect to φ and i. Formally, we compute the set of users U2 = {u ∈ U1 | i ˆ〈b.t.a〉 ∈ T(SODφ(UA′))}.

WPS provides a plugin interface that allows one to post-process the sets of users returned by a user
repository. We wrote a plugin for this interface that sends U1, the role assignments of these users, UA′1 =
{(u, r) ∈ UA′ | u ∈ U1}, and the identifiers of w and i to the SoD-enforcement monitor (Arrow 3 in Figure 2).
We refer to this web service call as a refinement call. A detailed interface definition is provided in Appendix A.

For every workflow, the SoD-enforcement monitor stores the corresponding SoDA term. Furthermore, it
keeps track of the users who execute task instances (see step Claim). Together with the above mentioned
inputs, this allows the computation of U2. In Section 3.4, we discuss this computation in more detail. The
output, U2, is returned to WPS (Arrow 4 in Figure 2).

Display A user can interact with WPS through a personalized, web-based interface. Once a user has suc-
cessfully logged into the system, WPS displays a list of task instances that the user is authorized to execute.
We call this list the user’s inbox. For every user u ∈ U2, i ˆ〈b.t.u〉 ∈ SSW φ(UA,PA). Therefore, WPS displays
ti in the inbox of every user in U2.

1In [5], this is formalized using an update function upd.
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Claim In the workflow terminology, if a user requests to execute a task he is said to claim the task. One of
the users in U2 must claim ti by clicking on ti in his inbox. Assume the user u claims ti. Instantaneously, ti
is removed from the inboxes of all other users. At this point, we must communicate to the SoD-enforcement
monitor that u is executing ti. In addition, we send the roles assigned to u to the monitor (Arrow 5 in Figure 2).
We refer to this web service call as a claim call.

Termination Afterwards, u is prompted with a form whose completion constitutes the work associated with
ti. The work is completed when the form is submitted. If ti is not a task instance that terminates the workflow
instance, its termination triggers the instantiation of another task.

Summarizing, our system effectively enforces abstract SoD constraints as specified in Section 3.1. Arbitrary
workflows, constrained by a possibly changing RBAC configuration and an abstract SoD policy, can be executed
on WPS. The applicability of our approach is further demonstrated with the case study in Section 4.

3.4 Complexity

We now analyze the runtime complexity of our SoD-enforcement monitor implementation. In particular, we
analyze the complexity of a refinement call. The complexity of claim calls are negligible compared to the
complexity of refinement calls and is therefore not discussed.

In general, the problem of deciding whether a term is satisfied by a set of users is NP-complete [18]. The
SoD-enforcement monitor must solve this decision problem for every user received through a refinement call.
Therefore, it comes as no surprise that refinement calls have a worst-case exponential runtime complexity.
However, we can show that the exponent remains small for moderate size workflows.

The parameters of a refinement call are a set of users, U1, their role assignments, UA′1, and the identifiers of
i and w. Using the identifier of w, the monitor retrieves φ. With the identifier of i, it retrieves all the users who
have executed task instances in i and their role assignments at that time. The monitor-internal data model is
described in Appendix B.

For every u ∈ U1, the SoD-enforcement monitor then computes whether i ˆ〈b.t.u〉 ∈ T(SODφ(UA′1)). This
computation is executed |U1| = n times. Consider the J.K-mapping given in Appendix C. The evaluation of
a unit term can be performed in polynomial time in the size of |U| and |R|; i.e. p(|U|, |R|) for a polynomial
p. In the worst case, SODφ(UA′1) branches 2|U| times per operator in φ. If m is the number of operators, the
worst-case runtime is therefore in O(nm 2|U| p(|U|, |R|)).

The exponential factor originates from the ⊗-operator, which causes SODφ(UA′1) to branch for all disjoint
subsets of U . Let Ui+u = users(i) ∪ {u}, i.e. the set of users in business events in i and u. If we check whether
i ˆ〈b.t.u〉 ∈ T(SODφ(UA′1)), the users in U \ Ui+u are not relevant. Therefore, we need not branch over all
partitions of U but only over those of Ui+u. If φ does not contain a +-operator, then the maximal number of users
in business events in i is m+ 1 and therefore |Ui+u| ≤ m+ 2. If φ does contain a +-operator, then |Ui+u| ≤ |U|.
Our implementation exploits these observations. Hence, its runtime complexity is in O(nm 2|Ui+u| p(|U|, |R|))
for |Ui+u| as discussed above.

Our experience with business process catalogs, such as the IBM Insurance Application Architecture (IAA)
[14], is that workflows contain a good dozen human tasks on the average. Furthermore, most workflow languages
allow the decomposition of workflows into sub-workflows. Given these numbers and observations, we conclude
that the performance penalty imposed by the SoD as a Service approach remains acceptable for most workflows.
We further investigate these issues and provide runtime measurements in Section 4.3.

3.5 Design Decisions and Assumptions

An SoD-enforcement process SODφ(UA) contains the user assignment UA and keeps track of administrative
changes by engaging in admin events and modifying UA accordingly. Our SoD-enforcement monitor does
not store the entire user-assignment relation. It receives all relevant assignments as call parameters and
stores only those assignments of users who claimed a task instance. Although this approach increases the
communication overhead between WPS and the SoD-enforcement monitor, it reduces unnecessary replication.
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Figure 3: Case study: Drug dispensation workflow in BPMN

In large enterprises, a user repository may contain thousands of entries and only a few of them may be relevant
with respect to a given workflow.

Our SoD-enforcement monitor is stateful because the enforcement of SoD constraints ranges over multiple
tasks and may depend on role assignments. The service must therefore keep track of the users who execute
task instances and the roles they act in at that time. Standard workflow engines such as WPS may store the
users who executed task instances but they do not store the history of their role assignments. This information
is stored in the SoD-enforcement monitor; the workflow engine and the user repository remain unchanged.

For simplicity, our SoD-enforcement monitor cannot cope with the abort or suspension of task instances.
In practice, however, WPS users can return unfinished task instances or trigger the abortion of a workflow
instance. Furthermore, we enforce exactly one term per workflow. This is not a limitation as two or more
terms can be combined into a single term with the appropriate SoDA operators; e.g. u for a conjunction or t
for a disjunction. If no SoD constraint has to be enforced, the term All+, which is satisfied by every non-empty
set of users, can be used.

The integration of an SoD-enforcement monitor with a workflow engine requires a means to refine the set
of users that are authorized to execute a task. WPS’ plugin interface allowes one to register a function for
this purpose. Other workflow engines may not provide such an extensibility mechanism. Alternatively, users
could also be filtered by intercepting the user repository’s reply on the messaging level, e.g. by extending the
enterprise service bus.

4 Case Study

4.1 Scenario

We illustrate SoD as a Service with a drug dispensation workflow taken from [19]. This workflow defines the
tasks that must be executed to dispense drugs to patients within a hospital. The drugs dispensed within this
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Figure 4: Initial user assignment UA

$ ./sodpdpc.sh -s
Status of SoD-enforcement monitor:
----------------------------------
Workflow
* sod constraint id: 28
* workflow id:       drugdispwf
* policy:            ('cn=patient,cn=roles,o=bpsec' (x) (('cn=privacyadvocate,cn=* policy:            ('cn=patient,cn=roles,o=bpsec' (x) (('cn=privacyadvocate,cn=
roles,o=bpsec' (x) ('cn=pharmacist,cn=roles,o=bpsec' (x) +(('cn=nurse,cn=roles,o=
bpsec' || 'cn=therapist,cn=roles,o=bpsec') || 'cn=researcher,cn=roles,o=bpsec')+)
) && +-({'claire'})+))
* Instances:
  * workflow instance id: ddwf-i475
  * workflow instance:    drugdispwf
  * task instances:  * task instances:
    * task instance id:    tiid-1262614378009
    * timestamp:           1262614378
    * user:                dave
    * roles:
      * cn=pharmacist,cn=roles,o=bpsec
      * cn=patient,cn=roles,o=bpsec

    * task instance id:    tiid-1262614381259    * task instance id:    tiid-1262614381259
    * timestamp:           1262614481
    * user:                emma
    * roles:
      * cn=nurse,cn=roles,o=bpsec
      * cn=researcher,cn=roles,o=bpsec

    * task instance id:    tiid-1262614380181
    * timestamp:           1262614532    * timestamp:           1262614532
    * user:                fritz
    * roles:
      * cn=patient,cn=roles,o=bpsec
      * cn=privacyadvocate,cn=roles,o=bpsec

    * task instance id:    tiid-1262614374384
    * timestamp:           1262614715
    * user:                Bob    * user:                Bob

Figure 5: Screenshot of SoD-enforcement monitor client

process are either in an experimental state or very expensive and therefore require special diligence.
A BPMN model of the dispensation workflow is shown in Figure 3. Because BPMN does not provide a

notation for specifying which kinds of users are allowed to execute a given task, we use BPMN annotations to
augment the workflow definition with this information.

A workflow instance is started by a Patient who requests drugs by handing his prescription to a Nurse. The
Nurse retrieves the patient’s record from the hospital’s database and forwards all data to a
PrivacyAdvocate who checks whether the patient’s data must be anonymized. If anonymization is required,
this is done by a computer program. We ignore this task in our forthcoming discussion as we focus on tasks
that are executed by humans. If therapeutical notes are contained in the prescription, they are reviewed by
a Therapist. In parallel, research-related data is added by a Researcher, if the requested drugs are in an
experimental state. Finally, a Pharmacist either approves the dispensation and a Nurse collects the drugs
from the stock and gives them to the patient, or he denies the dispensation and a Nurse informs the Patient

accordingly.
Fraudulent or erroneous drug dispensations could jeopardize patients’ health, may violate regulations,

and could severely impact the hospital’s finances and reputation. We assume that the hospital imposes SoD
constraints on this workflow in order to reduce these risks. A Pharmacist may not dispense drugs to himself;
i.e. he should not act as Patient and Pharmacist within the same workflow instance. Similarly, the Nurse who
prepares the drugs should not be the same user as the Pharmacist who approves the dispensation. Furthermore,
the PrivacyAdvocate who checks whether the patient’s prescription and data should be anonymized to protect
patient privacy must be different from any other user involved in the same workflow instance. Finally, the
nurse Claire may not be involved in the dispensation due to her drug abuse history. However, as a Patient

she may receive drugs. All these constraints are encoded by the term φ = Patient ⊗ ( (¬{Claire})+ u
( PrivacyAdvocate⊗ Pharmacist ⊗ ( Nurse t Researcher t Therapist )+)).

4.2 Configuration and Execution

We defined the drug dispensation workflow in BPEL, extended by BPEL4People, and deployed it on WPS.
Using the web interface of TDS, we set up an initial user assignment UA as depicted in Figure 4. Furthermore,
we configured WPS to use TDS as user repository.

We represented the SoD term φ as string and sent it to the SoD-enforcement monitor. In addition, we
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Refinement calls Claim calls
Tt Tc T Tt Tc T

t1 187.5 3.1 190.6 190.6 22.0 212.6
t2 186.0 7.8 193.8 176.6 22.0 198.6
t3 181.2 7.8 189.0 176.4 23.5 199.9
t4 181.4 12.5 193.9 181.2 17.4 198.6
t5 179.8 15.5 195.3 178.3 26.4 204.7
t6 176.7 26.5 203.2 184.4 31.2 215.6
t7 181.3 45.3 226.6 171.9 27.9 199.8

Figure 6: Service call times in ms Figure 7: Refinement call Figure 8: Claim call

configured the plugin interface of WPS to use our plugin to post-process user repository requests, i.e. to send
them to the SoD-enforcement monitor and to inform the SoD-enforcement monitor about users who claimed
task instances.

We executed instances of the workflow using the default web interface of WPS. For example, we log into
WPS as Dave and start a workflow instance by submitting a form that corresponds to the task request drugs.
Next, we log into the system as Emma, claim the newly created instance of the task retrieve patient record,
and execute it by filling in the corresponding form. As Fritz, we claim and execute the instance of check
anonymization requirements. The drugs requested by Dave do not required additional research data. How-
ever, we review the therapeutical notes included in Dave’s prescription as Bob. Because a Patient may not
dispense drugs to himself, Dave must not approve the dispensation. Because there is no other user available who
acts in the role Pharmacist, which is required for the approval, we add a Pharmacist-assignment for Alice to
UA by executing the corresponding administrative command in TDS. Now, we can approve the dispensation as
Alice. Finally, acting as Gerda, we get the drugs from the stock and dispense them. This workflow instance
corresponds to the trace

i = 〈 b.request drugs.Dave, b.retrieve patient record.Emma,
b.check anonymization requirements.Fritz, b.review therapeutical notes.Bob,
a.addUA.Alice.Pharmacist, b.approve drug dispense.Alice,
b.get drugs from stock.Gerda, b.dispense drugs.Gerda 〉.

Figure 5 shows the status message of our SoD-enforcement monitor client after executing i in WPS. By
invoking the function status of the SoD-enforcement monitor, the client retrieves an overview of the currently
stored SoD constraints, executed workflow and task instances, and the users who executed them with their
roles.

4.3 Performance

Compared to the runtime baseline, the runtime of our prototype system is increased by a refinement and a
claim call for every task instance. In the following, we discuss the performance penalty imposed by these calls.
We call the time it takes to call a web service and to retrieve its return values the total runtime of a web service.
We decompose this runtime into two parts: the transmission time encompasses the time to serialize, transmit,
and deserialize the exchanged data and the computation time is the time to execute the service’s functionality

Consider the workflow instance presented in Section 4.2. We executed ten equivalent workflow instances in
our prototype system and measured the total runtime for each refinement and claim call. We refer to a task
instance of request drugs as t1, to an instance of retrieve patient record as t2, etc. Figure 6 shows the
average transmission time Tt, computation time Tc, and the total runtime T per task instance in milliseconds
(ms). Figures 7 and 8 illustrate the same results graphically.

The transmission time required for the SoD-enforcement monitor depends on various factors including the
network throughput, the network latency, the payload size, and also the time taken to serialize Java objects to
SOAP message parameters with the Apache Axis framework. We run the service client and the SoD-enforce-
ment monitor on two different computers at the same geographical location, connected by a standard enterprise
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network with an average latency of 1ms. Both computers have off-the-shelf configurations.2 The transmission
time averages between 150ms and 200ms per call.

The computation time for claim calls was always around 24ms during our measurements. The computation
time of refinement calls, however, increased with the number of executed task instances. As explained in
Section 3.4, the ⊗-operators in φ cause this time to increase exponentially (see Figure 7).

Finally, we compare the total runtime of these additional calls to the time it takes to execute a task
instance in a system without an SoD-enforcement monitor. The refinement call increases the time between
the termination of a preceding task instance and the moment the new task instance is ready to be claimed
by a user. The durations for these steps range between 2 and 15 seconds, depending on the load of WPS
and the latest patches installed on it. Claiming a new task instance takes only 1–3 seconds. A user clicks on
the instance in his inbox and the corresponding form is displayed on his screen. In both cases, the additional
runtime caused by the SoD-enforcement monitor calls is an order of magnitude smaller than the runtime of a
task instance without SoD-enforcement monitor calls.

Given the observations made in Section 3.4 and the times reported here, we conclude that the integration
of our SoD as a Service implementation into an existing workflow system imposes a performance penalty below
10%. Consequently, we have achieved all the technical objectives described in Section 3.1.

5 Related Work

There are many languages for modeling workflows. We used BPMN to specify the workflow in our case study
and BPEL for its implementation. Backed by two large consortia, OASIS and OMG respectively, these two
standards are both popular in industry. Different formalisms have been used to give them a precise semantics,
e.g. Petri nets and process algebras. To give a concrete example, Wong and Gibbons describe BPMN using
CSP [30].

A classification of SoD constraints is given in [12, 24]. In general, SoD mechanisms are tightly coupled with
the workflow to be controlled [23, 6]. Li and Wang’s SoD algebra [18] is the first approach that enables an
abstract specification of SoD constraints, leaving open which users are allowed to perform which tasks. They
proved that the complexity of checking whether a SoDA term is satisfied by a set of users is NP-complete [18].
Furthermore, they developed algorithms for the static enforcement of high-level SoD constraints, formalized in
SoDA [29]. However, their approach is only applicable to a subset of terms.

Dynamic SoD enforcement is more flexible than static enforcement. However, static mechanisms are typi-
cally favored over dynamic mechanisms because of their lower complexity and the relative ease in integrating
them with existing systems. BPEL4People supports basic dynamic SoD constraints [2]. Although not fully
specified, the query language for people links in BPEL4People allows one to exclude users who have executed
previous tasks from being assigned to new task instances in the same workflow instance. By using SoDA terms,
our architecture supports more expressive constraints than BPEL4People.

Paci et. al. propose another access control extension for BPEL [21] based on the work of Crampton [9].
Authorizations, including SoD constraints that range over relations between users, are enforced by a web
service, which pools all information that is relevant for enforcement: the history of workflow instances, the
RBAC configuration, and SoD constraints. The underlying workflow model, however, does not support loops,
which is in conflict with the expressiveness of BPEL. Moreover, unlike our work, their constraint language
requires a tight coupling between constraints and the workflow definition and does not support changing
authorizations.

Chadwick et. al. propose an SoD policy model that spans multiple sessions [7]. Furthermore, they discuss
the implementation of their model in the PERMIS Privilege Management Infrastructure. Although their
architecture includes LDAP directories for managing users and their roles, SoD checking is realized within the
RBAC decision engine and history information is stored in memory. In contrast, our implementation achieves
full decomposability by extracting the SoD enforcement monitor as an independent component. Their concept

2Client: MS Windows XP on Intel Core Duo 2 GHz processor with 3 GB RAM. Server: MS Windows Server 2003 on Intel Xeon
2.9 GHz processor with 4 GB RAM.
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of multi-session SoD also addresses changing role assignments, but only within the scope of a business context.

6 Conclusion and Future Work

With this work, we addressed two major trends in Information Security and business computing. First, we
presented a flexible mechanism for enforcing internal controls, with applications to fraud reduction and compli-
ance with regulatory requirements. Second, we introduced the paradigm of SoD as a Service, which enables the
dynamic integration and configuration of this enforcement mechanism in a service-oriented environment. Both
contributions match well with the dynamics of today’s business environments including changing regulations
and and organizational structures.

Concretely, our work bridges the gap between the theoretical models of [5] and a realistic implementation
in an enterprise workflow environment with the prototype system presented in Section 3 and the case study
described in Section 4. We thereby empirically validate the work of Basin et. al. Our implementation also
serves as a proof-of-concept for SoD as a Service. The SoD-enforcement monitor is configurable through
web service calls and provides its SoD-enforcement functionality as a service. Furthermore, it accounts for
changing authorizations and therefore also to organizational changes. The choice of software components for
our architecture illustrates how SoD as a Service enables the integration of new internal controls into existing
workflow environments. We discussed the challenges that inherently arise if such flexibility is pursued. An
increased communication overhead needs to be balanced against duplication of contextual information.

The key component of our system is the SoD-enforcement monitor. As expected from the complexity results
in [18] and the constructions in [5], the worst-case runtime is exponential in the total number of users in the
system. In Section 3.4, we show that for a large class of terms the worst-case runtime complexity is exponential
only in the number of task instances in a workflow instance. Because this number grows during the execution of
a workflow instance, the runtime of the corresponding SoD-enforcement monitor call increases over the lifetime
of a workflow instance. Thus, a careful workflow design or the decomposition of a workflow into sub-workflows
reduces the performance penalty imposed by the SoD-enforcement monitor. A promising idea for future work
is to decompose SoDA terms into subterms and to enforce them on critical subsets of human tasks of workflows.
This would further reduce the runtime of our SoD-enforcement monitor and allow task-specific constraints.

Finally, we comment on some synchronization issues that arose in Section 3.3. There, we described the
sequence of steps that constitute the execution of a task instance. We implicitly assumed that these steps do
not interleave with the execution of other task instances. In practice, however, this could be the case. A simple
solution would work as follows: When a task instance is claimed, all other task instances in the same workflow
instance that have not yet been claimed must re-execute their refinement step. Similar problems arise if task
instances are aborted. We plan to address these synchronization problems in future work.

References

[1] Sarbanes-Oxley Act of 2002. Public Law 107-204 (116 Statute 745),
United States Senate and House of Representatives in Congress, 2002.

[2] A. Agrawal, et.al. WS-BPEL extension for people (BPEL4People), v1.0. 2007.

[3] A. Alves, et.al. Web services business process execution language (WS-BPEL), v2.0.
OASIS Standard, 2007.

[4] A. Anderson. Hierarchical resource profile of XACML, v2.0. OASIS Standard, 2005.

[5] D. A. Basin, S. J. Burri, and G. Karjoth. Dynamic enforcement of abstract separation of duty constraints.
Proc. of the 14th European Symposium on Research in Computer Security (ESORICS), pp. 250–267, 2009.

[6] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of authorization constraints in workflow
management systems. ACM Trans. on Information and System Security (TISSEC), 2(1):65–104, 1999.

12



[7] D. W. Chadwick, W. Xu, S. Otenko, R. Laborde, and B. Nasser. Multi-session Separation of Duties (MSoD)
for RBAC. Proc. of the 23rd Int. Conference on Data Engineering Workshop (ICDE), pp. 744–753, 2007.

[8] B. Cleary. Employee role changes and SocGen: Good lessons from a bad example. SC Magazine, 2008.

[9] J. Crampton. A reference monitor for workflow systems with constrained. Proc. of the 10th ACM Symposium on
Access Control Models and Technologies (SACMAT), pp. 38–47, 2005.

[10] European fraud survey 2009. Ernest & Young, Technical report, 2009.

[11] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed NIST standard for
role-based access control. ACM Trans. on Information and System Security (TISSEC), 4(3):224–274, 2001.

[12] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On the formal definition of separation-of-duty policies and
their composition. Proc. of the 19th IEEE Symposium on Security and Privacy (S&P), pp. 172–183, 1998.

[13] S. Haugland, M. Cade, and A. Orapallo. J2EE 1.4: The big picture. Prentice Hall, 2004.

[14] IBM Insurance Application Architecture (IAA).
www.ibm.com/software/sw-library/en_US/detail/N440171L95655L23.html.

[15] IBM Tivoli Directory Server (TDS) v6. www.ibm.com/software/tivoli/products/directory-server.

[16] IBM WebSphere Application Server (WAS) v6.1. www.ibm.com/software/webservers/appserv/was/.

[17] IBM WebSphere Process Server (WSP) v6.2. www.ibm.com/software/integration/wps/.

[18] N. Li and Q. Wang. Beyond separation of duty: An algebra for specifying high-level security policies.
Journal of the ACM, 55(3), 2008.

[19] D. Marino, et.al. Deliverable D1.2.1: Master scenarios. EU Project MASTER (www.master-fp7.eu), 2009.

[20] Business Process Modeling Notation (BPMN), v1.2. OMG Standard, 2009.

[21] F. Paci, F. E. Bertino, and J. Crampton. An Access-Control Framework for WS-BPEL.
Int. Journal of Web Services Research, pp. 20–43, 2008.

[22] A. W. Roscoe. The theory and practice of concurrency. Prentice Hall, 2005.

[23] R. S. Sandhu. Transaction control expressions for separation of duties.
Proc. of the 4th IEEE Aerospace Computer Security Applications Conference, pp. 282–286, 1988.

[24] R. Simon and M. E. Zurko. Separation of duty in role-based environments.
Proc. of the 10th IEEE Workshop on Computer Security Foundations (CSFW), pp. 183–194, 1997.

[25] Apache Axis2, v1.5. The Apache Software Foundation, http://ws.apache.org/axis2, 2009.

[26] Apache Tomcat, v6. The Apache Software Foundation. http://tomcat.apache.org, 2009.

[27] M. Turner, D. Budgen, and P. Brereton. Turning software into a service. IEEE Computer, 36:38–44, 2003.

[28] S. Tuttle, et.al. Understanding LDAP - design and implementation. IBM Redbooks, 2004.

[29] Q. Wang and N. Li. Direct static enforcement of high-level security policies. Proc. of the 2nd
ACM Symposium on Information, Computer and Communications Security (ASIACCS), pp. 214–225, 2007.

[30] P. Y. H. Wong and J. Gibbons. A process-algebraic approach to workflow specification and refinement.
Proc. of the 6th Int. Symposium on Software Composition (SC), pp. 51–65, 2007.

13



A SoD-Enforcement Monitor Interfaces

In the following, we document the interface of our SoD-enforcement monitor by means of Java method sig-
natures. In order to keep the serialization and communication overhead small, we used the basic Java type
String whenever possible.

boolean enforce (
String po l i cy ,
String workflowId

)

boolean stopEnforc ing (
String workflowId

)

The methods enforce and stopEnforcing are used to deploy and undeploy an SoD constraint for a workflow
that is identified by its wokflowId. The SoD constraint is formalized as SoDA term and provided to the SoD-
enforcement monitor through the parameter policy.

String [ ] allowedForNextTask (
String [ ] users ,
String [ ] ro les ,
UserRoleRelation [ ] ur ,
String taskId ,
String workflowInstanceId ,
String workflowId

)

A refinement call corresponds to the invocation of the method allowedForNextTask. As described in Sec-
tion 3.3, the SoD-enforcement monitor receives the workflowId in order to retrieve the workflow’s SoD constraint.
Using workflowInstanceId, it retrieves the users who executed previous task instances in the corresponding work-
flow instance. The set of users U1 and their role assignments are encoded by the arrays users, roles, and ur.
For bookkeeping, we transmit also taskId, the identifier of the instantiated task. The return value is a subset
of the users in users, denoted U2 in Section 3.3.

boolean claim (
String user ,
String [ ] ro les ,
String taskId ,
String workflowInstanceId ,
String workflowId

)

An invocation of the method claim corresponds to a claim call as described in Section 3.3. Using the iden-
tifiers workflowId and workflowInstanceId, the SoD-enforcement monitor determines how to relate and store the
user user and his roles roles to previously executed task instances. Again, taskId is transmitted for bookkeeping.

String getStatus ( )

This method is used to query the status of the SoD-enforcement monitor. It returns an overview of the
workflows, workflow instances and executed task instances that are stored by the service.

B SoD-Enforcement Monitor Data Model

Figure 9 depicts the database schema of the SoD-enforcement monitor using the UML Data Modeling Profile.
It reflects the definitions in Section 2: A workflow is instantiated an arbitrary number of times. Each of these
instances contains an arbitrary number of task instances. For every task instance, we store the user who
executed it and the roles he was acting in at that time.
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sodconstraints

sodconstraint_id : intPK
sodaterm: String
workflow_id: int

workflow_instances

workflow_instance_id : intPK
workflow_id : intFK
finished : boolean

task_instances

task_instance_id : intPK
workflow_instance_id : intFK
timestamp : long

task_id : StringFK
user_id : StringFK

0..n10..n1

roles

role_id : StringPK
rolename : String

users

user_id : StringPK
username : String

0..n
0..n

0..n

1

Figure 9: Database schema

C Mapping SoDA Terms to CSP Processes

We recall the mapping from SoDA terms to CSP processes [5]. A unit term is a term that does not contain the
operators ⊗, �, and +. More intuitively, a unit term is only satisfied by a set of users that contains only one
user and is therefore mapped to one business event in a process, modeling the execution of a task instance.

With respect to the runtime complexity of a process resulting from Definition 1, Rule (6) is particularly
critical as it causes an exponential branching over all disjoint subsets of U . We describe how to lower this
factor in Section 3.4.

Definition 1 (Mapping J.KUUA). Given a set of users U, a user assignment UA, and a term φ, the mapping
JφKUUA returns a CSP process parametrized by UA. For a unit term φut and terms φ and ψ, the mapping J.KUUA
is defined in Figure 10.

(1) JφutKUUA = b?t : T ?u : {u′ ∈ U | {u′} `UA φut } → FIN

� a.addUA?u : U?r : R → JφutKUUA ∪ {(u,r)}

� a.rmUA?u : U?r : R → JφutKUUA \ {(u,r)}

(2) Jφ+
utKUUA = b?t : T ?u : {u′ ∈ U | {u′} `UA φut } → (FIN � Jφ+

utKUUA)

� a.addUA?u : U?r : R → Jφ+
utKUUA ∪ {(u,r)}

� a.rmUA?u : U?r : R → Jφ+
utKUUA \ {(u,r)}

(3) Jφ t ψKUUA = JφKUUA � JψKUUA

(4) Jφ u ψKUUA = JφKUUA ‖
Σ

JψKUUA

(5) Jφ� ψKUUA = JφKUUA ‖
{done} ∪ ΣA

JψKUUA

(6) Jφ⊗ ψKUUA = �
{ (Uφ,Uψ) | Uφ∪Uψ=U and Uφ∩Uψ=∅}

JφKUφUA ‖
{done} ∪ ΣA

JψKUψUA

Figure 10: Mapping SoDA terms to CSP processes
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