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Abstract

Cellular Automata are an inherently parallel computing architecture
and can be scaled close to the physical limits due to the local-only data
exchange. For economical and technical reasons application of cellular au-
tomata as computer architecture requires the use of partitions that are as-
sembled into larger units, similar to memory in current systems (memory
chips, Dual-In-line Memory Modules, etc.). This requires the exchange of
the cell state at the chip boundaries. In this paper we consider the analysis
of the required bandwidth over a chip boundary when a one-way protocol
is used. The analysis algorithm counts the number of equivalence classes
with respect to the cell states on the send side. When the states along
the chip boundary are combined, a closed form solution for the number of
equivalence classes is derived. The algorithm can be implemented using
Binary Decision Diagrams, and we give results for several example cellular
automata.

1 Introduction

In addition to their role as models of physical phenomena and models of com-
putation, cellular automata have always been regarded as potential computer
architecture. If future computers are to be built as cellular automata, it is very
likely that an integration method will be used, that is similar to memory, large-
scale FPGA systems, or the BlueGeneTMsupercomputer [4]: individual chips
are mounted on modules and connected with each other to form a large sys-
tem. There are several reasons why Cellular Automata become more attractive
as building block of computers with progress of device technology, including
limited design capabilities of heterogeneous systems, and reduction of device
parameters. For instance, CMOS FETs can be adapted by channel length and
width, doping and gate isolation. In contrast, carbon nanotube transistors are
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expected to have only one or two individual device parameters[12], while all
other properties need to be fixed for a given chip.

The operation principle of cellular automata requires the evaluation of the
states of neighbor cells to determine the next state of a given cell. The parti-
tioning of a cellular automaton into multiple chips implies that there are cells
(border cells) with one or more neighbors on a different chip. Dependent on
the transition function of the cellular automaton, not all state combinations
need be transferred over a chip-to-chip, because different configurations on the
remote side can have the same contribution to the next state on the affected
side. There are two dimensions to these redundancies, spatial and temporal.
The spatial redundancies exploit the fact that the states of neighboring cells are
not independent of each other, at least after several computation steps. For in-
stance, many cellular automata have so called ”Garden of Eden” configurations
that cannot result from a previous computation step. An implementation that
exploits the spatial redundancies does not transfer the cell state for each border
cell separately, but combines the state of several cells to compress the combined
state before transmission. Temporal redundancies are found when the possible
sequence of cell states is restricted, e.g. if a state A cannot be followed by a
state B in one cell for any given neighbor configurations. Exploiting temporal
redundancies implies the combination of the states of cells that will impact the
cells in the remote chip only after several time steps. Both dimensions, spatial
and temporal redundancies will be considered in this paper.

Communication in Cellular Automata is investigated from different angles:
Kutrib and Malcher assume an upper limit on the communication bandwidth on
a single-step level and analyze the capabilities for problems such as arithmetics
or parsing of formal languages. With this approach they obtain results for
crucial problems resulting in automata with a considerable number of states. In
[6] the class of two-state one-dimensional automata is investigated regarding a
single reception cell.

Furthermore, there are different protocols that can be used. In the one-
way protocol, the sending side does not use information about the state of the
receiving side. Of course, data is typically transmitted in both directions and
the send side will have some information from the receive side. To reduce the
impact of transmission latency, one can overlap the cells at the chip boundary,
which implies that the send side cells for one direction are different from the
receive side cells in the opposite direction. As far as I know this paper is the
first detailed analysis of one-way bandwidth of general cellular automata. For
results and algorithms for the two-way protocol, where the state of the receive
side is used to reduce the bandwidth, please refer to [5].

In the course of investigating the bandwidth of cellular automata, it tran-
spired that Binary Decision Diagrams (BDDs) are very useful for the analysis
of cellular automata properties. For instance, D. Knuth’s “The Art of Com-
puter Programming’, Volume 4a illustrates the power of BDD algorithms using
cellular automata. There exist several well tested BDD libraries [10, 8], and
basing an algorithm on them allows a fast path to experiments. Hence, even
if the BDD-based algorithms are not the best ones, they still allow a fast way
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to understanding the problem better. A good introduction to BDDs and their
algorithms is the book by Meinel and Theobald [9].

This paper is structured as follows: The definition of bandwidth is presented
in Section 2. A short overview of Binary Decision Diagrams and some algorithms
using them is provided in Section 3. In Section 4 the basic algorithm for deter-
mining the one-way bandwidth of cellular automata is described. In Section 5
it is charted, how a formal solution for scaling along the chip boundary can be
derived. In Section 6 results for several cellular automata are given. In the final
section, a summary and outlook on further work is found.

2 Definitions

A cellular automaton (CA) is a tuple (T, S, f), where T = {t0, . . . , tn−1} is a
finite generator set of a group G = 〈T 〉, S is a set of states, and f : S|T | → S is
the local transition function. The state (or configuration) of a CA is a mapping
s : G → S. Similarly the configuration of a set of cells assigns each cell a
state from S. A computation step of a CA converts a CA state s into s′ by
s′(g) = f(s(gt0), . . . , s(gtn−1). The set {gt0, . . . , gtn−1} are the neighbors of
cell g. Typically, the identity element 1G of the group G is an element of T
implying that the state of a cell depends on its previous state. Furthermore, in
most cases, for each ti ∈ T the inverse is part of the generator set, which means,
that the neighborhood of cells is bidirectional. The algorithms presented in this
paper apply to the general case including unidirectional neighborhoods.

Examples: The two-state one-dimensional CA TSk = ({−1, 0, 1}, {0, 1}, (l, c, r) 7→
(k/24∗r+2∗c+l)%2) are identified by an index k. The state of a cell and its neigh-
bors are combined into an index, the corresponding digit in the binary repre-
sentation of k gives the next state. TS110 has been proven to be computational
universal.

Conway’s Game of Life uses a two-dimensional neighborhood (Moore with
Radius 1): the next state of a cell depends on the number of neighbor cells in
state 1. TM2 = {(0, 0), (−1, 0), (1, 0), (0, 1), (−1, 1), (1, 1), (0,−1), (−1,−1), (1,−1)},

f(x(0,0), . . . , x(1,−1)) = 1 if x(0,0) = 1 and c ∈ {2, 3}
= 1 if x(0,0) = 0 and c = 3
= 0 otherwise

where c =
(1,−1)∑

t=(−1,0)

s(gt).

When a CA is split into several chips, the topology G is partitioned into
several non-empty sets. In this paper we consider only two sets, because one
can expect each set to contain millions of cells, and the behavior at the corners
to be negligible to the data transmission over the long borders. Assume G =
Gs

·
∪ Gr is split into a send set Gs and a receive set Gr of cells, for instance

Gs = {x|x < 0} for G = Z. Then there will be cells in the receive set Gr that
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have a neighbor in the send set. Figure 1 illustrates the definition of bandwidth
in a split CA. Formally, we define a set of receive result cells B ⊂ Gr and a
number of computation steps d. We can define, in the graph-theoretic sense, a
ball of cells around B of radius d as Bd(B) = {bt1 · · · th−1|b ∈ B, ti ∈ T, h ≤ d},
i.e. the set of cells that can reach any cell in B in, at most, d steps. Deriving from
this we get the two sets A = Bd(B)∩Gr and C = Bd(B)∩Gs of those cells on
the send and receive side, whose configuration determine the state of the receive
result cells B (see Figure 2). The data transmission takes place between the C
cells and the B cells in d computation steps by the use of the states of cells in the
set C (remote cells). For the one-way protocol the transmitted information has
to be independent of the state of the A cells. The bandwidth in units of bits/step
results by taking the binary logarithm of the number of different configurations
divided by the spatial width and the number of computation steps.

Consider for example a set B consisting of one cell with coordinates (0, 0) in
the Game-of-Life CA where Gr = {(x, y)|x ≥ 0}, then the set C is {(−1,−1), (−1, 0), (−1, 1)},
and A consists of the other 6 cells A = {(x, y)|x ∈ {0, 1}, y ∈ {−1, 0, 1}}. As
said before, the next state for Game-of-Life depends on the number of neighbors
in state 1, hence if the cell is in state 0 and the other cells in set A have zero,
one, two or three cells in state 1, the information needed from the send side, is
whether there are three, two, one, or zero cells in state 1, respectively. Since for
the one-way protocol the transmitted information has to be sufficient indepen-
dently of the state of the cell set A, it is necessary to transmit the number of
ones in the three send cells, which can be encoded in 2 bits. When considering k
adjacent cells at the border without taking the transition function into account,
k + 2 bits are needed per computation step, which is somewhat more as well be
seen later.

3 Binary Decision Diagrams

BDDs were first proposed in the 1950s, but they only became more popular
after the paper by Bryant [3]. Since then they have become a standard tool
in electronic design automation tools such as circuit synthesis. Also, general
purpose tools for topics such as relations or Petri nets make use of BDDs [1]. A
BDD is a data type that represents a Boolean Function {0, 1}k → {0, 1}. Several
BDDs can be handled in a common framework (library instance, manager, or
similar terms are in use). Therefore, BDDs can be used to handle functions
between finite sets by binary encoding. Several versions (for instance ZDD =
Zero-suppressed Decision Diagrams, ROBDD Reduced Ordered Binary Decision
Diagrams) and improvements (addition of inverted edges) have been developed
over time, that improve the efficiency for some application domains. The basic
operations of BDDs are

• Basic functions for constant one, zero, and identity of a single variable
f(x) = x

• Basic logic operations of two inputs, including XOR, AND, OR
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Figure 1: A Calculation of a Cut CA: One Part is Considered Receiving Data
for its Computation.
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Figure 2: The Three Sets of Cells Relevant for Data Transmission: Receive Cells
A, Result Cells B, and Send Cells C
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• Composition of two functions, by replacing an input variable in one func-
tion by a second function

• Testing, whether two given functions are equal, including test for constant
one or false

• Decomposition of a function in a disjoint set of product terms (AND-
combination of variables or inverses of variables)

• FORALL, EXIST quantization of a function for one or several of its input
variables.

Internally, a BDD is an acyclic graph, of nodes, which are associated with
an input variable and (except for two leaves) have two outgoing edges (THEN
and ELSE). In the case of ROBDDs the sequence of variables is the same for
all paths, but variables can be skipped. Semantically, a node corresponds to
a Shannon function f(v, T, E) = (v ∧ T ) ∨ (v ∧ E). That is where the name
Binary Decision Diagram comes from, each node corresponds to the distinction,
whether the input variable is true or not, and for both cases, the edge to the
subcase leads to the next node. The two lowest nodes correspond to true and
false. In the reduced case each node is unique, which is established bottom-up
after each operation using a hash table.

4 Bandwidth Analysis Algorithm

The algorithm described in this section can be regarded as a Boolean func-
tion division method [2]. The algorithm handles a generalization of the CA
bandwidth problem. Later in this paper refinements for the special case are
discussed. Given the aggregated transition function F : S|A| × S|C| → S|B|

from the states of the cell sets A and C into the states of the cell set B after
d computation steps, the dependency of the states in cell set C is extracted.
This means, F is to be decomposed into two functions Z and U , such that
∀sa, sc : F (sa, sc) = U(sa, Z(sc)). The function Z should have a minimal image
size.

The size of the image of Z is the provides the one-way bandwidth, after
applying logarithm and scaling.

To obtain such a function Z an equivalence relation ∼=F : sc
∼= s′c ⇔ ∀sa :

F (sa, sc) = F (sa, s′c) is defined. The number of equivalence classes of ∼= is
the image size of Z, as the canonical mapping of each element of S|C| into its
equivalence can be used as Z. The necessary steps, creating the equivalence
relation and counting its equivalence classes can be carried out using BDDs
with good performance. In fact, for several examples the construction of the
BDD representation of the aggregated transition function requires much more
running time than the creation of the equivalence relation and the counting of
its classes. There are several BDD algorithms known which determine the size
of a set. To count the classes, a single representative needs to isolated from each
class. This is done by isolating the (arithmetical) maximum.
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Figure 3: Example of a Binary Decision Diagram
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1. Convert the function F into a relation format rF (sa, sc, sb) = 1⇔ F (sa, sc) =
sb

2. Create a copy of the relation with a different set of input variables for c:
r′F (sa, s′c, sb)

3. Combine rF and r′F forming a relation v(sa, sb, sc, s
′
c) = rF ∧ r′F .

4. Remove the inputs for sa and sb by forall-quantorization of variables sa

and sb: e(sc, s
′
c) = FORALL sa, sbv(sa, sb, sc, s

′
c)

5. Create the greater-than-or-equal function for inputs sc, s
′
c.

6. Form M(sc, s
′
c) = (sc ≥ s′c) ∧ e(c, c2)

7. Remove the inputs s′c from M by FORALL- quantorization, resulting in
N

8. Determine the number of fulfilling inputs of N.

Step 8 can use the decomposition into disjoint cubes (product terms). The
set size corresponding to one cube is obtained by counting the don’t-care vari-
ables for the relevant variables (sc in this case). Since the decomposition is
disjoint, the contributions from the cubes can be added. Since the cube de-
composition is obtained by recursively traversing the BDD, the method can be
simplified if the internal BDD representation is exploited.

For CAs with more than two states, the representation of each state (sa, sb,
etc.) requires several bits, which are either BDDs or BDD variables depending
on the step in the algorithm. In the algorithm description above, first one big
equivalence relation is created in the steps 2 to 4. It was found that the algo-
rithm runs much faster if these steps are executed separately for each individual
bit of the cell set B state representation. The results for the individual equiva-
lence relations are AND-combined after step 4. This is because the temporarily
created BDDs will be much smaller, though more BDD operations are needed.

5 Formal Solution for Spatial Scaling

In the previous section the algorithm for the determination of the one-way band-
width was described. It requires the construction of a BDD that represents the
equivalence relation for the C cell configurations. For spatial scaling this BDD
can grow significantly. Furthermore, this method only gives numeric results
but not better understanding of the underlying mechanisms. In this section
we describe a method that determines a closed formal solution for scaling the
result set along a regular chip boundary (as for instance in the Game of Life).
It makes use of the situation of CA to have a regular structure and is therefore
not as general as the previous algorithm. Regular means in formal terms, that
there exists a subgroup B < G, that acts transitively on the boundary cells.
For the example of Game of Life and the given send and receive sets, this action
is the addition of y-coordinates. When starting from an arbitrary border cell,
any other border cell can be reached this way. It will become evident that the
method can also be used for irregular borders. The only difference is, that why
the presented method uses the power of a single matrix, in this case several
matrices have to be determined and multiplied.
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Figure 4: Situation for Scaling along the Border

When considering two different receive side cells A1, A2, that each depend
after d time steps on at least one remote cell, both cells induce their equivalence
relation ∼=1 and ∼=2 (as one element receive cell sets). When combining the two
cells into one cell set {A1, A2}, a combined equivalence relation ∼=r results. At
least from the algorithm in the previous section it can be seen, that the resulting
relation is the logical AND of the two relations, i.e. sx

∼=r sy ⇔ sx
∼=1 sy∧sx

∼=2

sy. Formally, we have to extend the C sets in both cases to make the previous
formula meaningful. We are interested in the number of equivalence classes of
the resulting equivalence relation. Two configurations are in the same resulting
equivalence class ∼=r if they are in the same equivalence class in both original
equivalence relations ∼=1 and ∼=2. Reversely, considering a pair of equivalence
classes from ∼=1 and ∼=2, they can be combined into a new equivalence class, if
their set-theoretic intersection is non-empty. In this case the equivalence classes
are called compatible. Two equivalence classes are compatible if the restriction
of the elements (which are state vectors) to the overlapping cells results in the
same set. This non-empty set of configurations of the overlapping cells can be
viewed as a “continuation type”, i.e. an indicator how the next equivalence
class has to look like. For |S| states and l overlapping cells, there are 2|S|

l − 1
different continuation types. For a given target set, the number of equivalence
classes per continuation type can be counted and arranged in a vector.

Coming back to the example of Game of Life, Figure 4 shows two adja-
cent cells p and q for d = 1 with the corresponding send side cells, which
overlap on two cells. As observed before, the four equivalence classes for each
cell (which are shifted copies of each other) consist of those configurations,
that have the same number of ones (0, . . . , 3). As one example consider the
equivalence class of {(0, 0, 0)} for both cells. The overlapping cells for the first
class are the second two vector elements, for the second class these are the
first to vector elements. We obtain one equivalence class with one element
{(0, 0, 0, 0)} Another example is the class with one 1 for the first relation (for
receive cell p): {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. It is compatible with two equiva-
lence classes for receive cell q, namely {(0, 0, 0)} (resulting in {(1, 0, 0, 0)}) and
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, resulting in {(0, 1, 0, 0), (0, 0, 1, 0)}.

As a result, we get the following equivalence classes for the combined relation
(for simplicity, the commas have been omitted):
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Classes Continuation Type
{(0000)} 00
{(1000)} 00
{(0001)} 01
{0100, 0010, 1001} 00,10,01
{1100, 1010} *0
{0011, 0101} *1
{1011, 1101, 0110} 11,01,10
{(1110)} 10
{(0111)} 11
{(1111)} 11

Since there is only a finite number of send side cells there can only be a finite
number of conditions on the overlapping cells, which apply to the equivalence
classes. Such a condition is a subset of the set of all possible configurations on
the overlapping cells. As we are interested in the number of equivalence classes,
we can associate with each subset of configurations the number of corresponding
equivalence classes. This can be represented as a vector.

For the example, by counting the equivalence classes per continuation type
in the table, a vector (2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 0, 0, 1, 0) is obtained.

For k overlapping cells with s states the length of the vector giving the
number of equivalence classes for each continuation condition is |S|k − 1, as the
set of conditions cannot be empty. In a similar way, the matrix is obtained that
represents the process of appending one cell (or slot of cells when considering
a larger depth d). Each entry of the matrix reflects whether a continuation
condition on the one side can be connected with the continuation condition
on the other side under the given equivalence relation. In the Game-of-Life
example, consider the equivalence class with one 1. If the continuation condition
on the one side is the set 00, only one element of the equivalence class, (0, 0, 1)
matches, and hence the continuation condition to the other side is 01. If the
continuation condition was however ∗0 on one end, there would be two matching
elements, (1, 0, 0) and (0, 0, 1), resulting in the new continuation condition 0∗.
Note that there are many entries in the matrix that can never be 1, independent
of the equivalence relation. The situation is similar to De-Bruijn-Graphs, which
is not a surprise, as these graphs have been widely used for the analysis of
CA properties [11]. The resulting matrix for the Game of Life with d = 1 is
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1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 1 0


The fact that the last column is zero, is explained by the observation that

there is no equivalence class in Game of Life that there is no single equivalence
class that contains elements that end on 11 and 00. Note that the size of the
matrix grows very rapidly, for game of life depth 2, the a 2256−1×2256−1-matrix
results.

6 Results

The experimental implementation of the presented algorithm was done in C++
using Microsoft Visual C++ for debugging, while the runs with performance
measurement and those for the more complex problems were compiled using gcc
version 4.1.2 on 64-bit Linux. The machine used is an IBM xSeries server based
on 4 Intel Xeon processor cores at 3.6 GHz populated with 8GB of Memory.
This machine was used because it was also used in previous experiments and
was available in the same configuration.

The entire program code (including previous methods, and new methods
for the two-way protocol) has approximately 6000 lines of code. For BDD, the
already mentioned library CUDD was used. Is C++ layer allows a comfortable
programming, abstracting from internals of the library. Furthermore, Xerces-C
from the Apache project is used to parse XML files which are used to provide
parameters and options for the program.

Since the 256 one-dimensional, two-state cellular automata have found a lot
of interest in the past, their bandwidth for depth 15 is given in the table at the
end of the section. The columns are named R for the rule, BW for the bandwidth
(not normalized), the total run time and the maximum number of BDD-nodes
during the computation. It is worth noting the very differing running times for
the different rules. A depth of 15 means that 245 configurations are considered,
but in most cases the BDD algorithm is so efficient that it runs the entire
program in less than a second. Of course, this incorporates cases where the
aggregate transition function is very simple, and so is the equivalence relation.
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For k = 254 the CA does a OR-combination of its inputs. Therefore, the
maximum amount of information is received when the receive side has only
zeroes, the one-way and the two-way bandwidth is the same for this CA. For
the resulting state only the distance to the first 1 on the send side matters, all
further 1s will not change the result. Therefore, in k steps a value between 0 and
k is communicated, which can be encoded in log2(k + 1) bits, or log2(k + 1)/k
bits per step. For k = 15 the bandwidth is 4/15. Of course, because these CA
are only one-dimensional the scaling method cannot be used for them.

For one example, rule 107, the total run time was 404 seconds, of which 66 s
were needed for the construction of the aggregate transition function. The cre-
ation of the 15 equivalence relations and the AND-abstraction did cost between
5 s and 20 s per digit. The last steps, creating the comparison function, applying
it to the equivalence relation and image size determination takes another 50 s.
The algorithm tries to set unused BDDs from intermediate results to 0, so that
the total number of nodes in the BDD environment (in particular the unique
hash table) is kept as small as possible. For this example, the construction
of aggregate transition function requires around 11 million BDD nodes, while
the resulting equivalence relation consists of only 18484 nodes, and the final
predicate identifying the resulting 1872 equivalence classes has only 804 nodes.

R BW run time nodes R BW run time nodes

0 1 184msec 112 1 2 243msec 271
2 2 240msec 146 3 2 253msec 142
4 2 253msec 146 5 2 239msec 143
6 57 649msec 50k 7 16 353msec 11k
8 1 197msec 145 9 237 5sec 408k
10 2 239msec 129 11 5 307msec 456
12 2 241msec 129 13 16 302msec 4k
14 4 286msec 412 15 2 240msec 112
16 2 241msec 149 17 1 249msec 142
18 971 1min 3M 19 3 256msec 277
20 60 695msec 52k 21 16 385msec 13k
22 2023 13min 21M 23 30 347msec 7k
24 6 300msec 417 25 288 6sec 407k
26 1615 9min 16M 27 92 871msec 66k
28 252 1sec 136k 29 1597 531msec 24k
30 1753 5min 10M 31 16 351msec 11k
32 16 334msec 2k 33 29 449msec 13k
34 1 183msec 129 35 2 241msec 245
36 4 260msec 487 37 770 46sec 2M
38 55 739msec 45k 39 92 857msec 66k
40 24 398msec 12k 41 1872 6min 10M
42 2 242msec 150 43 2 259msec 416
44 4 287msec 618 45 579 19sec 930k
46 2 243msec 363 47 5 304msec 456
48 2 239msec 129 49 2 242msec 260
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R BW run time nodes R BW run time nodes

50 29 340msec 7k 51 1 192msec 112
52 79 688msec 44k 53 108 746msec 62k
54 619 35sec 1M 55 3 252msec 277
56 4 305msec 594 57 30 337msec 10k
58 30 346msec 9k 59 2 247msec 245
60 256 305msec 1k 61 350 5sec 402k
62 102 789msec 95k 63 2 241msec 142
64 1 182msec 145 65 261 5sec 411k
66 2 243msec 404 67 350 5sec 402k
68 1 187msec 129 69 16 311msec 4k
70 162 1sec 135k 71 1597 523msec 24k
72 3 263msec 357 73 615 41sec 1M
74 170 1sec 166k 75 579 19sec 930k
76 2 253msec 149 77 30 361msec 7k
78 28 407msec 9k 79 16 324msec 4k
80 2 258msec 129 81 4 327msec 478
82 1795 9min 16M 83 108 757msec 62k
84 2 246msec 424 85 1 183msec 112
86 1176 5min 10M 87 16 397msec 13k
88 153 1sec 167k 89 386 19sec 925k
90 32768 413msec 147k 91 770 46sec 2M
92 28 423msec 9k 93 16 321msec 4k
94 1021 41sec 1M 95 2 242msec 143
96 23 399msec 11k 97 1817 6min 10M
98 3 253msec 596 99 30 347msec 10k
100 4 308msec 661 101 386 19sec 925k
102 128 303msec 1k 103 288 6sec 407k
104 108 607msec 54k 105 32768 397msec 147k
106 1149 6min 11M 107 1872 6min 10M
108 6 300msec 811 109 615 41sec 1M
110 610 23sec 1M 111 237 5sec 408k
112 2 240msec 148 113 2 241msec 416
114 29 352msec 10k 115 2 241msec 260
116 4 308msec 359 117 4 308msec 478
118 86 859msec 95k 119 1 183msec 142
120 1700 5min 11M 121 1817 6min 10M
122 1569 4min 9M 123 29 411msec 13k
124 631 22sec 1M 125 261 5sec 411k
126 1278 2min 5M 127 2 242msec 271
128 16 295msec 2k 129 1278 2min 5M
130 16 311msec 6k 131 102 791msec 95k
132 16 310msec 5k 133 1021 41sec 1M
134 159 1sec 189k 135 1753 5min 10M
136 8 297msec 1k 137 610 23sec 1M
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R BW run time nodes R BW run time nodes

138 2 240msec 149 139 2 243msec 363
140 9 297msec 2k 141 28 413msec 9k
142 2 249msec 416 143 4 292msec 412
144 16 310msec 6k 145 86 886msec 95k
146 1376 4min 8M 147 619 35sec 1M
148 145 2sec 183k 149 1176 5min 10M
150 32768 396msec 147k 151 2023 14min 21M
152 11 321msec 4k 153 128 304msec 1k
154 807 1min 4M 155 55 746msec 45k
156 179 1sec 116k 157 162 1sec 135k
158 159 2sec 189k 159 57 648msec 50k
160 72 341msec 1k 161 1569 4min 9M
162 16 309msec 4k 163 30 344msec 9k
164 877 583msec 43k 165 32768 400msec 147k
166 807 1min 4M 167 1615 9min 16M
168 16 388msec 9k 169 1149 6min 11M
170 1 185msec 112 171 2 242msec 150
172 18 359msec 8k 173 170 1sec 166k
174 2 241msec 149 175 2 241msec 129
176 16 302msec 4k 177 29 361msec 10k
178 30 346msec 7k 179 29 340msec 7k
180 1245 1min 4M 181 1795 9min 16M
182 1376 4min 8M 183 971 1min 3M
184 2 255msec 398 185 3 256msec 596
186 16 316msec 4k 187 1 183msec 129
188 10 327msec 4k 189 2 241msec 404
190 16 318msec 6k 191 2 281msec 146
192 9 295msec 1k 193 631 22sec 1M
194 10 320msec 4k 195 256 333msec 1k
196 9 299msec 2k 197 28 402msec 9k
198 179 1sec 116k 199 252 1sec 136k
200 2 240msec 147 201 6 300msec 811
202 18 357msec 8k 203 4 293msec 618
204 1 183msec 112 205 2 250msec 149
206 9 307msec 2k 207 2 239msec 129
208 2 241msec 150 209 4 302msec 359
210 1245 1min 4M 211 79 695msec 44k
212 2 259msec 416 213 2 242msec 424
214 145 2sec 183k 215 60 693msec 52k
216 20 392msec 9k 217 4 303msec 661
218 877 587msec 43k 219 4 257msec 487
220 9 305msec 2k 221 1 183msec 129
222 16 315msec 5k 223 2 251msec 146
224 16 399msec 9k 225 1700 5min 11M

14



R BW run time nodes R BW run time nodes

226 2 253msec 398 227 4 359msec 594
228 20 393msec 9k 229 153 1sec 167k
230 11 326msec 4k 231 6 312msec 417
232 30 349msec 7k 233 108 603msec 54k
234 16 409msec 9k 235 24 398msec 12k
236 2 242msec 147 237 3 258msec 357
238 8 301msec 1k 239 1 184msec 145
240 2 240msec 112 241 2 242msec 148
242 16 320msec 4k 243 2 241msec 129
244 2 241msec 150 245 2 242msec 129
246 16 320msec 6k 247 2 241msec 149
248 16 393msec 9k 249 23 402msec 11k
250 72 339msec 1k 251 16 328msec 2k
252 9 300msec 1k 253 1 184msec 145
254 16 317msec 2k 255 1 184msec 112

7 Outlook

The main limitation of the presented approach is the need to construct the BDD for the
aggregated transition function. As this can quickly hit memory and computation time
limitations, a method is needed that circumvents this problem. I am currently working
on such a method, but it is too early to present results here. The algorithm uses two
phases, in the first phase it characterizes the set of configurations on the “slope” in
the space-time structure (these are the shaded cells in Figure 1). In the second phase
the equivalence relation is refined top-down (backward in time). It determines the
same equivalence relation as in the method described here, hence the scaling method
can also be applied with the new algorithm. How much larger temporal depth is
possible with this new method will need to be seen. Even though, the algorithm
can be implemented in a general way allowing the representation of the function to be
factored in an arbitrary composed way, it makes use of the special situation of multiple
time step computation of CA.

For the two-way protocol better methods compared to [5] have been developed.
However, they do not allow such a formal way of scaling as in the one-way case. These
newer two-way protocol methods are in the same way limited by the construction of
the aggregated transition function, and they can be improved in a similar way; it is
somewhat harder, because the two-way protocol takes the receive side configuration
into account in a more detailed way. With the progress for bandwidth analysis pre-
sented in this paper, it would be also interesting to investigate other two-dimensional
CAs with more states per cell, including WireWorld or even a universal constructor
[7]. Considering the large memory and computation requirements of more complex
CAs and investigation depth and width, a parallel implementation of the analysis al-
gorithms would be highly interesting. There are a few BDD libraries which use internal
parallelism. But as long as there are options for strong improvements of the sequential
algorithm available, a parallelization is too early.
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