RZ 3786 (# Z1008-003) 08/26/2010
Computer Science 8 pages

Research Report

Automating Security Audits of Heterogeneous Virtual Infrastruc-
tures

S. Bleikertz*, T. Gross*, M. Schunter*, K. Erikssont
*|BM Research — Zurich

tInfraSight Labs

LIMITED DISTRIBUTION NOTICE

This report will be distributed outside of IBM up to one year after the IBM publication date.
Some reports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

Resear ch
Almaden « Austin ¢ Beijing * Delhi « Haifa « T.J. Watson ¢« Tokyo ¢ Zurich

Automating Security Audits of Heterogeneous Virtual
Infrastructures

Soéren Bleikertz Thomas Grof3
Matthias Schunter
IBM Research - Zurich
{sbl, tgr,mts}@zurich.ibm.com

ABSTRACT

The use of server virtualization has steadily been growing
— but many enterprises are still reluctant to migrate crit-
ical workloads to such private cloud infrastructures. One
critical inhibitor is the complexity of correctly configuring
virtualization technology to implement enterprise security
policies, such as isolation of workloads or customers, across
all potentially shared physical and virtual resources.

To mitigate these concerns, this article describes a virtual
infrastructure validation and assurance system for a het-
erogeneous datacenter. It supports different types of server
hardware and virtual machine monitors as well as both virtual
and non-virtual resources, such as networking and storage.

We use customer isolation as a running example to illustrate
our approach to validating configurations. We focus on
virtual infrastructures and provide a detailed view on internal
resource allocations and configurations. We demonstrate the
utility of our framework through evaluation and visualization
of information flow graphs that are used to validate customer
isolation. Our system discovers the actual configuration of
the virtualization infrastructure (Xen, VMware, KVM, and
IBM’s PowerVM) and unifies the configuration data into
a joint generic data model. This data model is then used
to derive a data flow graph that allows us to automatically
determine whether two subscribers share any resources that
are not trusted in order to achieve proper isolation.

1. INTRODUCTION

The use of server virtualization has been growing substan-
tially. It enables better utilization of today’s server hardware,
faster deployment, and load balancing through migration of
virtual machines. Virtualized infrastructures provide stan-
dardized computing, virtual networking, and virtual storage
resources. They enable simple creation of new servers and
load balancing through migration while increasing physical
server utilization and decreasing power consumption. In
addition, the corresponding business model of infrastructure

Konrad Eriksson
InfraSight Labs

konrad.eriksson@infrasightlabs.com

clouds provides variable payment and seemingly unlimited
scalability.

The rapid growth of IT infrastructures as well as the ease
of machine creation enabling self-service portals has lead to
substantial numbers of servers being created (the so-called
“server sprawl”). This often leads to large and complex config-
urations that exceed the complexity that can be handled and
validated by human administrators. As the resulting virtual
infrastructure evolves in an ad-hoc manner, it commonly
violates best practices and corporate policies. Furthermore,
the introduced virtualization layer and extensive physical
resource sharing may lead to new side-channel vulnerabilities.

This issue is partially resolved by automated management
systems that constrain the users’ actions. In reality, however,
these systems can fail, their security policies can lack proper
enforcement, or human intervention can lead to additional
errors in such complex environments. For these reasons,
virtual server technology is often constrained to uncritical
workloads or configured to run a single workload type that
does not require isolation. We believe that critical appli-
cations would benefit from trustworthy evidence that the
resulting configuration complies with corporate policies and
best practices.

One approach for generating such evidence is to allow external
auditors to examine and validate the hidden implementation
as well as the management systems and processes in use.
While this approach allows verification of a fixed set-up, it
does not guarantee security over time for a rapidly changing
configuration.

In this article, we describe a novel approach for validating the
correct configuration of virtual infrastructures. Our systems
allows stakeholders to automatically examine the correctness
of the current configuration of such an infrastructure cloud.
We use the common requirement of isolation as a running
example, that is, different and mutually untrusting customers
must be properly isolated even if they share resources. This
means that no information flow must be possible whenever
two customers share a resource, such as a host and its memory,
storage, or networks.

In principle, this required absence of any information flow
precludes direct information flow as well as covert channels.
While the absence of direct information flow can be enforced,
there is a fundamental trade-off between the desirable sharing

Storage Area Network(s)

i Intranet
gl {eomz M i
e M Internet A i
IBM pSeries Physical KVM Virtual
LPARS Networks Machines

Figure 1: An example setup of a virtualized data-
center.

of resources and the absence of covert channels. To model
this fundamental policy decision, we allow users to specify
assumptions as to which resources are sufficiently isolating
(i.e., that the capacity of the remaining covert channels
is acceptable) and which resources produce unacceptable
information flow if shared. This allows users to specify
stronger isolation for critical workloads while enabling more
sharing for uncritical workloads.

Contributions. We introduce a novel concept for automated
security validation of virtualization configurations across
multiple physical machines and potentially using different
virtualization techniques. We contribute a graph abstraction
and unification of virtualization configurations, that are used
for the analysis of security requirements. We report on
the implementation of a prototype, that demonstrates the
feasibility and scalability of the particularly complex multi-
tenant isolation requirement.

Outline. In Section 2, we introduce our high-level objectives
as well as a high-level architecture view of a virtual datacenter
to illustrate and motivate our approach. In Section 3, we
outline existing related concepts. In Section 4, we start by
defining the detailed security objectives and algorithms that
underpin our multi-tenant isolation analysis. In Section 5,
we generalize this and explain how our system can validate
a wide range of security properties for cloud computing
infrastructures. In Section 6, we then evaluate this prototype
to demonstrate the feasibility and scalability of our approach.
In Section 7, we conclude this article and outline future work.

2. OBJECTIVES

Our goal is the security validation of complex configurations
of a virtualized datacenter. This datacenter includes different
types of server hardware, implementations of virtual machine
monitors, and physical and virtual networking and storage
resources.

Figure 1 depicts a simplified version of such a configura-
tion. This simplified version includes the following hardware:
A IBM pSeries server, an x86-server, a physical network-
ing infrastructure providing VLANSs, and a Storage Area

Zone

“Intranet” \ i
VFW,,| Guardians ‘
@ II |

—————m—EE_—_————— Ay
1 Zone = s,
X 1 “DMZ" o QJ‘V,M,SJ I
o — — | Uy -
Zone N)
I “Internet” |

@ Guardians

| & e |
§ T,
i |
| '

Figure 2: Example policy for isolating three virtual
security zones.

Networking providing virtual storage volumes. The virtual
resources (networks, storage, machines, and virtual firewalls)
are depicted inside these hardware resources.

Our system aims at specification and validation of complex
configuration properties of such virtual infrastructures. In
this paper, we focus on validating isolation properties. For
this example, Figure 2 depicts the desired isolation topol-
ogy: Logically, the example virtual datacenter is supposed
to isolate three example virtual security zones “Intranet”,
“DMZ”, and “Internet”. Furthermore, we permit commu-
nication between Intranet and DMZ that is mediated by
a trusted guardian, such as a firewall vFWas. Similarly,
firewall vF'W a1 moderates and restricts the communication
between the Intranet and Internet zones, respectively. In
this example, our goal is to validate that no unauthorized
information flow is possible between these zones. From a
configuration perspective, this means that there are no com-
ponents that connect two zones or are shared by two zones
while not being trusted to sufficiently mediate covert and
overt information flow.

Note that we focus on validating the virtual infrastructure’s
configuration. Thus, once we have guaranteed that no un-
desired information flow exists except through the specified
guardians, existing concepts for firewall validation need to
be used to ensure that firewalls implementing the guardians
have been correctly configured and do not permit undesired
information flow between zones.

3. RELATED WORK

Virtual systems introduce several new security challenges [3].
Two important drivers mentioned that inspired our work is
the increase of scale as well transient nature of configurations
that render continuous validation more important.

The first area of related work is security of virtual machine
monitors. Analysis of well-known attacks such as jailbreaks
[22] allows detecting vulnerable configurations. This includes
information leakage vulnerabilities of today’s infrastructure
clouds that allow covert or overt communication between
multiple tenants that should be isolated. Example include
co-hosting validation [16] and cache-based side channels [15,
1]. A final type of virtualization vulnerabilities is caused
by the potential to roll-back machines and their pseudo-
number generators [17], which may result in predictable keys
in cryptographic protocols.

A second area of related work is reachability analysis in
networks and the related configuration analysis of firewalls,
in particular the analysis of whole networks including packet
filters, transformers, and routers, are [2, 9, 24]. Firewall
configuration analysis allows understanding and validation
of firewall rule [13, 14, 23]. While this work focuses on the
TCP/IP level, our goal is to ensure 'physical’ isolation by
ensuring that VLANSs and virtual networks are disjoint. This
approach is similar to the approach proposed in [10]. If L2
networks are connected while isolation is implemented on the
TCP/IP level, we see potential to further extend our work
by using these concepts for TCP/IP isolation analysis that
is then fed into our analysis concept.

A third area of related work is the usage of visualization of
security that has become increasingly popular in the recent
years [5]. Visualization of firewall policies, reachability and
attack graphs are published in [19, 20, 21]. Our approach
to simplify complex multi-host configuration into a logical
model and then visualize this model provides a visualization
approach that is tailored to detecting isolation breaches in
complex infrastructures.

4. ISOLATION VALIDATION

4.1 Information Flow

We borrow concepts from information flow analysis. Whereas
formal information theory is a wide field, we focus on in-
formation flow as the determinate propagation of discrete
units of information throughout a system. The concept of
channel control is particularly interesting to us. Whereas
the common intuition is that there should be no information
flow between different zones, this requirement is too strong
for our purposes. In particular, it must be possible to specify
exceptions to the general zoning requirements. For instance,
two zones should not communicate with each other unless
a guardian mediates and filters the communication. Before
we shed light at possible requirement definitions, we discuss
information flow types.

Flow Types. We cover ezplicit and implicit information
flow (sometimes also called direct and indirect). Explicit
information flow occurs when a variable is directly assigned
or, in a system, if a read or write access occurs. For instance,
if a VM Alice has read /write rights for a storage provider, this
constitutes a possibility of explicit information flow. Implicit
information flow occurs, when a variable is determined by
the program control flow, for instance, by the result of a
condition evaluation.

For multi-tenant configurations in virtualized environments,
covert channels are an important case of indirect flow. Lamp-
son [11] introduced the term covert channel as a channel not
intended for information transfer at all. Consider a malware
in VM Alice which attempts to transfer information to an-
other instance of the malware in VM Bob, both hosted on the
same hypervisor. The malware on VM Alice can, for instance,
monopolize a resource' to transmit a bit observed by the
malware on VM Bob in performance or through-put decrease.

!Examples include reserving a bus, launching expensive com-
putations, flooding a cache, sending many network packets.

Similar methods combined with external observation of an
honest VM’s performance can determine co-location [16].

Requirement Definition. We informally stated our security
goal as isolation between zones, which sounds similar to the
classical requirement of non-interference [4, 8]. It states that
actions in one zone do not have any effect of subsequent
behavior or outputs in another zone.

The standard non-interference definition is rather strict. In
particular, its transitivity renders it unsuitable to model
our setting where information flow via guardians may be
permitted while the corresponding direct flow is disallowed.
Agreeing to the arguments of Rushby [18] and Mantel [12], we
need intransitive non-interference to start with. Furthermore,
the existing definitions are based on traces of steps and, thus,
inherently dynamic.?

As we start from a system’s configuration snapshot and do
not inspect the behavior of VMs, we need to concentrate of
static information flow analysis of the system (its topology
and communication links) and preclude a step/trace-based
non-interference analysis. We therefore introduce a property
we call structural non-interference:

DEFINITION 1 (STRUCTURAL NON-INTERFERENCE). A
static system topology provides structural non-interference
with respect to a set of information flow assumptions on sys-
tem nodes, if there does not exist an inter-zone information
flow unless mediated by a dedicated guardian.

Even though this definition is very relaxed compared to
classical non-interference, it allows us to derive meaningful
statements on absence of information flow for configurations
of virtualized infrastructures.

4.2 Modeling Isolation

Modeling Configurations. Our static information flow
analysis is graph-based. Each element of a virtualization
configuration is represented by (at least) one vertex (VMs,
VM hosts, virtual storage, virtual network). Connections
between elements are represented by edges in the graph and
model potential information flow. Note that our approach
requires completeness of the edges: While not all edges may
later actually constitute information flows, we require that
all relations that allow information flow are actually modeled
as an edge.

The vertices of the graph are typed: our model distinguishes
VM nodes, VM host nodes, storage and network nodes, etc.
Thus, the formal model contains a set of typed vertices
V = {v; = (label;, type;)} and a set of edges E = {(vs,v;)}.
We represent complex structures of the virtualization infras-
tructure by sub-graphs of multiple vertices. For instance, we
construct guardians such as firewalls with complex informa-

2To that end, Haigh and Young [6, 7] have shown that it is
necessary to analyze the complete trace of actions subsequent
of to a given action to validate that the action is allowed to
interfere with another zone.

tion flow rules by a firewall vertex connected to multiple port
vertices.

We annotate a subset of the nodes as information sources
or information sinks. Information is output at one or more
information source nodes, propagates according to traversal
rules along the nodes and edges of the graph, and is consumed
at an information sink. We treat information sources as
independent and information as untyped and unqualified.
We apply traversal rules according to the type declaration of
the nodes.

Modeling Information Flow Assumptions. A traversal
rule defines an assumption on information flow from one
vertex type to another vertex type. For instance, a traversal
rule will specify that if a VM host is connected to a storage
provider, this edge constitutes a direct information flow and
is to be traversed. Also, a traversal rule may specify that if
two VMs are connected to the same VM host, this implies
the risk of covert channel communication and, therefore,
constitutes an information flow.

A set of traversal rules specifies general assumptions on
information flow in virtualized environments and, thereby,
embodies a part of the overall trust assumptions. The spec-
ification of traversal rules is therefore orthogonal to the
isolation policy of a system. For instance, one set of traversal
rules could assume absence of covert channels, another one
include intra-VM host covert channels, one set of traversal
rules may assume isolation by storage providers, another one
information flow through a provider’s storage devices. By
making the traversal rules orthogonal, we allow virtualiza-
tion configurations to be evaluated against many different
traversal rules to observe information flow under different
trust assumptions.

Similar to the tainted variable method for static information
flow analysis, we employ the metaphor of color propagation.
We associate colors to information sources and to vertices
that have received information flow from a certain source by
a traversal rule. The total information flow of a system is
the transitive closure of the graph traversal governed by the
traversal rules. This means, that the information flow from
any source to any sink can be efficiently statically analyzed
by a reachability analysis between source and sink.

Validating Isolation. We pursue our goal of non-interference
between zones by the following high-level algorithm:

1. For each zone, specify (at least) one information source
with the color.

2. For each zone, specify (at least) one information sink.

3. Derive the transitive closure over the traversal of infor-
mation flow starting from each respective information
source.

4. Obtain a non-interference property, if and only if a
zone’s information sinks only obtained the color of this
very zone’s information source.

5. Any information sink with an alien color highlights at
least one isolation breach.

Note that this algorithm not only determines the existence
of a breach but also the paths the information flow takes.

4.3 Determining Information Flow
Starting from this high-level algorithm, we provide three
methods for determining information flow.

Color Collision. We first mark information sources for all
zones. We mark all nodes of a zone as sink. After obtaining
the transitive closure of the traversal rules of the graph, we
test whether there exists a color collision in for any vertex of
the graph. That is, when a vertex is colored by more than
one color, then we infer that there is an information flow
between source and sink of the involved colors and, thus,
isolation breached. This method produces false positives as
color collisions may occur at non-sink vertices.

Color Spill. We specify information sources for the zones
and explicit sinks with a dedicated color. For instance, we
want to make sure that a certain zone receives a specific
target color. After the transitive closure of the traversal
rules, we check whether any color “spilled” in an alien-color
sink. If a sink of one color gets connected to a different color,
then we have an isolation breach. You could imagine the
dedicated color sinks as a honey pot, waiting for colors from
other zones to spill over.

Transformation to Logical Model. We first mark infor-
mation sources in all zones. For each source, we determine
the transitive closure of the traversal rules and thereby obtain
a colored sub-graph. This discovered sub-graph determines
the actual zoning that is realized by the virtualization config-
uration under the traversal rules. The logical model is a set
of graphs where each graph contains the machines, storage,
and network corresponding to one of these actual zones. If
the different sub-graphs corresponding to isolated customers
are disjoint we have isolation, otherwise we have a breach.

The logical model hides all details such as low-level network-
ing elements or inter-machine connections to allow a user
to focus on and understand the potential information flows.
This model is particularly useful for a manual analysis: we
visualize the zones of the logical model together with the
connected machines and provide a quick overview of the
system’s overall state.

S. ANALYSIS FLOW

We structure the analysis process in four phases, which also
constitute the main modules of our framework: i. configu-
ration discovery, ii. realization model, iii. graph traversal
and coloring, and iv. diagnosis. We depict this flow in Fig-
ure 3 and show the examples corresponding to this flow in
Appendix A and B.

5.1 Discovery

Realization

Storage Area Network(s)

IBM pSeries|| Physical KVM Virtual
LPARs Networks Machines

Traversal

Diagnosis

Node refidl with multiple colors.
Node refid2 with multiple colors.
Node refid3 with multiple colors...

Node refid6 with multiple colors...
Node refid5 with multiple colors...
Node refid8 with multiple colors...

Figure 3: Overview over the analysis flow.

The discovery phase obtains a set of VM host addresses and
associated API or login credentials as input and outputs a
discovery XML file with outputs of all probes that represents
the actual configuration.

We employ discovery modules to discover the configuration
of the virtualization infrastructure. We realized multiple
hypervisor-specific probes (Xen, VMware, IBM’s PowerVM,
or LibVirt).3 The framework can be easily extended beyond
the existing probes or use configuration data from a third-
party source. We design the discovery to refrain from machine
introspection as risk mitigation against data leakage.

5.2 Realization Model

The transformation into a realization model obtains a repre-
sentation of the actual configuration as input and outputs
a typed graph representation of the infrastructure that is
unified for all hypervisor types.

We analyze the topology of the discovered configuration to
derive a unified graph representation of the virtualization
infrastructure, the realization model. The realization model
expresses the low-level configuration of the various virtu-
alization systems. It models the physical machine, virtual
machine, storage, and network details as vertices. We exem-
plify the structure of the realization model in Appendix A.
The physical machine part of the model, e.g., represents
the type of machine and its virtual machine monitor. The
virtual machine part describes the virtual machines and their
virtual resources. The storage realization model contains
the virtual storage devices and their connection to physical
storage. The network finally contains physical and virtual
networking devices and their connections. We represent all
connections between resources as edges in the graph, e.g., if
a VM is hosted by a hypervisor, we include an edge between
VM and VM host.

We generate the realization model by a translation from the
discovery data from the hypervisor-specific probes. Our archi-
tecture includes one adapter for each of the supported system
types that is able to understand and translate the system-
specific low-level configuration into the common realization
model. Our tool stitches these fragments from different
probes into a unified model that embodies the fabric of the
entire virtualization infrastructure and configuration.

3While Xen, VMWare, and LibVirt-based systems provide
an API for gathering configuration data, IBM pSystems are
controlled by a centralized administration host from which
the configuration of all managed pServers can be retrieved.

5.3 Graph Traversal

The graph traversal phase obtains a realization model, a set
of traversal rules, and a set of sources and sinks as input.
It outputs a colored version of the representation model
encoding the potential information flows.

We traverse the realization model by applying a set of traver-
sal rules and color the graph according to information flows.
The traversal starts from the information sources and com-
putes the transitive closure over the traversal rule application
to the graph. The colored realization model can already be vi-
sualized for manual information flow analysis, as color paths
and color collisions will be valuable indicators of isolation
problems similar to canaries in a coal mine.

For example a node with a certain Property X should have
the seed color blue and a node with Property Y always red.
The traversal rules determine how the colors are propagated
from these two seed nodes to the rest of the graph, e.g., always
retain the color when traversing from node with property X
to a node with property Z.

5.4 Diagnosis

The diagnosis phase obtains a colored realization model and
auxiliary data for the diagnosis modules as input and outputs
a visualization of isolation breaches that is specific to the
diagnoses module used.

Our framework enters a diagnosis phase, which is a refinement
step to the colored realization model poised at producing
meaningful outputs for admins. This phase allows multiple
problem analysis modules, where we highlight two kinds of
modules.

On the one hand, we have automated analysis modules,
which determine collisions between colorings and output
an information flow and isolation breach error log. This
method produces still digestible outputs even for massive
virtualization infrastructures (thousands of VM hosts/VMs).

On the other hand, we developed a module that transforms
the realization model into the logical model, a set of sub-
graphs, which encode the actual information flow zones of
the infrastructures. This model provides a highly-simplified
visualization for smaller systems (hundreds of VMs). The
rule of the logical model is: whenever two resources have
any information flow in the transitive closure of the traversal
rules, they belong to the same sub-graph. Thus, a sub-graph
in the logical displays all machines that can somehow “talk
to each other” as a connected clique and all machines that
are separated from them in a separate sub-graph. By that,

400

» 300
ko]
5 200
o
b
100
10 100 1000
Traversal 1.2 3.4 29.6
Realization 15 8.7 75.2
P4 Serialization 7.1 61.2 224.9

VMware ESX Hosts

Figure 4: Performance of the three main stages of
an isolation analysis.

admins can see a breach of isolation at one glance. We de-
pict a simple case of a logical model with an isolation breach
corresponding to the realization example of Appendix A in
Appendix B.

6. EVALUATION & SCALABILITY

We prototyped and evaluated our concept using VMware
ESX 4, IBM pSeries, and Xen virtual infrastructures. For
VMware, the discovery of a single server with 8VMs required
20 Seconds. Since servers can be discovered independently, we
expect that medium sized datacenters can also be discovered
in this time. In the worst case, performance of discovery will
be linear.

To assess the large-scale performance and scalability of our
system, we emulated the configuration of 10, 100, 1000
VMware ESX4 hosts that each host 9 VMs. The correspond-
ing configuration data was translated into our realization
model using a ThinkPad T43p (Pentium M 750, 2GHz, 2GB
RAM) running the Sun Java JDK 1.6.0.20. Figure 4 shows
the resulting scalability evaluation of our non-optimized pro-
totype that read raw discovery data from disk, translated and
combined it into a realization model, and finally performed
graph traversal and conflict detection.

We expected that discovery and translation into the realiza-
tion model is linear in the number of VMs: Both only depend
on the hosts and the elements within each host. Similarly,
the graph traversal is linear in the number of nodes and the
number of colors (each color can propagate to each node at
most once). The observed overall speed is sufficient in prac-
tice and does not contradict that the expected performance is
linear. One potential area for substantial improvement that
we discovered is model serialization to XML and writing it on
hard disk. Of the 300 sec spent to transform 1000 hosts from
discovery data into the realization model, approximately 225
sec were spent on serializing and writing the resulting model
to disk.

7. CONCLUSIONS & FUTURE WORK

In this article we demonstrated the ability to discover and
efficiently validate the security of complex virtual infrastruc-
tures as well as infrastructure clouds. We have used the
important and complex customer isolation requirement as
our initial proof-point and demonstrated its feasibility by

building and evaluating a demonstrator.

To make this a comprehensive solution for validating virtual
infrastructures in practice, there are several open questions.
The first open problem is a language for enabling customers
to express their requirements and trust assumptions. In our
current system, isolation assumptions and rules are provided
in XML format, and a domain specific language could ease
the specification of requirements for customers.

A second area of future work is to extend our approach to-
wards other configuration properties, such as dependability.
Today, misconfiguration of redundant components (network,
disks, machines) often is only detected when the main com-
ponent fails. We believe that our approach can be used to
validate the correct configuration of such backup components
to ensure correct fail-over.

Acknowledgments

We would like to thank Ray Valdez, Michael Steiner, Ste-
fan Berger, and Dimitrios Pendarakis of the IBM Watson
Research Center for valuable feedback and productive col-
laboration during our research. This project was partially
supported by the MASTER research project funded by the
European Commission’s FP7 programme.

8. REFERENCES

[1] AcugMEZ, O. Yet another microarchitectural attack:
exploiting i-cache. In CSAW 07: Proceedings of the
2007 ACM workshop on Computer security architecture
(New York, NY, USA, 2007), ACM, pp. 11-18.

[2] AL-SHAER, E., MARRERO, W., EL-ATAWY, A., AND
ELBabpawi, K. Global Verification and Analysis of
Network Access Control Configuration. Tech. rep.,
DePaul University, 2008.

GARFINKEL, T., AND ROSENBLUM, M. When Virtual is
Harder than Real: Security Challenges in Virtual
Machine Based Computing Environments. In
HOTOS’05: Proceedings of the 10th conference on Hot
Topics in Operating Systems (Berkeley, CA, USA,
2005), USENIX Association, pp. 20-20.
GOGUEN, J. A., AND MESEGUER, J. Security policies
and security models. In IEEE Symposium on Security
and Privacy (1982), pp. 11-20.
[5] GoopaLL, J. R. Introduction to Visualization for
Computer Security. In VizSEC (2007), pp. 1-17.
[6] HalgH, J. T., AND YouNG, W. D. Extending the
non-interference version of MLS for SAT. In IEEE
Symposium on Security and Privacy (1986), pp. 60-60.
Haich, J. T.; AND YOUNG, W. D. Extending the
noninterference version of MLS for SAT. IEEE Trans.
Software Eng. 18, 2 (1987), 141-150.
III, J. W. G. Toward a mathematical foundation for
information flow security. In IEEE Symposium on
Security and Privacy (1991), pp. 21-35.

[9] KHAKPOUR, A. R., AND Li1u, A. Quarnet: A Tool for
Quantifying Static Network Reachability. Tech. Rep.
MSU-CSE-09-2, Department of Computer Science,
Michigan State University, East Lansing, Michigan,
January 2009.

[10] KroTHAPALLI, S. D., SuN, X., SunG, Y.-W. E., YEO,
S. A., AND Rao, S. G. A toolkit for automating and
visualizing VLAN configuration. In SafeConfig '09:

3

4

[7

8

[11]

[12]

[13]

[14]

Proceedings of the 2nd ACM workshop on Assurable
and usable security configuration (New York, NY, USA,
2009), ACM, pp. 63-70.

LampPsON, B. W. A note on the confinement problem.
Communications of the ACM 16, 10 (1973), 613-615.
MANTEL, H. Information flow control and applications -
bridging a gap. In FME (2001), J. N. Oliveira and

P. Zave, Eds., vol. 2021 of Lecture Notes in Computer
Science, Springer, pp. 153-172.

MARMORSTEIN, R., AND KEARNS, P. A Tool for
Automated iptables Firewall Analysis. In ATEC ’05:
Proceedings of the annual conference on USENIX
Annual Technical Conference (Berkeley, CA, USA,
2005), USENIX Association, pp. 44-44.

MAYER, A., WooL, A.; AND ZISKIND, E. Fang: A
Firewall Analysis Engine. In SP ’00: Proceedings of the
2000 IEEE Symposium on Security and Privacy
(Washington, DC, USA, 2000), IEEE Computer Society,
p. 177.

PERCIVAL, C. Cache missing for fun and profit, May
2005.

RisTENPART, T., TROMER, E., SHACHAM, H., AND
SAVAGE, S. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds.
In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security (New York,
NY, USA, 2009), ACM, pp. 199-212.

RISTENPART, T., AND YILEK, S. When Good
Randomness Goes Bad: Virtual Machine Reset
Vulnerabilities and Hedging Deployed Cryptography. In
Proceedings of Network and Distributed Security
Symposium — NDSS ’10 (2010).

RuUsHBY, J. Noninterference, transitivity, and
channel-control security policies. Tech. rep., SRI
International, dec 1992.

TRrRAN, T., AL-SHAER, E., AND BouTaBA, R.
PolicyVis: Firewall Security Policy Visualization and
Inspection. In LISA’07: Proceedings of the 21st
conference on Large Installation System Administration
Conference (Berkeley, CA, USA, 2007), USENIX
Association, pp. 1-16.

WiLLiams, L., LiPPMANN, R., AND INGOLS, K. An
Interactive Attack Graph Cascade and Reachability
Display. In VizSEC (2007), pp. 221-236.

WiLLiams, L., LiIPPMANN, R., AND INGOLS, K.
GARNET: A Graphical Attack Graph and Reachability
Network Evaluation Tool. In VizSec ’08: Proceedings of
the 5th international workshop on Visualization for
Computer Security (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 44-59.

Wourtczuk, R. Adventures with a certain Xen
vulnerability (in the PVFB backend).
http://invisiblethingslab.com/pub/
xenfb-adventures-10.pdf, October 2008.

WooL, A. Architecting the Lumeta Firewall Analyzer.
In SSYM’01: Proceedings of the 10th conference on
USENIX Security Symposium (Berkeley, CA, USA,
2001), USENIX Association, pp. 7-7.

XiE, G., ZHAN, J., MALTZ, D., ZHANG, H.,
GREENBERG, A., HIALMTYSSON, G., AND REXFORD, J.
On static reachability analysis of ip networks. In
INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies.

Proceedings IEEE (13-17 2005), vol. 3, pp. 2170 — 2183
vol. 3.

APPENDIX

A. EXAMPLE REALIZATION MODEL

We shed light at different aspects of our framework’s realiza-
tion model. The realization model is a unified abstraction
over different virtualization configuration types. It incorpo-
rates an abstract data model for virtualization primitives,
physical primitives, storage and network. We exemplify its
structure with a class diagram of the networking abstraction
in Figure 5.

3] VirtualBridge
gy name : String
bridged &

12| Networkswitch
(g, name : String

] NetDevice
58 up : Boolean
(g device : String
I Mac : String

1

1
wiredTo o a =

resides: (]

] PhysicalNetDevice
£ ndexinP: integer

0.1

(1] VirtualVMNetDevice
(G indexnVM ; Integer

=

= H port

5 enabled : Boolean

£ trunked : Boolean
i trUnKSVLAN : Integer
I defaultVLAN : Integer

B[] PowerviNetdevice
5 sot_num : nger

trunked¢ & g Pvid : Integer
55, Vien_ids : String

7] VLANNetDevice
g VianiD - Integer

Figure 5: Class diagram of the realization model’s
networking abstraction.

The realization model constitutes a typed graph representa-
tion of the virtualization system, which is further annotated
with the information flow coloring derived from the traversal
rules. We depict such a colored version of a very simple
realization model in Figure 6.

Figure 6: Example graph of a simple realization
model with information flow coloring for two infor-
mation sources.

B. EXAMPLE OF THE LOGICAL MODEL

The logical model shows the essence of an isolation analysis.
It visualizes the actual zones of a configuration as either inde-
pendent subgraphs (for correct isolation) or merged graphs
with problem annotation (for isolation breach). We depict a
logical model with breached isolation in Figure 7.

§poicemachine: Domain-0

anagement: bmwuogalyz

) LogicanerConnect A=
7 LogicalDomain: customer-2

'Y
U7 LogicalDomain: customer-1+customer-2
oicalNetworlk

A Y
™ LogicalDomain: customer-1

?J'\W‘MK

ermm.«.—\mw 0entoo, 2008-0

Figure 7: Example of a logical model with isolation
breach between two zones.

