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Abstract—This paper presents a data-placement scheme for
log-structured flash translation layers (FTLs), with the dual
aims of reducing write amplification due to garbage collection
and flash wear-out due to block erasing and programming. The
central idea is to identify and place data that is expected to
change frequently together in young flash blocks that are far
from wearing out, and infrequently changing data in old blocks
where it can be expected to stay longer. In previous work,
garbage collection and wear levelling were treated separately,
and the importance of data placement was largely ignored. We
propose a new scheme, called container marking, to combine
data placement, garbage collection, and wear levelling in a single
mechanism, thus improving both the random write performance
and the endurance. Each flash block is a data container that is
assigned an activeness marker indicating how frequently the data
it stores is updated. A simple solution for dynamically tracking
data’s activeness that adapts to utilizations is presented. The
system is implemented in a Java1-based flash simulator, and is
shown to reduce write amplification and wear-out in synthetic
and trace-driven workloads.

I. INTRODUCTION

Solid state drives (SSDs), in particular NAND flash memory
based ones, are steadily gaining popularity in high-end laptops,
servers and enterprise storage arrays, because they can provide
substantial advantages in I/O latency, throughput, shock resis-
tance and power efficiency compared with hard-disk drives
(HDDs).

The read/write/erase behavior of NAND flash memory dif-
fers radically from that of HDD or DRAM owing to its unique
erase-before-write and wear-out characteristics. Flash memory
that contains data must be erased before it can store new data,
and it can only endure a limited number of program/erase (P/E)
cycles. Flash memory is organized in units of 4-KiB pages and
blocks comprising of 64 or 128 pages each. Reads and writes
are performed on a page basis, whereas erases operate on a
block basis. Owing to the relatively long erase latency, modern
flash SSDs performs out-of-place updates, i.e. each time data
is written to a new location rather than to its old location.

During out-of-place updates, random writes cause write
amplification, in which a single user write can cause more than
one actual write, owing to background activities in SSDs. One
major source of write amplification is the garbage-collection
overhead, because data is always written to a new location
of flash memory, invalidating the old version of data and
thus requiring a garbage-collection process to reclaim flash

1Java is a trademark of Oracle and/or its affiliates

memory occupied by invalid data. In addition, wear levelling,
a process that tries to balance wear-out, can also contribute
to write amplification. Although there are extra reads involved
in both garbage collection and wear levelling, the term write
amplification is widely used to measure the efficiency, possibly
because writes are much slower than reads in flash memory.

Closely related to write amplification is the type of work-
loads. In the sequential workload, data on contiguous pages
in flash memory is invalidated in a sequential fashion, so
that the entire blocks holding invalid data can be erased and
reclaimed without incurring extra reads and writes, i.e., there
is no effective write amplification. Previous studies [1]–[7]
showed that, under random workloads, write amplification in-
curred by garbage collection can considerably reduce random
write performance and endurance lifetime of flash SSDs, in
particular at high utilizations.

Garbage collection and wear levelling have to serve appar-
ently conflicting purposes: Garbage collection aims at mini-
mizing the write amplification to claim free space, whereas
wear levelling has to incur additional write amplification to
balance wear by moving static data out of younger flash
blocks. Previous studies treated garbage collection and wear
levelling separately. Several schemes to improve the efficiency
of garbage collection have been proposed in log-structured file
systems (LFS), such as the greedy, cost-benefit [8] and age-
threshold [9] garbage-collection polices. These schemes have
no wear-levelling built in because traditional LFS is disk-based
and thus incurs no practical wear-out issue. Existing wear-
levelling schemes, such as [10]–[16], that try to identify static
data and move them out of younger blocks are piggy-backed
to the garbage-collection process in a straightforward manner.

In this paper, we propose a novel, holistic scheme to com-
bine data placement, garbage collection and wear levelling,
with the dual aims of reducing write amplification due to
garbage collection and flash wear-out due to block erase
and program. The central idea is to identify and then place
data that is expected to change frequently together in young
flash blocks that are far from wearing out, and infrequently
changing data in old blocks where it can be expected to stay
longer. The scheme is called container marking, in the sense
that each flash block is a data container and is assigned an
activeness marker indicating how frequently the data it stores
is updated. A simple solution for dynamically tracking data’s
activeness that adapts to utilizations is presented. The system
is implemented in a Java-based flash simulator, and is shown



to reduce write amplification and wear-out in synthetic and
trace-driven workloads.

II. SSD BACKGROUND

To hide the erase-before-write characteristics of flash mem-
ory and the excessive latency of block erases, modern flash
SSDs implement a flash management firmware to service user
reads/writes and to manage background activities. Logical-
to-physical address mapping, garbage collection and wear
levelling are three core functions of the firmware.

Logical-to-Physical Address Map: The logical-to-physical
address map, widely referred to as flash (address) translation
layer (FTL), can be categorized as block-level, hybrid, or page-
level according to the granularity of the address map, with
increasing size of memory footprint.

In the block-level FTL scheme, a group of contiguous
logical pages is transformed into a physical flash block, with
fixed offset within the block. The block-level FTL has the
smallest memory footprint, and is mainly used in smart media
cards [17]. However it incurs severe write amplification for
random writes because a single page update may require
several page reads and a whole block update.

Hybrid FTL schemes, i.e., a hybrid between page-level and
block-level schemes, logically partition blocks into groups:
data blocks and log/update blocks, such as BAST [18], FAST
[19], SuperBlock FTL [20], and LAST [21]. Data blocks
form the majority and are mapped using block-level mapping;
log/update blocks are mapped using page-level mapping. A
hybrid FTL scheme has to merge log blocks with data blocks,
which incurs extra pages reads and page writes whenever no
free log blocks are available. The merge operations can be
classified into switch merge, partial merge, and full merge,
in increasing order of write amplification overhead. Random
writes inherently result in expensive full merges for hybrid
FTL, causing excessive write amplification.

The third type of FTL is the page-level mapping scheme, the
best-performing FTL scheme, which eliminates the need for
merge operations of the hybrid FTL. Page-level FTL, however,
has the largest memory footprint requirement, with a size
proportional to the user capacity. To minimize the memory
footprint, Demand-based FTL (DFTL) [22] proposes to store
a page-level mapping table on flash memory, while selectively
caching a page-level address map in DRAM memory to exploit
the temporal locality of realistic workloads.

As the focus in this paper is on garbage-collection and
wear-levelling schemes, we hereafter assume a page-level FTL
scheme, so that there is no additional write amplification
overhead arising from the FTL scheme.

Garbage Collection: Garbage collection refers to the back-
ground activity to reclaim invalid pages in flash blocks by
selecting an occupied flash block as victim, relocating valid
data pages to other locations, erasing it, and adding it to the
pool of free blocks for future writes.

Under a page-level FTL, the write amplification due to
garbage collection is influenced by the following factors: the
utilization (µ), the choice of reclaiming policy, and the types

of workloads. Utilization refers to the ratio of the size of the
logical address space currently in use (i.e., which holds valid
data) to the total physical flash memory capacity. The larger
the utilization, the more likely it is that a victim selected
to be reclaimed has many valid pages, and the worse the
write amplification. Critical to the write amplification is the
efficiency of the garbage-collection policy, involving issues
such as when to trigger garbage collection, which block to
select as victim, and where to write the relocated valid data.
Two policies have been proposed in the seminal paper [8]
that originally introduced LFS: a greedy one which selects
the victim that yields the most amount of free space and a
cost-benefit algorithm which selects the victim based on a
combination of the amount of free space and the age of the
data. One special form of cost-benefit algorithm is the first-in-
first-out (FIFO) policy, which selects the oldest candidate as
the victim. Almost all garbage-collection policies are deeply
rooted on one or both.

Greedy garbage collection works as follows. Incoming user
write requests and relocation write requests of garbage collec-
tion are both serviced by writing to free pages/blocks. Once a
free block has been filled up, it is removed from the free block
pool and moves to the end of the occupied block pool. Each
time garbage collection is triggered, a single occupied block
is selected as victim, and all its valid data pages are read and
written to another location by issuing relocation write requests.
Upon completion of the relocation, the victim block is erased
and re-enters the free block pool. Denoting the number of free
blocks by r and the total number of physical flash blocks by t,
there are t− r occupied blocks that can potentially be victims
of garbage collection. The following “greedy” policy is used
to decide when and how to trigger garbage collection:

• Delay garbage collection as long as possible until the
number of free blocks drops below a pre-defined thresh-
old.

• Select the block with the fewest valid pages among all
occupied blocks.

It is shown in [23] that greedy garbage collection is the
optimal garbage-collection policy in the sense of minimizing
write amplification under uniform random write workload. As
pointed out in [24], the greedy policy tends to choose the
victim in a FIFO order, and thus FIFO garbage collection has
nearly the same write amplification as the greedy one under
this workload.

Wear levelling: There are two types of wear levelling:
dynamic and static. Dynamic wear levelling refers to the out-
of-place update feature enabled by the FTL. Under uniform
random write workload, all flash blocks tend to be worn out
evenly. However, under other workloads that have a biased
update frequency of the logical space, some flash blocks
holding inactive data that are less frequently, or never, updated
tend to be less worn than others. Static wear levelling refers to
the activities that identify and move such inactive data out of
less worn blocks and reclaim these blocks, which inevitably
incurs extra write amplification.
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Fig. 1. Write amplification as a function of utilization

III. CONTAINER MARKING

Container marking is a novel data-placement scheme for
log-structured FTLs, with the dual aims of reducing write
amplification due to garbage collection and flash wear-out due
to repeated overwrites, that exploits spatial skewness of most
practical workloads. In such workloads, some (active) data
are updated more frequently, whereas other (inactive) data are
updated less frequently. Data is sorted according to a variety
of levels of activeness via the data-placement scheme using
container marking. The “containers” are flash blocks and the
marking reflects the “activity” of the pages within a block:
how frequently the data is updated.

A. Motivation

There is no need for special data placement under uniform
random write workload, because each page has the same
probability of being updated, and thus page writes can simply
be packed into free flash blocks without distinction. Care must
be taken, however, when active and inactive data co-exist. If
active and inactive data are not distinguished and placed into
the same flash block in a mixed way, active data tends to be
updated and to become invalid quickly, whereas other data is
inactive and likely remains valid for a relatively long time. In
contrast, if a block contains active data only, it is most likely
that all pages in this block will be invalid at the time of garbage
collection, minimizing the amount of work to relocate valid
data pages. Hence it is desirable to distinguish active data from
inactive data and to place active and inactive data in different
blocks.

To demonstrate the potential benefits of data placement,
let us assume a dynamic and static workload which consists
of data of two levels of activeness, with one category being
dynamic data that are updated independently and with equal
probability, and the other being static data, i.e., read-only
data. We consider two data-placement strategies: mixed and
ideal. Mixed data placement assumes no information on data
activeness and simply packs data together into free flash blocks
regardless of the activeness. In contrast, ideal data placement

intelligently places dynamic data and static data on different
blocks, assuming that perfect knowledge of the activeness is
available.

Figures 1(a) and 1(b) show the write amplification of the
two data-placement strategies as a function of the utilization
for workloads with varying portions of read-only data. The
write amplification measures the average number of actual
(page) writes per user (page) write. The write amplification
for mixed data placement is obtained via simulation, using
the FIFO garbage collection policy. It can be seen that the
FIFO garbage collection itself cannot exploit the existence
of a large percentage of static data, although it performs
nearly optimally for the uniform random write workload. The
write amplification for ideal data placement is computed using
the model in [23] with FIFO garbage collection operating
on dynamic data only. These results have been verified by
simulation as well. It can be seen that, once dynamic data
and static data have been separated, write amplification can be
significantly improved at high utilizations. The more static data
the workload has, the bigger improvement the data placement
can potentially achieve.

This result provides clear quantitative evidence that active
data and inactive data should not be placed on the same
flash blocks, and strongly suggests that appropriate data place-
ment has the potential of reducing write amplification when
incorporated into the garbage-collection policy for practical
workloads, which often deviate from the pathological uniform
random write workload.

B. Principle

Refining the concept of separating dynamic and static data,
the principle of the container-marking scheme is to automat-
ically detect the activeness of data and store it discreetly
accordingly. When each flash block stores data with the
same level of activeness, data on a given block tends to be
invalidated at a similar pace. Once a block has been chosen
as garbage-collection victim, all of its data pages would then
have a good chance of being invalid, thereby improving the



efficiency of garbage collection.
Furthermore, flash blocks holding data with different active-

ness tend to age differently, i.e., those blocks holding more
active data tend to be reclaimed sooner that those holding
less active data, eventually leading to uneven wear of flash
blocks. To counteract this unfavorable side effect, the scheme
intentionally places more active data on less worn-out flash
blocks and and less active data on most worn-out flash blocks,
proactively balancing wear-out among all flash blocks for the
wear-levelling purpose.

The key challenge to make the above principle work is
to find a mechanism to estimate the activeness of data with
as little resource, such as memory and computing power, as
possible because the logic would have to run on a tiny FTL
with very little DRAM. The container-marking scheme is a
lightweight, simple and efficient mechanism to dynamically
track the activeness of data with very little overhead in
terms of both memory and computation requirements, thus
ideally suited for meeting this challenge. The core idea is to
assign a marker to each flash block that indicates the data
activeness, i.e., how frequently data is updated or changed.
Before writing, each free flash block is assigned a marker
indicating a specific level of activeness, and data placement
ensures that the activeness of data on any flash block matches
its marker. In other words, data pages on the same flash
block have the same estimated activeness marked by the
corresponding marker. In conjunction with data placement,
an adaptive learning algorithm is proposed to estimate the
activeness of the data. Note that the marker is destroyed once
a block is erased, so that no flash block is physically tied to
a specific marker.

C. Design

In this section, we describe the details of the combined
data-placement, garbage-collection and wear-levelling scheme
based on container marking.

Figure 2 illustrates the block diagram, wherein each free
flash block is assigned a marker, ranging from 1 to 2L, before
it is written. Blocks with small markers are intended to hold
less active data, whereas blocks with larger markers hold more
active data. The smallest marker level, “1”, indicates the lowest
activeness, whereas the largest marker level, “2L”, indicates
the highest activeness.

Whether a flash block is assigned a large or a small
marker depends on its wear status. Younger blocks with fewer
program-erase cycles or, equivalently, with a long remaining
endurance lifetime are assigned a larger marker, thus being
used to hold more active data. Similarly, old blocks with higher
program-erase cycles are assigned a smaller marker, thus being
used to hold less active data. In this way, younger blocks are
likely to be reclaimed and reused more frequently than others,
thereby pro-actively evening out the wear without explicitly
triggering wear levelling.

To accomplish this, the free block pool can be organized by
a priority queue in terms of the program-erase cycle count of

Fig. 2. Container-marking-based data placement in a flash SSD.

the blocks. If the system has blocks with different program-
erase endurance cycle budgets, the free block pool is organized
by a priority queue in terms of the remaining program-erase
endurance cycle count of the blocks. The priority queue can
be logically divided into 2L segments, representing different
levels of how young the blocks in each segment are. Whenever
a free block with a certain marker is needed, it is picked out
of the appropriate segment accordingly.

There are two flows of write requests: one is the user write
requests and the other is the relocation write request generated
by garbage collection. For each page write request associated
with a logical page number (LPN), its previous marker m′ is
first looked up by querying the resident flash block of LPN
from FTL, followed by computing its current marker m using
an adaptive algorithm based on m′ and whether the request is
a user write or a relocation request. The page is then written to
the free block with marker m. This function is implemented
by the data-placement functional block in Figure 2. In this
way, every block with written data has an assigned marker,
and the marker indicates the activeness level of the data pages
stored on it.

Once a free block has been filled up with data, it is
removed from the free block pool and goes into one of 2L
lists (or queues) of occupied blocks depending on its marker.
These occupied blocks are potential candidates for garbage
collection. Although a greedy selection policy, which selects
the block with the fewest valid pages from all occupied
blocks, is desirable, it might incur excessive computational
overhead, particularly for a device with a large number of
flash blocks. A pragmatic alternative is to limit the garbage-
collection selection window to those blocks which are oldest
in terms of time written, as illustrated in Figure 2. Instead
of searching for the block with the fewest valid pages from
all occupied blocks, which is computationally expensive, we
search only among a specific set of blocks , i.e., the older
blocks, which most likely contain the block with the fewest



valid pages. The reason is that the older the occupied blocks,
the fewer valid pages they likely have. For this purpose, a
list or queue is used for each marker that faithfully preserves
the age of occupied blocks. This treatment is inspired by the
age-threshold algorithm [9] and the garbage-collection method
described in [24].

Garbage collection is triggered whenever the number of
free blocks falls below a threshold. The threshold should be
carefully selected to strike a tradeoff between two conflicting
requirements. On one hand, it is desirable to keep the threshold
as small as possible, so that the number of valid pages can
be reduced at the time of garbage collection. On the other
hand, the threshold should be reasonably large to guarantee
that there is no starvation period of free pages in sustaining
write requests, as there is a non-negligible delay from the
beginning the garbage collection until the block involved can
be reclaimed for reuse.

The container-marking scheme stores active data on younger
blocks and less active data on older blocks, which tends to
evenly wear out flash blocks. However, it is still possible for
the (windowed) greedy selection criterion to leave static or
inactive data being locked onto some blocks. For this reason,
we use a modified greedy selection criterion to combine
garbage collection and wear levelling by purposely preventing
those relatively younger blocks from being locked by inactive
data. The key idea is to detect any younger blocks that
hold aged data (supposedly these data are inactive), and to
artificially treat them as blocks having fewer valid data pages
than they actual do, so that they get a chance to be reclaimed
and re-used.

Instead of maintaining data age for flash blocks, which
would require additional memory, we use the following heuris-
tic to identify aged data: if a block is younger than the average
and it has a relatively smaller marker level, indicating a lower
activeness of its stored data, then the data are most likely aged;
if a block is significantly younger than the average, its data
is viewed as aged data irrespective of the associated marker
level. Those younger blocks should have higher chance to be
reclaimed, from wear-levelling perspective.

The selection rule is detailed as follows. Suppose that at
the time of garbage collection the average remaining program-
erase cycle count of all blocks is eavg and the marker level of
the block is m. Denote vj as the number of valid data pages of
the j-th block in the selection window of size s, where j = 0,
. . ., s−1, and denote ej as its remaining program-erase cycle
count. The j∗-th block is selected as the victim if it has the
fewest weighted valid data pages, namely,

j∗ = arg min
j

(vj − βwj), (1)

for j = 0, · · · , s− 1, where β > 0 is the weight factor (set to
0.1 as an example), and

wj =





ej − eavg if ej − eavg > T c

max
[
(ej − eavg), 0

]
else if m < L− 1

0 otherwise,
(2)

where T c is a large number, for example 200, as a threshold
for detecting extremely younger blocks. Note that the above
selection rule introduces a single-sided penalty for the purpose
of wear levelling, i.e., only blocks that are younger than
the average receive special treatment, i.e., have an increased
chance of being reclaimed. Thus we call it the single-sided
endurance penalty (SEP) criterion.

Compared with the cost-age-times (CAT) [25], [26], where
wear levelling negatively affects the garbage-collection effi-
ciency in a multiplicative way, the SEP criterion influences
the garbage-collection efficiency in an additive, single-sided
way, and the chance that the endurance penalty is invoked in
the SEP rule is significantly reduced by the data-placement
scheme in which active data are stored on least worn-out
blocks and inactive data on most worn-out blocks.

The most critical and challenging task in realizing the com-
bined data-placement, garbage-collection and wear-levelling
scheme is to dynamically track the activeness of data pages.
Specific to the container marking is the challenge to estimate
the marker of any page when it is newly written, updated or
relocated.

To meet this challenge, we devise a marker-estimation
algorithm based on the following simple idea: If is page is
newly written, it is assigned with a current marker m of L,
indicating a neutral activeness, i.e., m = L. If a page is
updated, we increase its activeness by setting its current maker
m to its previous marker m′ increased by 1, i.e., m = m′+1.
If a page is relocated, we decrease its activeness by setting its
current marker m to its previous marker m′ decreased by 1,
i.e., m = m′ − 1.

A caveat to the above simple marker-estimation algorithm
is its adaptability to various utilizations. In particular, at high
utilization, pages on average have a higher chance to be relo-
cated than to be updated owing to a large write amplification.
In this case, the markers gradually decrease and converge
to lower values, effectively rendering active and inactive
data indistinguishable. To fix this problem, we modify the
marker-estimation algorithm by introducing a feature called
probabilistic marker decreasing upon relocation, wherein the
probability is set empirically according to utilization, namely,
upon relocation, the marker of the relocated page is decreased
by one with a given probability p, where p is function of
utilization; otherwise the marker remains unchanged. Table I
shows the modified marker-estimation algorithm.

D. Implementation

We have implemented the container-marking scheme in our
in-house-built flash SSD simulator. The simulator is on event-
and trace-driven, and written in Java. The simulated low-level
flash read/write/erase commands have been tested and verified
against a bank of real flash memory controlled by a Xilinx
evaluation board.

The flash SSD simulator can be configured with any number
of parallel channels. Each channel has multiple flash dies and
is attached via a standard flash interface, such as ONFI-1



TABLE I
MARKER ESTIMATION ALGORITHM WITH PROBABILISTIC MARKER

DECREASING UPON RELOCATION

New writes Updates Relocation
L m = m′ + 1

m =

{
m′ − 1 with p(u)
m′ otherwise

wherein

Probability p(u) Utilization u
1.0 u ∈ (0.0, 0.55]
0.8 u ∈ (0.55, 0.65]
0.5 u ∈ (0.65, 0.75]

0.167 u ∈ (0.75, 0.85]
0.125 u ∈ (0.85, 1.0]

or -2. The simulator supports two modes: pipeline and non-
pipeline. In pipeline mode, each flash command, for instance,
page read, page program and block erase, is broken up into
multiple phases, such that multiple commands can proceed at
the same time on the same channel to which multiple dies are
attached.

The simulator makes extensive use of Java interfaces, so that
various FTL schemes and a variety of garbage-collection and
wear-levelling mechanisms can be plugged in. For the sake of
simplicity, we chose a page-level FTL scheme in which the
logical-to-physical mapping table resides wholly in the main
memory in our experiment. We are not concerned with the
big memory footprint of page-level FTL at this moment, be-
cause, as revealed in [22], caching the most relevant page-by-
page logical-to-physical mappings in the main memory while
storing the entire table on flash memory would drastically
reduce the memory footprint at only a small price in terms
of performance degradation.

We use a linked list to track “bad” blocks and prevent them
from being erased and reused. Any flash block that cannot be
successfully erased, read or written, is supposed to be pushed
into this queue. As the error behavior of flash cells and error-
correcting codes are not simulated, no real bad blocks will
be reported. Instead we use this queue to keep flash blocks
that have reached their PE cycle limit, and prevent them from
being erased and reused again. Note that these blocks are not
really failed ones, as they can still hold readable data, but they
are no longer supposed to be erased and written to.

To enable the container-marking scheme, we use a 32-bit
integer for each flash block as container-marking metadata,
in which 20 bits count down its remaining PE cycles upon
erasing (thus supporting a maximum PE cycle of 220), 8 bits
record the number of valid pages within the block (supporting
a maximum of 256 pages per block), and the remaining 4
bits hold the container marker (supporting a maximum of 16
activeness levels). The container-marking metadata is stored
in the main memory, which leads to only a small overhead
in terms of memory requirement. For example, suppose a
flash block contains 64 4-KiB pages, a total of 300 GB flash
SSD would require only about 4.8 MiB of memory space

for container-marking metadata. Note that only 4 bits out of
the 32-bit metadata are specific to container marking, and
the others are most likely also needed by any other garbage
collection and/or wear levelling schemes. This overhead can
be reduced further by grouping several flash blocks together
as a jumbo container and assigning a marker to it.

There will be no performance benefit in marking pages
rather than blocks, because the ultimate goal of marking is
to place together data of the same activity onto the same
flash block. Marking pages, on the other hand, would be
too expensive in terms of memory overhead. The appropriate
“containers” then are flash blocks or a group of blocks.

The computational overhead for operating the container
marking scheme is also marginal. One just needs to look up
the marker of the block that the involved page previously
resides in, simply increase it or decreased it with a given
probability. Concerning the computational cost of the random
number generator in probabilistic maker decreasing, we point
out that it is triggered only when relocating a block and not
needed during user reads and writes; furthermore, a simple
linear congruential generator would do the work, consuming
a multiplication, an addition and a modulo operation, which
is not a significant burden for most modern controllers.

IV. PERFORMANCE EVALUATION

In this section, we report on the performance of the com-
bined data-placement, garbage-collection and wear-levelling
scheme using container marking.

A. Counterparts

To assess the performance of the proposed scheme, we
consider two widely used garbage-collection schemes as its
counterparts: greedy and FIFO garbage collection, because the
greedy garbage-collection policy is the optimal one for uni-
form random workload, whereas the FIFO is the simplest one
but powerful in this scenario. The greedy garbage-collection
scheme uses a modified version of SEP criterion to move
static data out of younger blocks for wear-levelling purposes,
namely, the condition m < L−1 in Eq. (2) is replaced by the
condition where the age of the data on the j-th block exceeds
a threshold. We keep a write sequence number on each block
write (only for greedy garbage collection), and the age of the
data is approximated by the difference between the current
write sequence number and the write sequence number of the
block. We consider a windowed version (with window size of
100) for greedy garbage collection, which incurs no noticeable
performance degradation [7].

B. Synthetic Workloads

Synthetic workloads are used to demonstrate the effective-
ness of the container-marking scheme. Although synthetic
workloads do not reflect actual access patterns, they help
understand the effects of the spatial skewness of workloads,
which can be exploited to reduce the overhead of garbage
collection and wear levelling. In particular, we consider the
following two types of synthetic workloads:
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Fig. 3. Write amplification as a function of utilization

• Dynamic-and-Static: All 4-KiB-aligned logical ad-
dresses are divided into two groups in a random way:
The dynamic and the static group. The logical addresses
in the static group are never updated, whereas those in
the dynamic group are updated uniformly.

• Active-and-Inactive We use a Zipf distribution to ap-
proximate the active-and-inactive access pattern [27]
wherein the storage space is updated unevenly. The total
logical address space is divided into 256 KiB chunks,
where the probability of the i−th chunk being addressed
is proportional to 1/iα; within each chunk, each 4-
KiB-aligned logical address is uniformly accessed. The
Zipf distribution has been widely used to model many
common access patterns: a few chunks are frequently
accessed, others much less often. We use “X/Y ” to
indicate that X% of accesses occur on Y % of the storage
space.

As read requests have no impact on garbage collection and
wear levelling, we consider write-only synthetic workloads.
We choose write amplification as the metric to measure the
efficiency of garbage collection, which is defined as the
expected (average) actual page writes for a user page write (of
size 4 KiB) after all initially free blocks have been exhausted.

Note that write amplification measures the total write cost,
including the garbage-collection and wear-levelling overhead,
for each user write in the long term. As shown in [23], write
amplification is the predominant factor limiting the sustained
random write performance.

The ultimate goal of wear levelling is to maximize the en-
durance lifetime of flash SSDs, i.e., it is not necessarily limited
to the general concept of wearing out flash memory evenly.
Longterm Data Endurance (LDE) [28] has been proposed as a
metric to measure the endurance lifetime of flash SSDs, which
is defined as the total number of user pages (or GBs) that
can be written according to the nominal program-erase cycle
specification. To obtain LDE, we assume a deterministic dying
model, that is, a block is excluded from the garbage-collection
process when it reaches its program-erase cycle specification
while all the data pages on it can still be read. The LDE metric
can readily be translated into a time measure for endurance
by dividing LDE by the write speed of user data.

In our experiment, we configure the simulator as a scaled-
down version of flash SSDs, with 4 flash channels, each with
2 dies, and each die of 1 GB raw capacity. We also artificially
set the maximum program-erase cycle budget to 5000, to
shorten simulation run time. Instead of using LDE directly, we
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Fig. 4. Endurance efficiency as a function of utilization

use a measure called endurance efficiency, which is defined
as the ratio between LDE and the total number of writable
pages based on the flash memory endurance specification, to
compare the garbage-collection and wear-levelling efficiency
of various schemes. The major simulation parameters are listed
in Table II.

Concerning the choice of L in container marking, we ob-
serve that the improvement generally increases as L increases,
from L = 1 up to L = 8. Beyond that, there is no obvious
additional benefit. Therefore in the simulation we choose
L = 8, i.e., a total of 16 activeness levels are used.

Figure 3 shows the write amplification as a function of uti-
lization for two dynamic-and-static workloads, one with 30%
and the other with 70% static data, and for two Zipf workloads
80/20 and 95/20. It can be seen that the windowed greedy
garbage collection consistently performs slightly between than
FIFO, and the container-marking scheme outperforms both
FIFO and windowed greedy. For dynamic-and-static work-
loads, the performance gap increases as the portion of static
data increases, which is in good agreement with the theoretical
prediction in Figure 1. For Zipf workloads, the performance
gap increases as the workload is becoming more skewed. The
performance improvement of the container-marking scheme

TABLE II
PARAMETERS USED IN THE SIMULATION

Parameter Value
Cell type SLC

Number of blocks per die 4096
Number of dies per channel 2

Number of channels 4
Number of pages per block 64

Page size 4 KiB
Flash page read latency 50 µs
Flash page write latency 200 µs
Flash block erase latency 700 µs
Flash interface bus speed 40 MHz

is most pronounced if the workload has a high portion of
static data and/or is highly skewed. As illustrative examples,
we observed that at a typical utilization of 0.8 the container-
marking scheme results in an reduction of write amplification
by 36% for the dynamic-and-static workload with 70% static
data and by an impressive 51% for the Zipf 95/20 workload,
compared with windowed greedy garbage collection.

Figure 4 shows the endurance efficiency as a function of
utilization for the same workloads. We observe that windowed
greedy performs essentially the same as FIFO, except for the



TABLE III
TRACE WORKLOADS CHARACTERISTICS

Traces Total Read Average Inter-Arrival
Requests Percentage Size (x4KB) Time (ms) (Avg.)

financial1 5,334,987 23.2% 1.30 8.13
proj-0 4,224,524 12.5% 9.53 64.33
src1-2 1,907,773 25.4% 7.31 87.29
prxy-0 12,518,968 3.1% 1.77 39.32

dynamic-and-static workload with 70% static data, and that
the container-marking scheme outperforms the other two. The
improvement is becoming more pronounced if the portion of
static data increases and/or the workload is more skewed. In
particular, the endurance efficiency of the container-marking
scheme is double that of windowed greedy or FIFO in the
utilization range of 0.7-0.8 under the Zipf 95/20 workload.
In other words, the endurance lifetime is doubled by the
container-marking scheme in this scenario.

Figures 3 and 4 are obtained using the maker-estimation
algorithm with probabilistic marker decreasing upon relocation
and the parameters given in Table I. Without probabilistic
marker decreasing, we found that the improvement of the
container-marking scheme diminishes at high utilizations. The
reason is the markers tend to gradually decrease and eventually
concentrate on lower values due to frequent relocations. This
observation justifies the introduction of probabilistic marker
decreasing upon relocation.

C. Real-World Workloads

We use four real-world traces available on-line: financial1
[29] is a random-write-dominant I/O trace from an OLTP
application running at a large financial institution, and it is
known to be skewed [22]; proj-0, src1-2 and prxy-0 [30]
are traces from the system boot volumes for three servers
managing project files, source control and firewall/web proxy,
respectively. The two traces proj-0 and src1-2 consist of abun-
dant write activities dominated by large, piece-wise sequential
writes. prxy-0 contains a lot of random writes which tend to
be much less concentrated (skewed) compared to financial1.
The characteristics of the traces are summarized in Table III.

Note that these traces are collected from disk-based systems.
In contrast to disk drives using update-in-place, flash SSDs
perform out-of-place updates so that in the long run data
in the flash memory will become scattered. Accordingly we
assume that data are uniformly distributed on flash memory
before we apply the traces. The logical address space of
the simulated flash SSD is adjusted to match that of each
individual trace, and the utilization is selected as 0.8, namely,
the logical address space accounts for 80% of the total capacity
of physical flash memory. We had to re-play these traces
repeatedly to get enough write requests to measure write
amplification in the steady phase.

Table IV shows the write amplification of the four traces
using FIFO, windowed greedy and the container-marking
scheme. It can be seen that overall both windowed greedy

TABLE IV
WRITE AMPLIFICATION OF REAL-WORLD TRACES

finan- proj-0 src1-2 prxy-0
cial1

FIFO 4.22 3.99 4.1 4.62
Windowed greedy 3.16 1.89 1.90 1.64
Container marking 2.12 1.58 1.78 1.33

and container marking outperform FIFO significantly. Under
financial1, we observe 33% write-amplification improvement
for container marking compared with windowed greedy. The
improvement under the other three traces is not as significant,
mainly because these traces contain abundant large, piece-wise
sequential writes and/or have less spatial skewness. Because
all these traces are not longer than one week, we did not run
the endurance efficiency experiments on them.

V. RELATED WORK

The LFS [8], [31] tried to improve the I/O performance
on disk-based storage by combining small write requests into
large logs, alleviating the need for frequent and slow disk
seeks for small-write-dominated workloads. The LFS shares
the same out-of-place update strategy as flash memory, thereby
imposing similar system design challenges: It has to constantly
re-organize the data on the disk through a garbage-collection
(also known as cleaning) process to make room for new data.
The requirement of garbage collection in LFS is similar to that
in flash SSDs, except for the extra need for erase and wear-
levelling in flash memory. The common challenge in both LFS
and flash design is how to classify and group data in terms of
updating frequency to improve garbage collection. Therefore
the container-marking scheme, although designed specifically
for flash memory, can be tailored to LFS.

Several works on reducing the garbage-collection overhead
for disk-based LFS exist. For example, [8] investigated greedy
cleaning and benefit-to-cost cleaning, in which valid data in
several partially empty segments are combined to produce a
new full segment, freeing the old partially empty segments
for reuse. These two cleaning policies perform well when
the disk space utilization is low. In [32] the hole-plugging
policy was proposed, in which partially empty segments are
freed by writing their valid data into the holes found in other
segments. The use of an age-threshold algorithm for garbage
collection was proposed in [9]. The WOLF scheme to reduce
the I/O performance overhead during the garbage collection by
reorganizing data into two or more segment buffers according
to the data’s activeness, before data are written to the disk was
proposed in [33].

For flash memory, [24] suggested a heuristic, hybrid
garbage-collection scheme combining the FIFO algorithm
within a partition (i.e., a group of segments) and the locality-
gathering approach to manage pages moving between par-
titions. In [25], [26] the CAT (cost age times) cleaning
policy with a focus on how to select segments (a group of
flash blocks) to be erased was developed. [34] proposed the



separate block cleaning algorithm that used separate blocks
in garbage collection: One for cleaning not-cold blocks and
writing new data, the other for cleaning cold segments. In [16],
the DAC scheme was proposed to partition flash memory into
regions, with each region holding data with different updating
frequencies.

For wear levelling, simple swapping approaches have been
proposed. Examples are [10]–[12], [35], [36]. Swapping data
between two flash blocks requires erasing two blocks and re-
writing swapped data, which is expensive in terms of write
amplification. Dual-pool [13] has been proposed, i.e., a hot
pool for storing hot data and a cold pool for storing code
data, to improve wear levelling. The fundamental idea is to
move cold data away from young blocks and to old blocks,
and prevent the cold data and old blocks involved from wear
levelling for a while. This is inherently embodied in the
container-marking scheme.

VI. DISCUSSION AND FUTURE WORK

Throughout the paper, we have deliberately ignored the
impact of FTL on write amplification and endurance by
assuming a perfect page-by-page logical-to-physical mapping
in memory. This assumption may not be fulfilled in large-
capacity flash SSDs because of memory requirements for the
mapping table. A block-based or hybrid logical-to-physical
mapping in memory can reduce the memory footprint, but
suffers from extra write amplification due to the merging of
the mapping table to reduce memory consumption. Another
alternative is DFTL, a page-based logical-to-physical mapping
stored on flash memory, in which only those entries of the
mapping that are most likely to be used are cached in memory.
The DFTL exploits the temporal and spatial locality to reduce
flash memory accesses for the mapping table, and completely
avoids extra write amplification by eliminating the costly
merging activities that would be necessary in block-based or
hybrid FTLs. The container-marking scheme assumes a page-
based mapping, and thus DFTL can be seamlessly integrated.

So far we only considered triggering garbage collection
when the number of free blocks drops below a predefined
threshold, and the threshold is set aggressively low so as to
minimize write amplification. In practice, other considerations
may complement the threshold triggering. For instance, one
would trigger garbage collection when idle time is detected,
so that more free blocks (than the threshold) can be made
ready for serving bursty write requests without interruption.

Another trend in flash SSDs is the use of a DRAM write
cache or buffer, often battery- or capacitor-backed, to absorb
repeated write requests, and more importantly, to shape write
requests to adapt to the specific FTL scheme. Often the cache
design is combined with details of the specific FTL scheme to
minimize write amplification arising from a hybrid logical-to-
physical mapping. In the container-marking scheme, a page-
based logical-to-physical mapping is assumed, so that DRAM
write cache can then be integrated in a straightforward way.

The particular estimation algorithm used with the container-
marking scheme may affect overall performance. However, the

proposed estimation algorithm is a simple example that satis-
fies the stringent requirements on DRAM size and computing
power typically available to flash FTLs. The parameter space
for the estimation algorithm was explored through numerous
successive iterations towards the empirical optimal values
shown in Table I. This may have to be repeated for a given
implementation, which however is beyond the scope of this
paper.

VII. CONCLUSION

In this paper, we proposed a new scheme, called container
marking, to combine data placement, garbage collection and
wear levelling in a holistic way, so that both the write amplifi-
cation and endurance lifetime of flash SSDs can be improved.
For data-placement reason, each flash memory block, i.e., data
container, is assigned a marker indicating the activeness of
the data that have been stored or are going to be stored on
it, and data are placed on flash memory blocks according to
their estimated activeness. For proactive wear-levelling reason,
younger flash blocks are used to hold more active data. At the
core of the container marking scheme is an adaptive algorithm
to dynamically track the activeness of data pages, namely, to
estimate the marker of any page when it is newly written,
updated or relocated. The memory and computation overhead
have been kept reasonably small.

Simulation results based on both synthetic and real-world
workloads show that the container-marking scheme can adapt
to various workloads, and outperforms the widely-used greedy
and FIFO schemes. In particular, under a synthetic workload
Zipf 95/20 with heavily biased updating frequency and at a
typical utilization range of 0.7-0.8, we observed that write
amplification is reduced by half and endurance lifetime is
doubled.
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