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Abstract—We consider the question of how a conspiring
subgroup of peers in a p2p network can find each other
and communicate without provoking suspicion among regular
peers or an authority that monitors the network. In particular,
we look at the problem of how a conspirer can broadcast a
message secretly to all fellow conspirers. As a subproblem of
independent interest, we study the problem of how a conspirer can
safely determine a connected peer’s type, i.e., learning whether
the connected peer is a conspirer or a regular peer without
giving away its own type in the latter case. For several levels
of monitoring, we propose distributed and efficient algorithms
that transmit hidden information by varying the block request
sequence meaningfully. We find that a p2p protocol offers several
steganographic channels through which hidden information can
be transmitted, and p2p networks are susceptible to hidden
communication even if they are completely monitored.

I. INTRODUCTION

The reader may be familiar with the archetypal espionage
scene where an agent meets his contact person for the first
time. In order to make sure that the agent got the right person,
and not some innocent bystander, they exchange previously
agreed-upon pass phrases.1 In this paper we study this spy
rendezvous problem in the context of computer networks. One
natural habitat are peer-to-peer (p2p) or overlay networks,
where conspiring peers (“spies”) strive to find each other and
exchange secret messages, unbeknownst to the “regular” peers
in the networks. Such protocols can be useful in different
contexts. In p2p networks, e.g., conspiring peers may prioritize
each other in terms of quality of service. In overlay networks,
conspiring peers may try to position themselves at strategically
favorable spots to manipulate the overlay. Conspiring peers
may also be machines controlled by law enforcement in order
to bring down a malicious botnet. As can be seen from
these examples, conspiring peers may be considered useful
or harmful, depending on the point of view. For the sake of a
lucid presentation, we describe the situation from the point of
view of the conspiring peers.

Depending on the application, conspiring peers may need
different communication primitives. In this paper, we focus on
the so-called broadcast problem where a conspiring peer wants
to send a secret message to all other conspiring peers, either
directly or indirectly, however, without getting caught by the
regular peers.

1Indeed, such spy rendezvous protocols are not an invention of literature or
film. For example, it is said that atomic spy Klaus Fuchs hooked up with his
contact person in New York by carrying a tennis ball, using the pass phrase
“Can you tell me the way to Grand Central Station?”

II. MODEL & PROBLEM DEFINITION

We are given a p2p network, which consists of a set P of
|P | = n peers. Each peer u ∈ P can communicate directly
with any other peer v if u has previously learnt the address
of v. It is assumed that a peer does not know any other peers
initially, i.e., upon joining the network a peer is not connected
to any other peers. In order to establish connections to other
peers, we assume that there is a publicly known server that
is aware of all peers currently in the network. Upon request
this server delivers a list of k peer addresses, which are chosen
uniformly at random from all peers. If two peers are connected,
we say that they are neighbors. Another common technique
in popular p2p networks is to inquire known peers about
other peers in the network. Since this approach still depends
on some kind of bootstrapping mechanism, we assume for
the sake of simplicity that peer addresses are only provided
by the dedicated server. Furthermore, all communication is
assumed to be reliable, i.e., message loss and corruption
can be handled in a canonical way using redundancy and/or
checksums. However, message delivery times are subject to a
potentially variable delay.

In general, a p2p network may be used to exchange any
number of files. We assume that there is only one file f that
is shared in the network, i.e., our definition of a network is
akin to the concept of a BitTorrent swarm in which all peers
share a single file or a specific collection of files. Efficient
dissemination of the file f is achieved by splitting it into m
data blocks b1, b2, . . . , bm, and trading locally available blocks
for missing blocks with other peers, which is common practice
in most file sharing networks. Both the number of blocks m
and the number of peers n are assumed to be fairly large
and in the same order of magnitude so that m � log n and
n � logm.2 We assume that the file blocks are fairly well
distributed among all peers and at least one peer holds all
m blocks at any time. Thus, it is always possible to acquire
the entire file f by connecting to a reasonable number of
peers. Furthermore, we make the assumption that any two
connected peers regularly exchange information about the
locally available blocks, i.e., a peer reports regularly on the
blocks it has to each neighbor. Over each link, a peer can
send one request for a block bi at a time to a certain peer,
wait until bi has been transmitted completely, and then send the
next request to the same peer.3 Unless a block is already being

2The base of the logarithm is always 2 unless we write ln, in which case
the base is e.

3Note that it is possible to send different requests to different peers
simultaneously.



transmitted, a request is always served and the requesting peer
receives the block at the latest after a certain bounded delay.

We distinguish between two classes of peers: A peer u is
either a regular peer or a conspirer. A regular peer is a peer
whose sole purpose is to acquire and share file f with other
peers. The conspirers, on the other hand, have a secret agenda.
In particular, the conspirers strive to secretly communicate
among each other. The set of conspirers is denoted by C, and
its cardinality is |C| = c. Another distinction between regular
peers and conspirers is that the conspirers share an exclusive
secret K of length |K|. What is more, the conspirers know
both the number c of conspirers and, for ease of presentation,
the number n of peers in the network.4

In order to ensure that the p2p network is used only
for the intended purpose of sharing file f and to prevent
fraudulent behavior by conspiring peers, there is an authority
that monitors the network. If the authority ever learns that a
peer u does not abide by the rules of the imposed protocol
and exchanges other information with certain peers, then u is
punished, e.g., by adding u to a globally available (signed)
blacklist or, if the authority has the power, by expelling u
directly from the network. The authority can detect conspirers
in two ways, either it observes suspicious communication
directly, or regular peers denunciate them, i.e., we assume that
there is an incentive for regular peers to report any observed
departure from the file sharing protocol. Of course, it is also
possible for conspirers to report regular peers but we assume
that it is not worthwhile for conspirers to do so for the
following reasons. First, the authority may suspect both the
defendant and the accuser, which may be detrimental to the
conspirer as well. Second, assuming that n is considerably
larger than c, other regular peers may vouch for the accused
(regular) peer and thereby revealing the disingenuous nature
of the conspirers. In other words, c may not be large enough
for the conspirers to campaign against a regular peer. Finally,
the authority may have recorded the communication. In this
case, it can determine that the regular peer always adhered to
the protocol contrary to the accusation.

As mentioned before, the primary goal of the conspirers is
to communicate with each other, while the authority tries to
detect as many conspirers as possible. The main problem that
we consider is called BROADCAST(M ), which is defined as
follows.
BROADCAST(M ): A conspirer u ∈ C wants to send a message
M , directly or indirectly, to all other conspirers without raising
suspicion among the regular peers and without being caught
by the authority.

We are interested in how large a message M can be so that
BROADCAST(M ) can still be solved with a high probability of
success. Furthermore, the solution should be efficient in terms
of communication and space complexity, i.e., the number of
messages that must be exchanged as well as the number of
bits that each conspirer has to store ought to be small.5

4As (BitTorrent) trackers usually provide only an estimate of n, we will
argue in a later section that our techniques can easily be adapted to the scenario
where the conspirers merely have an estimate of n and c.

5Apart from the downloaded blocks, a peer must also store, e.g., the
addresses of its neighbors.

In order to solve BROADCAST(M ), we need to address the
subproblem that a conspirer must be able to find out whether
a particular neighbor is a regular peer or a conspirer without
revealing that it is a conspirer itself. This problem, which we
call REVEALTYPE, is of independent interest in itself.

III. HIDDEN BROADCAST IN P2P
The extent to which conspirers are able to communicate

secretly among each other depends on the freedom that the
imposed p2p protocol offers. If the peers are given more
leeway in their actions, more information can be hidden. In
our model, the order in which a peer requests blocks from
a neighboring peer is not specified. Hence, the conspirers
can introduce a logic to the order of request sequences and
thereby communicate without violating the given protocol. We
call such exploitable, variable parameters of the p2p protocol
steganographic channels6. In the following, we will primarily
make use of the request order channel that we have just
described. Section III-F discusses additional steganographic
channels in p2p networks that could be exploited as well.
Obviously, a conspirer may also communicate freely with
a neighboring conspirer if the network connection between
them is not monitored; however, as the conspirers initially do
not know the other conspirers’ identities, they first have to
determine their neighbors’ types by means of a steganographic
handshake (Section III-A). The conspirers’ capabilities to
communicate depend on the freedom they have in varying the
imposed protocol. This freedom, in turn, is derived directly
from the power of the authority monitoring the p2p network.
In the subsequent sections, the goal is to determine how
(much) information can be secretly exchanged given a certain
authority. The discussion is structured according to increasing
monitoring capabilities.

A. Steganographic Handshake
In this section, we describe our approach to solve REVEAL-

TYPE, which is an essential building block for all proposed
broadcast mechanisms. As mentioned before, we use the
request order channel to exchange messages in secrecy. Let us
assume for the moment that we have a mechanism to transmit
bits over this channel, i.e., bits are transmitted by requesting
blocks in a specific order. How many bits have to be exchanged
in order to ensure that the communication partner is indeed a
conspirer as well? The peer with the smaller id, say u, may
send, e.g., the first half of the secret key K to v. If v is a
conspirer, it knows that a conspirer tries to send the secret
over the request order channel, and checks whether the bits
produced by the received request sequence correspond to the
first half of K. If this check is positive v knows that u ∈ C
and sends the second half of K back to u in plain text. Thus,
u is ensured that v is a conspirer, too. On the other hand, if
v is a regular peer, it does not notice any irregularity while
communicating with u since any request order is allowed by
the p2p protocol. Moreover, even if v was aware of the request

6Steganography is the art of hiding information in a message, such that
only intended recipients are able to decipher the hidden information, and all
other viewers of the message do not even suspect the existence of hidden
information.



Algorithm 1 ENCorder

Input: block sequence B, message M ≤ |B|!
Output: permuted block sequence Π

1: Sequence Π := ∅;
2: for i := |B| − 1 to 0 do
3: l := M div i!;
4: Π.append(Bl)) ;
5: B.remove(l) ;
6: M := M − l · i! ;
7: return Π;

order channel and could decode the sent bits correctly, it would
not be able to detect the irregularity since it does not know
K. Note that also a regular peer (unknowingly) produces bits
on the request order channel, and hence, v cannot distinguish
u from a regular peer unless it knows K. The only problem
is that a regular peer may accidentally send its requests in the
same order as if it were a conspirer, i.e., it inadvertently sends
the right |K|/2 bits over the steganographic channel, and a
receiving conspirer would send a plain text message back to
u, which is an illegal action. However, by choosing a key
that is large enough and uniformly at random, the conspirers
can keep the probability of this false positive fairly low: The
probability of an individual false positive is 2−|K|/2. Hence,
if the conspirers choose a key K of length at least 6 log n,
then there are no false positive over any of the at most

(
n
2

)
communication links with high probability (w.h.p.).7

The fact that a regular peer can have several neighboring
conspirers poses a certain threat: A regular peer could perfom
a replay attack, i.e., it could request blocks in the same order
as other peers requested them, and thus provoke a false positive
with significant probability. The conspirers can avoid such an
attack by using keys that are connection-specific. In particular,
a conspirer u could use H(idu‖idv‖K, log n) as a key when
communicating with v, where ‘‖’ is the concatenation operator
and H(x, b) is a hash function mapping a bit string x ∈ {0, 1}∗
to a bitstring of length b with the property that if the input value
x has an entropy of at least b then the hash value H(x, b) can
be guessed successfully with probability at most 2−b. Given
that K is chosen uniformly at random, the input chosen by a
conspirer has an entropy of |K| bits. Hence, if |K| ≥ log n
then H(idu‖idv‖K, log n) can be guessed by a regular peer
with probability at most 1/n. Again, in order to ensure that we
get this probability over all comunication channels, the length
of the hash value should be increased to 3 log n, and K should
consist of at least 3 log n randomly chosen bits.

We will now discuss how the block request order can be used
to exchange information. Once a conspirer u has determined
which blocks it wants to request from a neighboring peer v
it can permute the order of this request sequence as shown
in Algorithm 1 to transmit blog(|B|!)c bits, where input B is
the block sequence ordered according to the order in file f .
Algorithm 1 interprets message M as a number, converts it

7If an event occurs with probability at least 1 − O(1/n), we say that
it occurs ”with high probability“. A stronger definition demands that the
probability is at least 1 − 1/nΩ(1), which can frequently by achieved
by linearly increasing the constants involved (the constant in the exponent
depends on the linear increase). For the sake of simplicity, we use the weaker
definition throughout this paper.

Algorithm 2 DECorder

Input: permutation Π
Output: message M ∈ {0, 1}blog(|Π|!)c

1: Sequence S := (1, 2, . . . , |Π|);
2: M := 0 ;
3: for i := 0 to |Π| − 1 do
4: l := S.indexOf(Πi) ;
5: S.remove(l) ;
6: M := M + l · (|Π| − i− 1)! ;
7: return M ;

to its representation in the factorial number system, denoted
by M!, and computes a permutation Π by interpreting M!

as the Lehmer code of Π. In the factorial number system
representation, x!, of a number x ∈ N, the i-th digit has a
place value of i!. As an example, the decimal number 17, which
represents the binary message 100012, has a factorial number
representation of 2210! because 0·0!+1·1!+2·2!+2·3! = 17.
The Lehmer code of a permutation counts the number of
swaps of neighboring elements that have to be executed in
the originally ordered list for each element in the target
permutation to be moved to its right position, starting from
the first. The permutation (3, 4, 2, 1), e.g., has a Lehmer code
of 2210 as, starting from the original sequence (1, 2, 3, 4),
element 3 needs two swaps to get to the left most position,
then element 4 needs two swaps to get to the second position,
element 2 can be moved to the third position with one
swap, and element 1 is already at position four. To get a
permutation from a given Lehmer code one simply reverses
this procedure. For the Algorithms 1 and 2, we assume the data
structure used to represent block sequences offers the methods
append, remove and indexOf. S.append(x) appends element x
to sequence S, S.remove(x) removes element x from sequence
S, and S.indexOf(x) returns the index of the first occurence
of element x in sequence S. While Algorithm 1 permutes a
block sequence in order to get an encoding of message M ,
Algorithm 2 decodes a message from a given permutation by
inverting the encoding technique used in Algorithm 1.

Theorem 3.1: The algorithm pair (ENCorder, DECorder)
transmits an optimal blog(|B|!)c bits over the request order
channel, where B is the set of blocks requestable by the
transmitting peer.

Proof: The transmission is correct since ENCorder

implements a bijective function from the message do-
main {0, 1}blog(|B|!)c to the domain of permutations of
B. DECorder implements the inverse bijection. The pair
(ENCorder, DECorder) is optimal because there are |B|!
many permutations of length |B|. Any algorithm pair can
encode at most blog(|B|!)c bits in the order of the block
sequence.

B. No Monitoring
A weakest authority is one that does not have the capacity

to monitor connections at all. The only way such a limited
authority can learn about illegal actions in the network is
through reports of regular peers. As stated in the model section,
we assume that if a conspirer u reveals its type to a regular
peer v, then v will report u to the authority, and u will be
punished. Thus, a conspirer u must not communicate using



plain text with a neighboring peer v unless it has verified that
v is also a conspirer. If the verification is successful, u may
send all subsequent messages to v in the clear. Hence, in order
to solve BROADCAST(M ) it suffices to establish a connected
graph among the conspirers where there is an edge between
two conspirers u, v ∈ C if they are neighbors and both of
them know each other’s type, i.e., both know that u, v ∈ C.
Once connected, the message holder can send the message M
in plain text to all of its neighboring conspirers, each of which
will propagate it to its respective neighboring conspirers.

One straightforward approach to achieve this is to have the
message holder u ∈ C connect to every peer in P , determining
every peer’s type and then send the message M to the fellow
conspirers, which are all directly connected to u. Although this
simple approach solves BROADCAST (M), the conspirers
are well advised not to use it because of its lack of efficiency,
both in terms of space and communication complexity. Since
the message holder basically connects to the entire network
it needs Ω(n) memory. Furthermore, this requires extensive
polling of the public server that keeps track of all peers,
and would cost Ω(n/k) messages as only k addresses are
returned for each request. As k is typically a constant, this
amounts to a communication complexity linear in n. Another
major drawback of this scheme is that the server receives an
exceedingly large number of requests, which basically gives
away the identity of the message holder.

In contrast to this brute-force approach, we will now present
a scheme that solves BROADCAST(M ) much more efficiently.
The following lemma shows that, depending on the number
of conspirers c, the number of connections that have to be
established to ensure that all c conspirers induce a connected
subnetwork is considerably lower than n.

Lemma 3.2: If each conspirer randomly acquires 8n
c ln(nc)

neighbors, then the subnetwork induced by the c conspirers is
connected w.h.p.

Proof: First, we show that each conspirer u has a suffi-
ciently large number of conspiring neighbors. Let N c

u denote
the set of neighbors of u that are conspirers. Since each neigh-
bor v is chosen uniformly at random and the probability that
v ∈ C is c/n, we immediately have that E[|N c

u|] = 8 ln(nc).
Using a standard Chernoff bound, we get that

P[|N c
u| < 4 ln(nc)] = P

[
|N c

u| <
E[|N c

u|]
2

]
≤ e−

E[|Nc
u|]

22·2 =
1

nc
.

Hence, the probability that any conspirer has fewer than
4 ln(nc) neighbors that are conspirers is upper bounded by
1/n.

We now need to prove that this number of connections
suffices to guarantee that all conspirers are connected with high
probability. For this purpose, we use the following theorem
about Erdős-Rényi random graphs G(c, pe) [1], [2]. G(c, pe)
is a graph consisting of c nodes in which each of the

(
c
2

)
edges

is added to the graph independently with probability pe.
Theorem 3.3 ( [3]): If pe = (ln c + t)/c, then G(c, pe) is

connected with probability (1 + o(1))e−e−t

.
This theorem implies that if each edge is chosen with

probability ln(nc)/c, then the resulting graph is connected
with probability at least e−e− lnn

= e−1/n ≥ 1 − 1
n . If

Algorithm 3 BROADCAST(M )
1: repeat
2: Add k random peers to neighbor set N ;
3: until |N | ≥ 8n

c
ln(nc)

4: Get 6 log n random blocks in total from connected peers;
5: C := ∅;
6: for each v ∈ N in parallel do
7: if REVEALTYPE(v)= conspirer then
8: C := C ∪ {v};
9: if message holder then

10: send M to all v ∈ C;
11: else
12: wait until message M received;
13: send M to all v ∈ C;

Subroutine REVEALTYPE(v)
14: wait until (|Bu,v| ≥ 3 logn) ∧ (|Bv,u| ≥ 3 log n);
15: B := d3 logne blocks of Bu,v with lowest indices;
16: B′ := d3 log ne blocks of Bv,u with lowest indices;
17: Sort B,B′;
18: Π := ENCorder (B,H(idu||idv||K, d3 log ne));
19: Π′ := ENCorder (B

′,H(idv||idu||K, d3 log ne));
20: for i := 0 to |Π| − 1 do
21: for j := 0 to |Rv| − 1 do
22: if Rv,j 6= Π′

j then return regular;
23: if (|Rv| < i) ∨ (|Rv| > i+ 1) then
24: return regular;
25: else
26: request Πi;
27: wait until Πi received;
28: return conspirer;

pe = ln(nc)/c, the expected number of neighbors of each
node is ln(nc). Let Lu be the random variable that counts the
number of u’s neighbors in a graph G(c, pe). Again using a
Chernoff bound, it follows that

P[Lu > 4 ln(nc)] = P[Lu > (1+3)E[Lu]] ≤ e−
32

4 E[Lv] <
1

nc
.

The probability that any node has more than 4 ln(nc) neighbors
in a graph of c nodes, where each edge is chosen with proba-
bility ln(nc)/c, is upper bounded by 1/n. This means that we
also get a connected graph, with high probability, if each node
chooses 4 ln(nc) neighbors uniformly at random in a graph of
size c. We already established that by connecting to 8n

c ln(nc)
random neighbors, each conspirer connects to at least 4 ln(nc)
conspirers with high probability, i.e., each conspirer implicitly
chooses at least 4 ln(nc) random neighbors in the conspirer
subgraph. Therefore, the subnetwork is connected w.h.p.

Lemma 3.2 states that if c ∈ Θ(n), acquiring a logarith-
mic number of neighbors is sufficient for the conspirers to
end up in a connected component. Note that the constant
8 can probably be reduced using more elaborate arguments.
However, it is clear that the asymptotic behavior is correct
for any c ∈ Θ(n) as the graph G(n, pe) is not connected if
pe = ((1− ε) lnn) /n for any ε > 0 asymptotically almost
surely [2].8

Putting all the building blocks together, we are able to
give an algorithm that solves BROADCAST(M ), which is
executed at each conspirer u ∈ C. Algorithm 3 first polls the
public server until it has enough neighbors to ensure that all

8“Asymptotically almost surely” means that the probability that the claimed
bound holds tends to 1 as n → ∞.



conspirers are in a connected component. In a second phase,
each conspirer u gathers enough blocks to make sure that
any two conspirers have enough trading blocks to determine
each other’s type. If another peer connects to u in this phase,
u reports that it does not have any blocks yet in order
to avoid trading blocks with other conspirers prematurely.
Subsequently, each conspirer starts requesting blocks from all
its neighbors and thereby revealing its type by transmitting a
secret key over the request order channel. Since the number
of required blocks is relatively small, i.e., we assume that
6 log n � m, each peer can accumulate this number of blocks
quickly. Once the message holder knows all its neighbors’
types, it sends message M in plain text to its neighboring
conspirers. All other conspirers wait for M and pass it to their
neighboring conspirers as soon as they receive it.

For the subroutine REVEALTYPE we assume that another
thread run by u listens to neighbor v, and whenever it receives
a block request bx from v, appends bx to a list Rv , and starts
transmitting block bx to v. Moreover, we denote by Bu,v the set
of blocks that u can request from v, i.e., the set of blocks that v
claims to possess and u does not. The following theorem states
the communication and the space complexity of this broadcast
algorithm.

Theorem 3.4: If c ∈ [18 lnn, n/3] and m ≥ (24e+6) log n,
Algorithm 3 secretly broadcasts a message M of arbitrary
length in an unmonitored network w.h.p. The space complexity
is O(nc log n + |M |) and the communication complexity is
O
(
n
c log n+ log2 n+ |M | log n

)
w.h.p.

Proof: We start by showing that each conspirer has to
collect only 12(1+o(1))nc ln(nc) ∈ O(nc log n) peer addresses
in order to get 8n

c ln(nc) distinct random neighbors, i.e., it has
to inquire the server only O( n

c·k log n) times. Let the random
variable Ni indicate the number of random peers that have
to be collected to get the ith distinct neighbor after having
collected i−1 distinct neighbors. It holds that E[Ni] =

n
n−i+1 .

Let Tj =
∑j

i=1 Ni be the random variable that indicates how
many random neighbors have to be collected until j distinct
peers have been discovered.

Since c ≥ 18 lnn > 9 ln(nc), and given that we need j =
8n
c ln(nc) distinct neighbors, it holds that n−j > n/9 ∈ Ω(n).

Hence, we have that

E[Tj ] =

j∑
i=1

E[Ni]

= n

(
1

n
+

1

n− 1
+ . . .+

1

n− j + 1

)
= n(Hn −Hn−j)

≤ n(ln(n)− ln(n− j))

= −n ln

(
1− j

n

)
= − ln

(
1− j

n

)n

≤ − ln
(
e−j

)
+ o(1) = j + o(1),

where Hn is the nth harmonic number. We can again use a
Chernoff bound to see that

P[Tj > (1 + 1/2)E[Tj ]] < e−
1
16E[Tj ] ≤ e−3/2 ln(nc) <

1

nc
.

Thus, each conspirer has to acquire fewer than 12 · (1 +
o(1))nc ln(nc) random peer addresses with high probability.
Since each node further has to store the message M , the bound
on the space complexity follows.

Next, we argue that a conspirer can acquire 6 log n blocks
quickly (cf. Line 4). Recall that N c

u denotes the neighboring
conspirers of u, and that E[|N c

u|] = 8 ln(nc). By means of a
Chernoff bound we can see that

P [|N c
u| > 2E[|N c

u|] ≤ e−
E[|Nc

u|]
4 =

1

(nc)2
,

i.e, any conspirer has fewer than 16 ln(nc) conspiring neigh-
bors and hence more than 8n

c ln(nc) − 16 ln(nc) > 6 log n
regular neighbors with high probability. This implies that fewer
than one block has to be acquired on average per regular
neighbor, which can be accomplished swiftly.

We proceed by proving that 6 logn blocks suffice to ensure
that each conspirer has 3 log n blocks to trade with each
neighboring conspirer with high probability, which is the
number of requestable blocks required for the subroutine
REVEALTYPE to work (cf. Line 14–16). Note that we can
transmit log((3 logn)!) ≥ 3 logn bits over the request order
channel by using 3 log n blocks. As argued before, exchanging
3 log n bits with a conspirer is enough to safely verify its type.
Thus, we have to show that the probability that two conspirers
have more than 3 log n blocks in common is negligible. The
probability that the ith block is also in the set of blocks that
another conspirer acquires is at most (6 log n)/(m − i) ≤
(6 log n)/(m − 6 log n) because at most all i − 1 previous
blocks are not in the other conspirer’s set. Let the random
variable X denote the number of such colliding blocks and
let p := (6 log n)/(m − 6 log n). We can upper bound the
probability that X ≥ 3 log n as follows. Let Xu,v be the set of
colliding blocks, i.e., the blocks acquired by both u and v.

P[X ≥ 3 log n] =

6 log n∑
i=3 log n

P[|Xu,v| = i]

≤
6 log n∑

i=3 log n

(
6 log n

i

)
pi(1− p)6 log n−i

≤
(
6 log n

3 log n

)
p3 log n

≤ (2e)3 log np3 log n

=

(
12e log n

m− 6 log n

)3 log n

.

Since m ≥ (24e + 6) log n, we have that P[X ≥ 3 log n] ≤
1/n3 and thus every conspirer has enough blocks to request
from all other conspirers with high probability. This proves that
each conspirer can identify the conspirers among its neighbors.

The question remains how many messages a conspirer u
has to send in the REVEALTYPE phase. As u requests
one block and then waits for the next request of the other
party, u can identify regular peers quickly: u identifies a
regular peer v as soon as v requests the “wrong” block.
Since the probability that v requests the correct first block
is 1/(6 log n) and the probability that each subsequent block



is also “guessed” correctly is smaller than 1/2 (until only two
blocks are left), the expected number of blocks that need to be
exchanged is lower than 2. In total, the number of messages
exchanged with regular peers is thus O((n/c) log n). It is easy
to see that this bound also holds with high probability (again
using a standard Chernoff-type argument). As for any conspirer
u, |N c

u| ≤ 16 ln(nc) with high probability, all conspirers
exchange at most 3 log n · 16 ln(nc) ∈ O(log2 n) blocks with
other conspirers with high probability. Each conspirer must
further send the message M to the other conspirers in its neigh-
borhood, which costs at most |M | · 16 ln(nc) ∈ O(|M | log n)
messages. If we combine the bound on the number of messages
required to gather enough neighbors, identify the conspirers,
and broadcast M , we get the claimed bound on the message
complexity.

Note that for a small c, i.e., c ∈ O(log n), each conspirer
has to connect to Ω(n) random peers to establish a connected
conspirer component. In particular, if c < 8 lnn, each con-
spirer connects to all n peers for large n with Algorithm 3.
In this case, the conspirers can resort to the aforementioned
brute-force approach, especially when considering that in any
broadcast algorithm, a peer must connect to at least Ω(n/c)
peers to find another conspirer. Note also that if the conspirers
only have an estimate of n and c, they can increase the
number of neighbors and the length of the exchanged key
(continuously) by an appropriate factor to ensure that the
presented algorithms still succeed w.h.p.

C. Individual Monitoring
Let us now consider an authority that is able to monitor

connections individually. By individually we mean in this
context that the authority can monitor any communication
link between any two peers; however, it is not capable of
correlating the data gathered at different connections. As we
will see, the adversary in this model is stronger in that the
size of the message M that can be transmitted depends on
the total number of blocks m. In other respects this model
is quite similar to the setting in the previous section where
the authority acted only as a punitive deterrent. In particular,
as long as a conspirer u does not know a neighboring peer’s
type, it does not make a difference whether or not the link to
that peer is monitored as the hidden channel must be used to
communicate.

The reason why the size of the message M is limited is that
after a conspirer has successfully revealed another conspirer’s
type, it cannot communicate freely over this link since the
monitoring authority could detect this illegal communication.
Hence, hidden communication must also be used to transfer
the message M . Furthermore, a conspirer v must not request
the same file block twice from the same neighbor since the
monitoring authority would realize that v is requesting a block
it has already received. We can conclude that the maximum
size of the message M depends on the number m of blocks
as there is no need for additional communication between any
two peers once m blocks have been sent in both directions.
Consequently, this setting forces the conspirers to use as little
blocks as possible for each individual communication link.
On a particular link (u, v), however, conspirer u can still

underreport on the blocks that it has received from peers other
than u, and it can re-request blocks that it has already received
from other peers.

In the following, we will outline how to adapt Algorithm 3
for this setting. Since each conspirer can still determine its
neighbors’ types using the REVEALTYPE mechanism, the
first part of the algorithm (more precisely, Line 1–8) remain
unchanged. Instead of immediately sending message M in
plain text, a conspirer u downloads more blocks from its
regular neighbors until it has Θ(m) blocks, preferably all m
blocks. In the next step, it reports to each connected conspirer
v half of the file blocks that it has gathered in the previous
phase. In order to maximize the number of tradable blocks,
u and v should report (mostly) disjoint block sets. This can
easily be accomplished by hashing the node identifiers and the
secret key to get a sequence of blocks that, e.g., the node with
the smaller identifier offers. The other peer performs the same
computation and simply offers the blocks not in the sequence.
If the two sets are completely disjoint, this may also raise
suspicion. Therefore, it may make sense to enlarge the set of
offered blocks. This way, each conspirer can exchange Θ(m)
blocks with its conspiring neighbors. Note that for this method
to work, each conspirer must remember which blocks it has
traded with each of its neighbors in the REVEALTYPE phase
in order to avoid re-requesting blocks on individual links. We
call this adaptation of the broadcast method ALGindividual,
for which we can show the following.

Theorem 3.5: If c ∈ [18 lnn, n/3] and m ≥ (24e+6) log n,
ALGindividual secretly broadcasts a message of Θ(m logm)
bits in an individually monitored network w.h.p.

Proof: Any conspirer u is able to use (m−|Xu,v|−R)/2
blocks for transmitting message M to neighbor v, where
Xu,v is the set of colliding blocks between u and v in the
REVEALTYPE phase, and R is the number of blocks used
by REVEALTYPE. From the proof of Theorem 3.4 we know
that |Xu,v|+R is at most 6 log n with high probability. Hence,
conspirer u can use at least (m/2) − 3 log n ∈ Θ(m) blocks
to transmit Θ(log(m!)) = Θ(m logm) bits to neighbor v over
the request order channel.

D. Complete Monitoring
If the complete network is monitored, i.e., the authority

monitors all communication links and may also correlate
data gathered at different links, it gets considerably harder to
exchange secret messages. The main difference to individually
monitored communication is that a conspirer can no longer
underreport, or request a block that it has already received from
another peer. In general, the more blocks a peer possesses, the
more constrained it is in its actions. Consequently, we have
to impose tighter restrictions on the number of conspirers and
on the number of blocks in order to enable the conspirers to
receive the secret message. Note that the specific restrictions
we impose are used for ease of presentation and stronger
bounds are again possible by means of a more complicated
analysis. Given these conditions, we can still transmit a fairly
long message without modifying ALGindividual substantially:
The only modification to Algorithm 3 is that every conspirer
acquires 8

√
n ln(nc) random blocks instead of only 6 log n.



We call this adaptation of the algorithm ALGcomplete, for
which we get the following result.

Theorem 3.6: If c ≥
√
n ≥ 6 and 2060

√
n ln2(nc) ≤ m ∈

Θ(n), algorithm ALGcomplete secretly broadcasts a message of
Θ(

√
m log2 m) bits in a completely monitored network w.h.p.

Due to lack of space, the proof of Theorem 3.6 is omitted
and can be found in the accompanying technical report.9

E. Stochastic Monitoring
In the previous sections, we assumed that permuting the

request sequence order does not arouse suspicion. In reality,
there may be certain policies that restrict such behavior, e.g.,
it may be common practice to request the least frequently
advertised block first (rarest-first) in order to keep all blocks
available as long as possible. Streaming applications may
demand even stricter policies; the most extreme restriction
would be to acquire all blocks in ascending order, which would
prohibit using the request order channel completely. However,
as requesting blocks in ascending order is not an efficient
dissemination scheme, peers typically have the freedom to
(randomly) request any block in a certain window. Moreover,
if the rarest-first policy is used, the decision which block to
request next is made locally, which means that it is not easily
possible for a peer to verify that a block that a neighbor has
requested is indeed the rarest according to this neighbor’s local
view. Nonetheless, there may be certain request patterns that
raise suspicion. If the authority is aware of all legal strategies,
it has additional power to expose conspirers. In reference to
related work in the field of steganography, e.g. [4], we assume
in this section that regular peers choose their request order
permutation according to a distribution C, and that all peers as
well as the authority know C.10 As a consequence, a monitoring
authority can assign to each request order permutation Π a
probability p(Π) that Π was generated according to C. If the
permutations by a peer u deviate with statistical significance
from C, i.e., if p(Π) is below a certain threshold ε, then
the authority might classify u as a conspirer. Choosing a
reasonable ε, however, is a delicate task. A careful authority
may want to prevent false positives in any case, and thus
choose ε = 0. This implies that the conspirers have to avoid
all permutations with probability mass 0 and, if there are
such permutations, the capacity of the request order channel is
reduced. If a non-zero ε is chosen and there are permutations
Π with 0 < p(Π) < ε, the authority reduces the request order
channel’s capacity even more. On the other hand, the authority
risks punishing regular peers by increasing ε. One approach
for the conspirers to adapt to such stochastic monitoring is
to come up with an adapted mapping of messages to the set
of valid permutations, i.e., permutations Π with p(Π) > ε,
or, as this is rather cumbersome, they might use a generic
approach such as Algorithm 4. Algorithm 4 repeatedly XORs
the original message M with a bitstring produced by a pseudo-
random generator K and maps this string to a permutation until

9See www.dcg.ethz.ch/publications/infocom2011ELWtik.pdf.
10As noted in [4], the assumption that such a distribution is known or that

there is at least an oracle available that generates permutations according to C
is often critical. In a p2p context, however, it is reasonable to a certain extent
as there is only a finite number of clients that implement a certain protocol.

Algorithm 4 ENCstochastic

1: i := 0;
2: repeat
3: Π := ENCorder(M ⊕K(i)||i);
4: i++;
5: until p(Π) > ε
6: return Π;

a valid permutation is generated. Note that K is deterministic,
and therefore a receiving conspirer can revert ENCstochastic

by applying DECorder, extracting i, and XORing the result
with K(i). In order to extract i, the conspirers have to either fix
the number of bits used for i or introduce a preamble marking
its beginning. The running time of ENCstochastic depends on
the distribution C and the threshold ε, and is in the order of
the ratio of invalid to valid permutations. The advantage of
such a generic approach is that it can even be applied in a
completely monitored network, where the validity of a request
order permutation generally depends on the requests already
sent to other neighbors.

For the special case of C being the uniform distribution, a
standard OAEP scheme [5], [6] would also be sufficient to
make the permutations look unsuspicious. As OAEP includes
random bits, it would furthermore have the property that when
a message is sent over the same link several times the produced
request permutation will always look different (unless the same
random bits accidentally occur multiple times).

F. Additional Steganographic Channels

All schemes presented so far make use of the request
order channel. This section discusses additional steganographic
channels that could be exploited for hidden communication.
Subset Selection. Algorithm 3 hides information by requesting
a permutation of the s := 3 log n requestable blocks with
lowest index. A conspirer u can transmit an additional unused
blog

(|Bu,v|
s

)
c bits to v by selecting the subset of s blocks to

be requested according to a shared secret.
Timing. The protocol allows to introduce some variation in the
timing of the protocol messages, as peers are not expected to
request blocks or to answer requests immediately. Hence, con-
spirers can hide information by delaying protocol messages.
One possibility is, e.g., to encode information in the time
between the reception of a block request and the corresponding
transmission. Note that such steganographic channels are only
feasible if the connection between the peers is stable, i.e. the
message delays are within a reasonable range. In realistic
networks, conspirers would most likely have to use error-
correcting codes. Generally, the capacity of such time-coded
channels depends on the accuracy of the measurements, the
predictability of delays, and on the extent to which a conspirer
may delay the protocol without evoking suspicion.
Bandwidth. A conspirer might vary the rate at which it
sends file blocks, or network packets in general. One possible
protocol would be to encode bits in the transitions from one
rate to another. With each transmission, a peer either goes from
a low to a high bitrate to send a 1, or from a high to a low
bitrate to send a 0. Note again that in practice one could use
error-correcting codes to account for unstable connections.



Ports. Another channel is the choice of the communication
port. Unfortunately, this channel is not scalable since the port
for the communication is only chosen once per connection,
and its capacity is rather small. More importantly, many peers
are typically not able to use this channel since they are behind
a NAT router that allows no explicit control of the ports.
Encryption. Recently, many p2p networks introduced the pos-
sibility to encrypt the messages between the peers by means of
public key, private key encryption. The open source bittorrent
client Vuze [7], e.g., implements RC4 [8] encryption, primarily
to avoid aggressive traffic shaping by internet service providers
that prefer client-server traffic to p2p traffic. Encryption is a
straightforward technique to hide communication: Once two
conspirers are connected, they can use encrypted messages
to communicate. However, if the authority has the power to
monitor individual links, it could still detect illegal communi-
cation if more than m blocks are sent in either direction. Thus,
encryption does not help in this setting in the sense that also
at most Θ(m logm) bits can be broadcast.

IV. IMPLEMENTATION

Some techniques described in the previous section have been
implemented and are now used in the context of file sharing.
In particular, we incorporated a steganographic handshake in
our own, publicly available BitTorrent client, BitThief [9].

The BitThief client emerged as a proof of concept to show
that free riding in BitTorrent is possible [10], i.e., BitThief
downloads without uploading. As the goal of the BitThief
project is now to improve BitTorrent’s incentive compatibility,
we designed an enhanced tit-for-tat (T4T) protocol [11] that
can be used among instances of the BitThief client to exchange
files once they have found each other. A high download rate
is achieved by using the T4T protocol for BitThief instances
and the regular BitTorrent protocol when communicating with
other clients. In order not to be identified as a BitThief, and
thus risk being banned by other clients, BitThief must reveal
its identity only to fellow BitThief instances, i.e., it has to solve
the REVEALTYPE problem. BitThief solves REVEALTYPE
by impersonating standard BitTorrent clients and performing
a steganographic handshake.

Unfortunately, we could not solve REVEALTYPE exactly
as discussed in Section III-A, since our practical solution has
to satisfy the additional constraint that BitThief never uploads
a file block to a client that is not another BitThief instance.
Note that a free riding client must not announce having file
blocks that a connected peer v is interested in as v may request
such a block. Upon receiving a valid request from v, a free
rider would have to upload data, and violate the no-upload
constraint, or ignore the request and risk revealing its identity.
Moreover, many clients wait until they receive a requested
block before they send out more blocks, i.e., a free rider would
not receive any blocks from this peer anymore for free until the
request is served. Consequently, when two potential BitThief
clients meet, they both announce that they have no file blocks
yet, and none of them can make a block request.

Our solution to REVEALTYPE in this setting is to abuse
an extension of the BitTorrent protocol called “peer exchange”
(PEX). This extension allows peers to learn about other peers

from known peers without inquiring a tracker. Basically, a
PEX message contains a list of some of the peers to which
the sender is connected, and optionally also a list of dropped
peers, i.e., peers that cannot be reached (anymore). We use
the order of this peer list as a steganographic channel. In
particular, if an instance u of BitThief wants to determine
whether another peer v is also an instance of our client, it sends
a PEX message where the peer list is permuted with respect
to its natural order according to a hash H(idu‖idv‖F‖K) of
u and v’s identifiers11, hashed meta data F of the file that is
exchanged, and a secret K that is shared by all BitThief clients.
The permutation is constructed along the lines of Algorithm 1.
Upon receiving a PEX message from v, u checks whether
the peer list is ordered according to H(idv‖idu‖F‖K). If the
check is successful v sends back a PEX message to u with a list
ordered according to H(idu‖idv‖F‖K), unless it has already
sent a PEX message with a hidden key to v before. After
successfully checking a received PEX message for the hidden
key, BitThief switches to the T4T protocol, and starts trading
with the connected BitThief instance. As with the request order
in Section III, the PEX protocol does not impose a specific
peer list order, and other clients do not interpret it in any
way. Hence, a BitThief client does not evoke suspicion when
sending such a modified PEX message to other clients.

Note that there may be a problem if the swarm is small and
consequently the length of the list in a PEX message is short. In
this case, the probability that another client sends a list ordered
correctly according to the hashing algorithm “by accident” is
high. Therefore, our client resorts to a fallback strategy when
it knows fewer than 17 peers. It creates a bogus entry in the list
(of active neighbors) by hashing F , K, the recipient’s and its
own identifier, and then constructing an IP address and a port
out of this hash. The recipient can compute the same fake entry
and easily check whether this entry is in the received list. Since
there are roughly 248 possible fake addresses consisting of a
(32-bit) IP address and a (16-bit) port,12 the probability of false
positives is sufficiently small. We chose 17 as the threshold for
the fallback strategy because log(17!) = 48.34 > 48, and thus
permuting a list of at least 17 entries can hide more information
than one fake IP address and port. Note that it is possible
that in future versions of PEX the order of entries will be
predetermined. While permutations could no longer be used
to establish a hidden handshake, one could still add bogus
clients to the list to solve this problem. It is unlikely that a
regular peer identifies a faked entry in the PEX message, even
if it realizes that the corresponding peer is not available, as
it is plausible that some peer may be connected to a peer u,
but another peer cannot contact u, e.g., because it is behind a
NAT router and port-forwarding is not enabled, or because this
peer left the swarm in the meantime. Thus, if a peer does not
get a response from some peers in the list, it cannot conclude
that the sender of the list sent invalid information. As a tracker
theoretically knows every peer that has entered the swarm, also
this vulnerability could be closed by having the tracker verify

11In BitTorrent 20-bit peer identifiers are used.
12Some ranges of IP addresses and some ports cannot be used, which

slightly reduces the address space.



each PEX message. However, in practice, a tracker is often
not aware of all peers in the swarm because a torrent typically
offers several trackers as entry points. More importantly, asking
the tracker to verify the integrity of PEX messages defeats the
purpose of these messages to reduce the load of the tracker.

Extensive tests in live BitTorrent swarms have shown that
the hybrid steganographic handshake works well, i.e., the
BitThief clients successfully find each other and switch to their
private T4T protocol without being detected.

V. RELATED WORK

The study of steganography in computing dates back to 1983
when [12] formulated the prisoner’s problem where two pris-
oners must hatch an escape plan while being monitored by the
warden. Hopper studies steganography from a cryptographic
perspective in [4]. Chapter 3 on symmetric-key steganography
investigates the setting where two parties that share a secret
would like to exchange hidden messages over a monitored
public channel. This setting differs from our work in that
both parties are mutually aware of each other’s type, and that
the communication is not limited. Cachin [13] proposes an
information-theoretic model, and provides a universal infor-
mation hiding scheme for the symmetric-key setting. Contrary
to our work, public-key steganography [4], [14] studies the
setting where the sender and receiver do not share a secret key.
Another branch of steganography studies information hiding in
media files such as images or movies. Media files are especially
suited for hiding information since they are large and since
human perception easily fails to detect minor modifications
(see [15] for a high level overview). Steganography is also used
in digital rights management (DRM) and digital watermarking.

Closely related research on secret handshakes was con-
ducted by [16] and followed, among others, by [17], [18].
Secret handshakes are protocols that allow the participants to
establish a secure and anonymous communication channel only
if they are all members of the same group. In contrast to the
settings studied in [16]–[18], where the secret handshake is
interwoven with an ordinary handshake, a conspirer in our
setting cannot initiate a secret handshake by tweaking the
ordinary handshake, or by sending an additional message over
the standard communication channel, because this would be
an illegal, observable deviation from the imposed protocol. We
overcome this problem by means of steganographic channels.
In that sense, our steganographic handshake can be viewed as
a secret handshake conducted on steganographic channels.

Research on anonymity in networks relates to our work
in that anonymity also facilitates committing illegal actions
without being punished by an authority. However, whereas
anonymity and privacy have been classic design goals of many
p2p systems (e.g., Freenet [19]), there has been little research
on steganography in the context of p2p networks. Most existing
work essentially uses steganography to hide information in
(large) files. In particular, [20] proposes to use watermarking
for copyright protection in p2p systems, and [21] proposes
to hide information in torrent meta files. Arguably the most
related work is due to Bickson [22] who showed how to hide
content in Gnutella queries to broadcast a message that can
only be decrypted by peers that share the sender’s secret. In

contrast to his work, we do not hide information in media or
torrent files, nor in query messages, but exploit the protocol it-
self. Furthermore, our approach also works in (BitTorrent-like)
overlay networks where no lookup mechanism exists. Finally,
we also study the feasibility of steganographic handshakes and
broadcasts under several monitoring levels.

VI. CONCLUSION

We disclosed several steganographic channels in p2p pro-
tocols and successfully exploited them to achieve a stegano-
graphic handshake and broadcast in BitTorrent-like p2p sys-
tems. Most of the discussed channels can be encountered
not only in p2p protocols, but in many network protocols in
general. Permuting packet sequences and introducing artificial
delays are potential mechanisms for hidden communication in
any network protocol. Our techniques can be naturally adapted
or extended to secretly communicate in a variety of network
protocols. The assumption that a shared secret or, for that
matter, a publicly available software client can be kept closed-
source is somewhat problematic. Hence, an interesting question
is whether and how one can get rid of this assumption.
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