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Abstract

NAND Flash technology has become the prime candidate for future high-performance enterprise storage appli-
cations. However, the architecture and design of Flash controllers have been primarily geared to consumer-market
requirements, so that they typically neither sustain high write IOPS and short latencies nor offer the endurance
and reliability required for enterprise storage applications. We present a flexible Flash controller architecture called
Optimized Flash Controller (OFC) that fulfills all enterprise storage requirements and also serves as a generic platform
to further improve the performance of Flash management algorithms. We show the interplay between hardware and
firmware and its performance impact on a Flash controller. Sofar, the relationship between performance behavior
resulting from the dependency on prior workloads and the actual controller design could only be observed from a
black-box perspective. Further, our results for sequential and pseudo-random read/write workloads show how the
number of relocated pages affects the overall performance.They are consistent with existing write amplification
models and can be used to assess other Flash management algorithms.

The OFC is built on an FPGA evaluation board and includes Flash-channel controllers, an embedded processor,
and SDRAM. Owing to its flexible architecture, new Flash-management algorithms can easily be developed in software
and tested on real Flash memory devices. The controller firmware is built as a Linux kernel module, avoiding expensive
context switches. Moreover, we developed a Flash-channel simulator that allows kernel code to be tested in user space
using User-Mode Linux.

The current OFC version supports four Flash channels and twopipelined dies per channel, reaching a total capacity
of 32 GiB. Measurements on our prototype show that we can achieve a maximum sustained sequential throughput
of 115 MB/s reading and 72 MB/s writing. Moreover, we achievea maximum sustained 4 KiB random performance
of 24 KIOPS reading and 8.5 KIOPS writing.

I. I NTRODUCTION

In the past, NAND Flash memory technology has mainly been driven by the consumer market so that today price
and performance characteristics make it an interesting candidate to bridge the growing gap between DRAM and
HDDs in enterprise storage systems. Especially the introduction of multi-level cells (MLC), which, in contrast to
single-level cells (SLC), allows to store more than one bit in a cell led to a boost in storage density and concomitant
increase in the capacity of such devices. The absence of moving parts in Flash enhances its ruggedness and latency,
and reduces power consumption; however, the operation and structure of Flash pose specific issues in terms of
reliability and management overhead, which can be addressed in the hardware or software of a Flash controller.

Typically, NAND-based Flash memories are organized in terms of blocks, with each block consisting of a fixed
number of pages. Unlike on HDDs, a Flash memory location mustbe erased before a write operation. Writes
can be done on a page or sub-page level, but erase operations can only be performed on entire blocks. Moreover,
manufacturers recommend to program the pages in a block consecutively to reduce write disturbance. The limited
endurance in terms of program/erase (P/E) cycles, today on the order of 3 k to 10 k for MLC and 50 k to 100 k
for SLC devices, requires careful monitoring of their distribution over the entire device. For illustration, Figure 1
shows the typical raw bit error rate (RBER) of the worst page in a block when writing random data for SLC NAND
Flash memories from two different manufacturers.

The need to erase before writing and the high variance in the update rate of pages led to the introduction of
a write out-of-place policy that entails a mapping table from logical to physical addresses. Accordingly, higher-
level Flash management functions, such as address mapping,garbage collection, write-page allocation, and wear
leveling, which can differ depending on the targeted application area. On the other hand, reliability issues caused
by the limited endurance and retention as well as cell disturb characteristics are rather well understood [1], [2],
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Fig. 1. RBER for the worst page in a block after erasing and writing random data as a function of the P/E cycle count. Device Xhas a page
size of 2112 Bytes, and device Y 4320 Bytes. Note that many pages in a block are behaving significantly better than the worstpage.

and can be addressed, to a certain extent, with a first-level error-correction coding (ECC) scheme directly built
in hardware, Finally, the standardized interfaces to access Flash chips, such as the Open NAND Flash Interface
(ONFI) 1.0/2.x [3], allow a hardware implementation that isagnostic to vendor-specific technology.

In this paper, we present a combination of hardware and software that results in high performance and provides the
necessary flexibility to address different application areas, ranging from SSD-like tier-0 storage to cache applications.

The remainder of this paper is structured as follows. First,a brief overview of related work is given in Section II.
Then Section III introduces the OFC hardware architecture.Section IV presents the Flash controller firmware of the
OFC and highlights general trade-offs in such a firmware design. Section V presents the OFC performance under
various workload conditions. The findings and conclusions are then discussed in Section VI.

II. RELATED WORK

In [4], Birrell et al. studied high-level design choices forSSD architectures that advocate page-level mapping
of logical to physical addresses. SSD architectures have been evaluated with simulations to analyze the sensitivity
to workloads [5], [6], the benefits from internal parallelism [7], and the analysis of write amplification [8]. Flash
management algorithms have also been studied by means of competitive analysis [9].

Some work is based on real hardware: Simple Flash test platforms for the evaluation of Flash chip characteristics
such as reliability and latency have been introduced in [2],[10], [11]. These platforms are not suitable for a
high-speed SSD controller as they are lacking Flash management capabilities. In [12], a NAND Flash controller
architecture that uses two channels and command interleaving and reaches a random write performance of up to
3 KIOPS has been shown. Another dual-channel architecture has been presented in [13], showing that database
transaction processing can be accelerated by up to one orderof magnitude when using Flash instead of disks
to improve the random read performance. Another approach isthe Flash research platform [14] which utilizes
Flash DIMMS connected to FPGA’s acting as a controller. The Flash is operated at low frequencies and ONFI2
is not supported. Flash management algorithms are currently being implemented in user space on the host. No
random/sequential read/write performance results has been shown so far.

Flash-based storage devices targeting the enterprise level typically utilize a PCIe interface to reduce latency. Note
however that with a block device interface the intrinsic Flash properties cannot be fully exploited from the application
level. The FusionIO ioDrive [15] includes Flash channel controllers and processes the data path in hardware. It has
no controller to execute Flash management tasks. Hence the control path completely runs in a device driver on the
host. This has the advantage that available resources from the host, typically built from commodity hardware, can
be utilized instead of the limited resources in the embeddedenvironment, but requires significant processor and
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Fig. 2. OFC hardware overview.

memory resources from the host. In contrast to the ioDrive, the TMS RamSan-20 [16] has an embedded processor
which performs all Flash management algorithms directly inthe device.

III. OFC HARDWARE ARCHITECTURE

The basic unit of the OFC hardware architecture is the Flash channel. Each Flash channel consists of a number
of Flash chips and a Flash Channel Controller (FCC). Each Flash chip is attached to a Flash channel bus that is
based on the Flash interface used (e.g., ONFI), and the FCC isused to interact with the various Flash chips, to
read/write to/from their internal data buffers and to access the OFC internal bus. To increase the maximum data
rate supported by the OFC, four parallel Flash channels are used. All Flash channels are interconnected using the
Peripheral Local Bus (PLB) of the CoreConnect architecture. As shown in Figure 2, the OFC uses two separate
PLB busses and a high-speed crossbar switch for data transfers between the OFC’s main memory (DRAM) and
the various Flash channels. Data transfers and informationexchange with the OFC firmware are supervised by a
32-bit RISC microcontroller (Microblaze), whereas data transfers are performed by dedicated DMA engines, one
per PLB. In the current setup, the OFC is configured with SLC NAND Flash memory chips with 8192 blocks per
die, each block having 128 pages with 4320 Bytes. Two dies areused per channel to reach the total capacity of
32 GiB.

The maximum data rate per Flash channel is mainly determinedby the Flash technology used. IfR is the data
rate at the Flash interface,B the number of bytes per Flash page,TW andTR the time required for writing/reading
a page to/from the Flash cells, the maximum data rates for read and write are RB

B+RTR
and RB

B+RTW
, respectively.

Typical values for SLC Flash chips are:B = 4320 bytes,R = 166 MB/s, TW = 200 µs andTR = 25 µs.
As the time required for accessing the Flash cells is comparable to or higher than the data transfer time (e.g.,
TW ≫ TR ≥ B/R), one method used for improving the maximum data rate per Flash channel even further,
especially during write, is pipelining. When pipelining isused, several commands are executed simultaneously on
different Flash chips on the same Flash channel, as long as non overlapping data transfers are guaranteed.

Each FCC consists of various Finite State Machines (FSMs) that support the ONFI-1.0 and ONFI-2.0 interfaces.
For all high-speed data transfers, the ONFI-2.0 FSMs are used exclusively. A local FIFO is used for adapting the
different data rates between the PLB bus and the Flash channel. The OFC has been prototyped using the Xilinx
Virtex-5 (XC5VFX70T) FPGA on the ML507 board [17]. Table I presents the complexity of each module of the
OFC architecture.

The maximum supported data rate at the entire system level isdetermined by the maximum transfer rate of the
internal bus. Because of the speed grade of the FPGA used in the prototyping setup, the maximum data rate achieved
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TABLE I
MODULE COMPLEXITY

Module FPGA Slices
ONFI 1.0 (4 channels) 1000
ONFI 2.0 (4 channels with pipeline) 2680
Microblaze 94
DDR2 SDRAM 2884
CoreConnect and DMAs 1067

at each PLB bus is 100 MB/s, which limits the maximum achievable data rate. Measurements under saturation
loading conditions revealed that a maximum raw rate of 30 kIOPs for read and 20 kIOPs for write operations at
4 KiB can be achieved, when the additional processing overhead is minimized. It has to be emphasized, that because
of its modular structure, the OFC architecture can easily beextended to support a much larger number of Flash
channels, which results in much higher data rates supported. Typical implementations of PLB on high-speed FPGAs
support rates of up to 400 MB/s, whereas in ASIC implementations, 800 MB/s have already been demonstrated.

IV. FLASH CONTROLLER FIRMWARE

This section starts with an overview of the Flash controllerfirmware and then discusses design decisions that
are crucial for achieving a high random write performance: Specifically, the logical-to-physical address mapping
granularity, the allocation of free pages for write requests, garbage collection, and wear leveling are addressed.

Figure 3 illustrates the software architecture of the Flashcontroller firmware. A Linux v2.6.30 kernel runs on
the embedded PPC 440, and the Flash controller firmware has been implemented as a loadable kernel module to
minimize context switches and to have direct access to hardware resources. We removed a small memory region at
the end of the DRAM space (48 MiB) from the kernel-managed memory. The controller firmware can only access
this region using IO remapping. The largest part of this region is dedicated to the actual data being transferred
from/to the host interface and will therefore not be accessed by the controller firmware at all. Another region is

Fig. 3. OFC firmware architecture.
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used for the additional meta-data regions of Flash pages as well as special pages holding controller meta-data that
needs to be transferred from/to Flash.

There are several ways how Flash memory can be accessed usingthe Flash controller firmware: The normal
access method for applications is the host interface. The block device interface/dev/ssba allows the logical
address space of the device to be accessed. As data has to be copied from/to the memory, this entails the penalty of
executing a memory transfer which is acceptable for testingpurposes. Similarly, special IO-control operations on
the block interface provide direct access to physical pagesor can trigger Flash management functions (e.g., garbage
collection and reinitialization of the device). The request handler can also be accessed directly from another kernel
module. This is useful for benchmarking the OFC without hostinterface.

A. Request Handler

The request handler is the common denominator for all accessmethods to Flash. In case of a read request, it uses
the logical address to determine the physical location of the data on Flash and sends a request to the corresponding
Flash channel controller. In case of a write operation, a newfree page is determined by the write page allocator, then
the Flash page meta-data is assembled before a request is sent to the Flash channel controller. The communication to
the Flash channel controller is done by means of ring buffers. There are two ring buffers, transmit (TX) and receive
(RX), for each die in the system. While the Flash channel controller is polling for new requests on the TX rings, the
controller firmware is informed by an interrupt about completed requests in the RX rings. The request information
maintained by the controller firmware includes the entry point in the receive path which is used when completed
requests from the RX rings are processed. This function is scheduled by the interrupt handler and depends on the
actual type of the request, such as normal, relocation, or meta-data read/write operations or erase operation.

B. Logical-to-Physical Address Mapping

The host interface and the block device use a block size that corresponds to the Flash page size, but does not
include page meta-data and ECC information. This enables all write operations to be processed at maximum speed.
Therefore, we decided to support full page-level address mapping instead of a block-level or hybrid mapping. Write
page allocation and the mapping table are hence simplified, but additional techniques are needed when the mapping
table will no longer fit into the available DRAM. Currently, this is not needed in OFC because the entire mapping
table fits into DRAM, but the code has been prepared to employ ascheme such as DFTL [18], in which the full
mapping table resides in Flash and a partial table is maintained in a DRAM cache.

C. Write Page Allocator

The write page allocator in OFC transforms any type of write stream into a sequential write pattern to Flash. This
can, for example, be achieved using a round-robin allocation scheme in which in each round from each channel a
page of a given die is allocated, and in the next round from each channel a page from a next die. Such a scheme can
therefore fully utilize the maximum write bandwidth provided by the hardware. The sustained write performance
is primarily determined by the number of valid pages that need to be relocated when freeing space.

Towards the end of the lifetime of the Flash, however, regions that expose too many errors have to be retired.
Either full blocks or individual pages can be retired. Retiring full bocks simplifies the process and greatly reduces
the size of meta-data structures to be kept in DRAM and/or Flash. Maintaining an ordinary bad-block table fulfills
the task, and hence no additional logic is needed in the writepage allocator. However, when the first pages reach
the maximum number of acceptable errors in a block, many other pages in that block will still be significantly
below that error rate. This is illustrated in Figure 4 for an SLC NAND Flash memory device. Those pages could
still be used for some time making the retirement of individual pages appealing.

Several options can be envisaged. For example, pages in a block can be retired individually and independently
from each other using a bitmap for each partially used block.In the worst case, all blocks are partially used resulting
in 64 MiB of bitmaps for a 256 GiB device using 4 KiB pages. To reduce memory consumption, one can limit the
number of partially used blocks.

Another approach is based on the observation that for a givenNAND Flash chip technology, a group of pages
per block can potentially be used longer than others. For instance, it has been observed that there is a significant
difference between even and odd pages in some devices and that other devices exhibit differences between the first
and the second half of the pages in a block [2].

Finally, a third approach is to allocate pages based on the current raw bit error rate as well as the actual write
pattern to be written as, for example, writing zeros degrades cells more than writing ones.
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Fig. 4. Number of pages with a RBER below10−3 when being read after having been aged by a given number of P/Ecycles and kept
for a given amount of time in a given block of device A. The device has 64 pages per block. Even at 400k P/E cycles (4x the manufacturers
specification), half of the pages in the block can still be used.

The retirement of pages and blocks has an impact on the write page allocator. As the number of usable pages
or blocks can vary from die to die, the initial goal to distribute the write load equally among all dies, preferably in
a round-robin manner, has to be relaxed, which will ultimately result in a write performance degradation towards
the end of the lifetime of the device.

D. Garbage Collection

Depending on how garbage collection is done, a higher or lower number of valid pages need to be relocated,
which affects write amplification. Currently, we have implemented two different garbage collection schemes. The
cyclic buffer scheme always selects the oldest block written as the first one for garbage collection. This scheme
has the advantage of being simple, but can cause the relocation of many pages. An improvement to the cyclic
buffer scheme is the greedy window algorithm. Instead of always selecting the oldest block for garbage collection,
it selects the one with the most invalid pages from a window ofoldest blocks. Other schemes that can distinguish
between hot and cold data. Independently of the scheme, garbage collection can be accelerated by operating in
parallel across channels or dies.

Another aspect of garbage collection is the placement of page meta-data which typically does not fit into DRAM
and has to be maintained on Flash. In OFC, we have the option ofplacing page meta-data into the last page of a
block similar as in [4], [5]. Although this wastes Flash capacity, the information necessary for garbage collection
of a block can be obtained by a single read operation. Moreover, it has the advantage that the entire spare region
in a Flash page can be used for ECC information.

E. Wear Leveling

Wear leveling tries to balance the write workload in such a way that all blocks in the system experience similar
wear in terms of P/E cycle counts. There are two kinds of wear leveling. Dynamic wear leveling writes new data
to that block from the free block pool that has the least wear.Static wear leveling erases the block with the least
wear to allocate new pages to be written. However, pages thatare still valid have to be relocated. Therefore, write
page allocation and garbage collection are closely relatedto wear leveling and can help simplify the wear leveling
process. Clearly, the cyclic buffer scheme needs no additional wear leveling.

V. PERFORMANCEMEASUREMENTS

In this section we present the performance results of our OFC. The goal is to validate the expected performance
when the hardware and software are integrated and how it willbe affected by different sequential and random
workloads as well as the history of the write workload the device experienced. Moreover, we quantify the perfor-
mance improvements provided by over-provisioning and the reduction of page relocations under a random write
workload using the simple cyclic buffer garbage collector.Based on these results, one can easily derive the expected
performance of other Flash management algorithms providedtheir impact on the number of relocated pages per
block is known.
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Fig. 5. Random write performance as a function of the number of relocated pages and spare factor.

A. Description of the Setup

To assess the performance under sustained workloads that match the bandwidth of the Flash controller, we added
a kernel module that acts as traffic generator and measurement tool and plays the role of the host. Note that this
workload generator consumes some, but only minimal resources. Therefore the fact that in this setup the workload
generator and the system to be measured run on the same processor has a negligible impact on the measurement.
To keep this impact minimal, we made several key design decision: First, the number of requests outstanding at any
point in time is limited. Second, we use a simple pseudo random number generator called the Super Fast Hash [19],
which turned out to be reasonably good for our purpose. Third, the data pages to be written reside in the reserved
memory area and can be initialized to different patterns, such as random data, all zeros, or all ones. During a test
the data pages are not touched. The test kernel module directly accesses the request handler in the Flash controller
firmware to send requests to the Flash, i.e., in the same way asthe implementation of the host interface is using it.

TABLE II
SYSTEM PARAMETERS

Parameter Value
Spare factor 45%
Pages per block 128 (incl. one meta-data page)
Blocks per die 1024
Dies per channel 2
Channels 4
IOs per experiment 5,500,000

Unless otherwise stated, the following performance tests all use the parameters defined in Table II. The spare
factor denotes the fraction of the total Flash capacity reserved for Flash management and therefore not available
to the host. We set it to 45%, which is in the range of typical values found in commercially available products.
We limited the number of blocks used for our experiments to 8192 Flash blocks, resulting in a total capacity of
4 GiB. This is a reasonable size to reduce the execution time of experiments and still allows an adequate evaluation
of the Flash management functions. The number of IOs for a test allows the entire physical address space being
used to be overwritten five times. Writing the whole device multiple times gives us ample opportunity to study the
characteristics and performance of garbage collection. Inaddition, we collected statistics in intervals of roughly
one second and used the Linux jiffies value to calculate the exact rates during each interval.

B. Random Write Performance as a Function of Page Relocations

To accommodate new write requests from the host, already written blocks need to be recycled when free blocks
become scarce. Any relocation of valid pages that needs to bedone during the garbage collection of a block causes
additional overhead for the system and leads to a performance drop. If the system determines that there are no
valid pages in that block, no relocation needs to be performed and the block is simply erased. On the other hand,
if there are valid pages left in the block subject to garbage collection, the system needs to read those valid data
pages and write them elsewhere before the block can be erased, hence causing write amplification.
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To analyze the impact the number of invalid pages per block has on the performance, we modified the garbage-
collection scheme to select an arbitrary fixed number of pages to be relocated from the oldest block independently
of the actual number of still valid pages in that block. The number of relocated pages is one of the key parameters
affecting the performance. Hence, it can be used as a figure ofmerit to assess other implementations of Flash
management functions, in particular in terms of garbage collection and wear leveling.

Figure 5(a) illustrates the random write performance seen by the host as a function of the number of relocated
pages. The performance drops by 50% when the number of relocated pages per garbage collected block increases
from zero to 30. The drop in performance is due to the fact thatthe number of total writes in the system for each
user write increases with the number of pages that need to be relocated. As a result, the increased amount of work
caused by the relocation operations degrades the performance as shown in the graph. In summary, the number of
relocated pages directly and significantly affects the overall system performance.

C. Random Write Performance as a Function of Spare Factor

One way to reduce the number of pages that need to be relocatedis to exploit additional physical Flash space
that is not directly visible to the host by increasing the spare factor. As the spare factor is increased, the average
number of valid pages per physical block decreases, the blocks now stay longer in the system until they get garbage
collected. This leads to fewer valid pages to be relocated per block whenever garbage collection is initiated and
hence reduces write amplification. In Figure 5(b), we show the random write performance as a function of the
spare factor. The random writes are uniformly distributed over the entire LBA space, and the cyclic buffer garbage
collector is being utilized.

The average values for the IOPS and the number of relocated pages per garbage-collected block are calculated
from the values observed after the device is in a steady state, i.e., the physical blocks of the device have all been
overwritten several times and the values for the parametersbeing studied appear stable. By increasing the spare
factor from 30% to 60% (meaning that the space on the device available to the user decreases from 70% to 40%,
i.e., a drop of 40%), the performance more than doubles (from6 kIOPS to 13 kIOPS). At the same time, the
number of relocated pages per garbage-collected block drops from 45 to 15. So there is a clear trade-off between
performance and the user capacity determined by the spare factor.

To verify this result, we can use the following probabilistic model presented in [20]: As the writes are uniformly
distributed over the entire LBA spaceSL, the probability that a single write has an LBA addressL = x is
p(L = x) = 1/SL. Any subsequent host write is independent of the preceding write. Hence, the probability that a
page written withL = x is still valid after a subsequent write is1− p(L = x). In a cyclic buffer, the first page in
a block will be garbage collected once the entire PBA spaceSP has been written. When a block withSB pages is
garbage collected, the expectancyE of still valid pages is

E =

SB−1
∑

i=0

(

1−
1

SL

)SP−

ESP

SB
−iD−SBR

=

SB−1
∑

i=0

(

1−
1

SL

)

(

SL

1−A

)(

1−
E

SB

)

−iD−SBR

, (1)

whereSL andSP are expressed as number of pages,D denotes the total number of dies, adnR the number of
reserved blocks. The factorD is used here because of the round-robin scheme of the write page allocator. The
term ESP /SB denotes the number of pages being relocated, which have to besubtracted because they are valid
pages. The spare factorA corresponds to(SP − SL)/SP . Knowing thatSP >> SB Equation (1) can be further
simplified:

E ≈ SB

(

1−
1

SL

)

(

SL

1−A

)(

1− E

SB

)

. (2)

This equation can be solved using the fixed point method. Our measurements closely match the theoretical value
shown in Figure 5(b) and are consistent with the write amplification results in [8] and [6]. For a spare factor of
45% (which corresponds to 82% over-provisioning), the write amplification factor is 0.5.

D. Long-term Random Write performance

To verify that our platform works reliably and predictably over longer periods of time, we run a longer term
experiment consisting of random writes. Figure 6(a) illustrates the long-term random write performance. The physical
blocks of the device have all been written once after a few minutes, and we can see that after that the random write
performance is stable at 8.5 kIOPS. The number of relocated pages per garbage collected block also stays at 27
pages, which is consistent with the results in Section V-C.
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Fig. 6. Long-term and mixed read/write performance

E. Mixed Random Read/Write performance

To investigate the performance under mixed workloads, we run experiments with mixed random reads and writes.
Figure 6(b) illustrates the performance with mixed random reads and writes on a device that initially was completely
written using sequential writes. For each operation in one run of the experiment, we first determine whether a read
or write operation should be performed based on the ratio of reads and writes defined as an experimental parameter.
Thereafter, the page to be read or written is chosen randomly. The upper curve shows the performance when the
garbage collector only has to erase blocks, i.e., there are no valid pages in the blocks selected for garbage collection.
The lower curve includes all relocation operations in the steady state. As we perform more and more random writes,
the number of relocated pages per garbage-collected block increases until we reach another steady state, i.e., on
average, each physical block that is garbage collected contains a similar number of valid pages. As expected, the
performance drops as the percentage of write operations increases, especially if relocation operations of valid pages
are done during garbage collection.

F. Analysis of Memory Effects due to Workload History

To analyze the memory effects and performance due to the workload history, we ran a sequence of tests in the
following order: 1) sequential write on a clean device; 2) sequential read; 3) random read; 4) random write; 5)
sequential read; 6) random read; 7) sequential write; 8) sequential read, and 9) random read. Figure 7 illustrates
the variations in the performance as a result of different workloads and different workload histories. As we can see
from the graph, the performance of similar workloads differbased on the state of the device.

The first batch of sequential writes (#1) is performed on a clean device. This is why the first curve starts
at 18 kIOPS, before dropping to 17 kIOPS for the rest of the runbecause of the garbage-collection process. The
sequential reads (#2) that are performed next, read the datain the same sequence as they were written. Therefore, all
the channels and dies are utilized in an optimal fashion, andthe read performance is 27 kIOPS. This is significantly
higher compared to the subsequent random reads (#3) which experience a drop of 11 % and only attain 24 kIOPS.
The reason for the lower performance of the random reads in this case is due to the fact that not all channels can
be fully utilized as the read operations are no longer distributed evenly among channels and dies.

The second set of writes and reads begins with a random write sequence (#4). The performance is initially high,
since the garbage collector has erased a few blocks since theend of the initial sequential write, and these are
immediately available in the free block queues of each die. After these blocks have been filled, however, we see
a significant drop in performance to as low as 5 kIOPS. The dropstems from the fact that the blocks selected
for garbage collection by the cyclic buffer scheme have a high number of valid pages left over from the initial
sequential write, and these need to be relocated. As more andmore random writes are performed, the number of
valid pages per garbage collected block decreases and stabilizes, and we get a steady-state write performance of
8.5 kIOPS. The subsequent sequential reads (#5) achieve a lower performance than when reading the sequentially
written data, and this is also due to the fact that the channels and dies are not equally utilized. The performance of
the random reads (#6) start off at the same level as for the sequential reads, but towards the end of the experiment
the performance starts increasing. The performance improvement in this case is an artifact of the pseudo random
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number generator used to calculate the logical block address for reads and writes: At the end of the random read
run, the reads target the same pages and in the same order as they were (pseudo-)randomly written. As was the case
for sequential reads when reading the sequentially writtendata, the channels and dies are traversed in the same,
optimal round-robin fashion, resulting in abnormally highperformance for the last part of random reads.

The sequential write sequence (#7) in the last set of write and read sequences initially has similar performance
as the one of the random write sequence. This is due to the number of pages being relocated, which is initially
the same as in the random write steady state but then decreases to zero because the sequential pattern is always
overwriting the previously written pages. Once the sequential write achieves steady state, the performance improves
and reaches the same value as in the first test (#1). The final sequential (#8) and random (#9) reads exhibit similar
performance as in the first set of operations.

The results show that the performance of the device depends on the workload history, which has also been
found by Stoica et al. [21]. The subsequent performance changes affect both reads and writes. However, often the
performance of the device can often be “reset” by writing specific patterns, such as sequential or random patterns,
over extended periods of time.

VI. D ISCUSSION ANDCONCLUSION

Regarding the random write performance of Flash, the numberof pages that need to relocated is as important
as the asymmetry between read and write operations. The latter is given by the chip characteristics and cannot be
changed. Relocation of pages can be reduced by sophisticated garbage-collection schemes. The challenge lies in
keeping the complexity and memory requirements low becauseresources in the controller are limited. The relocation
operation itself can be improved by using so-called copy-back operations that keep data in the Flash chip register,
i.e., do not transfer data through the Flash channels. This can only be done if page relocation is performed within
the same plane in a Flash chip. The random write performance can also be improved by methods that reduce writes
by means of compression or de-duplication.

We can confirm that the PPC in OFC is strong enough to execute Flash management algorithms. Preliminary
tests using only the controller firmware revealed that up to 16 channels with pipelining can be handled.

One of the basic aspects of garbage collection - independentof the method used to select a block - is the number
of blocks and page relocations that are handled in parallel.Too low a parallelism requires write requests from the
host to be blocked every once in a while to keep up freeing space. On the other hand, too many parallel requests
can add significant delays. We measured that single-block, per-channel garbage collection with 25% of the pages
being relocated frees sufficient space to reach the maximum write bandwidth only in the absence of host requests.
However, as soon as host requests are interleaved with garbage-collection requests, the latter will be significantly
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delayed. Hence, besides having simple per-die ring buffers, additional priority rings for garbage collection would
improve the garbage-collection rate. The concept could also be used to favor reads over writes, which would be
beneficial in a cache application. This however, would exceed the scope of this paper.

Another aspect is latency, which we could only measure usinga logic analyzer directly on the Flash chips. The
results were in the range the manufacturer has specified. Thelatency due to controller firmware processing could
not be measured because the timer resolution in the Linux kernel is not sufficient. We plan to measure latency
directly from the host once the interface has been completed.

To summarize, the OFC is a flexible and scalable Flash controller architecture that allows a rapid evaluation
of new Flash management algorithms. We presented performance measurements on real hardware, supporting four
Flash channels and two pipelined dies per channel, that quantify the fundamental issues in Flash management. The
results can be applied to other schemes as well if the key parameters, namely the expected number of relocated
pages and the spare factor, are known.

All the performance-related behavior such as memory effects due to workload history can be fully explained based
on the hardware and software architecture of the OFC. To our knowledge, this is the first time this relationship is
studied.
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