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Centrally Controlled Clustered Wireless Sensor
Networks

Clemens Lombriser, Urs Hunkeler, and Hong Linh Truong
IBM Zurich Research Laboratory (ZRL)

Rüschlikon, Switzerland

Abstract—We present IMPERIA, a centrally managed archi-
tecture for large-scale wireless sensor networks (WSN). Within
the WSN, sensor nodes communicate using a clustered multi-
hop TDMA protocol, which globally synchronizes the network
and collects data at ultra-low power consumption.

The novel contributions to the state-of-the-art include a) an
efficient algorithm for network topology discovery and link
quality estimation, b) a clustering and routing algorithm for
partitioning the complete WSN into multiple clusters with a-
priori defined basestations, and c) a scheduling algorithm for
multi-cluster and multi-channel data collection incorporating
message aggregation.

Additionally, we discuss the advantages of using a centralized
management over distributed approaches and present the design
of a centrally managed energy-efficient WSN. The resultant
architecture was deployed in four different applications and has
been implemented for two embedded operating systems: TinyOS
and IBM’s Mote Runner. We report on its performance and
discuss opportunities for further research into the centralized
approach.

I. INTRODUCTION

MOST wireless sensor network protocols today are de-
signed for distributed decisions. Each sensor accesses

the communication channel and communicates along a route
it decides upon itself based on his local neighborhood. The
common argumentation for this fact is that sensor nodes
usually only have low computational resources such as a single
microcontroller running at a few Megahertz and providing
only a few Kilobytes of memory. Consequently they cannot
maintain large network topology tables or run complex routing
algorithms without seriously reducing resources available for
applications.

Collecting the network topology at a single central entity to
compute globally optimal solutions on the other hand is widely
considered to be inefficient. There are reports stating that up to
a whole third of the total available battery energy is used just to
collect this information [1]. Additionally distributed solutions
have been shown to be able to reach solutions at least close
to optimal. Distributed solutions however have an overhead of
control messages that has to the best of our knowledge never
been compared to a well designed and optimized centralized
solution. This overhead must be added in order to organize
and adapt to new knowledge propagating through the network.
Centralized solutions on the other hand can operate with little
control overhead once they have been configured.

The most efficient way in terms of bandwidth and energy
consumption for communication is to use time division mul-
tiple access (TDMA) protocols. They define exactly when

a sensor node needs to be actively sending or receiving
and eliminate concurrent access to the shared communication
medium. With TDMA, very low transceiver duty cycles can
be reached while still maintaining high bandwidth. Achieving
a low duty cycle is especially important for minimizing energy
consumption; typical sensor nodes can consume three orders of
magnitude less power when sleeping compared to when active.
The IRIS mote for example draws just 12µA during sleep,
but requires 10.31mA when its transceiver is enabled. At low
duty cycles, small additional power savings can significantly
increase the sensor node lifetime [2].

The challenge is to establish a TDMA protocol that could
span the whole WSN. Although distributed TDMA proto-
cols have been published (e.g. Dozer [3]), they still include
overhead for adaptation mechanisms in case collisions occur.
Furthermore, very dense networks present additional problems
as many sensor nodes content for the shared communication
channel.

In this report we present the Intelligent, Manageable, Power-
Efficient and Reliable Internetworking Architecture (IMPE-
RIA). It is a centrally controlled architecture that vertically
integrates a WSN network stack with the publish/subscribe
messaging middleware MQTT-S [4]. The architecture can
handle large-scale WSNs by forming clusters around multiple
basestations. IMPERIA maintains global synchronization to
run a network-wide multi-hop TDMA protocol, yet collects
data to the local basestations for efficiency. The centrally exe-
cuted algorithms for clustering, routing and scheduling make
use of efficient mechanisms to discover the WSN topology
and estimate link qualities. The energy spent during this initial
phase is gained back by an ultra-low power operation for the
remaining network lifetime, which usually is > 99 % of the
time a WSN is deployed.

The report is structured as follows: In Section II we de-
scribe common WSN application requirements and give an
overview of the state of the art. In Section III we discuss the
advantages of centralized WSN management over distributed
solutions and present the principles we followed in designing
IMPERIA. Section IV then details the different components of
the architecture, while the following sections V and VI present
the algorithms used for efficient network topology discovery
as well as clustering, routing and scheduling. We discuss
our experiences in implementing IMPERIA for two operating
systems and in running four deployments in Section VII
before we conclude the report. The appendix adds ideas for
further work and goes into more detail on how the simulations
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throughout the paper were created.

II. WSN APPLICATION REQUIREMENTS AND STATE OF THE
ART

A. Applications Requirements

WSN applications cover a wide range of requirements [5],
many of them being very application specific and requiring
specialized protocols. Recently, it has been remarked that the
theoretical requirements significantly differ from the actually
implemented applications [6]. Here we summarize the most
common characteristics that require non-trivial communication
solutions.

Typical WSN applications include the deployment of a few
dozen to thousands of sensor nodes. Such deployments are
only economical if the size and in particular the cost of
individual nodes is as low as possible as the cost of the network
increases with the number of nodes deployed. A major cost
advantage is using wireless instead of wired networks, which
can reduce the total installation cost by 80 % [7]. Wireless
sensor nodes on the other hand need to be powered by batteries
or some form of energy harvesting. In case they are battery-
operated, sensor nodes should reach a long battery life time
since a change of batteries is usually very costly or infeasible,
in particular when the nodes are placed in remote area that
are difficult to access.

The geographical area over which the nodes are spread is
usually large compared to the range of the radio used for the
wireless communication. Consequently, multi-hop networking
schemes are needed. In a multi-hop network, nodes that are
far away cannot reach the sink directly and have to send their
data to intermediate relay nodes, which then forward it to the
sink.

The data volume created by the nodes is usually very low,
e.g. a few bytes per second, with the possibility of a significant
larger volume in case of special events. A surveillance appli-
cation for example may only report short status information
messages during most of the time, yet deliver significantly
more detailed and hence more voluminous sensor data when
alarms occur. For such an application, it is also important that
the alarm and its data are reported significantly faster than
the status information, in some cases even in real-time. An
additional problem is that due to a potentially large number of
sensor nodes concurrently reporting an alarm, the aggregated
data volume might exceed the capability of a single radio
channel by far. In such a case, dividing the network into small
subnetworks or clusters, each having their own radio channels
may help meeting the application requirements.

In most applications sensor data is collected for ”monitor-
ing“ purposes and is consolidated on machines running on
legacy networks. Therefore the common communication of a
WSN is preferrably not point-to-point but tree-based, i.e. from
and towards a sink located at the root of the routing tree. The
data sent to wireless nodes usually contains management or
control data and therefore is only of small volume.

From a network operator’s perspective come additional,
more practical requirements:

• Ease of deployment – The network should require as
little configuration as possible. Ideally, sensor nodes are
of just one type and are able to take different roles
without configuration, such that an operator can place
any node at any location without running into the danger
that some might e.g. not support relaying functions.
Additionally, the status of the sensor node and possibly its
neighborhood should be testable right at the deployment.
Other deployment considerations are discussed in [8].

• Manageability and controllability – The operator
should at any time be able to quickly retrieve an overview
on the network status. Errors or failures should not only
be rapidly detectable, but also be reported in a way that
easily allows them to be isolated and repaired. Especially
with networks comprising a large number of nodes, it
should be possible to quickly pinpoint the problem and
take the appropriate action.

B. State of the art

A number of recently published WSN survey papers discuss
the pros and cons of various architectures and protocols in
great detail [9], [1], [10]. Here, we focus only on architectures
based on TDMA, which is our preferred choice due to its
inherent energy efficiency, bounded latency, fairness, and high
throughput [1]. We further concentrate on centralized archi-
tectures, while distributed solutions are presented in [11],[3]
or [12]. We believe that centralized architectures are superior
to distributed ones in terms of scalability, controllability, and
ease of management. The reasons are discussed in detail in
the next section.

One of the most known TDMA-based protocol is the Time
Synchronized Mesh Protocol (TSMP) [13]. TSMP is a pure
TDMA MAC protocol, meaning that the network is always
running in TDMA mode. Specialized slots are reserved for
management purposes such as node discovery or link quality
determination. An especially interesting feature of TSMP is
how it establishes the synchronization required for TDMA.
Common solutions use beaconing, but TSMP embeds time
information into normal data and acknowledgment packets.
TSMP assumes the existence of a centralized controller that
coordinates and manages the TDMA schedules, it is however
not known how this is done in detail.

The IMPERIA architecture in contrast uses TDMA only
during its synchronized phase, during which it employs bea-
coning for synchronization to simplify the requirements on
data link layer, which is recently being implemented in hard-
ware for efficiency. Furthermore, this report on IMPERIA
includes a complete description of the management procedures
that are required for operating a WSN: from network discovery
over routing tree construction and scheduling to clustering.

Another TDMA-based and centralized architecture is de-
scribed in [14], in which a centralized gateway computes the
TDMA schedule based on the battery levels of the sensor
nodes and distributes the results to the nodes using pre-
assigned slots. This architecture assumes that the gateway
has an a-priori knowledge of the network topology and that
all nodes are within the direct communication range of the
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basestation. IMPERIA on the other hand details all required
algorithms and can also work with sensor nodes located
multiple hops away from the centralized base station.

G-MAC [15] divides the TDMA superframe into two peri-
ods, 1) a collection period during which the sensor nodes use
a contention access scheme to send their traffic requirements
to a basestation, followed by 2) a contention-free distribution
period during which the sensor nodes exchange data messages
with each other. The access schedules for the contention-free
period are computed by the gateway based on the requirements
received during the collection period and broadcasted by the
basestation at the beginning of the contention-free period. G-
MAC assumes that all nodes are within the communication
range of each other.

PEDAMACS [16] also assumes that all nodes are within the
broadcast range of the basestation. Similar to our architecture,
PEDAMACS defines two operating phases: 1) a management
phase during which the network topology is discovered, the
TDMA schedule is computed and broadcasted to the nodes,
and 2) a synchronized phase during which the nodes follow
the TDMA schedule specifying when to send, receive, and
sleep.

Our IMPERIA removes the need of having all sensor
nodes within the communication reach of the basestation and
allows them to be located multiple hops away. Further we
use acknowledged unicast scheme during management mode
to communicate between the basestation and the sensor nodes.
This makes sure that the sensor nodes are correctly configured
before we start synchronized phase. As will be shown later,
our network discovery procedure is time bounded and more
energy efficient than the distributed ones of PEDAMACS. We
also provide a clustering algorithm which allows us to scale
to networks with thousands of nodes.

III. A CASE FOR CENTRALIZED WSN MANAGEMENT

It is an almost dogmatic belief within the WSN commu-
nity that centralized management of large networks has to
be inefficient. We have encountered this statement in many
publications however lack a reference proving the point. The
belief in the efficiency of distributed solutions goes as far as
that algorithms that do not allow a distributed implementa-
tion are not even accepted as reasonable solutions for WSN
networking.

One of the main arguments quoted against centralized
algorithms is that a global view of the network needs to
be obtained before they can perform their work. Collecting
this information is considered to scale badly and involve a
substantial amount of communication and thus energy loss.
It is however neglected that distributed algorithms initially
require extra effort as well, and do need time until they settle
into a stable configuration. We argue that with an efficient
topology discovery mechanism the impact of establishing a
global network is reduced far enough to make a centrally
managed solution competitive. Such a mechanism is presented
in Section V.

Another argument for distributed algorithms is that they are
more flexible to adapt to changes in the network topology,

such as when nodes fail or link qualities change. Local
decisions of the sensor nodes can quickly adapt and correct the
problem, while loosing only little data that should be collected.
A centralized algorithm however can as well take care of
such situations and instruct the network to act accordingly.
Additionally, research in link quality estimation has advanced,
such that is better known how links of transient quality can
be detected and thus avoided by routing protocols. In Sec-
tion VII-F we report that within our laboratory, we reach a
better performance with a stable network using a better link
quality estimation than with a distributed approach adapting
its collection parent over short times.

In many cases it is also possible and even desirable to detect
bad connectivity already at deployment time, such that appro-
priate physical changes can be made and the WSN does not
have to cope with too many bad links at all. Simply buffering
messages over times of bad connectivity then may save a lot of
algorithm complexity. We believe that it is generally better to
fix bad connectivity with physical modifications at deployment
time than to try to capitalize on short term improved links.

It is also often argued that a centralized architecture in-
troduces a single point of failure, namely the basestation
controlling the whole network. In many cases however it is
the basestation that receives all data from the network, and
if it fails, the WSN cannot export its data anyway, such that
it becomes useless. In a centrally controlled approach, sensor
nodes may be able to detect this situation much faster than
a distributed protocol. It then can take appropriate measures
such as going to a low-power waiting mode. If a distributed
approach is badly designed, it may continue to run for a
considerable amount of time while pointlessly wasting much
energy in trying to find working basestations. A graceful
degradation may be extremely valuable as a network-wide
battery replacement may become necessary if the basestation
fails.

A. Advantages over distributed solutions

We believe that centralized management of WSNs does have
a number of specific advantages over distributed solutions:
• Simplicity of the code on the nodes – As the main in-

telligence of the network is running outside of the WSN,
sensor nodes do not need to perform complex tasks. This
requires less effort in programming and debugging, but
also lowers the memory and processing requirements of
the network stack. A lower complexity of the code also
improves the predictability of the node behavior. Table I
lists the functions we require a node to implement.

• Observability and controllability – Assuming that the
gateway controlling the network provides more resources
for storing and logging the network data as well as its
decisions, it is easier to analyze problems a network
experiences. This is especially important when the cause
of network failures should be quickly determined in order
to decide on appropriate actions.

• Ease of management – Changes to the network can be
performed manually at the gateway. This is also a good
point were expert knowledge can be introduced. In case
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a wireless link e.g. looks good in its quality, but a human
operator knows that it will fail for some reason that is not
detectable by a network protocol, the operator can remove
it manually from the network topology. Also routing and
scheduling decisions can be overridden if they contain
bad choices. As the centralized functionality can also be
called from mobile nodes during deployment, it allows
quickly checking connectivity and sensor node operation
on site. Deployment reports have shown that this is an
invaluable feature [8], [17].

• Cost – Initially, the WSN vision was that thousands of
wireless sensors would be distributed in large amounts in
the environment and would autonomously form networks.
A fact that has been underestimated however, is that
sensor nodes will never get as cheap as costing just a
few dollars a piece, which would allow such applications.
Rather, they will continue to cost at least about $50+ –
why? Considering that the costs for manufacturing and
for software licenses will not disappear, it is difficult to
set up business plans which actually allows a company
to make money out of distributing millions of cheap
sensors of which just a few sense meaningful data.
Additionally, environmental considerations will limit the
number of deployed sensor nodes especially in nature,
where batteries should not be left back even in small
quantities. Consequently, large networks will always cost
several $1000–10’000, at which most likely some training
of the personnel using it will take place. Such operators
will be able to take wireless link quality decisions during
deployments and manage to the network behavior if they
are given the means to do it.

• Choosing network parameters – WSN research has
shown that there is no single optimal protocol for various
types of WSNs. The performance of a network protocol is
largely dependent on network density, the general topol-
ogy (e.g. three dimensional vs. two dimensional, large
asymmetries such as train or bridge networks, . . . ) [18],
communication structure (single or multiple sink/source),
position of the basestation within the network, bandwidth
of the physical layer, etc.
A centralized controller knowing the whole network
topology can make better decisions on different network
parameters than distributed algorithms which generally
only use local information for decisions.

• More general solution – Last but not least, a centralized
controller can locally run any distributed algorithm to
determine a network configuration before deployment.

B. Our design principles

As discussed in the last section, we believe that for many
applications, a centralized management offers advantages over
a distributed solution. However, also the centralized WSN
management must be well designed to perform efficiently.
Here are the most important principles we followed when
designing IMPERIA:
• Only one transmitter at a time – The basestation

initiates all activities and only allows a single node to

Function Description
Source routing Forward a message along a source route writ-

ten into the message.
Status reporting Report battery voltage, configuration identi-

fiers, and other status information.
Save configuration Store information on how to behave in syn-

chronized mode.
Acknowledging Responding to a command using the reverse

source route.
Periodical sleep Periodically sleep in case no communication is

occurring.

Topology discovery
Neighbor discovery Broadcast discovery messages, collect neigh-

bor replies, and send back to caller.
Link probe (LP) Broadcast a pattern of link probe messages.
Compute LP statistics Compute LP statistics when receiving link

probe messages.
Report LP statistics Report the last collected LP statistics to the

caller.

Synchronized mode
Synchronizing Receive a time beacon from the parent and

synchronize to its time.
Schedule execution Activate radio transceiver according to individ-

ual send/receive schedule.
Aggregate and buffer
messages

Receives data from child nodes and buffer
locally until next send slot.

Handle API Handle commands and events of the IMPERIA
API for the applications.

TABLE I
THE FUNCTIONS AN IMPERIA NODE NEEDS TO PROVIDE ARE

RELATIVELY SIMPLE, YET ALLOW A VERY FLEXIBLE MANAGEMENT OF
THE WSN. THE ONLY STATUS INFORMATION THAT NEEDS TO BE KEPT IS

THE SCHEDULE INFORMATION FOR THE SYNCHRONIZED MODE AND
TEMPORARILY THE REVERSE SOURCE ROUTE TO A COMMAND. NOTE

SENSOR NODES ARE PASSIVE BY DEFAULT AND ONLY COMMUNICATE IF
INSTRUCTED TO DO SO.

transmit at a given time. While this may seem terribly
inefficient at the first glance, especially as there may be
hundreds of nodes present in a network, it does solve
quite a number of problems relating to the nature of
wireless communications.
The main benefit is that the sender will find the channel
free when it needs to use it. No or only simple contention
protocols are needed. The only source of possible colli-
sions comes from lost of acknowledgements, which may
trigger a retransmission of a message while the receiver
tries to forward it.
With this one transmitter at a time rule, messages travel
quickly through the network to the destination node and
back, such that the basestation can trigger subsequent
activities at a high rate. Furthermore, the time duration
of the activities are almost deterministic, thus easy to
recover in cases of failures.
The only exception to this rule is the discovery procedure
presented in Section V. After a broadcast of a discovery
message, all neighbors attempt to respond at the same
time. This is an exception for which to the best of our
knowledge there is no efficient solution.

• Management and ultra-low power synchronized mode
of operation – Initially, the wireless network is put into
a management phase in which all nodes are in listening
mode, waiting for commands sent by the basestation.
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During this phase, they can be quickly accessed to exe-
cute procedures for topology discovery, synchronization
and configuration. After having collected the topology
information and configured the nodes for a TDMA
schedule, we start the synchronized mode, in which the
nodes spend the most of their time sleeping (i.e. radio
transceivers off to save power). As a synchronized TDMA
network allows to only turn on transceivers if there is
actually something to send or receive, the sensor nodes
run with minimal power consumption and may make
up their initial leeway in energy consumption versus
other low-power networks. For good results however, this
requires the management phase to be brief and efficient.

• Minimize amount of network information stored on
the wireless nodes – All network information we per-
manently store on a wireless node are its address and its
TDMA schedule information. No additional data about
neighbors or other network specific information, e.g.
routing information, is kept. All messages exchanged
between the basestation and the nodes during the man-
agement phase make use of source routing. During the
synchronized mode the timing of the message identifies
its target, such that it does not require a destination
address at all.

IV. IMPERIA ARCHITECTURE

Based on the principles presented in the last section, we
have designed the Intelligent, Manageable, Power-Efficient
and Reliable Internetworking Architecture (IMPERIA) for
Wireless Sensor Networks, which is shown in Figure 1.

IMPERIA organizes the WSN into one or multiple clusters
depending on its size and topology. Clusters are created such
that at least one permanently installed basestation with a con-
nection to an IMPERIA Gateway (IGW) is found within them.
The IGWs manage the sensor nodes within their cluster and
collect the sensor data they generate. The decision of which
sensor nodes belong to which cluster is taken by the IMPERIA
Global Controller (IGC), which bases its decision on the
network topology information received from the individual
IGWs. The IGWs, the IGC, and client applications commu-
nicate using the open publish/subscribe messaging protocol
MQTT-S [4], which is implemented by the IMPERIA broker.
This simplifies scaling to larger networks with multiple IGWs
and a large number of client applications. The number of
connections increases only at the broker, which is specifically
built for this task.

As many other TDMA-based architectures, IMPERIA oper-
ates in two modes: a management mode for network topology
discovery and node configuration, and a synchronized mode
within which data is collected from the sensor nodes. During
the management mode, IMPERIA generally lets the sensor
nodes remain in receive mode such that they can quickly
respond to commands. Compared to other architectures, this
practice will consume more energy during deployment and
network topology discovery time. IMPERIA compensates for
this additional energy usage by using an ultra-low-power
TDMA protocol during the synchronized mode. Through the

centrally computed schedules, sensor nodes have only to wake
up when they can send or receive data.

In the next sections, we discuss more details of the man-
agement and synchronized modes and present algorithms for
their efficient execution.

A. Management mode – Topology Discovery and Configura-
tion

Initially, wireless sensor nodes implementing the IMPERIA
network stack are in receive mode. An IGW may issue
commands to individual sensor nodes by sending them a
message possibly over multiple hops using source routing. The
sensor nodes execute the command and respond with the result
by reversing the source route.

Within the management mode, the main tasks to be per-
formed are the network topology discovery, the sensor node
configuration, and the status checks. The first task includes
discovering all the wireless links between the sensor nodes
and their neighbors as well as measuring the quality of those
links. The second procedure is needed to configure the sensor
nodes for the synchronized mode and the last one is to verify
this configuration as well as the correct operation of the node.

During the management mode, the IGC and the IGW ensure
that always only one message is traveling through the WSN
at any time. Sensor nodes respond with an acknowledgement
message upon reception of a message at each hop it travels
along the source route. In case the sending node does not
receive an acknowledgement, it attempts to retransmit the mes-
sage a number of times before dropping it. The sensor nodes
use CSMA to send messages because the retransmissions of
a first sender may collide with a transmission of the receiver
over the next hop if an acknowledgment was lost.

Allowing only one transmission at a time may seem to be
inefficient. We believe however that this rule improves the
reliability and predictability of the communication through the
network. The network still can be operated quite efficiently as
we will show in Section V.

If multiple IGWs are used, the IGC may choose which one
it will use to send messages to the sensor nodes. It may for
example choose the one offering the shortest source route. For
discovery and link probing, it will select one IGW to perform
the discovery and link probing. The selected IGW will publish
all results to the IMPERIA broker such that the other IGWs
and the IGC receive them. It will also inform the IGC upon
completion of its task, such that the IGC can continue issuing
sequential commands.

In case that the source routing paths get too long or that the
network seems not to be fully connected, the IGC may also
choose to continue discovery or link probing from a different
IGW.

The clustering, routing and scheduling decisions are gen-
erally executed by the IGC. If however no IGC is present or
only a single IGW is connected to the network, the algorithms
can also be run by the IGW itself.

The IMPERIA management mode includes a management
sleep mode. If the wireless nodes do not receive any IMPERIA
messages for an extended amount of time, e.g. 30 minutes or
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Fig. 1. IMPERIA architecture for end-to-end communication from the WSN to client applications. The architecture includes the wireless sensor network,
one IMPERIA gateway per cluster, an IMPERIA broker to handle the communication between the gateways and the IMPERIA global control as well as to
client applications.

synchronization
frame

collection
frame

listening
frame

channel A

channel B

channel C

sleep
frame

global 
broadcast tree

cluster data
collection trees

Fig. 2. The IMPERIA multi-channel TDMA superframe structure and the
routing trees used during each frame. During the synchronization frame a
single broadcast tree spans the whole network, while the collection frame
uses individual unicast trees on different communication channels for each
cluster. In the listening frame, new or un-synchronized nodes broadcast
announcements to their neighbors only.

an hour, they start a low power management mode, during
which they periodically wake up for a short time to listen for
messages. If they do receive any IMPERIA message, they will
remain awake for an extended period again. This saves energy
during deployment time or in case synchronization got lost.

B. Synchronized mode – Clustered ultra-low power TDMA

During the synchronized mode, all wireless nodes within
the WSN execute a TDMA schedule which defines when they
have to be in receive mode and when they can send messages.

IMPERIA defines a superframe structure which is period-
ically repeated. The four frames constituting the IMPERIA
superframe are illustrated in Figure 2 and defined as follows:

1) A synchronization frame within which synchronization
beacons are forwarded along a network-wide broadcast
tree. The function of the beacons is to establish synchro-
nization between the nodes, such that they will start and
end the subsequent TDMA slots at the same time. The
broadcast tree is rooted at one of the basestations (the
main basestation) and each parent node is assigned a

slot to broadcast its synchronization beacon to all of its
children.
Sensor nodes that are in management mode can imme-
diately enter the synchronized mode upon reception of a
synchronization beacon from their parent and will then
follow the schedule they are configured to follow. A
sensor node expects to receive a synchronization beacon
during each superframe. If synchronization beacons are
missed for a number of times, the node will go back to
the management mode (and eventually to management
sleep mode). From there it may reenter synchronization
mode immediately after the reception of the next syn-
chronization beacon.
The synchronization beacons are sent within the same
communication channel as used during management
mode. This enables the sensor nodes to fall back into
the known state of management mode, yet still be
ready to join the network again. As the synchronization
beacons themselves are short, the main IGW may decide
on appending (piggy-backing) data messages destined
for one or multiple nodes in the network. This allows
a low-bandwidth data dissemination path intended for
configuration data.

2) The second frame is the listening frame. This frame
is optional and may be enabled by the broadcast tree
root for one superframe to search for new or lost
sensor nodes. All sensor nodes that are in synchronized
mode will be in receiving mode on the management
communication channel for the duration of the listening
frame. The synchronization beacons include information
on the start of the listening frame, such that sensor
nodes which are still in management mode, but without
valid configuration, may synchronize into the listening
frame and broadcast an announcement message. All
sensor nodes in synchronized mode which receive this
announcement will forward it to the basestation within
the next collection frame. That way, the gateway is
notified of new nodes within the network, and how they
are connected.
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3) The third frame is the collection frame. Within this
frame, sensor nodes forward their data along a collection
tree to the cluster’s basestation. Each cluster makes use
of an individual communication channel, such that the
data transmission can be performed in parallel. During
this frame, there is within each cluster (and hence
communication channel) always only one child node
sending and one parent node receiving.

4) The last frame is the sleep frame, which covers the
remaining time of the superframe. No communication
takes place during this time and all sensor nodes may
turn off their radio transceivers to save energy. Choosing
the right duration of a superframe involves a trade-
off between the frequency of sensor data delivery and
energy consumption. What a good choice is depends
on the application, but for maximum network lifetime,
the sleep frame should consist as much as possible of
the superframe duration. The minimum duration of a
superframe on the other hand depends on the number
of slots required for the broadcast and collection frames
and the time reserved for the listening frame.

The synchronization beacons are a key element of the
IMPERIA network stack. They contain flags for enabling
optional frames, emptying collection data queues or requesting
status reports. Additional fields include the time remaining
until the next listening frame start, such that unsynchronized
nodes can synchronize themselves into it, as well as the time
until the next superframe will start and its total duration. Hence
all timings are kept relative to the last synchronization beacon
received, and no global reference time must be established.

An additional field of the synchronization beacon is the
expiration field, which is set by the main basestation and
allows to run a count-down until the synchronized mode
should be left by all the nodes in the network. A time age
field on the other hand is set by a parent node when it
does not receive a beacon from its own parent. This field
lets child nodes know that their parent is about to loose
synchronization. Thus, if a parent node has not consecutively
received a certain number of synchronization beacons, it will
move to the management mode jointly with its whole subtree.
Hence this field avoids having to wait for each hop to loose
its synchronization individually.

In the following sections we will discuss the actual al-
gorithms used within the management mode and for the
configuration of the synchronized mode.

V. EFFICIENT TOPOLOGY DISCOVERY

A key performance measure for a centrally managed WSN
architecture is how fast it can discover the topology of the
WSN. The clustering, routing, and scheduling algorithms re-
quire information about the available links in the network and
their quality to compute an efficient communication strategy
for the synchronized mode. If the time for assessing the
network topology is kept short, centralized protocols have
better chances in competing with distributed solutions.

IMPERIA does use duty-cycling during the management
mode, however only for extended periods where no com-
munication occurs, such as at deployment time. If a sensor

Parameter Value Parameter Value
Tdeepsleep 10 s Twait 30 min
Tdeepwake 50 ms Tsend 7 ms
mprobe 100 messages Tmaxbackoff 50 ms1

mdiscovery 3 broadcasts

TABLE II
PARAMETER VALUES USED TO COMPUTE THE NETWORK STARTUP TIME

OF FIGURE 3

node in management mode does not receive any IMPERIA
message for a long time (such as 30 min or an hour), it goes to
management sleep mode. In management sleep mode, sensor
nodes sleep for a time Tdeepsleep and periodically wake up
and listen for a time Tdeepwake.

To start up a network, all sensor nodes need first to be
woken up from management sleep mode, then the network
topology needs to be discovered and the link quality assessed.
Finally, all sensor nodes need to be configured with their
TDMA schedule before the main basestation can issue its time
beacon to start synchronized mode.

In the following we present the algorithms used for the
individual steps and at the same time compute the total
startup time for a WSN of N nodes, which are deployed
in a management sleep mode. We assume that the complete
network is deployed when the process is started. Example
values for the parameters we introduce are given in Table II.

1) Wakeup – An IGW starts the wakeup procedure by
requesting its basestation to continuously broadcast a
short wakeup message for Tdeepsleep + Tdeepwake. The
sensor nodes listen for messages during their wakeup
time Tdeepwake. In case they determine communication
on the channel, they wake up and attempt themselves
to broadcast a wakeup message using CSMA for a time
Tdeepsleep + Tdeepwake, then they remain listening. In
case they do not receive any IMPERIA messages for an
extended time Twait, they go back to deep sleep.
The time required for this wakeup procedure depends
on the sleep/wake durations as well as the depth of the
network in hops h, and has a maximum duration of

Twakeup = (Tdeepsleep + Tdeepwake) · h (1)

After issuing the wakeup command, the IGW has to
wait until the broadcasts have died down at least in
its vicinity. It must therefore have an estimation of the
maximal hop count of the network and hence also the
maximum time it needs to wake up. After that, the IGW
can continue with the actual network topology discovery.
As an alternative to the wakeup algorithm, the IGW may
also issue multiple rounds of discovery until all sensor
nodes have been found.

2) Link probe and discovery – The second step is the
discovery of all available links within the network and
their quality. This process is controlled by the IGW,
which ensures that at each point in time, only one
measurement is performed. Interference effects from the

1With standard IEEE 802.15.4 settings, the maximal backoff time plus
message transmission is 38 ms [19], we add an additional 12 ms safety margin.
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own protocol are minimized that way at the cost of an
acceptable longer duration of the whole process.
When a node is instructed by the IGW to discover its
neighbors, it first broadcasts a pattern of mprobe link
probe messages. The neighboring nodes receiving these
link probe messages record the number of link probe
messages received and associated link quality measures
such as RSSI, LQI, etc. After having sent the link probe
pattern, the current node broadcasts a neighbor discovery
message, to which the neighbors reply while adding the
previously obtained link quality measurement results.
After broadcasting a first neighbor discovery message,
the current node waits for the maximum CSMA con-
tention time Tmaxbackoff and rebroadcasts the neighbor
discovery message with a list of nodes of which it has
already received a reply. In this second round, only
sensor nodes that are not included in the list reply to the
broadcast. Including the replied nodes in the discovery
message allows reducing the number of contenders for a
reply and thus increase the probability to find all neigh-
bors, especially within dense networks. The discovery
rounds are repeated until no more nodes answer or for a
maximum number of iterations mdiscovery. All neighbor
and link probe information is then returned to the IGW
by the sensor node that had performed the discovery2.
The IGW keeps a list of nodes that have not yet
performed a link probe and neighbor discovery, and
instructs node by node to do it until the list is empty.
The nodes are reachable via source routing, and the IGW
can determine the best path at each iteration based on
the already discovered links.
This assumes that the links are bidirectional to a certain
extend, i.e. that messages can be exchanged in both
ways with a certain probability. It has been found that
links of high quality in one direction have at least an
acceptable quality in the other, which would suffice for
this procedure [20]. Links with low quality are also
of reduced interest as they will likely not be used for
routing.
The time Tdiscovery spend by each of the N nodes to
scan its neighborhood consists of sending the message
via source routing to the node, requiring an expected
number of transmissions along a route R E[R], perform-
ing the link probe and discovery, then sending the mes-
sage via reversed source route back to the basestation:

Tdiscovery = E[R] · Tsend + (2)
mprobe · Tsend +
mdiscovery · Tmaxbackoff +

E[R] · Tsend
Note that the total time required for discovery is N ·
Tdiscovery and scales almost linearly. The component
that increases faster than linear is the time required for

2Dense networks may require to send neighbor and link quality information
using multiple messages to the gateway. In such a case the modified version
of Appendix B may improve reliability.

the source routed message to reach the selected node
and return with the result. This time remains however
small for practical network sizes when compared to the
other terms.

3) Network Configuration – When the IGW has com-
pleted the network topology discovery, it can compute
the routing and schedule for the network, and distribute
the resulting configuration data to the sensor nodes.
Assuming the availability of an efficient algorithm that
completes in neglectable time (see Section VI for such
an algorithm), the network needs to spend an additional
N · E[R] · Tsend to distribute the network configuration
messages to all nodes.

4) Network start – Having configured the nodes, the net-
work can be started. This is done by the main basestation
broadcasting a first synchronization beacon. Each sen-
sor node receiving this beacon can enter synchronized
mode and will issue synchronization beacons within its
appropriate slot within the broadcast frame. The time
until all sensor nodes have entered synchronized mode
is thus equal to the duration of the broadcast frame. An
evaluation of the broadcast frame duration Section VI-C
shows that it is usually neglectable in comparison to the
time required for discovery and link probe.

The duration of the complete startup process depends on
three parameters that are only determined through the actual
network topology. These are the number of nodes N , the
maximum number of hops h and the expected mean number
of transmissions to reach a node E[R], which is the sum of
the expected number of retransmissions required to send a
message over each link of the route from the basestation to
the node3:

E[R] =
1

|Rall|
∑

R∈Rall

∑
r∈R

1

p(r)
(3)

where Rall are all the routes from the basestation to the
nodes, R is one of these routes, and r is an individual link
between two nodes along the route R. The Packet Reception
Rate (PRR) p(r) finally indicates the probability that the
transmission of a message over a link is successful.

An estimation of the total network startup time results
from summing up the wakeup time Twakeup, the topology
discovery time N · Tdiscovery and the configuration time, in
which a configuration message is sent to each sensor node
N ·E[R] · Tsend. The time to compute the clustering, routing,
and scheduling is neglected here.

Figure 3 shows the resulting total network startup time
for networks of varying size. The results are obtained from
simulations that are performed as discussed in Appendix A.
Networks with the shown average hopcount E[h] were simu-
lated. For each network size, 1000 topologies were generated
and a randomly chosen node was selected to be the basestation

3Note that this is only an approximation. Individual nodes will only attempt
retransmission for a number of times, and the basestation will reattempt for
a number of times if no answer has been received. The approximation is
however sufficiently close when the source route includes only links with
sufficient PRR (e.g. >80 %).
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Fig. 3. Average number of hops and total startup time for varying network
sizes

from which the network discovery was initiated. The resulting
values show that networks of 300 nodes can be expected
to have been discovered and started within 11 min while
1000 nodes require about 30 min. After the startup time, the
networks will run in synchronized mode and thus highly
optimized. We believe that this value is competitive compared
to other decentralized low-power networks, which also need
time to converge and stabilize on a given route and have
additional overhead during this time. It is however difficult
to find values in literature for a good comparison.

VI. CLUSTERING, ROUTING, AND SCHEDULING

If multiple IGWs/basestations are available within the net-
work, the WSN can be partitioned into multiple clusters of
sensor nodes which send their data to their cluster basestation.
Clustering allows balancing the traffic load more evenly over
the network, which reduces the overall time required to collect
all sensor data, and additionally should allow reducing the
duty cycles of the sensor nodes, especially the ones close to
the basestations which have to forward the data of all nodes
further away.

For our algorithms, we assume a number of IGWs connected
to a number of fixed basestations that are distributed within
the WSN, see Figure 1. Note that this differs from many
approaches in the literature, where clustering is commonly
used to locally aggregate data at a cluster head within the
WSN [21]. This cluster head then forwards the data of its
cluster to the closest basestation. Our IMPERIA architecture
only allows basestations to be cluster heads 4.

The clustering, routing, and scheduling processes are run
at the IGC after it has obtained a global view of the WSN
topology from the IGWs as described in Section V.

4In IMPERIA a base station is a wireless node that has a wired connection
(e.g. via a serial port) to an IGW. Otherwise, there is no difference between
a basestation and a normal wireless node.
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, and the linear coefficient

β = 0.05. It is multiplied with the measured success rates pfwd(r) and
pbck(r) before using it as link quality indicator. Note that measured values
in area A seem “to good to be true” and are corrected to lower values by the
multiplication.

A. The DIVIDE clustering algorithm

The clustering algorithm used in IMPERIA is called DI-
VIDE – Deep Internetworking via Independent Datasource
Exploitation. It is a combined clustering and routing algo-
rithm that partitions sensor nodes into clusters such that their
expected number of transmissions (EXP) to the basestation of
the cluster is minimized. A low number of transmissions not
only translates into a low number of TDMA slots needed for
delivering the sensor data, but also helps saving energy.

The basis for the calculation of the EXP is the Packet
Reception Rate (PRR) of both the forward and backward paths
of a link [22]. The probability

p(r) = pfwd(r) · pbck(r) (4)

of a message being transmitted successfully over a link r is
equal to the forward PRR (pfwd(r)) of that link multiplied
by its backward PRR (pbck(r)) (for a successful return of an
acknowledgment). The EXP of link r is then the expected
number of transmissions required until a message has been
transferred over that link, i.e.

E[r] =
1

p(r)
(5)

A simple PRR measurement however is not enough to mea-
sure the quality of a link. Measuring link qualities has shown
to be difficult and important enough that it has developed into
an own area of research within the WSN community [20]. In
general, the quality of a link can be classified into connected,
transient, or disconnected. A connected link is a link with
constantly high PRR, while a disconnected link has constantly
low PRR. The transient links are the ones responsible for
one of the main challenges in WSN research. Those links
may temporally have very high or very low PRRs, and
may vary with environmental conditions. While many WSN
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protocols attempt to use such links by allowing temporary
reconfiguration, we aim at avoiding them in favor of better,
if possible connected links.

An additional metric to identify the link quality is the Re-
ceived Signal Strength Indicator (RSSI) which has been shown
to have a quite predictable relation to the PRR for frame-
based transceiver [23]. Measurements suggest that thresholds
on RSSI can be defined above which links are connected.
A similar value is the Signal to Noise Ratio (SNR) [20],
which has an even better prediction value, but is not as easily
accessible on most transceivers.

Equation 6 shows how IMPERIA estimates the PRRs based
on measured PRR and RSSI values. The multiplication at-
tempts to adapt the measured values closer to an a-priori
known relation between RSSI and PRR. The function of
Equation 6 is shown in Figure 4 and compared to RSSI and
PRR values measured with the AT86RF230 transceiver on an
IRIS mode. Note that the minimum RSSI value reported by the
AT86RF230 seems to cover most of the links with reception
rate of < 80%, such that links in the transient range cannot
be easily distinguished. Other receivers such as the CC2420
have an RSSI range that ranges over links with even lower
PRR.

The multiplication with Equation 6 penalizes links that look
better than expected (region A), but maintains the measured
success rate for links with bad performance despite a good
RSSI. When using the corrected PRR for computing the EXP,
links with stronger RSSI are preferred. The equation has
three parameters which need to be adapted to the transceiver
used. These are the cut-off RSSI for good links mrssi, a
transient zone stretch factor α, and a linear coefficient β which
favors links with better RSSI in the connected region. Besides
the measured PRR pfwd(r) also the measured RSSI in the
direction of the link rssi(r) is used for the calculation. Note
that the backwards PRR p̂bck(r) is computed in an analogous
way.

From the corrected transmission probability, the clustering
algorithm computes the cost to each basestation and assigns
each sensor node to the best cluster c as follows:

p̂fwd(r) =
1− β
2

tanh (α(rssi(r)−mrssi)) · pfwd(r)

+β

(
1

rRSSI
rssi(r) +

1

2

)
(6)

E[R(i, c)] =
∑

∀r∈R(i,c)

1

p̂fwd(r) · p̂bck(r)
(7)

E[Ri] = min
c

E[R(i, c)] (8)

where R(i, c) is the route from node i to the basestation of
cluster c, and each hop r ∈ R has a transmission probability
of p(r). E[R(i, c)] represents thus the corrected EXP required
to complete the route from node i to the basestation of cluster
c, assuming infinite retransmission attempts and no buffer
overruns. The route with the minimal corrected EXP is Ri.
It identifies both the cluster to which node i belongs and the
route from node i to that cluster’s basestation.

Other approaches for routing decisions, e.g. Arbutus[24],
also exploit the Link Quality Indicator (LQI) values. LQI

is however not standardized and may be implemented in
different ways by transceiver manufacturers. Additionally,
Srinivasan [23] also report that LQI has a larger variance than
RSSI for the same success rate on the CC2420.

A method for implementing the DIVIDE clustering ap-
proach is shown in Algorithm 1. It implements a breadth-
first search from each basestation and assigns the mini-
mum corrected EXP found for each node and the parent to
which to forward the packets. For this purpose it initializes
curLevelNodes with the list of basestations. It then iterates
through the nodes in curLevelNodes and checks whether
each neighbor could be reached with lower corrected EXP or
with better cluster balance from the current node. If this is the
case, the parent and current corrected EXP cost are updated,
and the neighbor is added to the nextLevelNodes, the list
of nodes to be evaluated next.

Algorithm 1 The DIVIDE clustering algorithm
1: curLevelNodes = basestations
2: exp(1 to nodecount) = infinity;
3: parent(1 to nodecount) = -1;
4:
5: while curLevelNodes not empty do
6: for all node in curLevelNodes do
7: for all neighbor of node.neighbors do
8:
9: nextExp = exp(node) + 1

pcorr(neighbor→node)
10:
11: if nextExp < exp(neighbor) OR
12: (nextExp == exp(neighbor) AND
13: ccount(neighbor) < ccount(node)) then
14:
15: exp(neighbor) = nextExp
16: parent(neighbor) = node
17: nextLevelNodes.add(neighbor)
18: end if
19: end for
20: end for
21:
22: curLevelNodes = nextLevelNodes
23:
24: end while

The decision on line 13 determines whether a parent (and
with it the cluster) is changed if the EXP is lower, or if the EXP
is equal and the neighbor cluster is smaller than the current
node’s cluster. The cluster node count function ccount is not
listed in more detail for the sake of brevity, but can easily be
implemented using additional variables and arrays for keeping
track of the nodes’ current cluster assignment and the number
of nodes in each cluster.

A useful byproduct of this clustering algorithm is that
it provides a routing path for collecting from the sensor
nodes to the cluster controllers. This routing can be used
to schedule the transmissions for the collection frame of
IMPERIA’s synchronized mode. Algorithm 1 can also be
used to compute the routing tree for the broadcast frame
by initializing curLevelNodes with the basestation of the



CENTRALLY CONTROLLED CLUSTERED WIRELESS SENSOR NETWORKS 11

600 700 800 900 1000 1100 1200 1300 1400 1500 16000

2

4

6

8

10

12

E[R]

Fr
ac

tio
n

of
ne

tw
or

ks
[%

]
4 centered CC
4 random CC
3 centered CC
3 random CC
2 centered CC
2 random CC
1 centered CC

Fig. 5. The expected number of transmissions required for a network of 200
nodes when using clustering. The position of the basestations has a strong
influence over the number of required transmissions for the network.

main IGW to be used as tree root and reversing the direction of
the link transmission rate pcorr(node→ neighbor) on line 9.
Note that the EXPs for the broadcast frame only includes the
forward PRRs as broadcasts are not acknowledged.

To evaluate the benefit of using clustering, we have gener-
ated 20’000 random network topologies with 200 nodes and
1 to 4 basestations. The basestations were either positioned in
the center of the area or randomly selected from the nodes. The
reason for the centrally positioned basestations is to evaluate
the benefit of just parallelizing the data transmissions. Some
applications may place restrictions on the positions of the
basestations and only allow to use multiple collocated basesta-
tions on parallel channels. Details on how the topologies were
generated are given in Appendix A.

Figure 5 shows a probability density function for the ex-
pected total number of transmissions needed for data collection
E[R]. A single basestation in the center will introduce an
expected total number of 980 (100 %) transmissions. For four
randomly placed basestations 771 (79 %) transmissions are
needed, for three 851 (87 %), and for two 946 (97 %). For
centered basestations the values are 956 (98 %), 965 (98 %),
and 975 (99 %), respectively.

The conclusion of these results is that using multiple clusters
does reduce E[R] substantially if the basestations are not
collocated. The long tails of the distributions are a result of the
additional basestations being located in regions of the network
which connect to the rest through an area to which another
basestation has shorter access. If for example all basestations
are located within the south-eastern corner of a WSN, it is
likely that the basestation that located the most north-west will
have to serve a large part of the network and the additional
basestations serve only small parts of the network. A special
case are the centrally placed basestations, whose benefits
lay merely in allowing multiple communication channels to
be used in parallel, hence speeding up the communication.
E[R] is however not significantly reduced. If basestations are
more favorably distributed however, the transmission count is
considerably reduced.

IEEE 802.15.4 MAC frame
header payload CRC

≥9 octets IMPERIA messages 2 octets

Length Type NodeID Timestamp Data
1 octet 1 octet 2 octets 2 octets (Length-4) octets

TABLE III
IMPERIA MESSAGE FORMAT

B. Message Format and Aggregation

An additional measure for reducing the number of transmis-
sions within the network is to introduce message aggregation.
Within IMPERIA, short messages are concatenated such that
in an extreme case a data collection tree parent can send its
own and all of its children messages with a single message to
its parent.

Transmitting a single large message requires less time than
transmitting multiple smaller messages and is therefore more
energy efficient. A minimal transmission over IEEE 802.15.4
includes a 4 -octet preamble, 1-octet start field, 1-octet length
field, at least 3-octet header data and a 2-octet checksum.
At 250 Kbps, this takes 352µs. Each additional octet adds
another 32µs. After transmitting a frame, the transceiver
needs to switch from send to receive mode to receive an
acknowledgment, which takes 192µs according to the IEEE
802.15.4 specification. The acknowledgment itself has min-
imal transmission time, after which the transceiver has to
switch back to send mode again before being able to send the
next message. Consequently, sending 5 data messages with 10
bytes individually takes theoretically 5 · 1′408µs = 7′040µs
whereas it takes only 2′688µs when they are sent within
a single frame. This is 62 % faster if the minimum timings
are considered and will be even more when considering that
messages need to be transferred from the radio transceiver to
the micro-controller and back for buffering between TDMA
slots.

The format of the IMPERIA messages used within the WSN
is designed such as to allow easy aggregation and is shown in
Table III. Each message begins with a Length field indicating
the total length of the message including the Length field5

itself. The Type field indicates the unique type of the message,
which identifies how the data should be interpreted. The
values 0–127 are reserved for the IMPERIA network stack,
while values 128–255 indicate application data which will be
published as MQTT-S topic identifier, see Section VII-A. The
third field of the message is a NodeID which identifies the
source node address in case the data travels from the network
node to the basestation, and the destination node address in
case it travels from the basestation to the network node.

The last header field of the message is a Timestamp that is
given relative to the beginning of the current superframe. In
case a separate timestamp message is found within the same
IEEE 802.15.4 frame, the header timestamp is given relative

5In case a link allows for payloads larger than 256 bytes, the Length field
can be extended by setting the Length field to 0x01. In this case, 2 additional
octets will be added to the Length field that will indicate a message length
of up to 64 kB.
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to the preceding timestamp. This may be used for messages
that are buffered between superframes. Timestamp messages
containing a full-scale timestamp are updated at each hop
to the local sensor node time domain and converted into a
globally valid time at the basestation.

At the sensor nodes, incoming IMPERIA messages may
be aggregated by simply appending them to the last received
or locally generated message. All messages are then sent
following the IEEE 802.15.4 frame header. When determining
whether there is an additional message appended, the total
length of the frame can be used, or alternatively a Length
field value of zero can be inserted.

The IMPERIA network stack also uses the message format
shown in Table III. It adds source routes as an individual
message and defines all subsequent messages to be destined to
the node identified by the source route6. This allows sending
multiple commands to a sensor node at once. During the
synchronization frame, the aggregation allows piggy-backing
additional data for all or specific nodes into the synchroniza-
tion beacons. An interesting observation that can be made here
is that the IEEE 802.15.4 header does not have to include
any addressing information as during the management mode
frames are either broadcast or include a source route identify-
ing a destination7, and during synchronized mode frames can
only be received by the intended destination.

Note that using this scheme would theoretically allow
sending aggregated frames with multiple source routes and
messages. If the source routes share the first few hops the
frame could be broadcasted to two receivers that are the first
hops where the source routes differ. This would exploit the
broadcast nature of the wireless link to optimize transmission
along a number of hops. This practice would however violate
our principle of having only one sender at a time and would
introduce more internal protocol interference8.

Many sensor network applications only require the collec-
tion of a few bytes of data per sample. Typically, each sensor
node generates one message per superframe, which will be
forwarded through the network to the basestation. If each
parent aggregates its own and its children messages, it can
reduce the number of send slots it needs for sending its data
to its parent, and hence save energy not only for itself but also
for its parent.

The benefit of using aggregation is shown in Figure 6. It
shows two histograms with the number of nodes having to
transmit a certain number of frames. In Figure 6a no aggrega-
tion takes place, every received message is forwarded as it is.
In Figure 6b however, up to 10 messages are aggregated into a
single frame for the transmission. The figures show the average
results from the simulation of 10‘000 networks of varying size.

6Note that by adding the source route as a variable-length message, the
maximum route length is limited by the maximum payload of the IEEE
802.15.4 frame and by the length of the subsequent messages that follow.

7The source route also includes the current position, such that a node
overhearing a frame that comes later in the source route cannot confuse it
with its own turn to forward the frame.

8Of course, CSMA could be used to manage concurrent wireless access,
but it would introduce a need for decisions on which types of commands
can be executed in parallel and would make the whole communication less
deterministic.

Let’s take a network of 500 nodes as a comparison point. As
can be seen in Figure 6a there is on average 1 node having
to transmit a maximum of 35 messages without aggregation.
With aggregation on the other hand, the maximum for 1 node
lies at just 20 frames to be transmitted.

The ripple effect seen in Figure 6b results from the aggrega-
tion. A sensor node is more likely to have an even number of
send and receive operations with aggregation. After a receive,
it can attach its own message to the frame and forward it in a
single send operation instead of having to add another send.

C. Scheduling

During the IMPERIA synchronized mode, each sensor node
follows its own schedule and only activates its transceivers for
receiving or sending messages within its assigned slots. Send
and receive slots are assigned such that the broadcast and data
collection routing trees deliver the data to the sensor nodes
and the basestations respectively. Note that the sending time
uniquely identifies the receiver of a message, hence they do
not have to include any addressing.

The goal of a scheduling algorithm is to find a schedule
with the minimal number of slots required to transfer the data
along a given broadcast or collection tree. To be optimal,
the scheduling algorithm needs to know the sizes of the
messages each node in the network will send. Additionally,
it requires knowledge about the size of the message buffers
of all nodes, such that forwarding nodes are guaranteed to be
able to buffer the received messages until they can transmit
them. Finally, the scheduling algorithm needs to know the
transmission probability p(r) of the links along which the
messages are sent such that it can schedule a sufficient number
of slots to ensure a reliable transmission.

The outline of the IMPERIA scheduling algorithm is shown
in Algorithm 2. It is basically a depth first algorithm operating
on the routing tree. Within the procedure scheduleNode, a
node first aggregates all local messages and adds them to a
set of messages msgs to be sent. In case it has children, it
first collects all the message queues they will send into the
cmsgs set, then iteratively selects the message queue that is
best suited to be aggregated at this moment, and schedules it
for transmitting them from the child to the parent.

Note that the message queue is an ordered list of messages,
where the last message is still supposed to have room to
be aggregated with another one9. The scheduleSlots allocates
slots for communication between the child node and the
current node. In case that the message buffer runs full, it
adds additional slots to immediately forward all messages
to the basestation. Note that the number of slots allocated
for the transmission of the message queue is computed us-
ing dcount(msg) · E[r]e, such as to give enough space for
retransmissions. An additional consideration here is that the
aggregation function used at the sensor nodes must be able to
support the kind of aggregation used within this algorithm.

Theoretically it would be possible to schedule multiple
sender/receiver pairs during slots within the synchronization

9The intermediate messages may also be candidates for aggregation in case
they get sent to a node with a small curmsg
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Fig. 6. Number of nodes having to receive or send a number of messages during data collection. Using aggregation allows nodes to transmit fewer messages.
The aggregation also increases the probability of a node having an even number of operations.

and collection frames. In large networks, it may be well
possible that these pairs do not interfere with each other. It
is however difficult to asses which nodes are interfering with
each other, as on one hand messages may never actually be
received with sufficient quality as to be identified as such,
but still disturbing the normal message exchange [18]. Setting
up a measurement for interference also requires the different
senders to be tightly synchronized to ensure that transmissions
actually overlap. Additionally the number of combinations of
links that could interfere explodes with increasing network
size. Tools such as JamLab [25] exist for this task, but we thus
chose for reliability to disallow concurrent transmissions on
the same channels. We additionally require clusters to operate
on channels that have a distance of a least two channels to
minimize also cross-channel interference [26].

Finding schedules of minimal length for the synchronization
and collection frames can be reduced to a graph coloring prob-
lem, for which solutions exist [27], [28]. Figure 7 compares the
network size with the required numbers of slots to transmit its
data. For each line, the mean and variance of 1000 randomly
generated networks of different size, but equal node density are
displayed. The WSNs have been clustered into one (Figure 7a)
and four (Figure 7b) clusters with centralized basestations as
in Section V.

Figure 7a also includes the broadcast schedule length,
which for both cases has the same length. The IMPERIA
scheduling algorithm allows only one sender at a time, while
Ramanathan [27] and PEDAMACS [28] allow senders that do
not interfere at the receivers to send concurrently The best
interference-aware slot assignment algorithm (Ramanathan)
reduces the schedule length for four clusters to 43 % of the
single cluster distribution. The standard deviation however
increases by 24 %.

From this data it can be concluded that using multiple
clusters with centralized basestations reduces the time to

collect data in a similar fashion as allowing simultaneous non-
interfering transmissions. Using both mechanisms simultane-
ously even reduces the duration of the data collection to a
value close to the duration of the broadcast frame.

Note that we assume that two sending nodes do not interfere
with each other if no link has been found during the topology
discovery between the two sender/receiver node sets. This
neglects the fact that even if two nodes may not be able
to receive messages from each other, they still may interfere
with each other. Measuring such interference in a real network
is however difficult and costly due to the many possible
interference combinations. A safe alternative is always to
use the IMPERIA scheduler which does not allow parallel
transmissions.

VII. IMPLEMENTATION ASPECTS AND PRACTICAL
EXPERIENCES

We have implemented IMPERIA as node network stack
for two operating systems: TinyOS 2.1 [29] and IBM’s Mote
Runner [30] sensor nodes. The IGW, IGC, and IMPERIA
broker have been implemented in Java and are executable on
embedded computers such as plug computers. Additionally we
have visualization clients for desktop computers as well as
Android devices. Finally, we developed a network editor which
allows experts to edit the automatically generated routing trees
and to monitor the health status of the WSN.

In this section we discuss details on the implementations
and our experiences with three deployments: (i) our laboratory
WSN consisting of up to 24 sensor nodes, (ii) a temperature
sensing network for datacenters with up to 108 sensor nodes,
and finally (iii) a seismic vibration sensing system which
included 38 nodes. Each of the three were built for different
purposes and had different requirements on the network stack.
In the next sections we discuss how IMPERIA successfully
coped with the different requirements.
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Fig. 7. Number of TDMA slots required for a WSN with a given number of nodes. The number of slots required for the broadcast tree increases much
slower than the number required for the collection tree, where a slot contains only one sender and one receiver. The plot shows also the standard deviation
σ over 1000 randomly generated networks.

Algorithm 2 The DISTRIBUTE scheduling algorithm
scheduleNode(rootNode);
procedure SCHEDULENODE(node)

msgs = {}
curmsg = {}
while localMsgs not empty do . Local data

nextmsg = selectFittestMsg(curmsg,localMsgs)
if nextmsg not null then

curmsg = curmsg ∪ nextmsg
localMsgs = localMsgs \nextmsg

else
msgs = msgs ∪ curmsg
curmsg = {}

end if
end while
if hasChildren(node) then

cmsgs = {}
for all child of node do

cmsgs = cmsgs ∪ (child,scheduleNode(child))
end for
while cmsgs not empty do . Incoming data

nextmsgs = selectFittestMsgList(curmsg,cmsgs)
if nextmsgs not null then

curmsg = curmsg ∪ nextmsgs.last
scheduleSlots(nextmsgs.child,nextmsgs.msgs)
cmsgs = cmsgs \nextmsgs

else
msgs = msgs ∪ curmsg
curmsg = {}

end if
end while

end if
msgs = msgs ∪ curmsg
return msgs

end procedure

A. Imperia API

On the sensor nodes, applications access the IMPERIA
network stack via a publish/subscribe API that is designed
to match the open standard MQTT-S [4]. In general, topic
identifiers are negotiated with the broker upon registration
of the client, such that subsequent communication does not
need to include full topic strings. IMPERIA however makes
used of ”predefined“ topic identifiers, which the IGW maps
onto strings before registering with the IMPERIA broker. As
a consequence, backend applications can make use of the
standard MQTT-S protocol to receive sensor data and to send
control messages back to the WSN.

On the sensor node, the IMPERIA API offers six primitives:

1) publish – Using the publish method, the application can
submit its data to the IMPERIA network stack. The
publish method takes a topicID and a buffer with the
data to be delivered. Optionally, the publish method also
takes a timestamp in the sensor node’s local time, which
it will synchronize and deliver in the time of the gateway.

2) subscribe – Using the subscribe method, the application
can notify the IMPERIA network stack about topics of
interest. The bandwidth from the backend to the sensor
nodes is limited, but does allow to send configuration
data. The application can register a number of topicIDs
at this point. An application can only receive data
published by a backend application, publications of other
sensor nodes are not automatically distributed within the
sensor network.

3) publishArrived – Upon reception of a publication on a
subscribed topicID, the application is notified using the
publishArrived primitive. With this method, a topicID
and the associated data are passed to the application. It
is the applications task to discriminate between different
actions to be taken according to the topicID.

4) frameStart – This event notifies the application that a
superframe is starting. An application has now a short
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timeframe to deliver its data, such that it will still be
transferred during the current timeframe.

5) frameEnd – This event notifies the application that
a superframe has just ended, and adds a timestamp
of when the next superframe starts. This allows the
application to schedule longer processing or sampling
procedures, such that the sensor data is ready upon the
start of the next superframe.

6) init – This method is called by the IMPERIA network
stack after its initialization. This is a good point for the
application to subscribe to the topicIDs.

Client applications may subscribe to the topic
imperia/apps/data/NODEID/TOPICID to receive
sensor data. NODEID identifies the sensor node and
may include MQTT-S wildcards (e.g. for receiving
data from all nodes). TOPICID is the topic identifier
provided by the application to the API on the sensor
node. The client applications may send control data
to the sensor nodes by publishing it to the topic
imperia/apps/ctrl/NODEID/TOPICID. Instead
of NODEID, ”broadcast“ could also be used; in this case, the
control data will then be distributed to all nodes.

Within the WSN communication, the topic identifiers
TOPICID are written into the Type field of the IMPERIA
message format as specified in Table III 10.

B. MoteRunner vs. TinyOS

The IMPERIA network stack was implemented in TinyOS
and Mote Runner. Both implementations offer the API de-
scribed above with an operating system specific flavor. While
the IMPERIA API is a single interface in TinyOS, it has
additional callback interfaces in Mote Runner, such that appli-
cations can specify which kinds of events they want to receive.

Applications for Mote Runner are written in Java and
compiled into an optimized intermediate language, which is
interpreted on the sensor nodes. Hence the code is executed
somewhat slower than the platform-specific executable that
TinyOS is compiled into. Mote Runner code can however still
compete with TinyOS code in synchronization accuracy and
follow IMPERIA’s timing constraints closely. This is mainly
due to its operating system calls allowing to specify times of
when the next radio state change should be executed. Hence
the IMPERIA code for Mote Runner can schedule the active
and sleeping times for the transceiver in advance and does
not have to set its own timers as the TinyOS code has to.
The Mote Runner operating system takes care of keeping the
transceiver in the most power-efficient state. A comparison
of the timings and power consumption between the two
implementations show that the Mote Runner implementation
can even outperform a TinyOS implementation under certain
conditions [31].

C. Vibrations sensing system

A first application for IMPERIA was a system to detect
harmful seismic vibrations around drilling sites [2]. TinyOS

10Note here that the value 128 is added by the IMPERIA stack, such that
applications have a topic identifier range of 0-127.

sensor nodes equipped with accelerometers were placed on
critical infrastructure and continuously measured vibrations.
These vibrations were locally processed to determine vibra-
tions that are harmful to buildings according to the indus-
trial standard DIN 4150-3. An important requirement for the
system was to provide a continuous and complete record of
vibration data for insurance reasons. For each second, a set of
processed data values had to be stored and reliably transferred
to the basestation. In case of an excessive vibration, a one-
second window of raw waveform data should additionally be
transferred. The latency of this event should be kept low such
that workers are able to take appropriate measures upon an
alarm.

The requirements on the network stack were to transfer
per sensor node 120 bytes of processed vibration data every
10 seconds, and additionally 1’536 bytes of raw waveform
data in case of an alarm event. Because of the high data
volume to be transferred in case of an alarm, the IMPERIA
TDMA superframe (as shown in Figure 2) was extended with
an optional frame which allowed a burst transmission from
individual sensor nodes through the WSN to the basestation
within a single superframe.

In a field test at an industrial plant, a network with 9
vibration sensor nodes and 29 relay nodes were stress-tested
for three days. Of the more than 1 million generated data
messages, more than 99 % reached the basestation over up to 5
hops. Additionally, the waveforms of 387 artificially generated
vibration alarms could successfully be transferred.

A complete setup of the vibrations sensing system is
currently being used in the Zurich Research Laboratory’s
showcase room. It includes a vibration sensor, a basestation
connected to a plug computer running the IGW and the
IMPERIA broker, and an Android tablet computer displaying
the sensor health and acceleration waveforms generated by the
vibration sensors. The IMPERIA setup has been configured for
automatic start and configuration, such that it can be started
and run by non-experts. It has now been running reliably
for over a year, the biggest issue that remains is the WIFI
connection between the tablet computer and the plug computer.

D. Data Center Energy Management

A Mote Runner implementation was deployed with 108
sensor nodes measuring the temperature distribution within
a 2′200m2 datacenter during an upgrade of the cooling
system [32]. The new cooling system was intended to use free
cooling, but had to raise the datacenter room temperature by
3◦C. The aim was to reduce the cooling energy consumption
from currently 3’600 to 1’500 MWh a year. A continuous
monitoring of the temperature within the datacenter during
the replacement and the gradual temperature increase should
ensure the continuous operation of the datacenter within safe
temperature ranges for the equipment.

The deployment ran for 35 days and collected 29 million
temperature samples at 10 seconds intervals. At an average
sensor node duty cycle of 0.6 %, 98 % of the generated
temperature samples reached the basestation and only 3 nodes
had less than 90 % end-to-end delivery ratio. The operators of
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the datacenter were given a client application that generated
interpolated temperature maps showing the real-time situation
within their datacenter.

E. Lifetime measurements

Before having developed IMPERIA, we have used a com-
mercial wireless sensor network with 10 sensor nodes to
monitor the temperature within our datacenter. The network
has been running for 793 days during which we had to replace
multiple times the batteries of the individual sensors. Figure 8a
shows the voltage traces as reported by the commercial
system’s tool. The tool indicated a low battery voltage when
the voltage dropped below 2.65 V, upon which the batteries
were replaced. This occurred about every 150 to 180 days.
Sometimes however we forgot to replace the batteries, and
the sensor nodes ran out of battery power. In the longest run,
the battery failed after 192 days at 2.46 V. The mean time of
the 41 voltage traces shown in Figure 8a to reach a voltage of
2.65 V is 128.9 days with a standard deviation of 7.3 days.

To test the energy consumption of the IMPERIA network
stack, we deployed a small network with a basestation and
three sensor nodes measuring temperature every 10 seconds.
Two sensor nodes were placed outside of the building such
that they were exposed to the weather, the third one was
placed inside the building as a reference. Due to the fact
that IMPERIA sensor nodes draw only little current during
sleep mode and have only short periods of a few milliseconds
where they draw a few milliamperes, the batteries can recover
capacity between usage and hence be used efficiently [33].

Figure 8b shows the voltage traces over the three IMPERIA
sensor nodes and the basestation over the course of one
year starting in October 2010. All nodes are awake during a
20 ms broadcast frame slot and a 20 ms collection frame slot.
Additionally they are active during a listen frame of 40 ms. The
nodes sample temperatures every 10 seconds which is also the
period of one superframe. The duty cycle of the nodes thus
amounts to 0.4 %. With a sleep current of 12µA and an active
current of 10.31mA, the average current draw is just 53µA.

The nodes 3 and 4 were placed outside and experienced
temperatures ranging from −10.8 ◦C in winter to 43.3 ◦C in
summer. Node 2 on the other hand was left within the building
to have a reference with a more stable temperature. The
basestation antenna however was placed outside the building,
rendering a bad connection to node 2 which as a consequence
had a higher duty cycle at times and depleted its battery
faster. Clearly visible is also that some voltage is recovered
during warmer days. At the time of writing, the IMPERIA test
network is running for 330 days. In separate tests, we have
experienced that sensor nodes are still operational with voltage
readings around 2 V. Under optimal conditions, we expect a
runtime of at least 36 months.

F. Laboratory experiments

For testing and debugging purposes we have deployed a
network of 24 sensor nodes within our laboratory as shown
in Figure 9a. The sensor nodes were placed about 20 cm
above the floor at the walls along the hallways. Due to

the low position of the wireless nodes, the wireless links
were disturbed by people walking to and from their office or
sitting in meeting rooms. During our tests, we experienced
more problems during the working hours and found much
more stable conditions during the nights or the weekends.
This matches observations reported elsewhere in literature and
confirmed that we are using a setup that is comparable to other
testbeds.

During most tests, node 0 was used as basestation and
was usually attached to a plug computer acting as gateway.
Occasionally we placed the basestation at different locations
for testing. Clustered networks were also tested with a second
basestation placed at positions such that the basestations could
not directly hear each other and had to be synchronized over
multiple hops. Due to the relatively short distances between
the sensor nodes, we performed the link probes usually at a
reduced sending transmission level to be able to measure a
larger difference between the individual links. As expected,
this favored the links offering a clear line of sight. The
actual data collection however was always run at maximum
transmission power.

With IMPERIA, the discovery of the network topology takes
on average 18 seconds and an additional 125 seconds was
required to probe the quality of the links. The benefit of using
a centralized architecture was that we could run the topology
discovery once and use the results to test different routing and
scheduling algorithms, which we could then deploy afterwards
into the network. Also hand-optimized routing trees can be
tested for comparison. The collection routing tree created by
the IMPERIA algorithms discussed before is shown in Fig-
ure 9b.

Figure 9b also shows the measured performance when we
ran the network for roughly two work days. The numbers in
the grey boxes indicate the percentage of lost messages from
the nodes to the basestation. The numbers in the white boxes
indicate the percentage of frames lost when transmitting the
frames over the link. The mean delivery rate of all sensor
nodes was 99.73 %.

We have compared the performance of IMPERIA with
the Collection Tree Protocol (CTP) implementation for
TinyOS [34]. CTP has been used in several projects and
shown to perform well on a range of testbeds 11. In contrast
to IMPERIA it is a decentralized protocol were each node
decides on the best next hop for the messages. CTP dynam-
ically adapts to changing link qualities, but also uses ETX
to decide on the best hop. During deployment, CTP instantly
attempted to find a route to the basestation and in most cases
succeeded without problems. The routes changed however in
the following minutes until a stable tree was found.

The routing tree that was used by CTP over most of the
time is displayed in Figure 9c. The mean delivery ratio over
all sensor nodes was 98.45 %. CTP had problems with two
sensor nodes, 9 and 23, which both kept frequently changing
their parents (23 switched between 0 and 10, while 9 switched

11We have used the TestNetwork source available at http://sing.stanford.edu/
gnawali/ctp/, which we modified to send messages all 5+random· 10 seconds.
Note that the test application randomized the generation time of the messages,
which, in our experience, improves the CTP’s performance.

http://sing.stanford.edu/gnawali/ctp/
http://sing.stanford.edu/gnawali/ctp/
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Fig. 8. (a) Commercial system: Battery voltage profile over time for different sensor nodes and multiple runs within a data center. Batteries have usually been
replaced after reaching a minimum voltage level. (b) IMPERIA: Battery voltage profile over time for four sensor nodes running IMPERIA during October
2010 to September 2011 outside. The higher variance on the voltage points to larger temperature differences between nights and days.

between 0 and 14). CTP also created a tree that was one level
deeper than IMPERIA’s; this stems probably from the fact
that CTP uses the four-bit link quality to create it [35]. In
Figure 9c we have omitted to give the links error rates because
the links kept changing and hence could not be compared.
We have observed that especially nodes that sometimes have
connectivity directly to the basestation kept switching from
their parent to the basestation and back.

When comparing our performance to results presented else-
where in literature we noticed that our laboratory testbed pro-
vided relatively favorable conditions. A means for comparison
is the Expected Network Delivery (END) metric suggested
in [36], which computes the average node-to-basestation de-
livery rate from all nodes along the globally optimal path and
without retransmissions. Our testbed has an END of 0.938
which would be classified as an A+ network. It is important
to note however that our network does have a number of
unstable links that do not make it easy to find those optimal
routes and that our centralized approach provides the tools to
ensure that good connectivity can be established and verified
at deployment time.

VIII. CONCLUSION

We have demonstrated that a centralized approach to the
management of WSNs is an efficient alternative to distributed
protocols. Recent advances in the estimation of link qual-
ities allow a better discrimination of unstable links, such
that choosing predictable links has become feasible. As a
result, networks can run for extended durations with the same
configuration and deliver very good performance. Furthermore
the benefit of using centrally managed sensor networks comes
with the point that they give network operators the possibility
to add external knowledge about the environment to their
operative decisions, e.g. enforce corrective actions upon the
routing algorithms, hence improving the controllability of the
networks.

We also discussed efficient algorithms to assess the network
topology and obtain link quality information, which is the
basis for establishing a network topology. The data obtained
can be used by the presented clustering, routing and scheduling
algorithms to organize network communication. The gateway
software also allows manual corrections or additions. Through-
out the report we have discussed details of the protocols and
considerations we have taken when designing them. In several
deployments and in a direct comparison with an established
distributed protocol we have shown that the resulting centrally
managed IMPERIA architecture is a viable approach to WSN
application design.
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APPENDIX

A. Simulation setup

We created wireless sensor network topologies for our
simulations by uniformly distributing N network nodes on
a square area of 10

√
N units. In case the basestations were

placed within the center, they were placed in a horizontally
centered line with a distance of 1 unit between the basesta-
tions. The communication range between the network nodes
was chosen to disc-shaped, i.e. omnidirectional with a radio
range of 15 units within which the success rate decreased
linearly from 100 % to 90 % relative to the distance between
sender and receiver. We omitted worse links as we believe that
links with lower quality would be detected during deployment
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messages for each protocol. Note that the CTP tree adapted to link quality changes during the runtime, and only the final configuration is shown here.
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and omitted by placing sensor nodes at positions with better
connectivity or by adding additional relay nodes.

Before simulation, network topologies were tested for being
connected, i.e. there existed at least one path, possibly over
multiple hops, from each node to any other node. Non-
connected topologies were rejected and recreated.

While such simulations are simplistic and may not neces-
sarily appear in reality, through high numbers of repetitions
they still generate a wide range of possible network topologies,
which correspond to physical deployments. While the physical
node locations may not match, the logical link connectivities
may do. Most importantly, we have also only used the simu-
lations to get distributions on possible effects over all possible
topologies and not to create actual performance results.

B. Topology discovery in dense networks

The amount of neighbor information that a node performing
a combined link probe and neighbor discovery has to send
back to the basestation may exceed the payload size for dense
networks. IMPERIA has the principle that only one message
travels through the network at any time, thus sending a burst of
data from the node back to the basestation would violate this
principle. Instead, a slightly modified version of the topology
discovery can be used, which splits up the neighbor discovery
and the link probe.

In this modified version, the nodes omit sending the link
probe pattern, but instead only broadcast the neighbor discov-
ery messages which include the known neighbors. The nodes
then only reply with a list of neighbor addresses, which for
IEEE 802.15.4 are the 16-bit short addresses. Depending on
the length of the source route back to the basestation, up to
about 50 neighbor addresses can be returned to the basestation
in this way.

In a second round, the basestation instructs each node indi-
vidually to broadcast the link probe message pattern. As with
the original algorithm, each node receiving such broadcasts
collects statistics on the message pattern. After the broadcasts
have been completed, the basestation collects the statistics
information directly from each node that has been identified
as a neighbor in the previous neighbor discovery step.

This algorithm adds additional communication costs to
the topology discovery, which depend on the density of the
network. In the worst case of a fully connected network, each
sensor node needs to be accessed N + 1 times, once for the
neighbor discovery, and N times for the link probe. Equation 2
then becomes then:

Tdiscovery = N((N + 1)E[R] · Tsend + (9)
mprobe · Tsend +
mdiscovery · Tmaxbackoff )

Thus the complexity of network topology discovery has a
complexity of O(N2).

In one of our experiments with a real dense network, we
deployed an almost fully connected network of 72 nodes
with 4552 links between them. Neighbor discovery needed 22
seconds, the link probe added another 842 seconds, such that
it completed after 14:24 minutes. We want to note here that

in this experiment the routing became trivial, because each
node could directly transmit to the basestation, but scheduling
the transmissions is more challenging. Distributed algorithms
using CSMA have severe difficulties in such a dense network,
as all the 71 nodes compete for channel access at the same
time. Our IMPERIA TDMA protocol on the other hand needed
just (71+1) slots, which take all together 1.44 s at a slot size
of 20 ms.

C. Opportunities for future work

1) Broadcast frame routing respecting clock accuracies:
As the task of the broadcast frame is mainly to synchronize
the network, the metric used for building its routing tree may
be extended by incorporating information on the clocks of the
sender and receivers as proposed in [37]. The clock modules
used on different sensor nodes often differ which introduces
drift and jitter when comparing their clock domains. The main
idea would be to try and match the clock parameters of the
synchronization parents and children as closely as possible to
improve the synchronization mechanism.

2) More efficient broadcast frame: An alternative for a
broadcast frame would be to use efficient network-wide flood-
ing to synchronize network nodes, such as Glossy [38]. Glossy
requires highly deterministic execution of code such that
subsequent transmissions through the wireless medium are
highly synchronized (overlap within < 0.5µs, which leads to
a maximum range of links about 150 m). The benefit on the
other hand is that it is able to synchronize the whole network
within only a few milliseconds. An even faster way would
also be to use an external synchronization signal such as an
atomic clock reference signal or an AM sender [39]. We chose
to use separate slots as an external signal requires additional
hardware and the flooding approach makes aggressive use of
the wireless communication medium.

3) Better aggregation: Currently, aggregation works just by
checking whether an incoming set of messages could be added
to the most recently added buffer within the message queue.
This could be traded off with a more sophisticated algorithm
splitting up the set and rearranging the included messages
within the queue. This however makes the handling of the
timestamps more difficult.

4) Combined routing and scheduling algorithm: The rout-
ing algorithm presented above does only weakly attempt to do
load balancing. For a better solution, aggregation and schedul-
ing problems should be considered as well. Aggregation is
difficult as an optimal solution may decide to route a message a
different way because it can be aggregated somewhere farther
down the routing tree, while the number of receive or send
slots may be less if using this other path. Each node can
additionally reorganize the aggregation of the messages it
has in its local buffer before resending them. Additionally,
the probabilistic success rate of the channel could also be
exploited by rearranging aggregation if a message could not
be send.

All these optimization possibilities make an optimal solution
arbitrarily complex to compute. Note also that a too optimized
version may be heavily vulnerable to message loss as they
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may depend on a strict ordering of message transmissions!
The aggregation aspect could also be integrated into the
routing decision. For example in case of equal EXP, instead
of choosing the cluster with the smaller number of nodes, the
number of additional slots required for the collection frame
could also be considered.

5) Continuous link probes: Instead of just monitoring the
receptions of the packets at the basestation and periodically
obtaining statistics messages from the nodes, a mechanism
such as BurstProbe [40] with a special link probe frame could
also be used. In environments with low environmental changes
(multi-path fading, shadowing effects, or Wi-Fi interference)
links are shown to be very stable [41], [18]. In fact, links
of good quality (stable/connected) are known to be quite
stable [42].

6) Buffer strategy: When using unlimited retries on sending
a message, finding a good management of the buffers on the
sensor nodes becomes a challenge. The WSN characteristics
that make it not easy to handle are:

1) If the retransmission count is reached within a single
time slot, messages may be dropped within a single
superframe. It is known that links which are usually very
good may temporarily deteriorate, thus not allowing any
transmissions for a while. In such a case it is beneficial
to just wait for the next superframe for retransmission.

2) Furthermore, as long as there are free spots in the buffer
messages do not have to be dropped, except if they loose
value over time. In such cases unlimited retransmissions
would be reasonable as long as they do not block other
messages to come through.

3) The scheduling should be aware of the buffer problems.
If leaf nodes have large buffers and their links get better,
they may flood the relay nodes which may have full
buffers on their own. Either the relay nodes or the
leaf nodes need to drop messages in this case. If the
scheduling allows relay nodes to empty their buffers
first, this may be avoided.

4) When aggregation is used, the problem gets more intri-
cate. Depending on the sequence of incoming messages
and the aggregation type used, the number of messages
to be sent may vary. The possible combinations of
aggregated messages grows with a lower link quality,
as the probabilistic effects are increased. Choosing an
optimal scheduling that is not conservative, yet ensures
not too many buffers overflow is a big challenge.

5) Last but not least, buffer handling algorithms should
not be too computationally intensive such as to allow
maximum message transmission frequency during a slot.
Thus only processing times of a few milliseconds can
be afforded.

7) Specialized frames: The IMPERIA superframe has been
designed for flexibility and allows adding frames for special-
ized functions. For the vibration sensing network, we had
added a frame which allows a single node to send a burst of
messages to the basestation. That frame could be optionally
enabled by the basestation. Another idea presented above was
to add a link probing frame. Within such optional frames, only

parts or the whole network may be woken up to perform some
function.

Other ideas for specialized frame types include a temporary
management mode for parts of the network, such as to transmit
configuration information to new nodes, or performing a
localized discovery and link probe when the topology changes.

8) Adaptive superframe duration: Each time beacon in
the broadcast frame includes the relative time until the next
superframe will start. This time could be dynamically changed
and the network will follow. As links are unreliable, it may
be of advantage to have them in a fraction of multiple of the
current superframe duration.

9) Multi-path routing: To improve reliability, a sender may
send its data to multiple relay nodes. This could be imple-
mented in two ways: either multiple receivers are listening
during a collection slot, or additional send slots are added
for the different parents. The two versions have different
drawbacks. Having multiple receivers does not allow acknowl-
edging packet transmissions from both receivers without mod-
ification of the physical layer. Having multiple send slots with
different parents on the other hand introduces implementation
problems in how to handle buffering – should a message still
be buffered if just one of the parents has acknowledged it?
This may need an introduction of multiple queues, multiplying
requirements on scarce memory resources.

In the end, a trade-off between added reliability, and ad-
ditional complexity and energy cost needs to be considered.
Looking at the very good results we already have with single
paths, we believe the multi-path option is adding only marginal
benefit at a high complexity and energy cost.
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