

RZ 3792 (# Z1011-002) 11/18/2010
Electrical Engineering 13 pages

Research Report

End-to-End Congestion Management for Non-Blocking, Multi-
Stage Switching Fabrics using Commodity Switches

N. Chrysos*, L. Chen*, C. Minkenberg*, C. Kachris‡, M. Katevenis‡

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

‡Institute of Computer Science
Foundation for Research and Technology - Hellas

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Almaden • Austin • Beijing • Delhi • Haifa • T.J. Watson • Tokyo • Zurich

End-to-End Congestion Management for Non-Blocking,
Multi-stage Switching Fabrics using Commodity Switches

Nikolaos Chrysos
IBM Research

Zurich Research Laboratory
cry@zurich.ibm.com

Lydia Chen
IBM Research

Zurich Research Laboratory
yic@zurich.ibm.com

Cyriel Minkenberg
IBM Research

Zurich Research Laboratory
sil@zurich.ibm.com

Christoforos Kachris
Institute of Computer Science
Foundation for Research and
Technology - Hellas (FORTH)

kachris@ics.forth.gr

Manolis Katevenis
Institute of Computer Science
Foundation for Research and
Technology - Hellas (FORTH)

kateveni@ics.forth.gr

ABSTRACT
We propose and evaluate end-to-end, proactive congestion
management schemes for non-blocking multi-stage switch-
ing fabrics. All control functions are delegated to network
adapters, which coordinate among each other through a
variable-grain request-grant protocol. Switching elements
simply forward packets, regardless to whether these corre-
spond to payload data or control messages. We examine two
different schemes. The first one merely regulates the long-
term injection rate towards each output. For this scheme
we show pathological states that may appear in practice,
and conclude that it is stable only if some internal speedup
is employed. The second scheme reserves buffer space in-
side the some switching elements before granting segments.
Using a fluid model, we show that this scheme eliminates
congestion in Clos/Benes fabrics for any number of stages,
and detailed computer simulations demonstrate its robust
operation without requiring speedup. Finally, for this dis-
tributed set-up, we show how to reduce the size of reassem-
bly buffers, so as to fit them into SRAM buffers at the net-
work adapters.

1. INTRODUCTION
Packet-switched networks are encountered at the heart of

scalable network routers and data center (or high-performance
computer) interconnects. The overall system performance
increasingly depends on the performance of its interconnec-
tion network. As these networks scale to larger port counts,
and their utilization increases, congestion management be-
comes indispensable. At the same time, technology con-
straints rule out monolithic bufferless switches with central-
ized schedulers, and impose buffered multi-stage switching
fabrics with distributed control [1]. These trends have for
some time now called forth research and products [2, 3, 4,
5, 6], which applied the request-grant philosophy of buffer-
less crossbars to make buffered multi-stage switching fabrics
practical and efficient. The present work makes some steps
further along this direction.

In settings where the network is expected to be highly
loaded by workloads that cannot be characterized in ad-
vance, a non-blocking fabric is often necessary to meet per-
formance targets, where non-blocking means that any conflict-
free traffic pattern can be routed without creating contention

for any link in the fabric. Typical examples of scalable non-
blocking networks encountered in such systems are Clos or
Beneš networks [7] [8], and fat trees [9]. In this paper we
consider such non-blocking, multi-stage networks, although
some of the results may also be applicable to other networks.

As bufferless multi-stage networks require complicated cen-
tralized control mechanisms to create conflict-free match-
ings, which typically scale poorly to large port counts, such
large-scale networks are usually built using switching ele-
ments (or switches) with some amount of integrated SRAM
buffers. To prevent excessive drop rates because of these
small buffers overflowing, hop-by-hop link-level flow control
(backpressure) is employed in between switches. A well-
known phenomenon that can seriously degrade the perfor-
mance of any buffered flow-controlled, multi-stage network
is saturation-tree congestion [10]. This can occur when a net-
work link is oversubscribed, i.e., the aggregate rate of traffic
wanting to cross that link exceeds its capacity. We refer to
such a link as a hotspot. Congestion can spread because of
backpressure, and create a saturation tree of congested links
rooted at the initial hotspot, thus deteriorating performance
of the entire network.

Such saturation trees can be counteracted by congestion
management mechanisms. These can coarsely be classified
into reactive and proactive schemes. Reactive schemes do
not impose constraints on traffic injection a priori, but wait
until some congestive event occurs before they initiate cor-
rective action. Proactive schemes, on the other hand, at-
tempt to shape traffic injections such that congestion can-
not occur, or can only occur in a very limited fashion such
that no saturation trees are induced. TCP is an example
of a scheme that exhibits both proactive (slow start) and
reactive (reduce window on duplicate ACK or time-outs)
characteristics. The advantage of reactive schemes is that a
communication requires no explicit setup (e.g., handshake,
request/grant), which avoids the latency penalty of having
to do so. On the other hand, proactive schemes can avoid
congestion risks by design, and offer better worst-case per-
formance. In this paper, we adopt a hybrid proactive model
that skips the request/grant setup at low loads for small
messages; however, the proactive spirit of the scheme is pre-
served, as we reduce such unsolicited injections to one seg-
ment per flow and round-trip time.

1

1

2

1

2

M

M M

reorder &VOQs

2

M M

1 1

N−M+1

N

N−M+1

N

reassembly buffers

input / output network adapters

switching chips with on−chip buffers

fabric input fabric output
fabric−output buffer

Figure 1: Non-blocking, buffered switching fabric.

The congestion management methods we propose in this
paper are particularly suitable for non-blocking multi-stage
networks, and are tightly coupled with the load balancing
that these networks use. In particular, we treat only fabric-
output links (see Fig. 1) as possible hotspots, and try to
prevent them from saturating. As implied in [11] [12], and
further substantiated here, random load balancing ensures
that, when fabric outputs are not saturated, also the internal
links of the non-blocking network do not experience conges-
tion, so that no additional measures to reduce the load at
internal links are needed.

1.1 Background and contributions
Recent research efforts have demonstrated that proactive

(request/grant) congestion management can provide supe-
rior performance in non-blocking multi-stage switching fab-
rics. In essence, the request-grant scheme lifts the conges-
tion avoidance burden from the data network, and places
it on the scheduling network. Therefore, it becomes crit-
ical that requests for overloaded outputs do not interfere
with requests for other outputs, otherwise blocking inside
the scheduling network can deteriorate performance as much
as blocking in the data network can.

From the industry side, a first attempt in this respect was
made in [2], which employs per-flow request counters inside
the switches to isolate requests from different flows1. Each
request, referring to a single VOQ cell, is transferred to the
output adapter, which immediately generates a grant and
routes it back to the waiting input. As requests for con-
gested outputs are throttled inside the request network, the
grants generated also throttle the injections towards con-
gested outputs. From academia, two schemes, published at
about the same time, used a request-grant scheme, and a
central scheduler responsible for reserving buffer space be-
fore issuing the grants: [4] considers a single-stage fabric,
and reserves buffer space in output adapters, whereas [12]
considers a 3-stage Clos fabric, and reserves space in both
the reorder buffers of output adapters and the fabric buffers
in front of the targeted fabric output (see Fig. 1). By re-
serving space in these fabric-output buffers before packets
are injected, [12] shows that the fabric behaves transpar-
ently to congestion epochs: saturation trees are avoided for
any traffic conditions. Both [12] [4] employ a centralized
scheduler, which limits scalability.

1We define a flow as a distinct input/output adapter pair.

In [13], scalability is improved by distributing the control
functions over the last-stage switches of the 3-stage Clos
fabric. These switches in addition comprise per-flow request
counters (N counters per node). Other switches store re-
quests in queues that are shared among flows heading to
different outputs2. With these structures, hierarchical flow
control is enabled in the scheduling network that reduces
request interferences to a great extent. On the downside,
control functions are implemented in switches, whereas pri-
vate links are assumed to convey request-grant messages.
Our paper addresses the weaknesses of this scheme:
1. We propose and evaluate end-to-end congestion man-
agement. All control circuits are placed at input and out-
put adapters, which coordinate in a variable-grain, request-
grant protocol. Switching elements have no duty other than
forwarding packets, without knowing whether these are re-
quest/grants or payload data. The variable-grain protocol
reduces the control bandwidth overhead, as heavy or output-
constrained flows converge to coarse grants, and avoids the
underutilization and large delays that are pertinent to coarse-
grain (or frame-based) scheduling by serving lightly loaded
flows with fine-grained grants.
2. For this distributed setup, we examine an implicit rate
regulation scheme, demonstrate its weak points, and show,
by means of computer simulations, that its stable when some
internal speedup is used3.
3. We also revisit the scheme in [13]. To what was al-
ready known for this scheme, the present paper (a) adds its
adapter-based implementation, with variable-size requests
and grants; and (b) provides new evidence demonstrating
that, when coupled with random, per-flow load-balancing, it
virtually eliminates saturation trees throughout non-blocking
multi-stage Clos/Benes networks with any number of stages.
4. Finally, we introduce a coordination protocol between in-
puts and outputs, that enables fitting the reassembly buffers
in small SRAMs, where typically their space grows with N
maximum-size packets, with N being the number of fabric
ports.
Our results on congestion control: Enforcing injection
rates, and reserving buffer space, are two candidate schemes
for proactive congestion management. Implicit rate regula-
tion defines a practical way to enforce rates: each output
issues grants to the requesting inputs at a peak rate that
the corresponding fabric-output can handle. For instance,
when an output issues a grant for two (or ten) segments, it
waits for two (or ten) segment times before issuing a new
grant. The output arbiters in [13] reserved buffer space in
order to avoid congestion trees; but also, in order to reduce
complexity, these arbiters generated at most one grant per
cell time, which corresponds to fine-grain, implicit rate reg-
ulation. Thus, it is still left unknown whether we can rely on
implicit rate regulation, alone, for congestion management.

In this paper we find that implicit rate regulation works
well in many cases, but not always. As there are multiple
contention points in the system, we cannot ascertain that
granted segments will reach the output, just on the time

2Because of load-balancing, O(N2) flows pass through each
of these nodes; thus the implemention of per-flow request
counters in them becomes intractable.
3While we were working with implicit rate control, we found
a paper from industry that appears to be using something
similar [6]. This independent work present neither a detailed
description, nor provides performance evaluations.

2

that the output has “prescheduled” for them, i.e. ≈ about
one end-to-end round-trip-time (RTT) after the grant has
been issued. As we will see, this uncertainty can lead to
a destructive, positive feedback loop, where short-term con-
tention brings out-of-schedule segments, overloaded outputs,
and finally congestion trees, which intensify contention, and
spread the out-of-schedule segments all over the switching
fabric. Our results show that one can remedy this behav-
ior by using a speeded-up fabric. Although it is still un-
clear whether (or which) speedup can avoid the regener-
ation of saturation trees, our experiments indicate that a
small speedup may already suffice. The drawback is that
this speedup is off-chip, and thus power-hungry and expen-
sive.

On the other hand, when we reserve space in fabric-output
buffers before issuing grants, saturation trees will be avoided
even without requiring internal speedup. This method es-
sentially trades buffers for speedup, because when an output
issues a coarse grant, e.g. for the payload of Ethernet Jumbo
frame, it needs to reserve an equal amount of space in the
corresponding fabric-output buffer in the upstream switch of
the last stage. Although this might have been prohibitive in
the past, it is no longer so as each new generation of CMOS
almost doubles the capacity of on-chip memory. Current
32 nm CMOS, or 22 nm in the 2011-2012 time frame and
forward, makes it possible to place more than 64 Mbits of
SRAM (or eDRAM) on-chip. With this amount of memory,
we can allocate more than 50 KBytes for packet buffers per
output port of a 128 × 128 switch. This space fits not only
one but multiple 9 KBytes Jumbo Frames, allowing some
output overprovisioning that can mask out scheduling inef-
ficiencies, i.e. that multiple outputs reserving space for the
same input at the same time.

In the next subsection, we present related work, and in
Sec. 2 the end-to-end congestion management schemes. Then,
in Sec. 3, we describe the organization of switching elements
and the operations performed by network adapters. Finally,
Sec. 4presents performance evaluation, and Sec. 5 concludes.

1.2 Related work
Per-flow queues: In single-stage crossbars, congestion can
easily be controlled by using virtual output queues (VOQs)
[14]. The best established congestion management schemes
for multi-stage fabrics are based on the same principle [15]
[16]. These approaches do not scale well because of the
buffers required in the switching elements grow with N , the
number of final destinations. However, their performance is
unbeatable, and they serve as landmarks that have inspired
many of subsequent efforts including the present one.
Reactive flow control: A recent example of a reactive
scheme relevant to data center networks is the Quantized
Congestion Notification (QCN) scheme [17], which is stan-
dardized for 10G Ethernet (Data Center Bridging [18]). An-
other reactive congestion management scheme is Regional
explicit congestion notification (RECN) [19]. The key point
in RECN is that a shared queue can accommodate all non-
congested flows, with no performance losses; therefore, RECN
dynamically allocates set-aside-queues (SAQs) on a per con-
gestion tree basis. Both QCN and RECN aim to tackle the
difficult and long-standing problem of congestion manage-
ment in arbitrary (possibly blocking) topologies by relying
on congestion notifications issued from the congested points.

For the non-blocking topologies that we consider here, we

avoid the need for special hardware in switching elements.
Furthermore, by acting proactively, we avoid the mistimed
reaction and oscillations that are pertinent to most reac-
tive schemes. On the downside, our scheme requires the
exchange of request-grant messages. However it is not clear
what is the exact control message (congestion notifications)
overhead of the reactive schemes, since this relates to timely
reacting on saturation trees.
Explicit rate regulation: Reference [11] presents end-
to-end rate congestion management for non-blocking multi-
stage switching fabrics that performs similar functions with
implicit rate regulation but by enforcing (per-output) injec-
tion rates at each input. For rates to be accurate, all inputs
may need to be notified when some flow becomes active.
Thus, the rate adjustments in [11] are made fairly infre-
quently (e.g., every 100 microseconds) so as to amortize the
communication overhead. These large control delays may
hurt the performance. By contrast, in our scheme, inputs
do not have to be explicitly informed of a new flow’s, f , ap-
pearance, and can continue injecting granted data: inputs
will “sense” f ’s arrival when their grant rate gets reduced,
i.e., one RTT after f becomes active.
The Trueway Switch: The Trueway switch [20] comprises
multiple, stacked three-stage Clos networks, and employs
end-to-end, credit-based (not request/grant) flow control to
manage the per-input reorder and reassembly buffers at out-
put adapters. The buffer space required at each output
adapter is N end-to-end RTTs worth of segments, plus N
maximum-size packets. In addition, the Trueway partitions
the VOQs per plane and per path. Although this removes
first-order HOL blocking, it does not deal with blocking due
to congestion trees rooted at fabric outputs. In the present
paper, we tackle blocking not by using additional queues,
but with end-to-end request-grant schemes.
Centralized Scheduling and the PPS architecture:
The PPS [21] is a three-stage fabric in which the large (and
expensive) buffers reside in the central stage. First- and
third-stage switches each serve a single external port of high
bandwidth. The port count of a PPS can be increased by
having multiple slower (sub)ports for the first- and last-stage
switches. Such a three-stage architecture is actually similar
to the NEXUS fabric, a descendant of the MDS, from CISCO
Systems [3], which increases the capacity of the MDS by
stacking multiple, parallel switching fabrics, switching fabric
being a large crossbar. To prevent blocking, these systems
employ a central scheduling unit, which seems to be simi-
lar to the approach described in [4] [12]. However, critical
details regarding the operation of the central scheduler are
not publicly available.

2. CONGESTION CONTROL
In this section we first discuss the overall switching and

load-balancing techniques that we use, and then describe
the end-to-end congestion control methods. The details of
the request-grant scheduling protocol are described in the
Sec. 3.

2.1 Overall switching architecture
We consider a non-blocking, multi-stage switching fab-

ric. For our evaluations, we will use a (rearrangeably) non-
blocking three-stage Clos network (Fig. 1).

For convenience, we sometimes refer to fabric-inputs and
fabric-outputs as inputs (or sources) and outputs (destina-

3

tions), respectively. A flow is defined as a distinct input-
output pair. Every network adapter has an ingress path (in-
put adapter), from which it receives packets, and an egress
path (output adapter), through which it forwards packets.
We assume that each adapter can communicate control mes-
sages from its ingress to its egress side, and vice versa, with-
out having to go through the switching fabric.

The main packet buffers are the VOQs, which are im-
plemented in DRAM modules and positioned at the input
adapters in front of the fabric. The output adapters also
have buffers (mainly for reordering and reassembly), but
these are flow-controlled by the request-grant scheme, so
that they can be implemented using smal SRAMs, even in
scenarios with internal speedup. The switching elements are
described in Sec. 3.1; these contain on-chip buffers subject
to hop-by-hop flow control and are agnostic to congestion
control functions and messages.

We assume that the network traffic comprises variable-
size packets up to maxp in size. When a packet arrives at
an input adapter, it is first stored in the VOQ correspond-
ing to the targeted output. The packet will be divided into
one or more variable-size segments. Each segment may carry
fragments (or the entire payload) from multiple packets [22].
Segments can be as small as a minimum-size packet, minp,
whereas their size can grow up to a maximum, maxs, cor-
responding to several minimum-size packets. In our evalu-
ations, maxs = 256 B. These variable-size segments avoid
padding overhead and reduce header overhead.

The congestion control functions are implemented exclu-
sively at network adapters. Output adapters collect input
requests and grant them while trying to ensure that, in the
mid to long term, the arrival rate at each fabric-output port
does not exceed the capacity of that port. With random
load balancing on a per-flow basis, the same guarantee is
automatically valid for any link of the multi-stage (non-
blocking) fabric. Of course, load-balancing works on dis-
crete, autonomously routed units, and cannot be perfect in
the short term. To obtain the best possible results, we uni-
formly distribute the load from each flow on a per-segment
basis along all available paths4

Requests and grants carry a size field, enabling an adapt-
able admission granularity. Effectively, heavy flows, e.g.,
those targeting overloaded destinations, can request and be
granted tens or hundreds of segments in a single transac-
tion. In addition, we piggyback new request messages on
the granted data segments that input adapters inject, such
that the request traffic volume practically drops to zero for
heavily-loaded or output-constrained flows,

One drawback of such a request-grant protocol is that it
increases the delay of flows by the request-grant scheduling
delay. On the other hand, request-grant efficiently resolves
persistent hotspots, which can deteriorate throughput and
delay for longer time periods. As in [23] [13], we can avoid
this latency penalty for small packets by allowing each flow
to inject a few unsolicited segments without first requesting
and getting permission. These unsolicited segments may
carry multiple small packets, and can also convey the first
requests that initiate bulky (e.g., a large packet or a train
of small ones) or output-constrained transfers. Here, we
minimize this“priviledged”traffic to one unsolicited segment

4Routing the entire payload of packets through a single path
can cause serious load imbalances among network paths and
needlessly overload internal links.

per flow.

2.2 Congestion control methods
The congestion control functions are delegated to output

adapters. Every output adapter holds a request counter for
every input adapter, which maintains the number of pending
requests that this input has issued to this output. An output
arbiter in the adapter serves input requests and issues the
corresponding grants. In addition, the arbiter maintains the
available space in the reorder/reassembly by means of cred-
its and grants segments only after reserving space for them
in this buffer. In this way, the maximum number of seg-
ments inside the fabric that are destined to a common output
adapter never exceeds the size B of the reorder/reassembly
buffer in segments5.

2.3 Implicit rate control
With implicit rate regulation, the output arbiter intro-

duces an idling period after granting an input. The length
of this period is proportional to the size of the grant issued
(i.e., the size of the corresponding request counter) and to
the rate (measured in segments per time unit) L of the cor-
responding fabric-output port. In this way, the output ar-
biter can ensure that in a time interval of T segment times
(measured for maximum-size segments), it grants at most
G(T) ≤ L · T requests. An example of implicit rate regu-
lation is shown in Fig. 2(a). Here output 3 first grants the
five requests from input 1, and issues the grant. Then, it
stays idle for 5 segment times. It does not grant input 2,
which in the meanwhile has also presented a request for four
segments, but only after this idling period has finished.

Essentially, the output arbiter programs the arrivals at
the buffer in front of the output of the upstream switching
element6 for one RTT time ahead in the future, serializing
them at the link rate, so that the corresponding fabric port
can immediately fetch them without letting backlogs build
up. Note that output adapters never exert backpressure
on fabric-output buffers, because space for segments in the
reorder and reassembly buffers has already been reserved.

Unfortunatelly, “output schedules” produced in this way
are not very robust, and may be violated if different inputs
respond to the output “call” with different delays. This may
happen when for instance there are inherent differences in
the RTTs (due to the packaging of the system), or when
the effective RTTs vary because of contention. When these
discrepancies are small, the fabric-output buffers can mask
them out without filling up, as shown in Fig. 2(a). How-
ever, as we describe below, discrepancies can be large, and
regenerating.
Discrepancies caused by non-uniform RTTs: In a real
system, a signal transferred from one adapter to another will
experience some in-flight delay. Correspondingly, we define
the rtt delay as the time it takes for a signal to be trans-
fered from adapter A to adapter B, and return to adapter
A. Consider that A is the adapter issuing the grants, and
that adapters B and C have requests pending to adapter A.
The rtt delay between A and B may differ from the rtt delay
between A and C. We assume that the maximum difference
among the rtts between any adapter and adapter A is ∆rtt.

5B is expected to be on the order of a few megabits.
6We will use the name fabric-output buffer to distinguish
this buffer from the output buffer in the adapter.

4

45

RTT/2 = 10

RTT/2

RTT/2

fine!

inp 1
req 5

inp 2
req 4

grant 4

grant 5

time

time

time

inp 2

outp 3

inp 1

(a) A good scenario.

�
�
�
�

����������

45

RTT/2 = 10
contention)

(some
RTT/2

RTT/2

segments for other outputs

inp 1
req 5 req 4

inp 2 grant 4

grant 5

overload?

inp 2

outp 3

inp 1

time

time

time

(b) A bad scenario.

Figure 2: Implicit rate regulalion.

Consider now that adapter A first grants adapter B, and
then adapter C. According to implicit rate regulation, the
arrivals from C to the fabric-output should start just after
the arrivals from B have finished. However, the arrivals may
be brought closer in time by up to ∆rtt, if the largest rtt
is between adapters A and B and the smallest rtt between
adapters A and C. Conversely, the arrivals may be spread
by up to the same ∆rtt, when the large rtt is between A and
C. We can rigorously show the following:

Lemma 1. The maximum backlog in fabric-output buffers
due to variances in the rtts is less or equal to one ∆rtt worth
of segments.

According to the lemma, if ∆rtt is 400 ns, and the link rate
is 100 Gb/s, then a fabric-output-buffer of 5 KBytes will be
able to absorb the discrepancies without filling up.

45 arrivals

departures

4

inp 3
req 4 req 4req 4

inp 2inp 1
req 5

inp 1

outp 3

inp 1

inp 2

inp 3

time

time

time

fabric−buffer

fabric−output 3

backlog in

in front of

rtt1 = 20

rtt3 = 16

rtt2 = 18

grant 6

grant 4

grant 5

Figure 3: Implicit rate regulation under different
rtts. Note that the backlog at the fabric-output
buffer never exceeds ∆rtt worth of segments, i.e.,
4 segments in this example.

An example showing the formation of a worst-case back-
log for ∆rtt= 4 segment times is shown in Fig. 3. Out-
put 3 first grants inputs in sequence of decreasing rtts, thus
bringing the respective arrivals closer in time. When the
segments from the last input granted, 4, arrive, the backlog
in the fabric-output buffer reaches its maximum of 4 seg-
ments. This decreasing-rtt sequence is reversed at the end,
when output 3 grants input 1 again, which has the largest rtt
(20), preceding a grant having been to the input (3) with the
smaller rtt (16). Effectively, arrivals are now spread apart,
making enough time for the fabric-port to drain that backlog
in the fabric-output buffer.
Discrepancies due to contention: Output schedules may
be violated because of contention, especially at input adapters.
An example is shown in Fig. 2(b). When an input receives

many multiple grants from more than one output close in
time, it will delay injecting some of the granted segments.
Eventually, it may inject out-of-schedule, thus inducing a
transient saturation tree. Depending on its severity, the sat-
uration tree may damage the capability of the fabric to bring
segments to their output on time, by blocking the injections
from any input adapter, and eventually causing even higher
deviations with regard to any output’s schedule, and thus
new congestion trees, etc., in a destructive positive feedback-
loop. In Fig. 4, we depict the results of a similar scenario
occurring in computer simulations.

The loop depicted in Fig. 4 was triggered by an input
receiving multiple grants from two or more outputs. Ob-
viously, with coarse-grained grants, such “small” accidents
are more dangerous than with fine-grained grants. Inputs
that are temporarily “congested” in this way return grants
at their limited rate, whereas outputs, being oblivious of
input contention, may continue to grant them faster, thus
increasing the backlog of grants [24]. We have observed that
in such scenarios, outputs may run out of credits, which then
pile up at inputs in the form of grants. Implicit rate regu-
lation does not work properly with inputs holding a lot of
grants, because inputs are then free to inject segments for
the same output close in time! Instead, implicit rate regula-
tion assumes that inputs use their grants immediately. This
is what speedup tries to enforce, as described in the next
section7.
Speeded-up fabric: So far we have assumed that all links
in the switching fabric have the same rate as network-external
links, L. With fabric links running faster, namely at rate
LF , output arbiters may grant segments at any rate L ≤
LG ≤ LF , see Fig. 5. A good choice in this trade-off is to
use a rate 1 < LG = LF − ε. In this way, outputs use a
portion of the internal speedup to bring data to the output
faster, and clear backlogs, while the fabric still runs faster
than the output arbiters. With such conservative admis-
sions, the load-to-capacity ratio, and thus the short-term
contention, at inputs and internal links, get reduced, which
helps granted segments arrive at the designated time. If
occasionally some inputs overshoot some fabric buffer, oper-
ating at full speedup rate can remove this backlog. Although
it is still unclear whether (or which) speedup can avoid re-
generating congestion trees, our experiments indicate that
already a small speedup may suffice.

7Note that similar grant accumulations may occur even if
we reserve space in fabric-output buffers, as observed in [13].
But in those systems, they are normally transient states [24],
whereas in implicit rate regulation they cannot be resolved
easily because they may also induce congestion trees.

5

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

simulation time

ba
ck

lo
gs

 in
 fr

on
t o

f h
ot

sp
ot

 fa
br

ic
−

ou
tp

ut
s

o1 o2 o2 o4 o5 o6 o7 o8

(a) No speedup; backlogs
at fabric-output buffers in
front of hotspots outputs (first
10000 simulation time units).

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

simulation time

gr
an

ts
/c

re
di

ts
 a

t i
np

ut
s

(b) No speedup; grants/credits
accumulated at each input
(first 10000 simulation time
units).

0 2 4 6 8 10

x 10
4

0

1000

2000

3000

4000

5000

6000

simulation time

gr
an

ts
/c

re
di

ts
 a

t i
np

ut
s

(c) No speedup; grants/credits
accumulated at each input
(first 105 simulation time
units).

0 0.5 1 1.5 2 2.5 3

x 10
4

0

200

400

600

800

1000

simulation time

gr
an

ts
/c

re
di

ts
 a

t i
np

ut
s

(d) 1.2 speedup;
grants/credits accumulated
at each input (first 30000
simulation time units).

Figure 4: Situation in which all the outputs of a last-stage switch are hotspots, each one with 2.5x more
load than it can handle. Other outputs receive uniform highly bursty traffic at the peak possible rate. The
maximum grant size is 128 segments. Initially some inputs hold more than 128 credits (b), obviously from
more than two outputs, causing out-of-schedule injections and the first congestion trees. (a) The first fabric-
output buffers reach the maximum occupancy (4000 Bytes) at about the same time. This eventually causes
more out-of-schedule injections, and more congestion trees. (c) How grants accumulate at inputs in time.
(d) With a speedup of 1.2×, credit accumulations are avoided.

Lx

Lx L

s

s

fabric−output
buffer

LG

f

f

output adapter

input adapter
switching fabric

buffer
adapter

port

rate L

fabric rate

VOQs

grant rate

load−balance converge

Figure 5: Rate of output grants in a fabric with
internal speedup.

.

In Fig. 6, we examine implicit rate regulation when ACKs,
grants, and requests are routed out-of-band, thus incurring
no bandwidth overhead of their own. We plot the delay
of packets going to non-hotspot outputs as a function of
the load that these non-hotspots receive. We have three
plots, for uniform traffic (no hotspots), 1 hotspot, and 8
hotspots, all reachable through the same last-stage switch.
As can be seen, implicit rate regulation performs well when
one hotspot is present, but behaves poorly (both in terms
of delay and throughput) when 8 hotspots are present. In
fact, when no speedup is used, we see reduced through-
put even for uniform traffic. But with a speedup LF =
1.2×L (×LG = L), implicit rate regulation performs well,
delivering full throughput and very good delays even with 8
hotspots.

2.4 Reserving fabric-buffers
We can avoid congestion trees rooted at fabric outputs

without relying on speedup, if output arbiters, in addition to
what they do up to now, also reserve space in fabric-output-
buffers for every segment that they grant. In this way, sat-
uration trees cannot build up at fabric outputs. When used
with coarse-grants, a drawback of this method is that each
fabric-output buffer needs to be dimensioned so as to fit a
few maximum-size grants to be able compensate for schedul-
ing inefficiencies8. The benefit is increased certainty, possi-
bly at smaller internal speedups. Actually, owing to per-flow

8When buffers fit just one or two such maximum-size grants,

load-balancing, we can state an even stronger guarantee. For
an non-blocking Clos/Benes network, with arbitrary number
of stages, the following theorem holds:

Theorem 1. Assume a fluid model in which (i) there is
a buffer in front of every switch output that can hold an
amount of traffic equal to b, measured in arbitrary units;
(ii) every switch output buffer has a full write bandwidth to
accept the traffic from any number of inputs in the same
switch; (iii) there is no flow control between adjacent stages;
(iv) each output arbiter ensures that no more than b grants
are outstanding; and (v) the traffic admitted by output ar-
biters is distributed evenly on a per-flow basis over all pos-
sible routes. Then, the output buffers in switching elements
will never overflow.

We skip the full proof here, and only present a descriptive
outline of it below. Theorem 1 assumes that departures
from buffers are never backpressured, and shows that none
of them ever overflows. This implies that if buffers are flow
controlled, as is the case for a real system, then the following
corollary applies:

Corollary 1. In a fluid system as described in Theorem
1, which implements flow control to prevent buffer overflow,
flow control will never be activated.

We now present an intuitive proof of Theorem 1 for the
five-stage Clos network depicted in Fig. 7. Each 2×2 switch-
ing element has an output buffer for b segments. Consider
a time interval of T segment times, which starts with all
buffers being empty. Now consider buffer A in front of fabric-
output 5. The corresponding output arbiter will grant at
most T + b segments in this interval, whereas buffer A can
drain T segments, because no backpressure is exerted from
the output adapter; therefore buffer A will never overflow.
Next, consider the switch-output buffers B1 and B2 of the
4th stage that steer traffic to buffer A. As the load from each

input-output pairings need be exact; otherwise throughput
will be lost.

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

load at non−hotspot outputs

th
ro

ug
hp

ut

unif
1 hotsp (non−congested outputs)
1 hotsp (congested outputs)
8 hotsp (non−congested outputs)
8 hotsp (congested outputs)

(a) No speedup: through-
puts.

0 0.2 0.4 0.6 0.8
10

0

10
1

10
2

10
3

10
4

load at non−hotspot outputs

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

unif
1 hotsp
8 hotsp

(b) No speedup: delays of
packets to non-hotspots.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

load at non−hotspot outputs

th
ro

ug
hp

ut

unif
1 hotsp (non−congested outputs)
1 hotsp (congested outputs)
8 hotsp (non−congested outputs)
8 hotsp (congested outputs)

(c) Speedup 1.2: through-
puts.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

load at non−hotspot outputs

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

unif
1 hotsp
8 hotsp

(d) Speedup 1.2: delays of
packets to non-hotspots.

Figure 6: Implicit rate regulation, with each grant
referring to up to 128 segments (maxs = minp =
40 Bytes). Eight (8) hotspots, each oversubscribed
by a factor of 2.5×. Bursty (36) minp packet ar-
rivals; 64×64, three-stage Clos network, made of
8×8 switches. Each fabric buffer can fit 4 KBytes.
For additional information on the simulation param-
eters, please refer to Sec. 4.

flow is split evenly, the load towards each fabric-output will
also be split equally across all available paths. Therefore,
each of the buffers B1 and B2 may be targeted by half of
the segments that go to A, i.e., up to T+b

2
segments each. Of

course, these buffers may also need to handle an equal num-
ber of segments that go to output 6. In total, the number of
granted segments that target buffer B1 (or B2) in interval T
never exceeds T + b; thus also buffer B1 will never overflow.
Going one stage upstream, each of the buffers C1 and C2
will carry an equal portion of the segments that go to B1
thanks to load balancing, and an equal portion of the seg-
ments heading to the other output in the same switch with
B1 again thanks to load balancing. Thus, each buffer will be
targeted by at most b+T segments, and never overflow. We
finished with the buffers in the routing part of the network.

For the buffers in the distribution network of Fig. 7, we
start from the first stage. Buffer E1 carries a portion of
the load from two fabric-inputs. In interval T , each of these
inputs may inject at most T segments. As the load from each
flow is split evenly across all available paths, the load from
each of these inputs will also be split equally to buffers E1
and E2. Thus, in interval T , buffer E1 will need to handle
at most T segments and never overflow. Going one stage
upstream, buffer D1 will carry half of the load from buffers
E1 and E3; the other half will be distributed on buffer D2.
Thus, buffer D1 will also need to handle at most T segments
and thus never overflow.

The actual proof for Theorem 1 is based on a fluid traf-
fic model in which the load from each flow is perfectly dis-

C1

C2

E3

inputs

distribution subnetwork

D2E2

A

B1

5

6B2

uniformly destined traffic uniformly sourced traffic

E1 D1

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5outputs

routing subnetwork

Figure 7: An 8×8, five-stage Clos network, made of
2×2 switching elements with output buffers. The
bottom switch in each stage shows traffic being uni-
formly split in the distibution network and then uni-
formly merged in the routing network.

tributed among all available paths. For the real system, we
guarantee that output adapters never exert backpressure on
fabric-outputs, and that all injected segments will fit into
fabric-output buffers, hence fabric-output buffers also never
exert backpressure. We cannot guarantee the same for the
other buffers because load balancing on a per-segment ba-
sis may not be perfect in the short term. Our results show
that these buffers will exert backpressure only sporadically,
owing to random short term conflicts rather than persisting
contention.

Finally note that by reserving space for fabric-output buffers,
we can increase the rate of admissions, LG, even above the
rate of the fabric, LF because the congestion control no
longer relies on output schedules.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

load at non−hotspot outputs

th
ro

ug
hp

ut

unif
8 hotsp (non−congested outputs)
8 hotsp (congested outputs)
16 hotsp (non−congested outputs)
16 hotsp (congested outputs)

(a) No speedup: throughput.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

load at non−hotspot outputs

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

unif
8 hotsp
16 hotsp

(b) No speedup: delay of
packets to non-hotspots.

Figure 8: Reserve fabric-buffers, with each grant
referring to up to 128 segments (maxs = minp = 40
Bytes); 8 hotspots, each oversubscribed by a factor
of 2.5×. Bursty (36) minp packet arrivals; 64×64,
three-stage Clos network, made of 8×8 switches.
Each fabric buffer can fit 32 KBytes. For additional
information on the simulation parameters, please re-
fer to Sec. 4.

In Fig. 8, we repeat the same experiment as in Fig.
6, but with request and grants sent out-of-band. Because
the 4 KByte fabric-output buffers do not even suffice for
one maximum-size grant, we now dimension fabric-output
buffers to 36 KBytes. (Similar results are obtained if we
decrease the maximum grant size accordingly.) As shown in

7

the figure, by reserving fabric-buffer space, we get excellent
delays and throughputs for any number of hotspots, without
requiring any speedup.

3. SYSTEM DESCRIPTION
In this section, we describe the system operation as mod-

eled in our simulations. We start our description with the
switching elements that we use and then describe the mech-
anisms at the input and output adapters.

3.1 Switching Elements
We assume switching elements (switches) that (a) only

route segments from their arriving (local) input to the (local)
output specified in the segment headers; and (b) implement
simple hop-by-hop flow control, enabling lossless operation
when switches are connected with each other. In particular,
we use the combined-input-output-queueing switches shown
in Fig. 9. Each of them has M input/output ports, with
one buffers queues each. The sizes of the input and the
output queues are denoted bin and b, respectively, and are
measured in segments. Observe that there is just one first-in-
first-out (FIFO) queue at each input. The internal crossbar,
which reads segments from input and writes them to output
buffers, operates at a speed LS = 2 · LF .

LS LFLF

bin
inputs outputs

M

1 1

M

outgoing FC incoming FCinternal FC

crossbar

switching element
b

Figure 9: Switching elements.

In [12] [13], we considered buffered crossbar switches. We
have also examined them in the present architecture. Our
results suggest that buffered crossbars, although they have
full internal speedup, implement more elaborate local flow
control (similar to having virtual queues per local output at
the inputs) and are more costly in terms of buffers, behave
similarly to input-output queued switches when employed in
a non-blocking multi-stage network.

3.2 Request message generation at adapters
Figure 10 depicts the organization of a network adapter.

When a new network packet is received by the input adapter
(ingress side), classification and routing are performed first,
then the packet is stored in the VOQ for the targeted out-
put. There are N VOQs at each input adapter. In addition,
the adapter maintains a state of counter arrays, with N
entries each, i.e. one per destination: received grant coun-
ters, g, maintain the number of received grants per out-
put; pending request counters, pr, maintain the number of
pending requests per output; pending unsolicited segments
counters, ps, maintain the number of unsolicited and not

Routing &
classification

arbiter

Egress arbiter

Tx Packet

c
re

d
it
s

requests

grants or acks

credits

Ingress arbiter

Piggybacked

Piggybacked

Fabric−buffer

Output

O
u

tp
u

t

new grantn
e

w
 a

c
k

Piggyback

non−empty in−transit

acks or grants cnts

 g
ra

n
t

c
n

ts

 a
c
k
s
 c

n
ts

VOQs state

In
−

tr
a

n
s
it

Eligibility mask

request cnts

Pending

requests

Piggyback

In
−

tr
a

n
s
it

 g
ra

n
ts

 c
n

ts
re

c
e

iv
e

d

u
n

s
o

lic
it
e

d
 c

n
ts

U
n

a
c
k
n

o
w

le
d

g
e

d
 &

D

Reorder /
reassembly

Ingress

Egress

S

S

S

request cnts
Per−flow

RX

RX

Fabr−cred

GR

Outp−cred

ACK

ANT

Rx
Segments

Eligibility
Logic

To

From

switch

switch

fabric

fabric

VOQ 0

VOQ N

new
req.

Figure 10: Organization of network adapters.

yet acknowledged segments per output9; and transit grant
counters, tg, and transit ACKs counters, ta, with per-output
entries maintain the number of grants and ACKs, respec-
tively, that the egress (output) side of the present adapter
has generated. Note that the input adapter has to convey
the values of the transit counters to their final destination
(adapter). It can do that either by piggybacking or by send-
ing a standalone grant/ACK message of size sst (20 Bytes
in our simulations).

On every new segment that it injects, the input can piggy-
back requests for new segments in the corresponding VOQ
in a dedicated request field of the segment’s header. The
requested size from each VOQ relates to reassembly buffer
management and is described in Sec. 3.4. For the moment,
note that a VOQ cannot have more thanG requests pending,
where G ≥ dmaxp

maxs
e (the maximum-packet size in segments).

As mentioned in Sec. 2.1, to start the communication with
some output, e.g. when a packet arrives at an empty VOQ,
the input adapter is allowed to inject an unsolicited segment,
which will convey requests for the additional segments in the
packet (if any) or in the VOQ. After injecting the segment,
the adapter increases the corresponding ps counter. This
counter is decremented when the input receives an ACK
message confirming that the corresponding segment releases
the buffer space it occupies in the output adapter, i.e., after
the packet that it belongs to has been reassembled and starts
being forwarded onto the output line.

The eligibility logic computes whether there is something
to send to each output and stores the result in an N -bit wide
eligibility bitmask. In summary: 1) VOQ for output i is el-
igible when g[i] > 0, in which case the HOL segment from
the VOQ can be injected. Otherwise, 2) when g[i] == 0, a
non-empty VOQ can inject its HOL segment if r[i] == 0 and

9Note that unsolicited segments are never dropped be-
cause buffer space has been preallocated for them in output
adapters.

8

ps[i] == 0; this segment will be unsolicited. When the VOQ
for output i is empty or not granted and not eligible for un-
solicted injection, the input may inject a special ACK/grant
segment to output i if (tg[i] == 1 or ta[i] == 1). In all other
cases, output i is ineligible for service. According to these
rules, as long as the input can inject a (granted or unso-
licited) VOQ segment, it will not inject special ACK/grant
segments towards the same destination: VOQ segments go
first, because they can convey the current values of the cor-
responding transit ACK/grant counters. All injections from
the adapter are subject to hop-by-hop backpressure; the
adapter holds a credit counter which maintains the available
segment slots in the input queue of the downstream switch,
and resets all eligibility flags when no such local credits are
present.

A round-robin scheduler scans the eligibility mask, start-
ing from a “next-to-serve” position, and selects the first non-
zero entry. A (VOQ or special) segment is then fetched
for the destination selected and injected into the switching
fabric. The route of the segment is pointed by a per-flow
distribution counter. The adapter increases the distribution
counter by one, so that the next segment of the selected flow
will be routed through the next available path. The header
of the injected segment contains a route field, a request-size
field, a grant-size field, an ACK-flag, and an unsolicited flag.

3.3 Grant message generation
As shown in Fig. 10, every output adapter maintains the

pending segment requests from each input, i, using a counter
r[i]. The number of requests in a counter corresponds to the
number of non yet granted segments in the corresponding
VOQ at the input adapter. Remember that each flow may
have at most G pending requests, thus r[i] ≤ G.

In addition, the output adapter maintains two credit coun-
ters: the output-buffer credit counter , oc, initialized at B,
which monitors how many segment slots are available in the
reorder/reassembly buffer in the adapter, and the fabric-
buffer credit counter, fc, which is initialized at b.

To avoid deadlocks when the reassembly buffers is smaller
than N ·maxp, the output arbiter either grants all segments
of a VOQ packet or none of them. To establish this condi-
tion, we require that the output grant input i only if oc ≥ r[i]
and fc ≥ r[i].
Fairness: However, with this allocation strategy, fairness
can be violated: inputs presenting a few requests to some
output may starve other flows that have many requests when
either of the credit counters has dropped to a small value. To
restore fairness, the output arbiter issues a new grant only as
long as oc ≥ G and fc ≥ G, thus guaranteeing that either all
or none of the inputs are eligible. Furthermore, to maintain
fair (round-robin on a per-byte level) allocation of output
bandwidth, the scheduling discipline used to select among
the eligible inputs at the output has to be aware of the actual
sizes (r[i]) it serves each time. Candidate disciplines are
weighted or deficit round-robin. In our simulations, we use a
hardware-efficient version of WRR, which is based on virtual
intervals [?].

After selecting an input, the arbiter decrements oc and
fc by gs, and issues a grant that is equal to the allocated
space gs. The output adapter then stays idle for gs

LG
, where

LG is the peak output grant rate. The grant message issued
contains the input ID and is routed to the ingress path of the
adapter, where it updates the corresponding transit grant

counter. From there, the grant is eventually routed to the
waiting adapter.

Grant messages (piggybacked or standalone) are load-balanced,
and are subject to hop-by-hop backpressure, thus the per-
flow grants can be delivered to the ingress linecards out-
of-order. Out-of-order delivery is not an issue here, and the
per-flow grant messages can safely be merged in the received
grant counters g: we can use grants that were actually issued
for the “next-in-line” packet in a VOQ to inject segments
that belong to the HOL packet because we know that all
segments of both packets have been granted by the output.

The fabric-buffer credit counter, fc, is incremented by
one when a granted segment arrives at the output adapter.
When a reassembled packet starts departing from the out-
put adapter the output-buffer credit counter is incremented
by the number of granted segments in that packet. If the
packet contained any unsolicited segments, an ACK message
is generated, and routed to the waiting input adapter, as is
done for grant messages.

3.4 Fitting the reassembly buffer into on-chip
memories

A traditionally managed reassembly buffer needs to have
space for N maximum-size packets; for N = 10 K, and maxp

= 9 KBytes, the required buffer space is ≈ 720 Mbits. Now
we discuss how the input and output adapter coordinate so
as to prevent deadlock in a reassembly buffer that can fit
only a few
pmax packets10. As mentioned, this can be guaranteed
as long as the output either grants all the segments of a
HOL (VOQ) packet or none of them. In this way, the in-
put adapter may safely use any output grant, knowing that
space has been reserved at the reorder/reassembly buffer for
the entire packet that this segment belongs to.

To establish this condition, we require that each new re-
quest issued from a VOQ be for the entire payload of a
number of next-in-line packets in that VOQ. If requesting
grants for the next-in-line packet in some VOQ increases the
number of pending requests beyond G, the input will not re-
quest any grant for that or additional packets in the same
VOQ. The output arbiter, in turn, only grants the complete
requested size from each input. It follows that when an in-
put starts injecting segments from some packet, p, space has
been reserved for the entire payload of p.
Dependence on the RTT: As mentioned above, G ≥
dmaxp

maxs
e, and the reorder buffer space needs to have a size

greater than G for the scheme to work without deadlocks.
Consider that if G = dmaxp

maxs
e and a train of back-to-back

maxp and minp packets arrives at some input, the output
that all of these packets are targeting may have idling peri-
ods. We can circumvent this if G = dmaxp

maxs
e plus an RTT’s

worth of segments.

4. SIMULATIONS
This section evaluates the proposed schemes using com-

puter simulations. The simulation code models the oper-
ation of the system at byte-level granularity following the
description in Sec. 3. We use a maximum and minimum
segment sizes of maxs = 256 B and mins = minp = 40
B, respectively. Standalone ACK/grant messages are 20B

10Output adapters additionally buffers for the unsolicited
segments, i.e., for up to 1 segments from each input.

9

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

load at non−hotspot outputs

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

8 hotsp (bursty min−size pkts)
unif. (bursty min−size pkts)
8 hotsp (Geometric min−size pkts)
unif. (Geometric min−size pkts)

Figure 11: Reserve fabric-buffers, LF = 1.1×L: delay
of packets destined to non-hotspots.

long. Packet sizes range from 40 to 9000 B, i.e., up to the
size of Ethernet Jumbo frames, on a byte granularity. Each
adapter contains a reorder/reassembly packet memory of 4
Mbits, corresponding to 2048 maxs. The input and output
queue sizes of switching elements are 8 and 60 KB, corre-
sponding to 240 and 32 maxs respectively.

We will report delays normalized with respect to the du-
ration of minimum-sized packet, tmin = minp/L. The end-
to-end scheduling RTT and the switch-to-switch RTT are
55 and 13 tmin, respectively. The packet delay is measured
(in tmin units) from the time that the last bit of the packet
arrived at the input adapter, until the first bit of the packet
is forwarded on the external line. This delay includes one
transfer time of the packet’s payload (at LF rate), incurred
at the reassembly unit. The minumum delay (without con-
tention) of a small (≤ 256 B) unsolicited packet is 29 tmin,
plus its transfer time (i.e. < 7 tmin). The delay of a similar
request-grant packet is 83 tmin. The delay of a 9 K Jumbo
frame is 280 tmin or approximately equal to 3

2
× scheduling-

RTT +
maxp

minp
. The maximum number of pending requests or

grants per flow is set to G = 50 segments. Thus each fabric-
output buffer can fit about 5 maximum-size grants and the
output adapter buffer about 40.

In experiments with hotspots, each hotspot fabric-output
is oversubscribed by a factor of 2.5. All hotspots receive
traffic uniformly from all inputs. Other outputs receive a
varying load (again from all inputs). We present results
for a 64×64 three-stage Clos network. In the reserve fabric-
buffers method, output arbiters grant segments at a rate LG,
which is ten times higher than L; for implicit rate regulation,
LG = L, even when internal speedup is used.

In the first experiment, we use a speedup factor of 1.1×
in the switching fabric to accommodate the request-grant
overhead, and we examine the performance of the reserve
fabric buffers method when all (8) outputs of a last-stage
switch are oversubscribed. In Fig. 11, we present the delay
of packets destined to non-hotspot outputs. Packets here
have constant size of minp and arrive in bursts of an aver-
age length of 36 minp or are smoothed according to Pois-
son (smooth, geometric) arrivals. For comparison, we also
present the performance for uniform traffic when no output
is congested. Note that the packet delay for smooth, uni-
form traffic at low loads is just above the minimum possible
of 29 tmin: most packets avoid the request-grant latency. As

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

load at non−hotspot outputs

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

8 hotsp (bimodal pkts)
unif. (bimodal pkts)
8 hotsp (max−size pkts)
unif. (max−size pkts)

Figure 12: Reserve fabric-buffers, LF = 1.1×L: delay
of packets destined to non-hotspots.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

unbalance factor, w

no
rm

al
iz

ed
 s

ys
te

m
 th

ro
ug

hp
ut

bimodal pkts
uniform pkts
max−size pkts
min−size pkt bursty

Figure 13: N = 64. Throughput under non-uniform
traffic for reserve fabric-buffers, LF = 1.1× L.

can be seen, in the presence of hotspots, this capability is
lost (e.g., because of delays in ACKs), even when arrivals are
smooth, and thats why we see a worse delay at low loads.
For the bursty plots, the discrepancies are slightly larger and
are due to increased delays in the request-grant paths. (Con-
sider the ACKs and grants that are destined to the hotspot
adapters, which in addition act as sources of non-hotspot
traffic.) In Fig. 12, we repeat the same experiment for Bi-
modal (95% minp and 5% maxp), and maxp (Jumbo frames)
packets. Here the discrepancies caused by the presence of
hotspots are less discernible, because other delays dominate.

In Figures 13 and 14, we present the throughput perfor-
mance for non-uniform traffic, for N= 64 and N= 256, re-
spectively. In this traffic model, traffic ranges from uniform
(w = 0) to one-to-one (w = 1); at intermediate w values,
traffic is heavily unbalanced: each input (or output) has one
“heavy” output (or input) communication pair, and many
“light” ones. We have separate plots for different packet size
distributions. The worst throughput (of about 90%) occurs
for minimum-size packets, with smooth-geometric arrivals
at intermediate w values. Normally smooth arrivals yield
the best throughput results. But here, the grants of light
flows are frequently smaller than G (and their segments in
many cased unfilled), thus the grant bandwidth overhead
increases.

10

0 30000 50000 100000 150000
0

0.2

0.4

0.6

0.8

1

time (in minimum packet time units)

th
ro

ug
hp

ut
 o

f h
ot

sp
ot

s

implicit
reserve

(a) Throughput of hotspots in time.

0 30000 50000 100000 150000
0

0.2

0.4

0.6

0.8

1

time (in minimum packet time units)

th
ro

ug
hp

ut
 o

f n
on

−
ho

ts
po

ts

implicit
reserve

(b) Throughput of non-hotspots in
time.

0 30000 50000 100000 150000
10

2

10
3

10
4

10
5

time (in minimum packet time units)

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

implicit
reserve

(c) Delay of packets to non-hotspots
in time.

0 30000 50000 100000 150000
0

0.2

0.4

0.6

0.8

1

time (in minimum packet time units)

th
ro

ug
hp

ut
 o

f h
ot

sp
ot

s

implicit speedup 1.4
reserve speedup 1.1

(d) Throughput of hotspots in time.

0 30000 50000 100000 150000
0

0.2

0.4

0.6

0.8

1

time (in minimum packet time units)

th
ro

ug
hp

ut
 o

f n
on

−
ho

ts
po

ts

implicit speedup 1.4
reserve speedup 1.1

(e) Throughput of non-hotspots in
time.

0 30000 50000 100000 150000
10

2

10
3

10
4

10
5

time (in minimum packet time units)

de
la

y
of

 p
ac

ke
ts

 d
es

tin
ed

 to
 n

on
−

ho
ts

po
ts

(in
 m

in
im

um
 p

ac
ke

t t
im

e
un

its
)

implicit speedup 1.4
reserve speedup 1.1

(f) Delay of packets to non-hotspots
in time.

Figure 15: Worst-case scenario: The departures from the fabric-output buffers, upstream to hotspot outputs,
are blocked in the time interval [30000, 50000]. Panels (a), (b), and (c) belong to a run in which the request
and grants are sent out-of-band and no internal speedup is used. Panels (d), (e), and (f) belong to a run in
which request and grants are sent in-band, and the internal speedup is 1.1× for reserve fabric-output buffers
and 1.4× for implicit rate regulation.

0 0.2 0.4 0.6 0.8 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

unbalance factor, w

no
rm

al
iz

ed
 s

ys
te

m
 th

ro
ug

hp
ut

bimodal pkts
uniform pkts
max−size pkts
min−size pkt bursty

Figure 14: N = 256. Throughput under non-
uniform traffic for reserve fabric-buffers, LF = 1.1×L.

We note here that, for the same parameters, implicit rate
regulation works smoothly for a speedup between 1.2× and
1.4×; nevertheless, with a speedup of 1.1×, it yields worse
results than reserve fabric-buffers do. We conclude that
with larger buffers and some internal speedup, the regener-
ating saturation trees discussed in Sec. 2.3 are less frequent:
speedup reduces instantaneous backlogs, whereas larger buffers
do not fill up as rapidly. Nevertheless, no one can guar-
antee that the buffers will not fill up. (We have actually

seen this happening for 32 KB fabric-output buffers under
a heavy workload of maxp packets.) When we reserve space
in fabric-output buffers, these may only fill up because of
control messages. (Note that 2K concurrent control mes-
sages are required in order to fill up a buffer of 60 KB.)
Fabric-output buffers may also fill up when more than 200
inputs concurrently inject an unsolicited 256 B segment to
the same output.

4.1 Host devices suddenly stop accepting data
To test how these system will behave under such unfavor-

able circumstances, we intentionally blocked the departures
from fabric-output buffers in front of congested outputs (i.e.,
hotspots), for 10,000 time slots. In Fig. 15 we plot the delay
and throughput behavior as a function of time in a scenario
with eight hotspots and maxp packets: nothing departs from
fabric-output buffers in the simulation time interval [30000-
50000]. In Fig. 15(a,b,c), ACK, grants, and requests are sent
out-of-band (thus incurring no overhead), unsolicited injec-
tions are prohibited, and the systems have no speedup. As
can be seen in Fig. 15(b,c), the reserve fabric-buffers method
is almost transparent to the event, as the delay and through-
put of non-hotspot flows are only marginally affected. For
implicit rate regulation without speedup, on the other hand,
the throughput first drops to close zero (while hotspots are
blocked) and then takes a long time to recover, and its delay
remains high for much longer11.

11Note that in the plots for implicit rate regulation some sam-

11

In Fig. 15(d,e,f), control messages are sent in-band, as in a
real system, and unsolicited injections are allowed. Implicit
rate regulation is equipped with a speedup of 1.4×, and re-
serve fabric-buffers with a speedup of 1.1×. As can be seen,
the delays in reserve fabric-buffers are not affected within
the idling period, but increase just after its end. In the sim-
ulations, we have actually seen that, in contrast to implicit
regulation, buffers do not fill up. What happens is that the
hotspot adapters receive a burst of grant messages after the
end of the idling period (especially from other hotspots) and
coordinate to directed injections that have to go through the
same first-stage switch: the increased delays we see occur in
first-stage switches because of their limited internal band-
width. Despite its larger speedup, implicit rate regulation
yields significantly worse delays and throughput.

5. CONCLUSIONS AND FUTURE WORK
We proposed efficient and scalable request-grant conges-

tion management for highly utilized, converged data-center
networks. Although the overhead of request-grant messages
is modest, and allocating special network resources (e.g. a
special scheduling network) for these messages does not cost
that much (compared to the benefits that come in return),
here we examined an alternative approach: all congestion
management functions are delegated to the edge of the net-
work (adapters), without any need for support from within
the network itself (switches). We showed how to minimize
the request-grant bandwidth overhead and the size of the
reassembly buffers at output adapters.

For this distributed setup, we analyzed two candidate con-
gestion management schemes. The first one, implicit rate
regulation, reserves time-slots. For this scheme we described
pathological scenarios, and concluded that it works correctly
when internal speedup is employed. The other scheme re-
serves slots in fabric-output buffers, instead of time, and
was found to increase robustness, trading off additional on-
chip memories vs. reduced speedup. Despite their differ-
nces, both schemes can be combined conveniently with re-
order/reassembly buffer management, but also with end-to-
end reliable-delivery schemes.

Reserving space in fabric-output buffers has some promi-
nent benefits. As we have shown here, if a receiving host /
device stops accepting new data from the network for some
time, then a typical network will collapse. But by making
sure that all packets that are destined for this idling output
can “escape” into the corresponding fabric-output buffer, we
avoid most unwanted interferences. This is critical for the
data center environments, wherein a host device or virtual
machine may suddenly refuse accepting more data. Reserv-
ing fabric-output buffers is also very beneficial for “incast
congestion” circumstances encountered in storage networks
[25].

For future work, we plan to examine how these schemes
perform in network topologies that may exhibit internal
blocking. Along another direction, we plan to perform an
elaborate study where we will compare these proactive schemes
with reactive congestion management techniques. In order
to be complete, such a study should take into account the

pling points are missing in the time interval [30000-50000].
This happens because no packet gets reassembled (because
of extensive blocking, throughput has dropped to zero), and
no samples are taken.

communication delay overhead under both low and high uti-
lization, the delay in recovering congestion, the delay in re-
covering flow rates, as well as the control message overhead.

6. REFERENCES
[1] C. Minkenberg, R. P. Luijten, F. Abel, W. E. Denzel,

and M. Gusat, “Current issues in packet switch
design,” Computer Communication Review, vol. 33,
no. 1, pp. 119–124, 2003.

[2] P. Sindhu, P. Lacroute, M. Tucker, J. Weisbloom, and
D. Winters, US Patent US 7,102,999 B2, Sept., 2006.

[3] “A day in the life of a fibre channel frame: Cisco mds
9000 family switch architecture,” 2006.

[4] A. Bianco, P. Giaccone, E. M. Giraudo, F. Neri, and
E. Schiattarella, “Performance analysis of storage area
network switches,” in Proc. IEEE HPSR, Hong Kong,
May 2005.

[5] N. Chrysos, “Request-grant scheduling for congestion
elimination in multi-stage networks,” Ph.D.
dissertation, Univ. of Crete, Greece, Dec. 2006.

[6] O. Iny, US Patent US 7,619,970 B2, Nov., 2009.

[7] C. Clos, “A study of non-blocking switching networks,”
Bell System Tech. J., vol. 32, pp. 406–424, 1953.

[8] V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Traffic. New York City, NY:
Academic Press, 1965.

[9] F. Petrini and M. Vanneschi, “k-ary n-trees: High
performance networks for massively parallel
architectures,” in Proc. 11th Int’l Parallel Processing
Symposium (IPPS ’97), Geneva, Switzerland, Apr.
1997, pp. 87–93.

[10] G. Pfister and V. Norton, “Hot spot contention and
combining in multistage interconnection networks,”
IEEE Trans. Computers, vol. C-34, no. 10, pp.
933–938, Oct. 1985.

[11] P. Pappu, J. Turner, and K. Wong, “Work-conserving
distributed schedulers for terabit routers,” ACM
SIGCOMM Computer Communication Review,
vol. 34, no. 4, pp. 257–268, 2004.

[12] N. Chrysos and M. Katevenis, “Scheduling in
non-blocking buffered three-stage switching fabrics,” in
Proc. IEEE INFOCOM. Citeseer, 2006.

[13] N. Chrysos, “Congestion management for non-blocking
clos networks,” in Proceedings of the ACM/IEEE
Symposium on Architecture for Networking and
Communications Systems (ANCS), Florida, Dec. 2007.

[14] Y. Tamir and G. Frazier, “High-performance
multiqueue buffers for VLSI communication switches,”
in Computer Architecture, 1988. Conference
Proceedings. 15th Annual International Symposium
on. IEEE, 2002, pp. 343–354.

[15] M. Katevenis, “Fast switching and fair control of
congested flow in broadband networks,” IEEE Journal
of Selected Areas in Communication, vol. SAC-5,
no. 8, pp. 1315–1326, Oct. 1987.

[16] G. Sapountzis and M. Katevenis, “Benes switching
fabrics with O (N)-complexity internal backpressure,”
Communications Magazine, IEEE, vol. 43, no. 1, pp.
88–94, 2005.

[17] R. Pan, “QCN pseudo code version 2.2,” Nov. 13 2008.
[Online]. Available:

12

http://www.ieee802.org/1/files/public/docs2008/au-
pan-QCN-pseudo-code-ver2-2.pdf

[18] “IEEE Standard for Local and Metropolitan Area
Networks—Virtual Bridged Local Area Networks -
Amendment: 10: Congestion Notification,”
http://www.ieee802.org/1/pages/802.1au.html,
802.1Qau.

[19] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garćıa,
and T. N. Frinós, “A new scalable and cost-effective
congestion management strategy for lossless
multistage interconnection networks,” in HPCA.
IEEE Computer Society, 2005.

[20] H. Chao, J. Park, S. Artan, S. Jiang, and G. Zhang,
“TrueWay: a highly scalable multi-plane multi-stage
buffered packet switch,” in High Performance
Switching and Routing, 2005. HPSR. 2005 Workshop
on. IEEE, 2005, pp. 246–253.

[21] S. Iyer and N. W. McKeown, “Analysis of the parallel
packet switch architecture,” IEEE/ACM Transactions
on Networking, vol. 11, no. 2, pp. 314–324, Apr. 2003.

[22] M. Katevenis and G. Passas, “Variable-size
multipacket segments in buffered crossbar (CICQ)
architectures,” in Communications, 2005. ICC 2005.
2005 IEEE International Conference on, vol. 2.
IEEE, 2005, pp. 999–1004.

[23] I. Iliadis and C. Minkenberg, “Performance of a
speculative transmission scheme for arbitration
latency reduction,” IEEE/ACM Trans. Computers,
vol. 16, no. 1, pp. 182–195, Feb. 2008.

[24] N. Chrysos and M. Katevenis, “Preventing
buffer-credit accumulations in switches with small,
shared output queues,” in High Performance Switching
and Routing, 2006 Workshop on. IEEE, 2006, p. 8.

[25] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Seshan,
“Measurement and analysis of TCP throughput
collapse in cluster-based storage systems,” in FAST,
M. Baker and E. Riedel, Eds. USENIX, 2008, pp.
175–188.

13

