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Planning Electric-Drive Vehicle Charging under
Constrained Grid Conditions

Olle Sundstr̈om and Carl Binding

Abstract—This paper presents a novel method of planning
the charging of electric-drive vehicles that takes electricity grid
constraints into account. The method computes an individual
charging plan for each vehicle while minimizing the cost of
electricity, avoiding distribution grid congestion, and satisfying
the individual vehicle owner’s requirements. The underlying
algorithm is explained through a simple example and tested on
a simulated electricity grid. The method is shown to significantly
reduce the overloading in the electricity grid compared to
charging schemes that do not consider grid constraints.

Index Terms—Balancing Power, Demand Management, Distri-
bution Networks, Electric Vehicles, , Electricity Grid, Intermit-
tent Energy Sources, Netflow Algorithms, Smart Charging

I. I NTRODUCTION

For reasons of CO2 reduction, independence from fossil
fuels, and potential provision of balancing energy in grids
with high proportions of intermittent power generation, plug-
in hybrid and fully electrical vehicle technology has attracted
renewed attention. It is clear that electric vehicles (EVs)will
be available on the market because most manufacturers are
developing EVs. The impact of the EV fleet on the power
grid is therefore inevitable. The impact of EVs on the grid was
studied as early as 1983 [1]. However, the time and extent of
this impact are largely dependent on the success of EVs. Ungar
et al. [2] argue that the impact will in fact be a major concern
to the power grid operators, in particular the distributiongrid
operator.

Several new concepts have been proposed on how to use
the grid-connected EVs for grid services, also known as
vehicle-to-grid (V2G). These concepts usually involve both
discharging and charging of EVs to help the grid to level out
peaks in overall consumption. A literature overview of the
V2G field is given in Jenkins et al. [3]. Jenkins et al. focus on
the United States power grid and argue that several challenges
such as managing and dispatching power remain to be solved.
Additional V2G concepts have been studied in [4], [5], [6], [7],
[8]. However, there are challenges with V2G services because
it is not clear how much EV battery ageing, and therefore also
the associated warranty, are affected during V2G operation.

It is clear that there are several entities interested in man-
aging the charging of the electric vehicles. The vehicle owner
has of course an interest in minimizing the cost of charging.
The recent trend to move to hourly electricity pricing can
help the owner to shift EV charging request from high-price
hours to hours with less demand. This management of the
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Rüschlikon, Switzerland. (email:{osu, cbd}@zurich.ibm.com)

charging should of course be automated, and could essentially
be performed by the vehicle’s system if the price information
is available. Several concepts have been proposed for charging
management using price-based methods. In [9], the charging
and discharging of eight plug-in vehicles is optimized based
on the day-ahead electricity price. The optimization scheme
used is based on particle swarm optimization, i.e., a variation
of a randomized search algorithm. The study also investigates
the impact of grid faults on smart charging parking lots. The
price-based charging scheme is also described in [10], where
time-based or price-threshold charging is suggested. A time-
shifted charging, in which different geographical regionshave
different charging hours, is proposed in [11]. In general, price-
based charging schemes depend on that the resulting reduction
in charging cost is a sufficiently strong incentive for the EV
owner to choose price-based charging. Additional studies on
forecasting and managing EV charging can be found in [12],
[13].

More interestingly, distribution grid operators also have
an interest to manage the charging because for them it is
important to incorporate a large number of EVs without
massivly reinforcing the distribution grid. The impact of EVs
on the electricity grid is studied by Letendre et al. [14], where
the focus is on the Vermont power grid. They assume a dual-
tariff, nightly charging scheme, and conclude that enough
transport capacities are available in the power grid. Grid
constraints are only considered for the transport and high-
voltage distribution grid, whereas the low-voltage distribution
grid is not considered.

More details on potential impact on a low-voltage distri-
bution grid are given in [15]. Smart charging behavior is
considered to maximize the density of EV deployment into
the grid, i.e., to reach the maximally tolerable number of EVs
while maintaining grid constraints. The charging goals were
set to achieve full charge for all plugged-in EVs. Hence this
approach does not consider flexible charging schemes with
variable charging goals. In [16], the impact of a large fleet
of plug-in hybrid electric vehicles on the Virginia-Carolinas
electric grid is studied. The focus is on the supply of electricity
and not on the transmission and distribution capabilities.
However, it is concluded that a large fleets of plug-in vehicles
will impact the electricity grid.

This paper considers the power grid on the Danish island of
Bornholm, similarly as in [17], where the isolated main island
of the Azores is used to study the impact of EVs and the
potential profit to be made on grid services. The focus of this
paper is not on estimating the impact of the EVs, but rather



on proposing a method of planning the individual charging
schedules of a large EV fleet while respecting the constraints
in the low-voltage distribution grid. The method has been
tested in a simulation environment in which the movement
and charging of individual EVs are simulated simultaneously.
A load-flow simulation of the electric grid is performed to
assess the impact of the large fleet of EVs.

The paper is structured as follows: the basic functions of
the fleet operator are described in Section II. The simulator
is described in Section III with the focus on the electric
vehicle model and the topology of the simulated grid. The
optimization of the charging schedules for an unconstrained
grid is described in Section IV and the proposed method of
optimizing the schedules for a constrained grid is shown in
Section V. The results of using the method on a simulated
large-scale distribution grid are given in Section VI. Finally
Section VII discusses and concludes the paper.

II. FLEET OPERATOR

There are several ideas on how electric vehicles will be
integrated into society. Waraich et al. [18] envision two
charging schemes: a per-EV, decentralized, decision process
and a centrally controlled charging scheme. Each method has
benefits and drawbacks. The decentralized approach assumed
that the EV itself optimizes its charging behavior based on,
for example, a price signal. The drawback with this approach
is that the EV needs to collect and store trip history and, if
the EVs need to coordinate their charging, for example to
include grid constraints, the need for communication is high.
The centralized approach on the other hand assumes that the
centralized unit optimizes the charging and that the resulting
charging schedules are communicated to the EVs.

In this study, it is assumed that there is a centralized
EV aggregator that can act on the power market and use
the available electricity products and financial instruments to,
for example, minimize the cost of charging the EVs. In the
remainder of this paper, the EV aggregator is referred to as
the fleet operator (FO). It has the following basic modules:

• Data storage: The FO needs to gather considerable
amounts of data to perform its EV-fleet management
tasks. In particular, historical trip data is needed to predict
future EV usage. In addition, end customer information
may need to be stored, as well as billing information.

• Trip forecasting: The forecasting of the anticipated energy
requirements for EV usage is essential to minimize the
driver interactions. The FO has to estimate how much
energy has to be fed into an EV while it is connected to
the power grid. The connection location also plays a role
when handling potential grid congestions. This module
evidently depends on the data storage subsystems.

• Optimization: This module computes an optimal EV
charging plan, taking into account estimated energy pro-
duction, required energy needs, expected durations of
charging periods and potential grid constraints.

• Customer relationship and billing information: This is
traditional IT infrastructure for maintaining information

on customers, their billing information, as well as the
metering of the EV-specific power consumption and feed-
backs into the grid. A user-facing client GUI needs to be
provided to enable users to manage their data and to let
the VPP operator interact with customer data.

• Communication: To gather data from the various entities
(EVs, transport and distribution grid, power generation,
markets) an appropriate communication infrastructure
must be deployed.

As the goal of this paper is to propose and evaluate a novel
algorithm for performing grid-aware charging of large EV
fleets, the focus is on theOptimizationblock. It is assumed
that the EV trips for the next day are perfectly predictable,i.e.,
the location and time of connection and disconnection, as well
as the required energy are known. This assumption is further
emphasized in the discussion and conclusions in Section VII.

III. S IMULATOR

To evaluate the proposed algorithm of coordinating the
charging of EVs, a simulator is used. The simulator is a
hybrid simulator including both discrete and continuous state
variables. It simulates a large fleet of EVs and the electricity
grid to which the EVs connect for charging. In this section,
the electric vehicle model and the electricity grid simulation
methods are explained.

A. Electric vehicle fleet overview

For the fleet operator that optimizes the charging schedules
the electric vehicles are mobile energy buffers. The energy
buffers in this study are batteries, which are simulated using
a non-linear model. Each battery is modeled as an equivalent
electric circuit containing a voltage source in series witha
resistor. Both the voltage source and the internal resistance
depend on the state-of-energyζ ∈ [0, 1] of the battery. The
battery model also depends on the specific cell charateristics
and the size of each battery pack. The dynamic state variable
for a single electric vehicle is the state-of-energy

ζ̇ = f(ζ, Pb) =
Pint(ζ, Pb)

Eint0
. (1)

where Eint0 is the maximum stored energy in the battery
and Pint(ζ, Pb) is the internal power of the battery. The
detailed battery model is described in [19]. Because of battery
limitations, the charging power is limited to

Pb ∈ [Pb,min(ζ), Pb,max(ζ)] (2)

and the state-of-energy is constrained to

ζ ∈ [0.2, 0.8] (3)

to avoid premature aging.

B. Electricity grid overview

The electricity grid is simulated using a conventional load-
flow simulation. In the load-flow simulation, each component
is modeled as a two-port element. The electricity grid model,
i.e., the admittance matrix, is based on the grid on the Danish



island of Bornholm. The parameters for the grid model are
constructed using both real-world and synthetic data, where
no real-world data is available.

The grid contains three voltage levels 60 kV, 10 kV, and
400 V. The 60 kV network is meshed whereas the 10 kV
and the 400 V networks are radial trees extending from the
60/10 kV substations. In total, the grid contains roughly 12000
400 V end nodes. The ratio of cables to end nodes is roughly
1:1. There are several types of consumers in the grid, such as
households, farms, and bakeries. These consumers vary in size
and are spread out through the grid. The load curves are based
on German VDEW consumption profiles. On the generation
side, the grid simulator includes a single power plant and
several wind turbines spread out across the island. The wind
speed, which is an input to the turbines, is based on historical
measurements of actual wind speeds in Denmark. The grid
is artificially dimensioned to handle twice the peak load of
the base consumption. After the grid has been dimensioned,
each 400 V end node is equipped with a charging spot with
a maximum power of 16 kW. Each charging spot can handle
two EVs simultanously.

Thus, for an outlet node,u, in the electricity grid, the base
load, pf (u), and the EV load,pv(u), give the total load at
each end node:

p(u) = pf (u) + pv(u) (4)

at each time instance. The grid is simulated using a load-flow
simulation and is evaluated every 15 minutes.

IV. OPTIMIZATION IN AN UNCONSTRAINED GRID

The goal of the optimization in an unconstrained grid is
to derive a charging schedule for each vehicle that ensures
sufficient energy for the predicted trips, while, for example,
minimizing the total cost of the electricity used for the fleet.
The charging schedules are divided into time slots for the given
planning period. In this paper the planning period, which isthe
next day, is divided into 96 slots of 15 minutes each. An EV
charging schedule therefore contains a charging power level
for each of the 15-minute slots during the day of operation.
Establishing charging schedules for an EV fleet can be done by
solving an optimization problem [19], which can be formulated
as the linear program

min
p

b

tscT pb (5a)

subject to

Aspb ≥ bs (5b)

Agpb ≤ bg (5c)

Abpb ≤ bb (5d)

bl ≤ pb ≤ bu, (5e)

with the cost vectorc, the charging power vectorpb, the
stop-over inequality constraints (As, bs), the generation in-
equality constraints (Ag, bg), the battery inequality constraints
(Ab, bb), and the upper and lower bounds (bu, bl). Assume
i = 1, 2...,m is the index of the vehicle,j = 1, 2, ..., n the

index for the time slot contained in one plan duration. The
decision variablepb then hasm · n elements. The cost vector
c comprises of the cost associated for each vehicle in each
time slot ci,j . The charging power vectorpb comprises the
charging power for each vehicle and time slotpb,i,j .

c = [c1,1, c1,2, . . . , c1,n, . . . ,

cm,1, cm,2, . . . , cm,n]
T (6)

pb = [pb,1,1, pb,1,2, . . . , pb,1,n, . . . ,

pb,m,1, pb,m,2, . . . , pb,m,n]
T

. (7)

Because of battery or charging spot limitations, the charging
power is limited top̄b,i,j . The charging power is then limited
to pb ∈ [0, p̄b], i.e., bl = 0 and bu = p̄b in (5). Note that
all those slots in which vehicles are not connected can be
eliminated prior to solving the optimization problem.

V. OPTIMIZATION IN A CONSTRAINED GRID

The goal of the optimization in this section is to derive
a charging schedule for each vehicle that ensures sufficient
energy for the predicted trips while respecting the grid capacity
and minimizing the total cost of electricity for the fleet. The
grid can be considered by including each edge, i.e., line and
transformer load, as an additional variable. The additional
constraints are then the load balance in each node in the
network. The upper bound of each network-load variable is the
actual maximum tolerable load. The new linear optimziation
problem can be formulated using a single large linear program.
The number of variables in this problem is

nvariables ≈ nslots · nvehicles + nslots · nedges (8)

and the number of constraints is

nconstraints ≈ 2 · nstopovers/vehicle · nvehicles+

nslots + nslots · nnodes. (9)

If assuming 15-minute slots, 50’000 managed electric vehicles,
and a small city with a distribution grid that contains 200’000
edges and 100’000 nodes, the total number of variables is
on the order of25 · 106 and the number of constraints is15 ·
106. However, even though this problem could be solved using
appropriate hardware and software, the size of the problem is
even larger for a larger city.

Also, it is not clear whether the information regarding the
grid topology and capacity is available to the EV fleet operator
that optimizes the charging schedules. For example, if the
distribution system operator is separated from the FO, there
must be an exchange of information with the districution
system operator to be able to consider grid constraints. The
method proposed in this paper uses a clear separation between
evaluating the grid congestion and optimizing the charging
schedules. This separation can be used when the grid infor-
mation is not available to the FO.

In the unconstrained case, the planning can be done by
solving the optimziation problem in (5). In the constrained,
case the same optimization problem is solved and iteratively



Forecast generation and base consumption
for each time slot and EV energy needs
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Figure 1. Flowchart of the algorithm of optimizing the charging schedules
under constrained grid conditions.

updated to include the constraints in the electricity grid.A
flow chart of the proposed algorithm is shown in Fig. 1. The
details of each element are presented in the following list:

1) Forecast generation and base consumption for each
time slot and EV energy needs:The available power
for the EV fleet can, for example, be the predicted
available wind power. The base load is determined
using generalized consumption profiles for a variety of
consumer types, e.g. farms, households, etc. The EV
energy needs are predicted using the trip history of each
vehicle. The EV trip prediction contains the location
and duration of the connection events and the minimum
required state-of-energy after each charging interval.

2) Formulate and solve the charging schedule optimiza-
tion problem: Formulate the optimization problem in
(5) based on the given generation, consumption, and EV
charging need forcasts. If this is not the first iteration,
include the grid constraints calculated in the preceding
iterations. The optimization problem (5) is solved using
IBM ILOG CPLEX1 library [20].

3) For each time slot, generate the flow network includ-
ing the charging schedules:To determine whether there
is a congestion in the electricity grid, a flow network is
constructed for each time slotj based on the electricity
grid model, which in this paper is a network of two
ports. A flow network is defined as follows.

Definition Let a flow network be

1IBM, ILOG and CPLEX are trademarks of International BusinessMa-
chines Corporation in the United States, other countries, or both. Other product
and service names might be trademarks of other companies.

F = {(V, E), s, t ∈ V, c : V × V → R
+}, where

(V, E) is a directed graph with edgesE and nodes
V containing a sources ∈ V , a target t ∈ V ,
and a capacityc(u, v) ∈ R

+ ∀ (u, v) ∈ E and
c(u, v) = 0 ∀ (u, v) 6∈ E. Let the flow in a flow
network be a functionf : V × V → R where

f(u, v) ≤ c(u, v) ∀ (u, v) ∈ V × V (10a)

f(u, v) = −f(v, u) ∀ (u, v) ∈ V × V (10b)
∑

u∈V

f(u, v) = 0 ∀ v ∈ V \ {s, t}. (10c)

The capacitites of the interior edges in the flow network

{c(u, v) | u, v ∈ V \ {s, t}} (11)

are the maximum power that can be transmitted though
the two ports. The flow network includes additional
edges from a virtual source nodes to all nodes repre-
senting generation units. The capacities of these edges
are the generated powerg(u) for each generation unit
u. Similarly, the flow network also includes additional
egdes from all nodes representing outlets to a virtual
target nodet. The capacities of these edges are the total
power demand of each outletp(u) in (4).

4) For each time slot, solve the maximum flow problem
based on the flow network: The problem of maxi-
mizing the flow from the source to the target can be
formulated as a linear program

max
∑

u∈V

f(s, u) (12)

subject to (10a), (10b), (10c),

which in this paper is solved using IBM ILOG CPLEX.
The maximum flow problem can, of course, also be
solved using other techniques such as the Edmond-
Karp algorithm or the Goldberg-Tarjan algorithm. The
choice of using an LP solver was made because of the
straightforward formulation and the simple possibility of
warm starting the solver.

5) Is there congestion in any time slot?If the capacities
of the flows to the target are equal to the actual flows,
the requested power levels at the outlets are feasible and
can be delivered through the network. The criteria can
be checked as follows:

f(u, t) = c(u, t) ∀ u ∈ V. (13)

If (13) is not true, there is a congestion in the grid and
the optimization problem needs to be updated and solved
again in the next iteration. If (13) is true the flow is not
congested and the algorithm terminates.

6) For each congested time slot, determine the disjoint
subnetworks under the maximal source minimum
cut: This step starts by determining the maximal source
minimum cut. This cut is calculated after the maximum
flow by finding the nodes in the residual graph that



can reach the target node. After the cut with partition
(S, T ) has been determined, the disjoint subnetworks
are determined by finding the reachable nodes inT from
each edge in the cut. In this paper a subnetwork is
defined as follows.
Definition Let a subnetworkNT of a constrained flow
networkF , i.e., with partition(S, T ) from the maximal
source minimum cutC, be

NT = (V ′, E′), (14a)

V ′ ⊆ T \ {t} (14b)

E′ = {(u, v) | u, v ∈ V ′ ∩ (u, v) ∈ E} . (14c)

The subnetworksN ′ andN ′′ are disjoint ifV ′ ∩ V ′′ = ∅
andE′ ∩ E′′ = ∅.

7) For each subnetwork in each congested time slot, add
one constraint to the optimization problem: For each
disjoint subnetworkNT = (V ′, E′) in the constraint
flow networkF with the maximal source minimum cut
C,

∑

(u,t)∈E′

pv(u) ≤
∑

(u,v)∈C
v∈V ′

f(u, v) −
∑

(u,t)∈E′

pf (u), (15)

where pf (u) is the base load used to set up the flow
network in step 3) of the algorithm. Constraint (15)
limits the sum of the EV loadspv(u) of all EVs in
the disjoint subnetwork to the difference between the
maximum inflow to the subnetwork given by the cut
and the total base load of the outlets in the subnetwork.

VI. SIMULATION RESULTS

This section shows the results when applying the proposed
algorithm to plan the charging of an EV fleet with 3’500
commuter vehicles driving over the simulated grid. To evaluate
the proposed algorithm, three different charging schemes have
been tested:

• Eager charging: All EVs charge their battery fully when
connecting to the charging spot.

• Price-based charging: The charging schedules are deter-
mined by solving the unconstrained optimization problem
in (5).

• Grid-aware price-based charging: The charging is done
using the algorithm proposed in Section V.

For both the price-based and grid-aware charging, the infor-
mation of the price of electricity is needed. Figure 2 shows the
artificial price curve that has been used in the optimization. It
is assumed that the price is not influenced by the charging of
the electric vehicles.

The resulting total load in the system is shown in Fig. 3 for
the three charging schemes. Because the fleet only contains
commuter vehicles, the eager charging is done when the
vehicles arrive at work in the morning and also after returning
home in the afternoon. The charging peaks therefore overlap
with the existing peaks in the base load. This effect should
be avoided as much as possible. For the pure price-based

time [h]

pr
ic

e
[c

en
ts

/k
W

h]

0 6 12 18 24
4

5

6

Figure 2. Artificial day-ahead price of electricity used foroptimzing the
charging schedules.
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Figure 3. The base load excluding EV charging and the total load including
EV charging during the day of operation. The total load is shown for the three
different levels of charging management.

charging, all vehicles charge at the low-priced slots during the
day. In Fig. 3 these peaks in charging, can be seen at 00:45 and
02:30 in the morning. When using our approach of grid-aware
price-based charging these peaks are reduced and charging is
moved to more expensive slots to avoid grid congestion.

To assess the benefits of using the proposed method, the
actual loading of the grid must be further analyzed. Figure 4
shows the distribution of the average loading during the day
of each two-port element in the grid. The differences between
the three charging schemes are not significant. The majorityof
the loading is in fact below 50%, which is the effect of having
our grid dimensioned to handle twice the base load peak.

More interestingly is the loading during the EV charging
peaks. Figure 5 shows the average loading distribution, simi-
larly to Fig. 4, for the four slots with the highest EV charging
power. This means that for eager charging the average is
taken during the morning and the afternoon peaks. For price-
based and grid-aware charging, the average is taken during the
nightly charging peaks. Figure 5 shows that both for eager and
pure price-based charging, the grid is significantly overloaded.
In fact, for the four considered slots eager charging overloads
1.8% of the grid by more than 10%. For pure price-based
charging, 4.1% of the grid is overloaded by more than 10%.
Using the proposed method of including the grid constraints
in the optimization actually reduces the overload. This can
be seen in Fig. 5 by the peak in loading at 100% of the
grid capacity and the reduced loading above 100%. Using the
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Figure 5. The grid loading distribution at the four peak charging slots during
the day for the three different levels of charging management.

proposed method, only 0.04% of the grid is overloaded by
more than 10%.

As the grid-aware charging shifts some charging to more
expensive slots during the day, the total cost of charging the
fleet is increased. However, based on the assumed price curve
the actual cost per kWh charged to the fleet is only increased
by 0.2%.

VII. C ONCLUSIONS ANDFUTURE WORK

The proposed method of considering the electricity grid
when planning the charging of large EV fleets has been
tested in a simulation environment. The simulation results
show clearly that using the proposed algorithm the overloading
in the grid is significantly reduced. The simulated grid is
dimensioned to handle twice the peak in base load. If the
grid is more constrained, the overloading will be even more
significant for all types of charging. Also, this paper considers
only one type of EV and charging spots rated to 16kW. It
is therefore interesting to consider a mix of vehicle types
and a mix of charging spot ratings, such as low-power home
charging and fast charging spots in central locations.

In this paper perfect EV trip prediction is assumed. Future
work will, therfore, involve studies on the impact of trip
prediction errors on the results. If the EV charging does
not impact the price of electricity price-based charging will
actually syncronize the charging of the vehicles at the low
price hours during the day. As shown in this paper, the
peaks are still present even if grid constraints are included

in the optimization. There is therefore a need to study other
objectives and business models for the FO that will enable
smooth integration of large EV fleets.
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