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E-mail: gka@zurich.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Brazil · Cambridge · China · Haifa · India · Tokyo · Watson · Zurich



Dynamic Enforcement of Abstract Separation of Duty Constraints

David Basin, ETH Zurich
Samuel J. Burri, ETH Zurich and IBM Research – Zurich
Günter Karjoth, IBM Research – Zurich

Abstract

Separation of Duties (SoD) aims at preventing fraud and errors by distributing tasks and
associated authorizations among multiple users. Li and Wang proposed an algebra (SoDA)
for specifying SoD requirements, which is both expressive in the requirements it formalizes
and abstract in that it is not bound to a workflow model. In this article, we bridge the gap
between the specification of SoD constraints modeled in SoDA and their enforcement in
a dynamic, service-oriented enterprise environment. Using the process algebra CSP, we
proceed by generalizing SoDA’s semantics to traces, modeling workflow executions that
satisfy the respective SoDA terms. We then refine the set of traces induced by a SoDA
term to also take a workflow’s control-flow and role-based authorizations into account. Our
formalization supports the enforcement of SoD on general workflows and handles changing
role-assignments during workflow execution, addressing a well-known source for fraud.

The resulting CSP model serves as blueprint for a distributed and loosely-coupled ar-
chitecture where SoD enforcement is provisioned as a service. This new concept, which
we call SoD as a Service, facilitates a separation of concern between business experts and
security professionals. As a result, integration and configuration efforts are minimized and
enterprises can quickly adapt to organizational, regulatory, and technological changes. We
describe an implementation of SoD as a Service, combining commercial components, such
as a workflow engine, and newly developed components, such as an SoD-enforcement mon-
itor.

Starting out with a generalization of SoDA’s semantics and ending up with a prototype
implementation, we go the full distance from theory to practice. To evaluate our design
decisions and to demonstrate the feasibility of our approach, we present a case study of a
drug dispensation workflow deployed in a hospital.

1 Introduction

Most information-security mechanisms aim at protecting resources from external threats. How-
ever, threats often reside within organizations where authorized system users may intentionally
or accidentally misuse system resources. Examples of this are non-compliance and include the
scandals [Eco01] that led to regulations such as the Sarbanes-Oxley Act [SO02]. These regula-
tions require companies to document their processes, to identify conflicts of interests, to adopt
countermeasures, and to audit and control these activities. Separation of Duties (SoD) is a well-
established extension of access control that aims to ensure data integrity, in particular to prevent
fraud and errors [SS75,San88]. The idea behind SoD is to split critical (business) processes into
multiple tasks and to ensure that no single user can execute them all. Therefore, at least two
users must be involved in a process’ execution and fraud requires their collusion.
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Existing specification formalisms and enforcement mechanisms for SoD are limited in the
kinds of constraints they can handle. Moreover, they are typically bound to specific workflow
models. The SoD algebra (SoDA) [LW08] constitutes a notable exception. It allows the model-
ing of SoD constraints at a high level of abstraction, combining quantification and qualification
requirements. As an example, consider the SoD policy that requires the involvement of a user
other than Bob that acts in the role of a Manager and one or two additional users, acting as an
Accountant and a Clerk. Using SoDA, this policy can be modeled by the term

(Manageru¬{Bob})⊗ (Accountant�Clerk) .

The term’s left side is satisfied by any Manager other than Bob. Under the semantics of the
�-operator, the right side is satisfied by a single user that acts as an Accountant and a Clerk or
by two users, provided one of them acts as an Accountant and the other as a Clerk. Finally, the
⊗-operator requires that the users in the two parts are disjoint. It thereby separates their duties.
As this example shows, SoDA terms specify both the number and kinds of users who must take
part in a business process, independent of the details of the process itself. Separating concerns
this way facilitates a loose coupling between an application’s business logic and its security
constraints. As a consequence, business experts can focus on modeling business processes as
workflows and security experts on specifying internal controls. Each of them requires minimal
interaction with the other, thereby saving efforts and cost.

In this article, we bridge the gap between the abstract specification of SoD constraints, for-
malized using SoDA, and an architecture for their enforcement in a dynamic and modular enter-
prise environment. We proceed by constructing formal models of workflows, role-based static
authorizations, SoD constraints, and combine them to model an SoD-secure workflow system.
We specify these models using the process algebra CSP [Ros97], whose trace-based model is
a natural fit for describing workflow executions and whose notion of process synchronization
allows us to decompose the system into loosely coupled components.

Our CSP model serves as blueprint for a proof-of-concept implementation. We provision
the SoD enforcement functionality as an instance of the software delivery model Software as
a Service (SaaS) [TBB03], which we call SoD as a Service. We show analytically that our
approach has an acceptable runtime performance for the workflows used in practice even though
deciding the satisfiability of a workflow instance with respect to our CSP model is NP-complete
in general. We support this analysis with performance measurements from an extensive and
realistic case study. In addition, our case study demonstrates the feasibility of SoD as a Service
and pinpoints critical design decisions.

Along the way from abstract specification to enforcement, we tackle the following chal-
lenges:

1. Generalization of SoDA semantics: Due to SoDA’s abstract nature, design decisions
arise when mapping SoDA terms onto workflow instances. In particular, a link between
the satisfaction of terms and the tasks executed in workflow instances is missing. We
provide a solution to this problem by generalizing Li and Wang’s set-based semantics first
to a multiset semantics and second to a trace-based semantics. A correctness proof for the
CSP model of the SoD enforcement component establishes that every SoD-constrained
workflow instance that successfully terminates satisfies the respective SoDA term with
respect to our trace semantics.
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2. Flexible integration: New technologies and methodologies, such as Service-Oriented
Architectures (SOAs), facilitate the extension of legacy information systems with new
functionality. We build on these advances with our novel concept of SoD as a Service and
thereby achieve a loose coupling between a workflow engine that executes the business
logic, a user repository that administers users and their authorizations, and the enforce-
ment of abstract SoD constraints. In exchange for a moderate increase in communication,
our architecture separates concerns and reduces implementation and configuration costs.
At the same time, changing legal requirements and organizational changes can quickly be
reflected in the IT infrastructure.

3. Changing authorizations: Previous work on SoD enforcement makes the assumption
that authorizations do not change during workflow execution. However, organizational
changes, triggered by acquisitions, promotions, and job cuts, are among the major sources
of fraud [EY09]. By incorporating administrative events, which model authorization
changes, in our trace-based SoDA semantics we overcome this limitation. Our formal
models and implementation are therefore well-suited to handle the dynamics of today’s
fast-paced business environments.

The reminder of this article is structured as follows. In Section 2, we provide background
on CSP and multisets. In Section 3, we formalize workflows, role-based authorizations, and
their composition. Furthermore, we introduce our case study. We then define in Section 4
SoDA’s syntax, which we generalize to multisets and traces. Based on our CSP models, we
implement in Section 5 SoD as a Service in an industrial workflow environment and present
performance measurements for our case study. We evaluate our approach and identify future
work in Section 6, present related work in Section 7, and conclude in Section 8. The Appendix
provides proofs and summarizes Li and Wang’s original SoDA semantics. Overall, this article
combines and extends results from our previous papers [BBK09,BBK11a].

2 Background

2.1 CSP

We use a subset of Hoare’s process algebra CSP [Ros97] to formalize the enforcement of autho-
rization constraints on workflows. CSP describes a system as a set of communicating processes
that concurrently engage in events. Σ denotes the set of all regular events. In addition, we use
the special event X that communicates successful termination. Let D ⊆ Σ. We write DX for
D∪{X}. Events can be structured as tuples. For example, z1.z2. . . . .zn denotes the event that
corresponds to the tuple (z1,z2, . . . ,zn) ∈ Z1×Z2× . . .×Zn, for sets Z1, Z2, . . . , Zn and n≥ 1.

A trace, denoted 〈σ1, ...,σn〉, is a sequence of events, possibly ending with the special event
X. 〈〉 denotes the empty trace and i1ˆi2 the concatenation of two traces i1 and i2. Moreover, D∗

denotes the set of all finite traces over the set of events D and its superset D∗X = D∗∪{iˆ〈X〉 |
i ∈ D∗} also includes the traces ending with X. We abuse the set-membership operator ∈ and
write σ ∈ i for an event σ and a trace i if there exist two traces i1 and i2 such that i = i1ˆ〈σ〉ˆi2.
For a trace i and D⊆ ΣX, i �D denotes i restricted to events in D. Formally, 〈〉 �D = 〈〉 and, for
i = 〈σ〉ˆi′, i � D = 〈σ〉ˆ(i′ � D) if σ ∈ D and i � D = (i′ � D) if σ /∈ D.

Let N be the set of process names and n ∈ N . The set of processes P is inductively
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defined by the grammar

P ::= σ →P | SKIP | STOP | n |P �P |P u P |P ‖
D

P |P ; P ,

where σ ∈ Σ. The assignment of a process P to n is denoted by n = P and can be parametrized.
For example n(z) = P defines a process parametrized by the variable z.

There are different approaches to formally describing the behavior of a process. In this
article, we use CSP’s traces model T that describes a process P as a prefix-closed set of finite
traces T(P)⊆ Σ∗X. We say P accepts i if i ∈ T(P).

In the following, let P, P1, and P2 be processes. The process σ → P engages in the event
σ first and behaves like P afterward. Formally, T(σ → P) = {〈〉} ∪ {〈σ〉ˆi | i ∈ T(P)}. This
notation can be extended. For D ⊆ Σ, the process σ : D→ P engages in every σ ∈ D and
afterwards behaves like P. The process SKIP engages in the special event X and terminates
afterwards, formally T(SKIP) = {〈〉,〈X〉}. The process STOP does not engage in any event and
therefore represents deadlock, i.e. T(STOP) = {〈〉}. For an assignment n = P, the process n
behaves like P. The process P1 � P2 denotes the external choice between P1 and P2 in that the
environment can choose whether the process behaves like P1 or P2. Similarly, P1 u P2 denotes the
internal choice between P1 and P2 in that the process can decide whether it behaves like P1 or P2.
In terms of the traces model, P1 � P2 and P1 u P2 are indistinguishable, namely T(P1 � P2) =
T(P1 u P2) = T(P1)∪T(P2). The process P1 ‖

D
P2 represents the parallel composition of P1

and P2 synchronized on D ⊆ Σ. This means, P1 ‖
D

P2 engages in an event σ1 ∈ D if P1 and P2

synchronously engage in σ1 and P1 ‖
D

P2 engages in an event σ2 6∈D if either P1 or P2 engages in

σ2. The special event X is always implicitly contained in the set of synchronization events D,
i.e. P1 ‖

D
P2 can only successfully terminate if both P1 and P2 can successfully terminate. P1 ‖ P2

is an alternative notation for the fully synchronized parallel composition P1 ‖
Σ

P2. Similarly,

P1 ||| P2 denotes to the unsynchronized parallel composition of P1 and P2, P1 ‖
∅

P2. The process

P1 ; P2 denotes the sequential composition of P1 and P2. It first behaves like P1. Upon successful
termination of P1, the event X is hidden. Afterwards, the process behaves like P2. Formally,
T(P1 ; P2) = (T(P1)∩Σ∗)∪{i1ˆi2 | i1ˆ〈X〉 ∈ T(P1), i2 ∈ T(P2)}.

2.2 Multisets

We make extensive use of multisets and therefore briefly review their notation. A multiset, or
bag, is a collection of objects where repetition is allowed [Syr00]. Formally, given a set Z, a
multiset Z of Z is a pair (Z, f ), where the function f : Z→ N0 defines how often each element
z ∈ Z occurs in Z. We write Z(z) as shorthand for f (z). We say that z is an element of Z, written
z ∈ Z, if Z(z) ≥ 1. We use double curly-brackets to define multisets, e.g., Z = {{z1,z1}} is the
multiset where Z(z1) = 2 and Z(z) = 0 for all z∈ Z \{z1}. For a finite multiset Z, |Z| denotes its
cardinality and is defined as ∑z∈Z Z(z). Let Z1 and Z2 be two multisets of Z. Their intersection,
denoted Z1 ∩Z2, is the multiset Z, where for all z ∈ Z, Z(z) = min(Z1(z),Z2(z)). Similarly,
their union, denoted Z1∪Z2, is the multiset Z, where for all z ∈ Z, Z(z) = max(Z1(z),Z2(z)),
and their sum, denoted Z1]Z2, is the multiset Z, where for all z ∈ Z, Z(z) = Z1(z)+Z2(z). The
empty multiset ∅∅∅ of Z is the multiset where ∅∅∅(z) = 0, for all z ∈ Z.
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3 Authorization-constrained Workflows

We call a unit of work a task. Because SoD constraints are concerned with human activities,
we concentrate on tasks that are executed by humans, either directly, e.g. by filling in a form, or
indirectly, e.g. by executing a program on their behalf. The temporal ordering of tasks and the
causal dependencies between them, which together implement a business objective, are called a
workflow. An alternative name for workflow is business process, though we stick in this article
to the term workflow.

At design time, a workflow is specified using a workflow modeling language. At run time
it is executed by a workflow engine. We call an execution of a workflow a workflow instance.
A workflow engine may execute multiple instances of the same workflow in parallel. The exe-
cution of a task in a workflow instance is called a task instance. Standard workflow modeling
languages, such as the one we use in Section 3.3, allow the specification of loops, parallel, and
conditional execution. Therefore, there can be zero or more instances of the same task in one
workflow instance.

3.1 Workflow Formalization

For the rest of this article, let U be a set of users and T a set of tasks. For a task t ∈ T
and a user u ∈ U , we call an event of the form t.u a (task) execution event and denote by
X = {t.u | t ∈ T ,u ∈ U } the set of all execution events. An execution event t.u models the
execution of the task t by the user u, i.e. a task instance together with its associated user.

We now formalize workflows using CSP as follows.

Definition 1 A workflow process is a process W such that T(W )⊆X ∗X

Let a workflow process W be given. We call a trace i ∈ Σ∗X a workflow trace of W , if
(i �X X) ∈ T(W ). A workflow trace i models a workflow instance. Note that i may not only
include execution events and we will subsequently introduce administrative events that model
complementary activities taking place during workflow execution. However, in order to be a
workflow trace of W , only the execution events in i must be a trace of W ; hence the restriction
i �X X. We say the workflow instance modeled by i has successfully terminated if X ∈ i.

Given a trace i, the auxiliary function users returns the multiset of users contained in execu-
tion events in i.

users(i) =


∅∅∅ if i = 〈〉,
{{u}}]users(i′) for i = 〈t.u〉ˆi′ and t.u ∈X ,
users(i′) for i = 〈σ〉ˆi′ and σ 6∈X .

3.2 Composing Workflows and Access Control

We describe authorized task executions in terms of a process A. Given a workflow process W ,
we then describe the enforcement of the authorization constraints encoded in A by executing A
in parallel with W , synchronized on X , formally W ‖

X
A.

We use Role-based Access Control (RBAC) [FSG+01] for specifying workflow-independent
authorizations and only make use of RBAC’s core feature, the decomposition of the user-permission
assignment into a user-role and a role-permission assignment. For the reminder of this article,
let R be a set of roles.
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Definition 2 An RBAC configuration is a tuple (UA,PA), where UA⊆U ×R is a user-assignment
relation and PA⊆R×T is a permission-assignment relation.

In this article, a permission corresponds to the right to execute a task. We therefore assign roles
directly to tasks. Assume an RBAC configuration (UA,PA) and a user u. For a role r, we say
that u acts in the role r if (u,r) ∈UA. Furthermore, for a task t we say that u is authorized to
execute t with respect to (UA,PA) if there is a role r such that (u,r) ∈UA and (r, t) ∈ PA.

In contrast to the NIST RBAC standard [FSG+01], we omit the concept of sessions. This
is without loss of generality as the activation and deactivation of roles within a session can be
modeled by changing RBAC configurations as discussed below.

We model changes to the RBAC configuration by a set of events A ⊆ Σ that we call the
administrative events. For a user u and a role r, the administrative event add.u.r (respectively
rm.u.r) models the addition (respectively the removal) of (u,r) from the user-assignment re-
lation. We do not consider administrative events that change permission-assignment relations.
This design decision is due to the observation that user-role assignments and the availability of
users in general changes much more frequently in practice than workflow and role models.

We now specify the evolution of an RBAC configuration and authorized task executions as
a process.

Definition 3 For an RBAC configuration (UA,PA) we call the process

RBAC(UA,PA) =
(
(t.u) : {t.u | ∃r ∈R. (u,r) ∈UA,(r, t) ∈ PA}→ RBAC(UA,PA)

)
�
(
add.u : U .r : R→ RBAC(UA∪{(u,r)},PA

)
�
(
rm.u : U .r : R→ RBAC(UA\{(u,r)},PA)

)
� SKIP

an RBAC process.

An RBAC process is parametrized by an RBAC configuration (UA,PA) and engages in every
execution event t.u if u is authorized to execute t with respect to (UA,PA). Furthermore, an
RBAC process changes its user-assignment relation by engaging in administrative events and
may terminate at any time. We now compose a workflow process with an RBAC process.

Definition 4 For a workflow process W and an RBAC configuration (UA,PA), we call the pro-
cess

SW (UA,PA) =W ‖
X

RBAC(UA,PA)

a secure (workflow) process.

Like an RBAC process, a secure process SW (UA,PA) is parametrized by an RBAC configu-
ration. SW (UA,PA) engages in every execution event t.u if W engages in t.u, i.e. if the workflow
foresees the execution of the respective task instance, and u is authorized to execute t with re-
spect to (UA,PA). By synchronizing only on execution events, arbitrary administrative events
can be interleaved with execution events in any order. Thus, the RBAC configuration can change
during a workflow’s execution.

Having introduced all the kinds of events that we need, specifically, Σ = X ∪A , we now
introduce the case study that accompanies this article.
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Figure 1: Drug dispensation process modeled in BPMN

3.3 Case Study

We illustrate the notions introduced above with a drug dispensation workflow from [MPH+09].
This workflow defines the tasks that must be executed to dispense drugs to patients within a
hospital. The drugs dispensed are either in an experimental state or are very expensive and
therefore require special diligence.

Figure 1 shows a visualization of the drug dispensation workflow in the Business Process
Modeling Notation (BPMN) [BPMN2]. For our case study, let T = {t1, . . . , t10}, where t1 refers
to Request Drugs, t2 to Retrieve Patient Record, etc., as illustrated in Figure 1. The set of users
U and the set of roles R are shown in Figure 2. Let (UA1,PA) be the initial RBAC configuration
of our case study. The user-assignment relation UA1 is depicted in Figure 2, ignoring the dashed
and dotted lines between users and roles, e.g. (Alice,Therapist) ∈UA1 and (Alice,Pharmacist) 6∈
UA1. The permission-assignment relation PA is illustrated in Figure 1 by means of BPMN
annotations. For example, only users acting in the role Nurse are authorized to execute t2 with
respect to (UA1,PA). We assigned only one role to each task but in general tasks can be annotated
with sets of roles.

An instance of the drug dispensation workflow is started by a Patient who requests drugs by
handing his prescription to a Nurse. The Nurse retrieves the patient’s record from the hospital’s
database and forwards all data to a PrivacyAdvocate who checks whether the patient’s data must
be anonymized. If anonymization is required, this is done by a computer program. We ignore
this task in our forthcoming discussion as we focus on human tasks. If therapeutic notes are
contained in the prescription, they are reviewed by a Therapist. In parallel, research-related data
is added by a Researcher if the requested drugs are in an experimental state. Finally, a Pharmacist
either approves the dispensation and a Nurse collects the drugs from the stock and gives them to
the patient, or he denies the dispensation and a Nurse informs the Patient accordingly.
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Figure 2: User-assignment relations

We model the drug dispensation workflow in CSP as the workflow process

W = t1.u1 : U → t2.u2 : U → t3.u3 : U →
(
(W1 |||W2) ; W3

)
W1 = SKIP u (t5.u5 : U → SKIP)

W2 = SKIP u (t6.u6 : U → SKIP)

W3 = t7.u7 : U →
(
(t8.u8 : U → SKIP) u (t9.u9 : U → t10.u10 : U → SKIP)

)
.

Because we do not model data-flow, we over-approximate gateway decisions, such as whether
therapeutical notes must be reviewed, with CSP’s operator u (internal choice). Let SW (UA1,PA)
be the secure process for W and (UA1,PA). The trace i1 = 〈t1.Fritz, t2.Emma, t3.Fritz, t5.Bob〉 is a
workflow trace of W because (i1 �X X) ∈ T(W ). However, i1 is not a trace of SW (UA1,PA)
because Fritz is not a PrivacyAdvocate and therefore not authorized to execute t3 with respect to
(UA1,PA).

Consider now the trace i2 = 〈t1.Fritz, t2.Emma,add.Fritz.PrivacyAdvocate, t3.Fritz, t5.Bob〉. This
trace is similar to i1 but includes the administrative event add.Fritz.PrivacyAdvocate. By en-
gaging in this administrative event, the user-assignment relation UA1 becomes UA2 = UA1 ∪
{(Fritz,PrivacyAdvocate)}. Because Fritz is authorized to execute t3 with respect to (UA2,PA), i2
is a trace of SW (UA1,PA). With respect to execution events, i2 is equal to i1, i.e. i2 �X X = i1 �
X X, and therefore i2 is also a workflow trace of W .

4 Generalizing Abstract Separation of Duty Constraints to Traces

4.1 SoDA Syntax

Our work builds on Li and Wang’s Separation of Duty Algebra (SoDA) [LW08]. We present
below the syntax of SoDA terms.

Definition 5 A SoDA grammar S with respect to a set of users U =
{u1, . . . ,un} and a set of roles R = {r1, . . . ,rm} is a quadruple (N,T,P,S) where:

• N = {S, CT, UT, AT, US, UR, U, R} is the set of nonterminal symbols,

• T = {′,′ ,(, ), {, }, ⊗, �, t, u, +, ¬,All} ∪ U ∪ R are the terminal symbols,

• the set of productions P⊆ (N× (N∪T )∗ ) is given by:

8
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S ::= CT |UT

CT ::= (CT tS) | (CT uS) | (S⊗S) | (S�S) | (UT )+

UT ::= AT | (UT uUT ) | (UT tUT ) |¬UT

AT ::= {UR} |R |All
UR ::= U |U, UR

U ::= u1 | . . . |un

R ::= r1 | . . . | rm

• and S ∈ N is the start symbol.

The terminal symbols ⊗, �, t, u, +, and ¬ are called operators. Without loss of generality, we
omit the productions CT ::= (SuCT ) and CT ::= (StCT ). Li and Wang showed in [LW08]
that u and t are commutative with respect to their semantics and this is also the case for our
semantics. Therefore, each term that could be constructed with these additional productions can
be transformed to a semantically equivalent term constructed without them.

Let→1
S∈ (N∪T )+×(N∪T )∗ denote one derivation step of S and→∗S the transitive closure

of →1
S. We call an element of {s ∈ T ∗ | S→∗S s} a term. Furthermore, we call an element of

{s∈ T ∗ |AT →∗S s} an atomic term. These are either a non-empty set of users, e.g. {Alice,Bob}, a
single role, e.g. Clerk, or the keyword All. We call an element of {s ∈ T ∗ |UT →∗S s} a unit term.
These terms do not contain the operators ⊗, �, and +. Finally, a complex term is an element of
{s ∈ T ∗ |CT →∗S s}. In contrast to unit terms, they contain at least one of the operators ⊗, �, or
+. For a term φ , we call a unit term φut a maximal unit term of φ if φut is a unit term, a subterm
of φ , and if there is no other unit term φ ′ut that is also a subterm of φ and φut is a proper subterm
of φ ′ut .

4.2 SoDA Multiset Semantics

Li and Wang define the satisfaction of SoDA terms for sets of users [LW08]. We refer to their se-
mantics as SODAS. It allows for quantitative constraints where terms define how many different
users must execute tasks in a workflow instance. However, SODAS does not express how many
tasks each of these users must execute. Consider the policy P that requires Bob to execute two
task, modeled by the SoDA term φ = {Bob}�{Bob}. Under SODAS, φ is satisfied by the set
{Bob}. There is no satisfactory mapping of φ to a process that accepts all traces that correspond
to satisfying assignments of φ . If we define the correspondence between sets and traces in a way
that {Bob} maps to the set of traces containing exactly one execution event involving Bob, this
would not satisfy P. Alternatively, if we map {Bob} to the set of traces containing arbitrarily
many execution events involving Bob, this set would also include traces that do not satisfy P, for
example, the trace containing three execution events involving Bob. The problem is that sets of
users are too abstract: users cannot be repeated and hence information is lost on how many tasks
a user (here Bob) must execute.

To address this problem, we introduce a new semantics, SODAM, that defines term satis-
faction based on multisets of users. SODAM allows us to make finer distinctions concerning
repetition (quantification requirements) than in SODAS. As shown below, φ is only satisfied
under SODAM by the multiset {{Bob,Bob}}. Mapping multisets to traces is straightforward. For
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example, traces corresponding to {{Bob,Bob}} include exactly two execution events involving
Bob. In this respect, SODAM allows a more precise mapping to traces than SODAS.

Definition 6 Let U ⊆U be a non-empty set of users and r ∈R a role. For a multiset of users
U, a term φ , and a user-assignment relation UA, multiset satisfiability is the smallest ternary
relation between multisets of users, user-assignment relations, and terms, written U |=M

UA φ , that
is closed under the rules:

(1)
{{u}} |=M

UA All
∃r ∈R .(u,r) ∈UA (2)

{{u}} |=M
UA r

(u,r) ∈UA

(3)
{{u}} |=M

UA U
u ∈U and∃r ∈R .(u,r) ∈UA (4)

{{u}} 6|=M
UA φ

{{u}} |=M
UA ¬φ

(5)
{{u}} |=M

UA φ

{{u}} |=M
UA φ+

(6)
{{u}} |=M

UA φ , U |=M
UA φ+

{{u}}]U |=M
UA φ+

(7)
U |=M

UA φ

U |=M
UA (φ tψ)

(8)
U |=M

UA ψ

U |=M
UA (φ tψ)

(9)
U |=M

UA φ , U |=M
UA ψ

U |=M
UA (φ uψ)

(10)
U |=M

UA φ , V |=M
UA ψ

U]V |=M
UA (φ �ψ)

(11)
U |=M

UA φ , V |=M
UA ψ

U]V |=M
UA (φ ⊗ψ)

(U∩V) =∅∅∅ .

We say that U satisfies φ with respect to UA if U |=M
UA φ . Informally, a user u satisfies the

term All if u is in the domain of UA. A user u satisfies a role r if there is a role assignment (u,r)
in UA, and u satisfies a set of users U if u is member of U and is in the domain of UA. A unit
term ¬φ is satisfied by u if u does not satisfy φ . A non-empty multiset of users U satisfies a
complex term φ+ if each user u ∈ U satisfies the unit term φ . A multiset of users U satisfies a
term φ tψ if U satisfies either φ or ψ , and U satisfies a term φ uψ if U satisfies both φ and
ψ . A term φ ⊗ψ is satisfied by a multiset of users W, if W can be partitioned into two disjoint
multisets U and V, and U satisfies φ and V satisfies ψ . Because every user in W must be in
either U or V, but not both, the ⊗ operator separates duties between two multisets of users. In
contrast, a term φ �ψ is satisfied by a multiset of users W, if there are two multisets U and V,
which may share users, and U satisfies φ , V satisfies ψ , and W is the sum of U and V. Thus, the
� operator allows “overlapping” duties where a user is in both U and V.

With SODAM the significance of maximal unit terms becomes evident. If a multiset of users
U satisfies a term φ , every user in U corresponds to at least one maximal unit term in φ . We
associate below a user u ∈U with the execution of a task by u, i.e. an execution event t.u, for an
arbitrary task t. When mapping terms to processes, the satisfaction of a maximal unit term will
therefore correspond to engaging in an execution event.

We now provide two examples of SoDA terms. The first serves as the SoD policy for our
case study and the second illustrates the difference between SODAM and SODAS.

10
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Example 1 Fraudulent or erroneous drug dispensations may jeopardize a patients’ health, may
violate regulations, and could severely impact the hospital’s finances and reputation. We there-
fore assume that a hospital who executes the drug dispensation workflow enforces SoD con-
straints in order to reduce these risks. Concretely, a Pharmacist may not dispense drugs to him-
self; i.e. he should not act as a Patient and a Pharmacist within the same workflow instance.
Similarly, the Nurse who prepares the drugs should not be the same user as the Pharmacist who
approves the dispensation. Furthermore, the PrivacyAdvocate must be different from any other
user involved in the same workflow instance. Finally, the nurse Claire may not be involved in
the dispensation due to her drug abuse history. However, as a Patient she may receive drugs.
All these constraints are encoded by the term φ = Patient ⊗ ((¬{Claire})+ u (PrivacyAdvocate⊗
Pharmacist ⊗ (Nurse t Researcher t Therapist)+)).

Consider now the user-assignment relation UA3 shown in Figure 2. The multiset U1 =
{{Alice,Bob,Dave,Emma,Fritz,Gerda,Gerda}} satisfies φ with respect to UA3. However, U2 =
{{Bob,Emma,Fritz,Gerda,Gerda}} does not satisfy φ with respect to UA3 because φ requires at
least one user acting as Pharmacist and U2 contains no user who acts as Pharmacist with respect
to UA3. �

Example 2 Under SODAM, the term {Bob} � {Bob} � {Bob}+ is satisfied by all multisets that
contain Bob three or more times, i.e. Bob must execute at least three tasks. Under SODAS, this
term is only satisfied by the set {Bob} and therefore does not define how many tasks Bob must
actually execute. This example illustrates again how SODAM refines SODAS. �

We conclude by formally relating SODAM and SODAS. Under SODAS, X |=S

(U,UR) φ de-
notes the satisfaction of a term φ by a set of users X ⊆ U with respect to a tuple (U,UR),
where U ⊆ U and UR ⊆ U ×R. Because tasks can only be executed by users who are as-
signed to at least one role, we simplify this tuple and extract the available users from UA,
as can be seen in Rule (3) of Definition. 6. For a user-assignment relation UA, the function
lwconf(UA) = (dom(UA),UA) maps UA to the corresponding tuple in SODAS. Moreover, given
a multiset of users U, the function userset(U) = {u | u ∈ U} returns the set of users contained
in U. The following lemma shows how SODAM generalizes SODAS. We prove Lemma 1 in
Appendix A.2.1.

Lemma 1 For all terms φ , all user-assignment relations UA, and all multisets of users U, if
U |=M

UA φ , then userset(U) |=S

lwconf(UA) φ .

4.3 Enforcement Approach and Requirements

As shown above, SoDA specifies SoD constraints at a high level of abstraction. However, the en-
forcement takes place at runtime in the context of a workflow instance. Given a term φ , we now
describe how to construct an enforcement monitor for φ . Our construction maps φ to a process
SODφ (UA), called the SoD-enforcement process, parametrized by a user-assignment relation
UA. SODφ (UA) accepts all traces corresponding to a multiset that satisfies φ with respect to UA.
We show later in Section 5 how to implement SODφ (UA) as a service and how to provision and
integrate this service in an enterprise environment.

In practice, it is critical to allow administrative events during workflow execution. If Bob
leaves his company, it should be possible to remove all his role assignments, thereby preventing
him from subsequently executing tasks. Similarly, if Alice joins a company or changes positions,
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and is therefore assigned new roles, she should also be able to execute tasks in workflow in-
stances that were started prior to the organizational change. Assuming that a user-assignment
relation does not change during the execution of a workflow instance is therefore overly restric-
tive. The SoD-enforcement process defined below accounts for such changes. The function upd
(“update”) describes how a trace of administrative events changes a user-assignment relation.

Definition 7 Let a ∈A ∗ be a trace of administrative events and UA a user-assignment relation.
The function upd is then defined as

upd(UA,a) =


UA ifa = 〈〉,
upd(UA∪{(u,r)},a′) ifa = 〈add.u.r〉ˆa′,

upd(UA\{(u,r)},a′) ifa = 〈rm.u.r〉ˆa′,

where u ranges over U , r over R, and a′ over A ∗.

Let φ be a term, UA a user-assignment relation, and SODφ (UA) the SoD-enforcement pro-
cess for φ and UA. We postulate the following requirements for SODφ (UA):

(R1) SODφ (UA) must accept every trace of admin events a, and behave like SODφ (UA′) after-
wards, for UA′ = upd(UA,a).

(R2) SODφ (UA) must engage in an execution event t.u, if {{u}} satisfies at least one maximal
unit term of φ with respect to UA.

(R3) The semantics of the operators +, t, u, �, and ⊗ with respect to traces must agree with
their definition in SODAM.

Requirement (R1) says that administrative events are always possible and their effects are
reflected in the user-assignment relation. (R2) formulates agreement with SODAM, where for
a multiset of users U, if U |=M

UA φ , then each user in U satisfies at least one maximal unit term
of φ with respect to UA. Similarly, SODφ (UA) must not engage in an execution event if the
corresponding user does not contribute to the satisfaction of φ . As for (R3), consider for example
the terms φ⊗ψ and φ�ψ . It must be possible to partition a trace satisfying φ⊗ψ or φ�ψ into
two subtraces, one satisfying φ and the other one satisfying ψ . In the case of φ ⊗ψ , the users
who execute task instances in one trace must be disjoint from the users executing task instances
in the other trace. In contrast, for φ�ψ , the multisets of users need not be disjoint. In particular,
(R3) states that if SODφ (UA) accepts a trace i that contains no admin event and reaches a final
state, then users(i) |=M

UA φ .

4.4 SoDA Trace Semantics

The following example shows that SODAM is not expressive enough to capture the requirements
(R1)–(R3).

Example 3 Suppose that SODAM were expressive enough to capture (R1)–(R3). Consider the
policy P that requires one task to be executed by a user acting as a Pharmacist and another
task to be executed by a user who is not acting as a Pharmacist. We model P by the term φ =
Pharmacist�¬Pharmacist and consider the trace

i = 〈add.Alice.Pharmacist, t1.Alice, rm.Alice.Pharmacist, t2.Alice〉 ,
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for two arbitrary tasks t1 and t2. From (R1)–(R3), it follows that SODφ (∅) must accept i. By
(R1), SODφ (∅) engages in add.Alice.Pharmacist and afterwards behaves like SODφ (UA), for
UA = {(Alice,Pharmacist)}. Next, SODφ (UA) engages in t1.Alice by (R2) and (R3) because Alice
acts as a Pharmacist. Again by (R1), SODφ (UA) engages in rm.Alice.Pharmacist and afterwards
behaves like SODφ (∅). Finally, by (R2) and (R3), SODφ (∅) engages in t2.Alice because Alice
does not act as a Pharmacist. In the end, SODφ engaged in an execution event with a user that
acted as a Pharmacist and in another execution event with a user not acting as a Pharmacist,
satisfying the policy P. Because of the administrative events it was possible that both tasks were
executed by the same user, i.e. users(i) = {{Alice,Alice}}. However, under SODAM, φ can only
be satisfied by a multiset of users that contains two different users, which contradicts users(i) =
{{Alice,Alice}}. Hence, SODAM is not expressive enough to capture (R1)–(R3). �

The inability to handle administrative changes motivates the introduction of a third seman-
tics, SODAT. In SODAT, subterms correspond to separate traces that may interleave with each
other in any order. Administrative events, though, must occur in all traces in the same order. This
reflects that SoDA terms do not constrain the order of executed tasks but that the user-assignment
relation must be consistent across all subterms at any time. We formalize this relation by the syn-
chronized interleaving predicate si. For traces i, i1, and i2, si(i, i1, i2) holds if and only if i1 and
i2 “partition” i such that each administrative event in i is contained in both i1 and i2, and each
execution event is either in i1 or i2. More precisely:

Definition 8 Let i, i1, i2 ∈ (X ∪A )∗ be traces. The synchronized interleaving predicate si(i, i1, i2)
is defined as:

si(i, i1, i2) =



true if i = 〈〉, i1 = 〈〉and i2 = 〈〉,
si(i′, i′1, i

′
2) if i = 〈a〉ˆi′, i1 = 〈a〉ˆi′1,and i2 = 〈a〉ˆi′2,

si(i′, i′1, i2) or si(i′, i1, i′2) if i = 〈x〉ˆi′, i1 = 〈x〉ˆi′1,and i2 = 〈x〉ˆi′2,
si(i′, i′1, i2) if i = 〈x〉ˆi′, i1 = 〈x〉ˆi′1,and i2 6= 〈x〉ˆi′2,
si(i′, i1, i′2) if i = 〈x〉ˆi′, i1 6= 〈x〉ˆi′1,and i2 = 〈x〉ˆi′2,
f alse otherwise,

where a ranges over A , x over X , and i′, i′1, and i′2 over (X ∪A )∗.

Note that the Boolean or in the third case arises as there are two possible interleavings. The
predicate si will hold (evaluate to true) if either of the two interleavings hold. We illustrate si
with an example.

i = 〈 x1, x2, x3, a1, x4, x4, a2, x5, a3, x6, a4 〉
i1 = 〈 x1, x3, a1, x4, a2, a3, x6, a4 〉
i2 = 〈 x2, a1, x4, a2, x5, a3, a4 〉

For these three traces, si(i, i1, i2) holds. We now define the satisfaction of SoDA terms by traces.

Definition 9 Let u ∈ U be a user, t ∈ T a task, x ∈X an execution event, and a ∈ A an
administrative event. For a trace i ∈ (X ∪A )∗, a user-assignment relation UA, a term φ , and a
unit term φut , trace satisfiability is the smallest ternary relation between traces, user-assignment
relations, and terms, written i |=T

UA φ , closed under the rules:
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(1)
{{u}} |=M

UA φut

〈t.u〉 |=T
UA φut

(2)
i |=T

UA φ

iˆ〈a〉 |=T
UA φ

(3)
i |=T

UA∪{(u,r)} φ

〈add.u.r〉ˆi |=T
UA φ

(4)
i |=T

UA\{(u,r)} φ

〈rm.u.r〉ˆi |=T
UA φ

(5)
〈x〉 |=T

UA φut

〈x〉 |=T
UA φ

+
ut

(6)
〈x〉 |=T

UA φut , i |=T
UA φ

+
ut

〈x〉ˆi |=T
UA φ

+
ut

(7)
i |=T

UA φ

i |=T
UA φ tψ

(8)
i |=T

UA ψ

i |=T
UA φ tψ

(9)
i |=T

UA φ , i |=T
UA ψ

i |=T
UA φ uψ

(10)
i1 |=T

UA φ , i2 |=T
UA ψ

i |=T
UA φ �ψ

si(i, i1, i2)

(11)
i1 |=T

UA φ , i2 |=T
UA ψ

i |=T
UA φ ⊗ψ

si(i, i1, i2) and users(i1)∩users(i2) =∅∅∅ .

We say that i satisfies φ with respect to UA, if i |=T
UA φ . SODAT fulfills the requirements

of Section 4.3: (R1) follows from rules (2) to (4), (R2) from rule (1), and (R3) from the rules
corresponding to the respective operators. That SODAM agrees with SODAT in the absence of
administrative events is shown by the following lemma, which we prove in Appendix A.2.2.

Lemma 2 For all terms φ , all user-assignment relations UA, and all traces i ∈X ∗, if i |=T
UA φ ,

then users(i) |=M
UA φ .

Consider again the trace i and the term φ from Example 3. It is straightforward to see that
i satisfies φ with respect to UA = ∅. Hence, SODAT overcomes the limitations of SODAM

illustrated in Example 3.
Summarizing, we first generalized SODAS to SODAM and thereby solved the problem that

SODAS does not specify how many tasks each user who contributes to the satisfaction of a term
must execute. Second, we introduced administrative events that may change user-assignment
relations, defined requirements that an SoDA enforcement incorporating these events must sat-
isfy, and showed that SODAM does not capture them. Third, we further generalized SODAM to
SODAT and showed that SODAT satisfies our requirements. Next, we define a mapping from
terms to processes, which model enforcement monitors, and prove its correctness with respect
to SODAT.

4.5 Mapping Terms to Processes

We first introduce the auxiliary process END that engages in an arbitrary number of admin events
before it successfully terminates.

END = (a : A → END)� SKIP

Using END, we define the mapping J.KU
UA.

Definition 10 Given a set of users U, a user-assignment relation UA, and a term φ , the map-
ping JφKU

UA returns a process parametrized by UA. For a unit term φut and terms φ and ψ , the
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mapping J.KU
UA is defined as follows.

(1) JφutKU
UA = t : T .u : {u′ ∈U | {{u′}} |=M

UA φut }→ END

� add.u : U .r : R→ JφutKU
UA ∪ {(u,r)}

� rm.u : U .r : R→ JφutKU
UA \ {(u,r)}

(2) Jφ
+
ut KU

UA = t : T .u : {u′ ∈U | {{u′}} |=M
UA φut }→ (END� Jφ

+
ut KU

UA)

� add.u : U .r : R→ Jφ
+
ut KU

UA ∪ {(u,r)}

� rm.u : U .r : R→ Jφ
+
ut KU

UA \ {(u,r)}

(3) Jφ tψKU
UA = JφKU

UA � JψKU
UA

(4) Jφ uψKU
UA = JφKU

UA ‖ JψKU
UA

(5) Jφ �ψKU
UA = JφKU

UA ‖
A

JψKU
UA

(6) Jφ ⊗ψKU
UA = �

{(Uφ ,Uψ ) |Uφ∪Uψ=U ∧Uφ∩Uψ=∅}
JφKUφ

UA ‖
A

JψKUψ

UA

Note that the equations (1) and (2) require determining whether {{u′}} |=M
UA φut . This prob-

lem is analogous to testing whether a propositional formula is satisfiable under a given assign-
ment and is also decidable in polynomial time.

Definition 11 For a term φ and a user-assignment relation UA, the SoD-enforcement process
SODφ (UA) is the process JφKU

UA.

Before we show how an SoD-enforcement process is used together with workflow processes
and the RBAC process, we define correctness for the mapping J.KU

UA.

Definition 12 The mapping J.KU
UA is correct if for all terms φ , all user-assignment relations UA,

and all traces i ∈ Σ∗, iˆ〈X〉 ∈ T(SODφ (UA)) if and only if i |=T
UA φ .

Informally, the mapping J.KU
UA is correct if the following properties hold for all SoD-enforcement

processes SODφ : (1) if SODφ accepts a workflow trace that corresponds to a successfully ter-
minated workflow instance, then its prefix excluding X satisfies φ under SODAT, and (2) if
a workflow trace satisfies φ under SODAT, then its extension by X corresponds to a success-
fully terminated workflow instance and is accepted by SODφ . We prove Theorem 1 in Ap-
pendix A.2.3.

Theorem 1 The mapping J.KU
UA is correct.

Hence, if the SoD-enforcement process accepts a successfully terminated workflow instance,
then the corresponding SoD constraint is satisfied. We also know that no compliant workflow
instance is falsely blocked by the SoD-enforcement process. The following corollary relates the
set of traces of SoD-enforcement processes without administrative events and their correspond-
ing multisets of users under the multiset semantics. Its proof follows directly from Theorem 1
and Lemma 2.
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Corollary 1 For all terms φ , all user-assignment relations UA, and all traces i∈X ∗, if iˆ〈X〉 ∈
T(SODφ (UA)), then users(i) |=M

UA φ .

Given a workflow process W and a term φ that models an SoD policy, the SoD-secure (work-
flow) process SSW φ is the parallel, partially synchronized composition of W, the RBAC process,
and the SoD-enforcement process SODφ , parametrized by a user-assignment relation UA and a
permission-assignment relation PA.

SSW φ (UA,PA) =W ‖
X

(RBAC(UA,PA) ‖ SODφ (UA))

Let x = t.u be an execution event, for a task t and a user u. SSW φ (UA,PA) engages x if W,
RBAC(UA,PA), and SODφ (UA) each engage in x. In other words, t must be one of the next
tasks according to the workflow specification, the user u must be authorized to execute the task
t according to the RBAC configuration (UA,PA), and u must not violate the SoD policy φ ,
given the previously executed execution events and UA. Furthermore, RBAC and SODφ can
synchronously engage in an administrative event at any time. Finally, SSW φ (UA,PA) engages
inX if W, RBAC, and SODφ (UA) synchronously engage inX.

Example 4 We return to our case study. Consider again the drug dispensation workflow, mod-
eled by the workflow process W , the user-assignment relations UA1, UA2, and UA3, and the
permission-assignment relation PA, introduced in Section 3.3. Furthermore, recall the work-
flow’s SoD policy introduced in Example 1 and formalized by the term φ = Patient ⊗
((¬{Claire})+ u (PrivacyAdvocate⊗Pharmacist ⊗ (Nurse t Researcher t Therapist)+)). We con-
cluded in Section 3.3 that i2 = 〈t1.Fritz, t2.Emma,add.Fritz.PrivacyAdvocate, t3.Fritz, t5.Bob〉 is a
trace of SW (UA1,PA). However, i2 is not a trace of the SoD-secure process SSW φ (UA1,PA)
because i2 is not a trace of SODφ (UA1). In particular, when Fritz executes t1 in i2 he acts only
in the role Patient and when he later executes t3 he acts as a Patient and a PrivacyAdvocate. By
Definition 10 and 11, SODφ (UA1) engages in one execution event where the respective user acts
as a Patient and one where the user acts as a PrivacyAdvocate. However, due to the⊗-operator be-
tween the corresponding subterms in φ , these users must be different, i.e. both cannot be Fritz. Of
course SODφ (UA1) engages in further execution events, but Fritz does not satisfy the respective
subterms. Hence, SODφ (UA1) accepts i2’s prefix 〈t1.Fritz, t2.Emma,add.Fritz.PrivacyAdvocate〉 but
does not engage in t3.Fritz afterwards.

In contrast, SODφ (UA1) accepts i3 = 〈t1.Dave, t2.Emma, add.Fritz.PrivacyAdvocate, t3.Fritz,
t5.Bob,add.Alice.Pharmacist, t7.Alice, t9.Gerda, t10.Gerda,X〉. By Theorem 1 and because X ∈ i3
we have that (i3 � Σ) |=T

UA1
φ . In other words, i3 models a workflow instance that satisfies the

drug dispensation workflow’s SoD policy. Furthermore, by engaging in the first administrative
event in i3, the user-assignment relation changes to UA2 and after engaging in the second admin-
istrative event it becomes UA3. Thereby, every task execution is authorized and RBAC(UA1,PA)
accepts i3 as well. Finally, it is easy to see that i3 �X ∈ T(W), i.e. i3 is also a workflow trace of
W. As a result, i3 ∈ T(SSW φ (UA1,PA)). �

This example illustrates how the three kinds of processes presented in this article interact and
how each of them enforces its corresponding specification: W formalizes the workflow model,
RBAC formalizes a possibly changing access control policy, and SODφ (UA) formalizes the SoD
policy, while accounting for changing role assignments.

We have now completed our formal models and are ready to map them to a software imple-
mentation in the next section. We return to the case study in Section 5.5, when we measure the
performance of our implementation.
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Figure 3: From theory to practice: Mapping processes to software components

5 Implementation

In the following, we describe an implementation of SoD as a Service. Our goal is to demonstrate
the flexibility of this approach, to analyze its scalability, and to identify performance-critical pa-
rameters. We use the SoD-secure process as blueprint for our implementation. Its subprocesses
naturally map to components of a SOA as illustrated in Figure 3. The components’ interfaces
can be inferred from the sets of events on which the respective processes synchronize and the
processes themselves describe the components’ behavior. We proceed by implementing W by a
workflow engine, RBAC by a user repository, and SODφ by a program called an SoD-enforcement
monitor. Workflow engines and user repositories are well-established concepts and we therefore
realize them using off-the-shelf components. The standalone SoD-enforcement monitor, how-
ever, is something fundamentally new. Hence, we implemented it from scratch. In Figure 3 and
further illustrations we use dark gray to identify newly developed components.

5.1 Technical Objectives

We aim at realizing an effective, practical, and efficient implementation of SoD as a Service.
By effective we mean that the implementation fulfills its purpose. Namely, it should support
the execution of arbitrary workflows, facilitate changing RBAC configurations, and correctly
enforce SoD constraints that are specified as SoDA terms.

We understand practicability in the sense that the integration and configuration effort is mod-
erate. The main components of our system should be loosely coupled in order to enable a sep-
aration of concerns and to allow the integration of pre-existing components, such as a legacy
workflow system. Furthermore, the system should be configurable using standard means, e.g.
a workflow definition, an RBAC configuration, and an SoD policy, rather than requiring addi-
tional, labor-intensive settings.

The performance of our implementation is critical to the success of our approach. We call
the runtime of a system with a workflow engine and a user repository, but without an SoD-
enforcement monitor, the runtime baseline. Our objective is to enforce SoD constraints effi-
ciently, that is with a low overhead compared to the runtime baseline.

5.2 Architecture

As defined in Section 4.5, an SoD-secure process is the parallel, partially synchronized execution
of three subprocesses, each responsible for a specific task. Due to the associativity of CSP’s
synchronous parallel-composition operator ( || ), these three processes can be grouped in any
order. Furthermore, the set of events on which these processes synchronize defines the kinds of
events each process engages in. Therefore, any subset of these three processes can be mapped
to an enforcement monitor and the set of events synchronized with the remaining processes
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Figure 4: Architecture

specifies the monitor’s interface. This is of particular interest if a system already provides one
of the components we model by our processes. For example, assume a system comes with
a workflow engine and an access control enforcement monitor. In this case, it is sufficient
to generate an enforcement monitor for the SoD-enforcement process and to synchronize all
business and administrative events with the existing components.

Figure 3 shows our general approach of mapping W, RBAC, and SODφ to individual system
components. The concrete software tools we use and their intercommunication are illustrated in
Figure 4. Ignore the arrows and labels for the moment.

Workflow engine We use the IBM WebSphere Process Server (WPS) [WPS] as a workflow
engine. WPS runs on top of the IBM WebSphere Application Server (WAS) [WAS],
which is IBM’s Java EE application server.

User repository The IBM Tivoli Directory Server (TDS) [TDS] serves as a user repository.
TDS is an LDAP server whose LDAP schema we configured to support RBAC configura-
tions.

SoD enforcement monitor We implemented the SOD-enforcement monitor in Java and
wrapped it as a web service, using Apache Axis [AA09] running on top of Apache Tomcat.

Along with the various web service standards, many semi-formal business process modeling
languages have emerged. Backed by numerous software vendors, the Web Service Business
Process Execution Language (WS-BPEL) [AAA+07], or BPEL for short, is a popular standard
for describing business processes at the implementation-level. A BPEL process definition can
be directly executed by a workflow engine. At design time, we define a workflow in BPEL,
possibly generated from a BPMN model, and deploy it to WPS. We use the BPEL extension
BPEL4People [AAD+07] to specify human tasks.

LDAP supports RBAC with the object class accessRole. Instances of this class represent a
role and store the distinguished name of their members, typically instances of inetOrgPerson,
in the field member. We encode U , R, and UA in LDAP’s export format LDIF and send it to
TDS, or we administer them directly through TDS’ web interface.
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Using an ASCII version of the SoDA grammar, we encode SoDA terms as character strings.
We send them to the SoD-enforcement monitor with a standalone client.

By adopting a service-oriented architecture, we achieve a loose coupling between our three
main system components. This allows us to integrate two off-the-shelf components and our
newly developed SoD-enforcement monitor. Hence, we achieve the flexibility described in Sec-
tion 5.1.

The downside of a SOA approach is the increased communication and serialization over-
head. To determine whether a user is authorized to execute a task instance with respect to an
SoD constraint, the SoD-enforcement monitor requires context information, which must be sent
across the network. Our design decisions in this regard are explained in Section 6.3 and the per-
formance analysis in Section 5.5 shows that the communication overhead is acceptable. Similar
trade-offs between flexible, distributed architectures with an increased communication overhead
versus monolithic architectures with a smaller communication overhead have been made in the
past. For example, the Hierarchical Resource Profile for XACML [And05] proposes sending
the hierarchy, based on which an access control decision is made, to the access control moni-
tor along with each access request. As with our architecture, the access control monitor needs
considerable context information to compute an access decision.

5.3 Enforcement

Our prototype system implements an SoD-secure workflow process SSW φ as follows. The SSW φ

process engages in three kinds of events: execution events, administrative events, and the event
X. The implementation and handling of administrative events and the eventX is straightforward.
We take therefore a closer look at execution events and explain why every task instance in
our system corresponds to an execution event that is accepted by SSW φ . An execution event
corresponds to a sequence of steps in our implementation.

Consider the SoD-secure workflow process

SSW φ (UA,PA) = (W ‖
X

RBAC(UA,PA)) ‖
Σ

SODφ (UA),

for a SoDA term φ , an RBAC configuration (UA,PA), and a workflow process W that models a
workflow w. Assume that i∈T(SSW φ (UA,PA)) corresponds to an unfinished workflow instance
of w. Let UA′ be the user-assignment relation after executing the administrative events in i.
Assume that t is the next task of w that is executed in the workflow instance corresponding
to i. We now look at the steps that our architecture performs, which will finally constitute an
execution event x = t.u, for a user u. We refer to an arrow labeled with n in Figure 4 as An.

1. Instantiation: The creation of x is triggered by the termination of the preceding task
instance, i.e. the rightmost execution event in i, or by the creation of i itself.

2. RBAC Authorization: In SSW φ , authorization decisions are made by the RBAC and the
SODφ process and W simply defines the order in which tasks must be executed. This is
handled differently in most commercial workflow systems, including ours. For example,
BPEL4People requires the definition of a query, called people link, for every task. When
the workflow engine instantiates the task, it executes the respective query against the user
repository. The returned users are candidates for executing the newly created task instance.
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For a user u, the process RBAC(UA′,PA) accepts the execution event t.u if u is assigned to
one of the roles in Rt = {r | (r, t) ∈ PA} according to UA′. Therefore, during design time,
we specify t’s people link in such a way that the user repository returns all users who
are assigned to a role in Rt . In other words, the user repository keeps track of the user-
assignment relation UA and the workflow definition specifies the permission-assignment
relation PA. Implicitly, we assume a one-to-one relation between permissions and tasks.

WPS evaluates t’s people link after every instantiation of t. Initially, the people link is sent
to TDS (A1). Afterwards, TDS returns the set of users U1 = {u | ∃r ∈ Rt .(u,r) ∈UA′} to
WPS (A2).

3. Refinement to SoD-compliant Users: Next, we select those users from U1 who are
allowed to execute x with respect to φ and i. Namely, we compute the set of users
U2 = {u ∈U1 | i ˆ〈t.u〉 ∈ T(SODφ (UA′))}.

WPS provides a plugin interface that allows one to post-process the sets of users returned
by a user repository. We wrote a plugin for this interface that sends U1, their assign-
ments to roles UA′1 = {(u,r) ∈UA′ | u ∈U1}, and the identifiers of w and i to the SoD-
enforcement monitor (A3). We refer to this web service call as a refinement call.

For every workflow, the SoD-enforcement monitor stores the corresponding SoDA term.
Furthermore, it keeps track of the users who execute task instances (see step Claim).
Together with the above mentioned inputs, the SoD-enforcement monitor therefore has
all the necessary parameters to compute U2, which it then returns to WPS (A4).

4. Display: A user can interact with WPS through a personalized web interface. Once a
user has successfully logged into the system, WPS displays a list of task instances that
the user is authorized to execute. We call this list the user’s inbox. For every user u ∈U2,
iˆ〈t.u〉 ∈ T(SSW φ (UA,PA)). Therefore, WPS displays x in the inbox of every user in U2.

5. Claim: In the workflow terminology, if a user requests to execute a task, he is said to
claim the task. One of the users in U2 must claim x by clicking on x in his inbox. Assume
the user u claims x, i.e. in CSP x corresponds to the execution event t.u. Instantaneously, x
is removed from the inboxes of all other users. At this point, we must communicate to the
SoD-enforcement monitor that u is executing x. In addition, we send the roles assigned to
u to the monitor (A5). We refer to this web service call as a claim call.

6. Termination: Afterwards, u is prompted with a form whose completion constitutes the
work associated with x. The work is completed when the form is submitted. If x is not a
task instance that terminates the workflow instance, its termination triggers the instantia-
tion of at least one other task.

Summarizing, our system effectively enforces abstract SoD constraints as specified in Sec-
tion 5.1. Arbitrary workflows, constrained by a possibly changing RBAC configuration and
an abstract SoD policy, can be executed on WPS. The practicability of our approach is further
supported by performance measurements for our case study in Section 5.5. However, we first
examine its runtime complexity.
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5.4 Complexity

When analyzing the runtime complexity of our SoD-enforcement monitor implementation, it
suffices to consider the complexity of refinement calls. The complexity of claim calls are negli-
gible compared to refinement calls and is therefore not discussed.

In general, the problem of deciding whether a term is satisfied by a set of users is NP-
complete [LW08]. The SoD-enforcement monitor must solve this decision problem for every
user received through a refinement call. Therefore, it comes as no surprise that refinement calls
have a worst-case exponential runtime complexity. However, we can show that the exponent
remains small for moderate size workflows.

The parameters of a refinement call are a set of users, U1, their role assignments, UA′1, and
the identifiers of i and w. Using the identifier of w, the monitor retrieves φ . With the identifier
of i, it retrieves all the users who have executed task instances in i and their role assignments at
that time.

For each u∈U1, the SoD-enforcement monitor computes whether i ˆ〈t.u〉 ∈T(SODφ (UA′1)).
This computation is executed |U1| = n times. Consider the J.K-mapping. The evaluation of a
unit term can be performed in polynomial time in the size of |U | and |R|; i.e. p(|U |, |R|) for a
polynomial p. In the worst case, SODφ (UA′1) branches 2|U | times per operator in φ . If m is the
number of operators, the worst-case runtime is therefore in O(nm2|U | p(|U |, |R|)).

The exponential factor originates from the ⊗-operator, which causes SODφ (UA′1) to branch
for all disjoint subsets of U . Let Ui+u = userset(users(i))∪{u}, i.e. the set of users in execution
events in i and u. If we check whether i ˆ〈t.u〉 ∈ T(SODφ (UA′1)), the users in U \Ui+u are not
relevant. We therefore need not branch over all partitions of U but only over those of Ui+u. If φ

does not contain a +-operator, then the maximal number of users in business events in i is m+1
and therefore |Ui+u| ≤m+2. If φ does contain a +-operator, then |Ui+u| ≤ |U |. Our implemen-
tation exploits these observations. Hence, its runtime complexity is in O(nm2|Ui+u| p(|U |, |R|))
for |Ui+u| as discussed above.

Our experience with business process catalogs, such as the IBM Insurance Application Ar-
chitecture (IAA) [IAA], is that workflows contain a good dozen human tasks on the average. Fur-
thermore, most workflow languages allow the decomposition of workflows into sub-workflows.
Hence, we conclude that the performance penalty imposed by the SoD as a Service approach
remains acceptable for most workflows. We provide performance measurements that support
this in the following section.

5.5 Performance Measurements

We return to the drug dispensation workflow introduced in Section 3.3, the term φ from
Example 1, and the trace i3 = 〈t1.Dave, t2.Emma,add.Fritz.PrivacyAdvocate, t3.Fritz, t5.Bob,
add.Alice.Pharmacist, t7.Alice, t9.Gerda, t10.Gerda,X〉 from Example 4.

We modeled the workflow in BPEL, extended by BPEL4People, and deployed it on WPS.
We set up the initial user-assignment relation UA1 using TDS’ web interface and deployed φ ,
encoded as string, to the SoD-enforcement monitor. Furthermore, we configured WPS to use
our plugin to post-process the sets of users returned when evaluating people links. We then ex-
ecuted instances of the drug dispensation workflow. For example, we logged into WPS as Dave
and started a workflow instance by submitting a form that corresponds to t1 (Request Drugs).
Next, we logged into the system as Emma, claimed the newly created instance of the task
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(a) Refinement calls (b) Claim calls

Figure 5: Average service call times in ms

t2 (Retrieve Patient Record), and executed it by filling in the corresponding form. Through
TDS’ web interface we then assigned Fritz to the role PrivacyAdvocate. Thereby, UA1 evolved to
UA2. Afterwards, we executed t3 (Check Anonymization Requirements) as Fritz. This sequence of
activities corresponds to a prefix of i3. In the following, we report on the average performance
of ten executions of workflow instances corresponding to i3.

Compared to the runtime baseline, the runtime of our prototype system is increased by a
refinement and a claim call for every task instance. We call the time it takes to call a web service
and to retrieve its return values the total runtime of a web service. We decompose this runtime
into two parts: the communication time encompasses the time to serialize, transmit, and deserial-
ize the exchanged data and the computation time is the time to execute the service’s functionality.
Figure 5 illustrates the averaged communication and computation times in milliseconds per task.

The communication time depends on various factors including the network throughput, la-
tency, the payload size, and also the time taken to serialize Java objects to SOAP message pa-
rameters using the Apache Axis framework. We run the service client and the SoD-enforcement
monitor on two different computers at the same geographical location, connected by a standard
enterprise network with an average latency of 1ms. Both computers have off-the-shelf configu-
rations.1 The communication time averages between 150ms and 200ms per call.

The computation time for claim calls was always around 24ms. The computation time of
refinement calls, however, increased with the number of executed task instances. As shown in
Section 5.4, the operators in φ cause this time to increase exponentially.

Finally, we compare the total runtime of these additional calls to the time it takes to execute
a task instance in a system without an SoD-enforcement monitor. The refinement call increases
the time between the termination of a preceding task instance and the moment the new task
instance is ready to be claimed by a user. The durations for these steps range between 2 and
15 seconds, depending on the load on WPS and the latest patches installed on it. Claiming a
new task instance takes only 1–3 seconds. A user clicks on the instance in his inbox and the
corresponding form is displayed on his screen. In both cases, the additional runtime caused by
the SoD-enforcement monitor calls is an order of magnitude smaller than the runtime baseline,
which varied between 2 and 5 seconds.

1Client: MS Windows XP on Intel Core Duo 2 GHz processor with 3 GB RAM. Server: MS Windows Server
2003 on Intel Xeon 2.9 GHz processor with 4 GB RAM.
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(a) Medical workflow (b) Payment workflow

Figure 6: Example workflows for evaluation

Given the observations made in the previous section and the times reported here, we con-
clude that the integration of our SoD as a Service implementation into an existing workflow
system imposes a performance penalty below 10%. Consequently, we achieved all the objec-
tives described in Section 5.1.

6 Evaluation and Future Work

6.1 Limitations of an Automated Mapping

As elaborated above, the abstract nature of SoDA has valuable advantages. However, it also
poses a challenge when mapping terms onto workflows. In particular, Li and Wang’s set-based
semantics SODAS does not specify a mapping between subterms and tasks. We use the work-
flows in Figure 6 to evaluate our generalization of SODAS to SODAT, our automated mapping
to processes, their shortcomings, and explore directions for future work.

Consider the medical workflow shown in Figure 6a and assume that we want to enforce the
SoD constraint Nurse⊗Doctor, which does not specify whether the Doctor performs the surgery
and the Nurse prepares the instruments or vice versa. We tackle this problem by incorporat-
ing an RBAC configuration into the SoD-secure process. For this medical workflow, the de-
picted permission-assignment relation rules out workflow instances where the Nurse performs
the surgery and the Doctor prepares the instruments.

However, incorporating an RBAC configuration does not solve all refinement questions re-
lated to a mapping from terms to processes. In particular when duties are to be separated
between tasks assigned to the same users, an RBAC configuration is of little help. Consider
the payment workflow in Figure 6b, ignoring the gray parts for the moment, and the term
Accountant⊗Accountant+. Implicitly, we would assume that a separation of duties between the
tasks prepare and approve is intended. However, a trace that corresponds to a workflow instance
where one Accountant executes prepare and approve and another Accountant executes issue is also
accepted by the SoD-secure process. A semi-automated approach where subterms are manually
mapped to tasks would solve this problem. We have considered only fully automated mappings
in this article and leave semi-automated solutions to future work.

An inherent weakness of SoDA that is revealed by an automated mapping is its poor support
for loops. Consider the payment workflow in Figure 6b, now also including the gray elements,
i.e. looping over the tasks prepare and approve until the payment is approved. SoDA provides
no means to specify an SoD constraint for each loop iteration. For example, we cannot specify
that each pair of instances of prepare and approve must be executed by different users. Only
terms containing a +-operator map to SoD-enforcement processes that accept an arbitrary num-
ber of execution events. By SoDA’s syntax S however, the +-operator only ranges over unit
terms. [LW08] motivate this design decisions with the “psychological acceptability principle”
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postulated by [SS75]. As a consequence, our approach supports only finitely many SoD con-
straints, i.e. ⊗-operators, per term and does therefore not support loops in their full generality.
Decomposing workflows into sub-workflows that do not contain loops is a possible solution to
overcome this limitation. However, it is not fully automated either and also remains as future
work. Our recently introduced concept of release [BBK11b] supports a scoping of authoriza-
tion constraints and is therefore a candidate solution for manually decomposing workflows and
refining the subterm-task mapping.

6.2 Continuous Satisfiability

The original semantics for SoDA, SODAS, as well as our generalizations SODAM and SODAT

provide a binary decision as to whether a set, multiset, or trace, respectively, satisfy a given term.
For example, consider a term φ and a trace i. SODAT tells us whether i satisfies φ but it makes no
statement whether there exists a trace i′ such that iˆi′ satisfies φ . In other words, SoDA’s notion
of satisfaction does not mean “we can still fulfill all constraints” but rather “all constraints have
been fulfilled”. As a consequence, a workflow trace corresponding to a workflow instance that
has just been started typically does not satisfy φ . Only when engaging in the final event X is φ

supposed to be satisfied. This is also reflected in Theorem 1, which makes only statements about
successfully terminated workflow instances and not about their prefixes.

Developing an enforcement monitor that continuously ensures that every accepted prefix
can be extended to a workflow trace that satisfies φ is therefore another direction for future
work. Wang and Li made some initial contributions in this direction in [WL07]. However, their
solution is limited to a subset of SoDA terms and does not consider administrative activities that
may change the underlying RBAC configuration during enforcement.

6.3 Design Decisions: Communication Versus Statefulness

An SoD-enforcement process SODφ (UA) is parametrized by the user-assignment relation UA
that is modified when the process engages in administrative events. Our SoD-enforcement mon-
itor, however, does not store all tuples of UA. It receives all relevant tuples as call parameters
and stores only those of users who claim a task instance. Although this approach increases the
communication overhead between WPS and the SoD-enforcement monitor, it reduces unneces-
sary replication. In fact, user repositories of large enterprises may contain thousands of entries
and only a few of them may be relevant with respect to a given workflow.

Our SoD-enforcement monitor is stateful because the enforcement of SoD constraints ranges
over multiple tasks and may depend on user-assignment relations. The service must therefore
keep track of the users who execute task instances and the roles they act in at that time. Workflow
engines such as WPS keep track of the users who execute task instances but they do not store
the history of their assignments to roles. This information is stored in the SoD-enforcement
monitor; the workflow engine and the user repository remain unchanged.

6.4 Abstractions

For simplicity, our SoD-enforcement monitor does not cope with the abort or suspension of
task instances. In practice, however, WPS users can hand back unfinished task instances to the
workflow engine or trigger the abortion of a workflow instance. Furthermore, we enforce exactly
one term per workflow. This is not a limitation as two or more terms can be combined into a
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single term with the appropriate SoDA operators; e.g. u for a conjunction or t for a disjunction.
If no SoD constraint must be enforced, the term All+, which is satisfied by every non-empty
multiset of users, can be used.

7 Related Work

The fundamental ideas pursued in this article are in line with the notion of Model-driven Security
(MDS) [BDL06] that aims at synthesizing a system’s implementation from the composition of
abstract specifications of its business and security requirements. In particular, Basin, Doser, and
Lodderstedt generate implementations of workflow systems that include access control require-
ments in [BDL03]. In contrast, we focus specifically on SoD constraints and our implementation
is an integration of heterogeneous software components as opposed to an automatically gener-
ated, monolithic software application.

Our concept of an SoD-enforcement monitor can be seen as an instance of Schneider’s se-
curity automata [Sch00] in that it is also composed with an insecure system and checks whether
commands are authorized prior to their execution. To the best of our knowledge, Basin, Olderog,
and Sevinç [BOS07] were the first to use CSP to formalize security automata. Like them, we en-
code what is widely known as policy decision point (PDP) as CSP process and the synchronous
process composition constitutes the policy enforcement point (PEP).

There are numerous models and frameworks to formalize and enforce SoD constraints
[GGF98,SZ97]. Static SoD enforces SoD constraints at design time, e.g. by ensuring that no
user is assigned to two conflicting tasks. In contrast, dynamic SoD is enforced at run time and
is more flexible than static enforcement. Therefore, dynamic SoD is more interesting for real-
world settings although it is in general more complex than static SoD. Our work is the first to
model dynamic enforcement of SoD constraints with changing role assignments.

Most SoD mechanisms describe and enforce constraints between two or more explicit tasks
and are therefore tightly coupled with a workflow definition [San88,BFA99,KS02]. In contrast,
our approach allows a workflow-independent specification of SoD constraints and their enforce-
ment on different workflows. This has the advantages presented in Section 1 but poses the
challenges elaborated in Section 6.4.

In more detail, in his seminal paper [San88] Sandhu introduces transaction control expres-
sions for specifying dynamic SoD constraints on data objects. Enforcement decisions are made
at run-time, based on the history of executed tasks. A workflow, associated with a data object, is
defined by a list of tasks, each with one or more attached roles. A user is authorized to execute
a task if she acts in one of these roles. By default, all tasks must be executed by different users.
Constraints are less expressive than SoDA terms and they can only be defined in combination
with a concrete workflow.

Bertino, Ferrari, and Atluri [BFA99] check the consistency of constraints defined over work-
flows in a logical framework, often referred to as BFA model. Their constraints are defined with
respect to sequences of tasks that model workflows, applying (first-order) predicates to task oc-
currences. Schaad, Lotz, and Sohr extend SoD analysis to workflows with dynamic access rights
in [SLS06]. They describe the workflow, the associated access control policy, and the delegation
and revocation steps as transitions of a finite state automaton and apply model checking to verify
the constraints expressed in linear temporal logic. However, neither of these papers provide a
mapping to an enforcement mechanism.
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Knorr and Stormer [KS02] map dynamic SoD constraints along with basic workflow models
to Prolog clauses in order to compute all workflow instances that do not violate the specified
SoD constraints. In Nash and Poland’s object-based separation of duties [NP90], each data
object keeps track of the users who have executed actions on it. If a user requests to execute an
action on an object, this is only granted if he has not executed an action on this object before.
This functionality can be modeled with our formalism if every data object is protected by an
SoD-enforcement process.

There are many languages for modeling workflows. We used BPMN [BPMN2] for visu-
alizing the drug dispensation workflow and BPEL [AAA+07], including its human task exten-
sion BPEL4People [AAD+07], to implement it in WPS. BPMN and BPEL are well-established
whereas BPEL4People is only supported by a few workflow engines. The formalization of these
modeling languages with a process calculus is commonplace, e.g. [WG08] map BPMN to CSP
and [CCCV06] map BPEL to CCS.

Although not fully specified, the query language for people links in BPEL4People allows
one to specify basic SoD constraints. By using SoDA, our architecture supports more expressive
constraints. Paci, Bertino, and Crampton [PBC08] propose another access control extension for
BPEL based on earlier work of Crampton [Cra05]. Authorizations, including SoD constraints,
are enforced by a web service, which pools all information that is relevant for enforcement: the
history of workflow instances, the RBAC configuration, and SoD constraints. The underlying
workflow model, however, does not support loops, which is in conflict with the expressiveness
of BPEL. Moreover, unlike our work, their constraint language requires a tight coupling between
constraints and the workflow definition and does not support changing authorizations.

8 Conclusions

This work is motivated by internal threats, regulations, and best-practice frameworks that call
for internal controls. Furthermore, it addresses the characteristics of today’s dynamic, heteroge-
neous, component-based enterprise IT architectures that are typically integrated through SOAs.
One of our central assumptions is that a workflow-independent, abstract policy language for
SoD constraints facilitates a separation of concerns between business and security personnel. It
thereby enables a higher degree of flexibility with respect to integration and policy enforcement
in such dynamic, distributed environments.

Building on SoDA, we bridged the gap between an abstract specification of SoD constraints
and their provisioning and enforcement in a service-oriented workflow environment. The key
ideas were (1) to generalize SoDA’s semantics to traces and to describe a mapping from terms to
CSP processes that accept the respective traces, (2) building on our CSP formalization, to intro-
duce the paradigm of SoD as a Service, which enables the dynamic integration and configuration
of SoD enforcement in a SOA, and (3) to make our formalization and implementation account
for changing authorizations. The choice of software components for our proof-of-concept im-
plementation illustrates how SoD as a Service enables the integration of new internal controls
into existing workflow environments. Our approach allows enterprises to quickly adapt to orga-
nizational, regulatory, and technological changes.
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We analyzed the runtime complexity of our enforcement monitor and explained why its
runtime performance is acceptable for the workflows used in practice. Furthermore, we exper-
imentally validated our approach with a realistic case study. The performance measurements
made in this study support the conclusions of our complexity analysis.
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APPENDIX

A.1 Li and Wang’s set semantics for SoDA

We summarize SODAS, the semantics for SoDA terms that was originally introduced by Li and
Wang in [LW08]. They define satisfaction with respect to a tuple (U,UR), where U ⊆ U and
UR ⊆U ×R. In contrast, we defined multiset satisfaction SODAM simply with respect to the
user-assignment relation UA.

Definition 13 Let S be a non-empty set of users and r ∈R a role. Furthermore, let U be a set
of users and UR⊆U×R a user-assignment relation. For two sets of users X and Y , and a term
φ , set satisfiability is the smallest relation between two sets of users, user-assignment relations,
and terms, written X |=S

(U,UR) φ , closed under the following rules:

(1)
{u} |=S

(U,UR) All
u ∈U (2)

{u} |=S

(U,UR) r
(u,r) ∈UR

(3)
{u} |=S

(U,UR) S
u ∈ (S∩U) (4)

{u} 6|=S

(U,UR) φ

{u} |=S

(U,UR) ¬φ

(5)
{u} |=S

(U,UR) φ

{u} |=S

(U,UR) φ+
(6)

{u} |=S

(U,UR) φ , X |=S

(U,UR) φ+

({u}∪X) |=S

(U,UR) φ+

(7)
X |=S

(U,UR) φ

X |=S

(U,UR) (φ tψ)
(8)

X |=S

(U,UR) ψ

X |=S

(U,UR) (φ tψ)

(9)
X |=S

(U,UR) φ , X |=S

(U,UR) ψ

X |=S

(U,UR) (φ uψ)
(10)

X |=S

(U,UR) φ , Y |=S

(U,UR) ψ

(X ∪Y ) |=S

(U,UR) (φ �ψ)

(11)
X |=S

(U,UR) φ , Y |=S

(U,UR) ψ

(X ∪Y ) |=S

(U,UR) (φ ⊗ψ)
(X ∩Y ) =∅ .
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A.2 Proofs

In the following, we refer to rule i of Definition 6 as (MUi), to rule j of Definition 9 as (TR j),
to rule k of Definition 10 as (MAk), and to rule l of Definition 13 as (SEl), respectively. When
proving the equivalence of two statements, we may refer to the left-hand side as LHS, to the
right-hand side as RHS, and make a case distinction between LHS⇒ RHS and LHS⇐ RHS.

A.2.1 Proof of Lemma 1

We first establish two auxiliary propositions and then prove Lemma 1.

Proposition 1 Under SODAM, unit terms are only satisfied by multisets of users that contain
exactly one element.

Proof of Proposition 1. The only rules of Definition 6 that allow for the derivation of a unit
term are (MU1)–(MU4) and (MU7)–(MU9). The rules (MU1)–(MU4) have a conclusion
with a multiset that contains exactly one user. The remaining rules, (MU7)–(MU9), have only
multisets in their conclusions that are also in their premises. Hence, every unit term is only
satisfied by a multiset of users that contains one element. �

Proposition 2 For all unit terms φut , all user-assignment relations UA, and all users u ∈ U ,
{{u}} |=M

UA φut if and only if {u} |=S

lwconf(UA) φut .

Proof of Proposition 2. We reason by induction on the structure of φut . The only rules of Defi-
nition 6 that allow for the derivation of a unit term are (MU1)–(MU4) and (MU7)–(MU9). All
other rules can be safely ignored. Let UA and u be given and let (U,UR) = lwconf(UA).

LHS⇒ RHS:

Base cases: Consider the term All and let {{u}} |=M
UA All. By (MU1), there exists an r ∈ R

such that (u,r) ∈UA. Therefore, u ∈U by the definition of lwconf. From (SE1) it follows that
{u} |=S

(U,UR) All.
Consider a term of the form r, for r ∈R, and let {{u}} |=M

UA r. From (MU2) it follows that
(u,r) ∈UA. By the definition of lwconf, (u,r) ∈UR and therefore, {u} |=S

(U,UR) r by (SE2).
Consider a term of the form S, for S ⊆U , and let {{u}} |=M

UA S. By (MU3), u ∈ S and there
exists an r ∈R such that (u,r)∈UA. By the definition of lwconf, u∈U and therefore u∈U ∩S.
From (SE3) it follows that {u} |=S

(U,UR) S.

Step cases: Assume that Proposition 2 holds for two unit terms φut and ψut . Consider now the
term ¬φut and let {{u}} |=M

UA ¬φut . By (MU4), {u} 6|=M
UA φut . From the induction hypothesis, it

follows that {u} 6|=S

(U,UR) φut . Therefore, {u} |=S

(U,UR) ¬φut by (SE4).
Consider the term φut tψut and let {{u}} |=M

UA φut tψut . By (MU7) and (MU8), either
{{u}} |=M

UA φut or {{u}} |=M
UA ψut . In the first case, by the induction hypothesis, {u} |=S

(U,UR) φut and
therefore {u} |=S

(U,UR) φut tψut by (SE7). The second case is analogous. Hence, {u} |=S

(U,UR)
φut tψut .

Consider the term φut uψut and let {{u}} |=M
UA φut uψut . By (MU9), {{u}} |=M

UA φut and
{{u}} |=M

UA ψut . By the induction hypothesis, {u} |=S

(U,UR) φut and {u} |=S

(U,UR) ψut . Therefore,
{u} |=S

(U,UR) φut uψut by (SE9).
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LHS⇐ RHS:

Base cases: Consider the term All and let {u} |=S

(U,UR) All. By (SE1), u∈U and therefore, there
exists an r ∈R such that (u,r) ∈UA, by the definition of lwconf. From (MU1) it follows that
{{u}} |=M

UA All.
Consider a term of the form r, for r ∈R, and let {u} |=S

(U,UR) r. From (SE2) it follows that
(u,r) ∈UR. By the definition of lwconf, (u,r) ∈UA and therefore {{u}} |=M

UA r by (MU2).
Consider a term of the form S, for S ⊆U , and let {u} |=S

(U,UR) S. By (SE3), u ∈U ∩S and
therefore, u ∈U and u ∈ S. From the definition of lwconf, it follows that there exists an r ∈R
such that (u,r) ∈UA. By (MU3), {{u}} |=M

UA S.

Step cases: Assume that Proposition 2 holds for two unit terms φut and ψut . Consider now the
term ¬φut and let {u} |=S

(U,UR) ¬φut . By (SE4), {u} 6|=S

(U,UR) φut . From the induction hypothesis,
it follows that {u} 6|=M

UA φut . Therefore, {{u}} |=M
UA ¬φut by (MU4).

Consider the term φut tψut and let {u} |=S

(U,UR) φut tψut . By (SE7) and (SE8), either
{u} |=S

(U,UR) φut or {u} |=S

(U,UR) ψut . In the first case, by the induction hypothesis, {{u}} |=M
UA φut

and therefore {{u}} |=M
UA φut tψut by (MU7). The second case is analogous. Hence, {{u}} |=M

UA
φut tψut .

Consider the term φut uψut and let {u} |=S

(U,UR) φut uψut . By (SE9), {u} |=S

(U,UR) φut and
{u} |=S

(U,UR) ψut . By the induction hypothesis, {{u}} |=M
UA φut and {{u}} |=M

UA ψut . Therefore,
{{u}} |=M

UA φut uψut by (MU9). �

Proof of Lemma 1. Assume an arbitrary user-assignment relation UA and a multiset of users U.
Let (U,UR) = lwconf(UA). We reason inductively over the structure of SoDA terms.

Base case: Consider a unit term φut and let U |=M
UA φut . By Proposition 1, U = {{u}}, for a

user u ∈ U . From Proposition 2 it follows that {u} |=S

(U,UR) φut . By the definition of userset,
{u}= userset(U) and therefore userset(U) |=S

(U,UR) φut .

Step cases: Assume that Lemma 1 holds for two terms φ and ψ . Consider now the term φ+

and let U |=M
UA φ+. Let X = userset(U). From (MU5) and (MU6) follows that for every user

u ∈ U, {{u}} |=M
UA φ . By the induction hypothesis and the definition of userset follows that for

every user u ∈ X , {u} |=S

(U,UR) φ . From (SE5) and (SE6) it follows that X |=S

(U,UR) φ+.
Consider the term φ tψ and let U |=M

UA φ tψ . By (MU7) and (MU8), either U |=M
UA φ or

U |=M
UA ψ . In the first case, by the induction hypothesis, userset(U) |=S

(U,UR) φ and therefore
userset(U) |=S

(U,UR) φ tψ by (SE7). The second case is analogous. Hence, userset(U) |=S

(U,UR)
φ tψ .

Consider the term φ uψ and let U |=M
UA φ uψ . By (MU9), U |=M

UA φ and U |=M
UA ψ . By the

induction hypothesis, userset(U) |=S

(U,UR) φ and userset(U) |=S

(U,UR) ψ . Therefore, userset(U)

|=S

(U,UR) φ uψ by (SE9).
Consider the term φ �ψ and let U |=M

UA φ �ψ . By (MU10), there are two multisets of users
V and W such that V |=M

UA φ and W |=M
UA ψ . By the induction hypothesis, userset(V) |=S

(U,UR) φ

and userset(W) |=S

(U,UR) ψ . By the definition of userset, userset(U) = userset(V)∪userset(W).
From (SE10) it follows that userset(U) |=S

(U,UR) ψ�ψ .
Consider the term φ ⊗ψ and let U |=M

UA φ ⊗ψ . By (MU11), there are two multisets of
users V and W such that V |=M

UA φ , W |=M
UA ψ , and V∩W =∅∅∅. By the induction hypothesis,

userset(V) |=S

(U,UR) φ and userset(W) |=S

(U,UR) ψ . By the definition of userset, userset(U) =
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userset(V)∪userset(W). Furthermore, if V and W are disjoint, then userset(V) and userset(W)
are disjoint too. Therefore, by (SE11) userset(U) |=S

(U,UR) ψ⊗ψ . �

A.2.2 Proof of Lemma 2

We first establish two auxiliary propositions and then prove Lemma 2.

Proposition 3 For i, i1, i2 ∈ Σ∗, if si(i, i1, i2) then users(i) = users(i1)]users(i2).

Proof of Proposition 3. By Definition 8, each execution event in i is either in i1 or i2, but not in
both. Therefore, users(i) = users(i1)]users(i2) since the function users returns the multiset of
users that are contained in the business events of its argument. �

Proposition 4 For i ∈X ∗, i1, i2 ∈ Σ∗, if si(i, i1, i2) then i1 ∈X ∗ and i2 ∈X ∗.

Proof of Proposition 4. By Definition 8, each event that is in i1 or i2 is also in i. Since i ∈X ∗,
we therefore have that i1 and i2 contain only business events. �

Proof of Lemma 2. We assume an arbitrary user-assignment relation UA and reason inductively
over the structure of SoDA terms.

Base cases: Consider a unit term φut and a trace i ∈X ∗. Let i |=T
UA φut . The only rules of

Definition 9 that may have a unit term in their conclusion are (TR1)–(TR4) and (TR7)–(TR9).
Because i contains no admin events, only (TR1) and (TR7)–(TR9) are applicable. In the case of
(TR7)–(TR9) i is already contained in at least one premise. In a derivation tree for i |=T

UA φut ,
i must therefore be in the conclusion of rule (TR1) by the structure of terms, i.e. Definition 5.
Therefore, i must be of the form 〈t.u〉, for an execution event t.u. By (TR1), {{u}} |=M

UA φut , which
is equivalent to users(i) |=M

UA φut by the definition of users.
Consider a term of the form φ

+
ut and a trace i ∈ X ∗. Let i |=T

UA φ
+
ut . The only rules of

Definition 9 that have a term of the form φ
+
ut in the conclusion are (TR5) and (TR6). For both

rules, the trace i must contain at least one execution event x such that 〈x〉 |=T
UA φut . As derived

before, users(〈x〉) |=M
UA φut and therefore, by (MU5), users(〈x〉) |=M

UA φ
+
ut . By induction over

the length of i, with 〈x〉 as the induction basis, it follows that users(i) |=M
UA φ

+
ut from (TR6)

and (MU6).

Step cases: Assume that Lemma 2 holds for two terms φ and ψ . Consider now the term φ t ψ

and a trace i ∈X ∗. Let i |=T
UA φ tψ . By (TR7) and (TR8), either i |=T

UA φ or i |=T
UA ψ . In

the first case, by the induction hypothesis, users(i) |=M
UA φ and therefore users(i) |=M

UA φ tψ by
(MU7). The second case is analogous. Hence, users(i) |=M

UA φ tψ .
Consider the term φ u ψ and a trace i∈X ∗. Let i |=T

UA φ u ψ . By (TR9), i |=T
UA φ and i |=T

UA
ψ . From the induction hypothesis, users(i) |=M

UA φ and users(i) |=M
UA ψ . Therefore, users(i) |=M

UA
φ u ψ by (MU9).

Consider the term φ � ψ and a trace i ∈X ∗. Let i |=T
UA φ � ψ . By (TR10), there exist two

traces i1 and i2 such that si(i, i1, i2), i1 |=T
UA φ , and i2 |=T

UA ψ . By Proposition 4, i1 and i2 consist
only of admin events because i∈X ∗. Therefore, from the induction hypothesis, users(i1) |=M

UA φ

and users(i2) |=M
UA ψ . Moreover, by Proposition 3, users(i) = users(i1)] users(i2). Hence,

users(i) |=M
UA φ �ψ by (MU10).

Finally, consider the term φ ⊗ ψ and a trace i ∈X ∗. Let i |=T
UA φ ⊗ ψ . By (TR11), there

exist two traces i1 and i2 such that si(i, i1, i2), users(i1)∩users(i2) =∅∅∅, i1 |=T
UA φ , and i2 |=T

UA ψ .
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By Proposition 4, i1 and i2 consist only of admin events because i ∈X ∗. Therefore, from the
induction hypothesis, users(i1) |=M

UA φ and users(i2) |=M
UA ψ . Furthermore, by Proposition 3,

users(i) = users(i1)]users(i2). Hence, users(i) |=M
UA φ ⊗ψ by (MU11). �

A.2.3 Proof of Theorem 1

We establish four auxiliary propositions and prove Theorem 1 afterwards. Recall Definition 12.
We prove that for all terms φ , all user assignments UA, and all traces i∈Σ∗, i 〈̂X〉 ∈T(SODφ (UA))
if and only if i |=T

UA φ .

Proposition 5 For a term φ , a trace i ∈ Σ∗, a trace of admin events a ∈A ∗, a user-assignment
relations UA, and UA′ = upd(UA,a), i |=T

UA′ φ if and only if aˆi |=T
UA φ .

Proof Sketch of Proposition 5. Proposition 5 follows by induction on a directly from (TR3),
(TR4), and Definition 7. �

Proposition 6 For a user-assignment relations UA, a term φ , a trace i ∈ Σ∗, and a trace of
admin events a ∈A ∗, i |=T

UA φ if and only if î a |=T
UA φ .

Proof Sketch of Proposition 6. Proposition 6 follows directly by applying (TR2) for each admin
event in a to t |=T

UA φ . �

Proposition 7 For a user-assignment relations UA, a term φ , and a set of users U, the process
JφKU

UA engages only in an execution event t.u, for a task t and a user u, if u ∈U.

Proof of Proposition 7. Assume a user-assignment relations UA, a term φ , and a set of users U .
Let t.u be an execution event for a task t and a user u. We reason inductively on the structure of
φ . Terms of the form φut and φ

+
ut are the base cases. By (MA1) and (MA2), JφKU

UA and Jφ+KU
UA

only engage in t.u, if u∈U . For two terms φ and ψ , assume that Proposition 7 holds. By (MA3),
(MA4), and (MA5), the processes Jφ tψKU

UA, Jφ uψKU
UA, and Jφ �ψKU

UA only engage in t.u if
either JφKU

UA or JψKU
UA engage in t.u. By (MA6), the process Jφ ⊗ψKU

UA only engages in t.u if
either JφKU ′

UA or JψKU ′′
UA engage in t.u, for U ′,U ′′ ⊆U . From the induction hypothesis, it follows

that all processes only engage in t.u if u ∈U . �

Proposition 8 For the traces i, i1, i2 ∈ Σ∗ and the processes P,Q ∈P , if i1 ∈ T(P), i2 ∈ T(Q)
and si(i, i1, i2), then i ∈ T(P ‖

A
Q).

Proof Sketch of Proposition 8. The proof is by induction over i. Proposition 8 follows by the
definition of the ||-operator under the denotational semantics of CSP and by Definition 8. The
implicit synchronization onX can be ignored because i, i1, and i2 do not containX. �

Proof of Theorem 1. We prove that for all terms φ , all user-assignment relations UA, and all
traces i ∈ Σ∗, LHS⇒ RHS and LHS⇐ RHS. In both cases we reason by induction on the
structure of φ . Let UA be given.

LHS⇒ RHS:

Base cases: Consider a unit term φut and let i ˆ〈X〉 ∈ T(SODφut (UA)). By (MA1) and the
denotational semantics of CSP, i is of the form a1ˆ〈t.u〉ˆa2, for a1,a2 ∈A ∗, a task t, and a user u.
Let UA′ = upd(UA,a1). Because JφutKU

UA′ engages in t.u, {{u}} |=M

UA′ φut by (MA1). From (TR1)
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it follows that 〈t.u〉 |=T

UA′ φut . Therefore, by Proposition 5, a1ˆ〈t.u〉 |=T
UA φut and by Proposition 6

a1ˆ〈t.u〉ˆa2 |=T
UA φut . Hence, i |=T

UA φut .
Consider a term of the form φ

+
ut and let iˆ〈X〉 ∈ T(SODφ

+
ut
(UA)). By (MA2) and the denota-

tional semantics of CSP, i is of the form a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1, for ai ∈A ∗, an+1 ∈A ∗,
ti ∈T , and ui ∈U , for i ∈ {1 . . .n} and n≥ 1. We reason inductively over n. Assume n = 1 and
let UA′ = upd(UA,a1). Analogous to the previous case, it follows that a1ˆ〈t1.u1〉ˆa2 |=T

UA φut . By
(TR5), a1ˆ〈t1.u1〉ˆa2 |=T

UA φ
+
ut . We now assume n > 1 and a2ˆ〈t2.u2〉ˆa3ˆ . . .ˆanˆ〈tn.un〉ˆan+1 |=T

UA′

φ
+
ut , for UA′ = upd(UA,a1). Because JφutKU

UA′ engages in t1.u1, {{u}} |=M

UA′ φut by (MA2). From
(TR1) it follows that 〈t1.u1〉 |=T

UA′ φut and from (TR6) that 〈t1.u1〉ˆa2 〈̂t2.u2〉 ˆa3ˆ. . .ˆan 〈̂tn.un〉ˆan+1
|=T

UA′ φ
+
ut . By Proposition 5, a1ˆ〈t1.u1〉ˆa2ˆ〈t2.u2〉ˆa3ˆ . . .ˆ anˆ〈tn.un〉ˆan+1 |=T

UA φ
+
ut and hence

i |=T
UA φ

+
ut .

Step cases: For two terms φ and ψ , assume that LHS ⊆ RHS holds. Consider now the term
φ t ψ and let iˆ〈X〉 ∈T(SODφtψ(UA)). By (MA3), SODφtψ(UA) = SODφ (UA)� SODψ(UA).
From the denotational semantics of CSP it follows that either iˆ〈X〉 ∈ T(SODφ (UA)) or iˆ〈X〉 ∈
T(SODψ(UA)). Consider the first case. From the induction hypothesis i |=T

UA φ . By (TR7),
i |=T

UA φ tψ . The second case follows analogously by (TR8). Hence, i |=T
UA φ tψ .

Consider the term φ u ψ and let i ˆ〈X〉 ∈ T(SODφuψ(UA)). By (MA4), SODφuψ(UA)
= SODφ (UA) ‖ SODψ(UA). From the denotational semantics of CSP it follows that i ˆ〈X〉 ∈
T(SODφ (UA)) and iˆ〈X〉 ∈ T(SODψ(UA)). By the induction hypothesis, i |=T

UA φ and i |=T
UA ψ .

By (TR9), i |=T
UA φ uψ .

Consider the term φ �ψ and let i ˆ〈X〉 ∈ T(SODφ�ψ(UA)). By (MA5), SODφ�ψ(UA) =
SODφ (UA) ‖

A
SODψ(UA). From the denotational semantics of CSP it follows that there are two

traces iφ , iψ ∈ Σ∗ such that iφ ˆ〈X〉 ∈ T(SODφ (UA)) and iψ ˆ〈X〉 ∈ T(SODψ(UA)). From the
induction hypothesis, it follows that iφ |=T

UA φ and iψ |=T
UA ψ . Moreover, because SODφ (UA)

and SODψ(UA) synchronize on A but not on X , si(i, iφ , iψ). By (TR10), i |=T
UA φ �ψ .

Finally, consider the term φ⊗ψ and let i 〈̂X〉 ∈T(SODφ⊗ψ(UA)). By (MA6), SODφ⊗ψ(UA)
= (JφKUφ

UA ‖
A

JψKUψ

UA) � . . . . From (MA6) and the denotational semantics of CSP it follows that

there are two disjoint sets of users Uφ and Uψ such that i 〈̂X〉 ∈T(JφKUφ

UA ‖
A

JψKUψ

UA). Analogous to

the previous case, there are two traces iφ , iψ ∈ Σ∗ such that iφ |=T
UA φ , iψ |=T

UA ψ , and si(i, iφ , iψ).
By Proposition 7, users in users(iφ ) are in Uφ and users in users(iψ) are in Uψ . Because Uφ ∩
Uψ =∅, it follows that users(iφ )∩users(iψ) =∅∅∅. Therefore, by (TR11), i |=T

UA φ ⊗ψ .

LHS⇐ RHS:

Base cases: Consider a unit term φut and i be a trace such that i |=T
UA φut . The only rules of

Definition 9 that allow for the derivation of φut are (TR1)–(TR4) and (TR7)–(TR9). We can
safely ingnore (TR7)–(TR9) because all these rules do not change the trace that is derived. I.e.
the same trace that is contained in the conclusion is already contained in every premise. Out of
(TR1)–(TR4), only (TR1) does not have a trace in its premises. Therefore, (TR1) is at the leaves
of every derivation of i |=T

UA φut and, thus, i contains an execution event t.u for a task t and a user
u. By iteratively applying the rules (TR2)–(TR4), one can add admin events before and after t.u
but no additional execution event (otherwise φut would not be a unit term). It follows that i is
of the form a1ˆ〈t.u〉ˆa2, for a1,a2 ∈A ∗. Let UA′ = upd(UA,a1). From Proposition 5 it follows
that 〈t.u〉ˆa2 |=T

UA′ φut and therefore, by (TR1), {{u}} |=M

UA′ φut . By (MA1), SODφut (UA) accepts a1
and behaves like SODφut (UA′) afterwards. Because {{u}} |=M

UA′ φut , SODφut (UA′) engages in t.u
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and behaves like END afterwards. From END’s definition, it follows that END accepts a2 ˆ〈X〉.
Hence, iˆ〈X〉 ∈ T(SODφut (UA)).

Consider a term of the form φ
+
ut and let i be a trace such that i |=T

UA φ
+
ut . The only rules

of Definition 9 that allow for the derivation of φ
+
ut are (TR2)–(TR6). Out of these, only (TR5)

does not have a trace that satisfies φ
+
ut in its premises. Therefore, every derivation of i |=T

UA φ
+
ut

contains one application of (TR5) and, thus, i contains at least one execution event t.u, for
a task t and a user u. By the rules (TR2)–(TR4) and (TR6), it follows that i is of the form
a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1 for ai ∈ A ∗, an+1 ∈ A ∗, ti ∈ T , and ui ∈ U , for i ∈ {1, . . . ,n}.
Because there is at least one execution event in i, n≥ 1. We reason inductively over n. For n = 1,
it follows analogous to the unit term case, by (MA2), that a1ˆ〈t1.u1〉ˆa2 ˆ〈X〉 ∈ T(SODφ

+
ut
(UA)).

For n > 1, assume a2ˆ〈t2.u2〉ˆ. . .ˆanˆ〈tn.un〉ˆan+1 ˆ〈X〉 ∈T(SODφ
+
ut
(UA′)), for UA′ = upd(UA,a1).

Because a1ˆ〈t1.u1〉ˆ . . .ˆanˆ〈tn.un〉ˆan+1 |=T
UA φ

+
ut , {{u}} |=M

UA′ φut by (TR1), (TR6), and Proposi-
tion 5. By (MA2), SODφ

+
ut
(UA) accepts a1 and behaves like SODφ

+
ut
(UA′) afterwards. Be-

cause {{u}} |=M

UA′ φut , SODφ
+
ut
(UA′) engages in t1.u1 and behaves like the external choice be-

tween SODφ
+
ut
(UA′) and END afterwards. We can therefore decide that the process behaves like

SODφ
+
ut
(UA′). Therefore, by the induction hypothesis, a1 〈̂t1.u1〉 â2 〈̂t2.u2〉ˆ. . . ân 〈̂tn.un〉 ân+1 〈̂X〉

∈ T(SODφ
+
ut
(UA)). Hence, iˆ〈X〉 ∈ T(SODφ

+
ut
(UA)).

Step cases: For two terms φ and ψ , assume that LHS ⊇ RHS holds. Consider now a term
of the form φ tψ and let i |=T

UA φ tψ . By (TR7) and (TR8), either i |=T
UA φ or i |=T

UA ψ .
Consider the first case. By (MA3) and the denotational semantics of CSP, T(SODφtψ(UA)) =
T(SODφ (UA)) ∪ T(SODψ(UA)). From the induction hypothesis it follows that i ˆ〈X〉 ∈
T(SODφ (UA)) and therefore, iˆ〈X〉 ∈ T(SODφtψ(UA)). The second case is analogous. Hence,
iˆ〈X〉 ∈ T(SODφtψ(UA)).

Consider the term φ uψ and let i |=T
UA φ uψ . By (TR9), i |=T

UA φ and i |=T
UA ψ . By (MA4) and

the denotational semantics of CSP, T(SODφuψ(UA)) = T(SODφ (UA))∩T(SODψ(UA)). From
the induction hypothesis it follows that iˆ〈X〉 ∈ T(SODφ (UA)) and iˆ〈X〉 ∈ T(SODψ(UA)) and
therefore, iˆ〈X〉 ∈ T(SODφuψ(UA)).

Consider the term φ �ψ and let i |=T
UA φ �ψ . By (TR10), there exist two traces iφ , iψ ∈

Σ∗ such that iφ |=T
UA φ , iψ |=T

UA ψ , and si(i, iφ , iψ). By the induction hypothesis, iφ ˆ〈X〉 ∈
T(SODφ (UA)) and iψ ˆ〈X〉 ∈ T(SODψ(UA)), and therefore also iφ ∈ T(SODφ (UA)) and iψ ∈
T(SODψ(UA)). From (MA5) and Proposition 8 it follows that i ∈ T(SODφ�ψ(UA)). More-
over, by (MA5), because SODφ (UA) and SODψ(UA) both engage in X after having accepted iφ
and iψ respectively, SODφ�ψ(UA) engages in X too, after having accepted i. Hence, i ˆ〈X〉 ∈
T(SODφ�ψ(UA)).

Finally, consider a term of the form φ ⊗ψ and let i |=T
UA φ ⊗ψ . By (TR11), there exist

two traces iφ and iψ such that iφ |=T
UA φ , iψ |=T

UA ψ , si(i, iφ , iψ), and users(iφ )∩ users(iψ) =
∅∅∅. Because users(iφ )∩ users(iψ) = ∅∅∅, there exist two sets of users Uφ ,Uψ ⊆ U such that
Uφ ∪Uψ = U , Uφ ∩Uψ = ∅, userset(users(iφ )) ⊆ Uφ , and userset(users(iψ)) ⊆ Uψ . By the
induction hypothesis, iφ ˆ〈X〉 ∈ T(SODφ (UA)) and iψ ˆ〈X〉 ∈ T(SODψ(UA)), and therefore also
iφ ∈T(SODφ (UA)) and iψ ∈T(SODψ(UA)). From Proposition 7, JφKUφ

UA therefore accepts iφ and
JψKUψ

UA accepts iψ . By (MA6) and the denotational semantics of CSP, SODφ⊗ψ(UA) also behaves
like JφKUφ

UA ‖
A

JψKUψ

UA. Analogous to the previous case, it follows that i ∈ T(SODφ⊗ψ(UA)) and

iˆ〈X〉 ∈ T(SODφ⊗ψ(UA)). �
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