
RZ 3812 (# Z1112-002) 12/08/11
Computer Science 8 pages

Research Report

Simplified Authentication and Authorization for RESTful Services
in Trusted Environments

Eric Brachmann*

Dresden University of Technology, Germany
eric.brachmann@mailbox.tu-dresden.de

Gero Dittmann and Klaus-Dieter Schubert

IBM Systems & Technology Group, 71032 Böblingen, Germany
gero@ieee.org, kdschube@de.ibm.com

*Eric Brachmann was with IBM Germany Research & Development at the time of this work.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Some reports are available
at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

IBM
Research
Almaden · Austin · Brazil · Cambridge · China · Haifa · India · Tokyo · Watson · Zurich

Simplified Authentication and Authorization for RESTful Services in

Trusted Environments

Eric Brachmann1 ∗, Gero Dittmann2, Klaus-Dieter Schubert2
1 Dresden University of Technology, Germany; eric.brachmann@mailbox.tu-dresden.de

2 IBM Systems & Technology Group; 71032 Boeblingen, Germany; gero@ieee.org, kdschube@de.ibm.com

Abstract

In some trusted environments, such as an organization’s
intranet, local web services may be assumed to be trust-
worthy. This property can be exploited to simplify au-
thentication and authorization protocols between resource
providers and consumers, lowering the threshold for devel-
oping services and clients. Existing security solutions for
RESTful services, in contrast, support untrusted services,
a complexity-increasing capability that is not needed on
an intranet with only trusted services.

We propose a central security service with a lean API
that handles both authentication and authorization for
trusted RESTful services. A user trades credentials for a
token that facilitates access to services. The services may
query the security service for token authenticity and roles
granted to a user. The system provides fine-grained access
control at the level of resources, following the role-based
access control (RBAC) model. Resources are identified by
their URLs, making the authorization system generic. The
mapping of roles to users resides with the central secu-
rity service and depends on the resource to be accessed.
The mapping of permissions to roles is implemented indi-
vidually by the services. We rely on secure channels and
the trusted intermediaries characteristic for intranets to
simplify the protocols involved and to make the security
features easy to use, cutting the number of required API
calls in half.

1 Introduction

Organizations usually deploy protected intranets with re-
stricted access. This paper presents an approach to sim-
plify security protocols within these trusted environments
for a gain in agility.

Consider, for instance, engineers who commonly share
large amounts of data, such as test or analysis results,
across a development department. To be more productive,
they often write scripts and tools for this data. Sharing
these tools can increase the productivity of an entire or-
ganization. In spite of this positive impact, providing such
resources is often not part of the engineers’ job descrip-
tions. A framework to facilitate and encourage resource
sharing must hence provide easy access and an instant
payoff for engineers in order for the system to be used and
extended. Furthermore, access has to be possible using a
wide variety of programming languages because develop-

∗Brachmann was with IBM Germany R&D at the time of this
work.

ers often have strong and diverse preferences and limited
flexibility in this regard.

Web services meet these requirements, as they facilitate
the sharing of both data and functionality, thus support-
ing heterogeneity and distributed ownership. RESTful ser-
vices implemented with HTTP and XML are particularly
suitable because they leverage well-known technologies for
which libraries are available in many programming lan-
guages. The fixed API of HTTP provides a uniform way
to access all resources. Frameworks like Ruby on Rails ren-
der the generation of RESTful services even easier. In our
context, these technologies enable developers to rapidly
implement their own services and to write scripts that
employ services made available by their peers.

However, access to design data must be controlled and
restricted, requiring authentication and authorization of
users. Although our target are services that reside within
the trusted internal network of an organization, certain
users may not be allowed to see, use or edit certain re-
sources. Hence, authorization is necessary to manage ac-
cess rights, and authentication is needed to reliably iden-
tify users in the first place. Incorporating such security
features should not require much initial training or knowl-
edge of complicated protocols so that it remains easy for
developers to implement libraries for their preferred pro-
gramming languages themselves.

From our aim to build our service system in an in-
tranet environment we derive some assumptions that help
us achieve the desired simplicity of the security framework.
First, all channels are encrypted and authenticated by us-
ing the TLS/SSL protocol. Thereby we largely eliminate
the possibility of eavesdropping and man-in-the-middle at-
tacks. Second, we trust all services in the system: We sup-
pose that services perform only legitimate actions on be-
half of the user. An intranet for which these assumptions
hold we call trusted.

However, we want to avoid storing user passwords on
clients and sending them to custom-built services. Fur-
thermore, users should only have to provide their creden-
tials once or once every few days. After that, access to
services has to be possible without entering credentials
again. Therefore, the system has to offer single sign-on.

We propose a central security service with an API com-
prised of three methods. The first method is called by
users and trades the user credentials for a security token
that facilitates single sign-on to the complete service sys-
tem. The token is stored on the client and sent along with
every service request. The second method is called by ser-
vices to validate a token and with it the authenticity of the
requesting user. The third method is called by services to

1

check whether the user is allowed to act in a certain role
on a certain resource. This final call determines whether
a user has sufficient rights for a request. We use roles to
bundle permissions of groups of users and associate them
with individual resources for fine-grained access control.
The security service provides the necessary mapping of
users to roles and resources, and offers functionality for
their administration.

The remainder of this paper is organized as follows: Sec-
tion 2 surveys existing web service security solutions. Sec-
tion 3.1 provides an overview of the architecture of our
framework with a brief description of all components. Sec-
tions 3.2 and 3.3 describe how we handle centralized au-
thentication and authorization, respectively. In Section 4
we elaborate on how we implemented the central security
service, and Section 5 concludes the paper.

2 Related Work

Security extensions for web services have been defined
in the WS-Security, WS-Trust, and WS-Federation stan-
dards. The first two specify how to secure SOAP mes-
sages and how identification tokens can be attached and
exchanged. WS-Federation deals with the issue of prop-
agating identity proof between disparate security realms.
These protocols add up to complex frameworks for authen-
tication and authorization for SOAP-based web services.
Similar developments for REST, in contrast, have not yet
gained momentum.

Typical RESTful services exploit the HTTP protocol.
The basic means of authentication in this context are
HTTP Basic and HTTP Digest. They specify how to send
user credentials to a service. However, to resend them with
every access requires them to be stored at the client, pos-
ing a potential security risk. In fact, we want to avoid
sending such sensitive information to application services
altogether.

Web authentication protocols inspired by Kerberos[1],
such as WebAuth[2] or the Central Authentication Ser-
vice (CAS)[3], achieve this by trading credentials for to-
kens and transmitting them instead, providing centralized
authentication and single sign-on. Construction and ex-
change of their tokens follow sophisticated patterns to sup-
port untrusted services. As our target services reside in a
protected intranet environment, the complexity of those
protocols is an unnecessary burden for service develop-
ers. Existing client libraries are designed for protecting
web sites, for example, by forwarding users to login forms
that cannot be used by headless clients such as automated
data-processing scripts.

Web-based systems on a trusted intranet may use sim-
pler cookie-based SSO solutions, such as the one presented
in [4]. These propositions rely on a web browser for stor-
ing cookies and offer no centralized authorization manage-
ment.

The Security Assertion Markup Language (SAML) [5]
and the eXtensible Access Control Markup Language
(XACML) [6] are often used in SOAP-based systems for
authentication and authorization requests and to exchange
policy information. There is, however, no established bind-

ing of these protocols for HTTP-based RESTful services.
Moreover, we only need a fraction of the SAML features
and, therefore, have opted for a less complex and natively
RESTful protocol. Nevertheless, our architecture would
also work with SAML. Our authorization approach fol-
lows the SAML philosophy with separate identity provider
(IdP) and service provider (SP). Our authorization sys-
tem follows the XACML architecture with a central policy
decision point (PDP) and distributed policy enforcement
points (PEPs). Exchanging policy information is outside
the scope of this paper.

A RESTful interface for XACML Policy Decision Points
to handle authorization is proposed in [7]. RESTful mes-
sages are translated to SOAP and forwarded to the central
authorization component. This approach is useful for an
intranet that is already equipped with a running XACML
infrastructure or for exploiting the rich expressiveness of
XACML for access control. Otherwise, there is little gain
to justify the translation overhead introduced.

In [8], a cookie scheme is combined with role-based au-
thorization. Session cookies stored by the client contain in-
formation about the user. These cookies are cryptograph-
ically protected by a message authentication code so that
the user cannot change the information they contain. Au-
thorization is implemented by introducing user and role
object classes in LDAP. Organizations already deploying
LDAP user directories need to change their existing LDAP
schema accordingly, which might not be feasible.

Hecate [9] is a framework that provides centralized au-
thorization for RESTful resources. The authors propose
an XML dialect to define access rules for all available re-
sources of the system, including the possibility of resource-
aware filtering for fine-grained access control. However,
service developers need to learn a new XML dialect for
protecting their resources. Moreover, Hecate does not deal
with authentication.

OpenID [10] is a protocol offering decentralized authen-
tication, which has limited benefit in intranet solutions
where services typically belong to the domain of a single
identity provider.

Thanks to its widespread deployment, oAuth [11] has
received much attention in the area of authentication and
authorization. However, it covers the specific use case of
granting third parties access to private user resources and
hence does not fit our scenario.

Our framework offers centralized authentication with
single sign-on capabilities and centralized authorization,
both accessed through a RESTful services API. It exploits
the properties of a trusted intranet to provide a lean pro-
tocol API and easy access to its security features.

3 Framework

3.1 Overview

Fig. 1 shows the architecture of our framework. The cen-
tral components are the services themselves. They offer
resources that users access for their everyday work. Ac-
cess should be simple, and the creation of new services
should be feasible for development engineers in addition

2

client

database database

user directory

security service

directory service
(areas)

composite service

service service

resource access

authentication / authorization call

area reference

Figure 1: Architecture of the security framework. Line
styles represent the different types of interaction.

to their core responsibilities. Therefore, our services follow
a RESTful design. Simple services may just provide access
to data records from a database and support handy, data-
specific queries. Composite services combine or extend the
functionality of one or more other services. Users access ei-
ther type of service via a client. A client may be a web ap-
plication or some other kind of graphical user interface. A
client may also be a command-line tool or a custom-built
script that interacts with services on behalf of the user to
carry out a specific task. Authentication and authoriza-
tion are managed in a centralized manner by the security
service. Users interact with the security service to prove
their identity. The security service is connected to the or-
ganization’s user directory to check credentials. Services
interact with the security service to validate the identity
of a requesting user and possibly to check the user’s access
rights for an access-restricted resource.

In our framework authorization rules are associated
with special resources called areas. An area may be a de-
partment, a project, or a data-specific unit. Areas serve as
reference points for groups of resources in the service sys-
tem. An area directory service holds these area resources
and thereby provides common references for services and
the security service to map role-area pairs to groups of
users. The notion of areas is borrowed from the Jazz plat-
form [12].

3.2 Authentication

Authentication is the process of proving the user’s identity
to the service she attempts to interact with. It ensures that
only legitimate members of the organization use the ser-
vice and is the foundation for authorization. For a reliable
identification, a user and a service share a secret that only
they know, i.e., the user’s credentials. In this way, when
receiving the credentials a service can be sure that the as-
sociated user is at the sending end. To relieve the services
from managing user credentials and authentication logic
themselves, we introduce a central authority that handles
authentication for all services.

3.2.1 Tokens

In our proposed solution, this central authority is imple-
mented by the security service (see Fig. 1). A user sends his
credentials only to the security service, and only once. The
security service verifies the credentials against the user di-
rectory of the organization, which stores the credentials of
all employees, for example as part of LDAP user profiles.
If the credentials are valid, the security service creates a
token for the user. A token identifies a user for a certain
period of time, e.g., several days. During this time, a user
does not need to present the credentials again but presents
this token instead. A security token in our framework is
an opaque string that does not carry any information it-
self. Instead, the security service keeps a table that maps
tokens to users and that also contains the expiration dates
of tokens. A token contains 20 random letters and digits to
prevent a brute-force attack from guessing it. Our system
would also work with cryptographic tokens, e.g., to detect
manipulation attempts.

In contrast to other systems like CAS, our tokens are
not bound to individual services. The CAS protocol [3] de-
scribes several types of tokens (called tickets there). Most
important are ticket-granting tickets and service tickets.
Ticket-granting tickets are stored in a cookie on the client.
The client sends them to the CAS server to obtain service
tickets. The client then attaches the service ticket to a ser-
vice request. The service checks the user’s authenticity by
validating the service ticket with the CAS server. Service
tickets can only be validated once and are bound to one
service. Tickets that were eavesdropped by attackers are
therefore useless and pose no security risk.

We, however, prevent eavesdropping by using secure
channels. In our case, the restrictions that CAS places
on service tickets are an unnecessary burden. If security
tokens expire after the first validation, users have to re-
quest new tokens for every service access. Our users should
have to request their security token only once. If tokens
are bound to services, composite services cannot forward
them to other services without additional communication
with the security service. As we trust our services to be
uncorrupted, we want to allow them to reuse tokens on be-
half of the user for simplicity of the protocol. In this way,
a composite service can access other services on behalf of
the user without requesting new tokens. The receiving ser-
vice will process the request as if it had come directly from
the user.

3.2.2 Accessing a Service

All services in our framework require that requests be aug-
mented with a security token identifying the requesting
user. Access without a token is not permitted and returns
an error (see Fig. 2). Therefore, a user without a valid
token who wishes to use a service first performs an au-
thentication call to the security service, providing her cre-
dentials. She receives a token in return that may be reused
for several days until it expires. Now, to access a service,
she passes this token along with the HTTPS call, for ex-
ample as an additional GET parameter or as an HTTPS
header.

3

/client /service /security service

credentials

token

request

error

request+token

data

token

username+attributes

Figure 2: Authentication protocol. A service denies an
unauthenticated request. The user performs authentica-
tion by trading his credentials for a security token. The
authenticated request is granted.

Upon receiving a request, a service checks whether a
token is provided. It extracts the token and sends it to
the security service for validation. A token is valid if there
is a corresponding entry in the token table and its expi-
ration date has not passed. The security service responds
with the user name associated with the token, possibly to-
gether with additional user attributes that might be of use
in the domain of the service system. The security service
responds with an error code if the token cannot be found
in the token table or if it has expired. Upon receiving a
positive answer, the original service processes the user re-
quest after checking the user’s authorization if necessary
(see Section 3.3). Once the service has verified the iden-
tity of the user, it may establish a session with this user
to prevent unnecessary authentication calls during further
communication.

3.3 Authorization

Although the identity of a user has already been verified
in the preceding authentication steps, a service might still
have to decline a request if the resource to be accessed is
sensitive and the user lacks sufficient clearance. We man-
age the required authorization at the resource level and
integrate it with our central security service to relieve ser-
vices of the burden of managing user groups and associat-
ing them with authorization rules. This central authoriza-
tion corresponds to the concept of a policy decision point
as defined by the XACML standard [6]. Based on the de-
cision of the security service, the services controlling a re-
source grant or deny access, acting as policy enforcement
points.

3.3.1 User Groups, Roles and Areas

The security service manages user groups and roles.
According to the role-based access control (RBAC)
model [13], a role represents a responsibility in the context
of an organization. User groups, on the other hand, often
reflect the structure of an organization. We exploit exist-
ing user groups by assigning roles to entire groups rather
than individual users, leaving user management with the
group owners rather than duplicating it for roles. Our role
definitions are generic and can hence be reused by multi-
ple services for multiple resources. We make the mapping

Role

name : String

AreaReference

url : String

RoleAreaConnection Group

name : String

0..*

1

0..*

1

1..*0..*

Figure 3: Authorization classes. Group objects hold au-
thorized users for unique role-area pairs.

of roles to user groups dependent on the resources to en-
sure that the same generic role can be associated with dif-
ferent users for different resources. For instance, the role
“admin” might require membership in the group “man-
agement” for resource “A”, but membership in the group
“engineers” for resource “B”.

In contrast to this centralized portion of the RBAC
model, the mapping of roles to permissions stays with each
individual service. Permissions denote rights to perform
particular actions1 that often depend on the service and
the particular resource. It is hence insufficient to grant or
block access to a service or a function as a whole. A user
might be entitled to use a service to manipulate resource
“A” but not to do the same with resource “B”. However,
when services provide access to large amounts of data it
is inconvenient to manage authorization rules for every
single resource.

We therefore have a directory service that provides a
representation of the logical structure of our organization
in the form of areas (see Fig. 1). Areas are resources that
serve as authorization reference anchors. Our services asso-
ciate each resource they provide with an area, and autho-
rization rules also refer to areas. In this way, the area di-
rectory serves as a common dictionary for services and the
security service to map resources to authorization rules. It
does not have to implement any further functionality, but
may store meta-information with the areas.

In fact, any REST service and even multiple services
might be used as area directory as long as reference re-
sources, i.e., areas, are provided. The difference between
arbitrary resources and areas is of a semantic nature. Any
resource that is being referenced by authorization rules be-
comes an area, and any service that holds such resources
becomes an area directory. The security service reflects
this flexibility by representing areas with URLs that can
point to any REST resource. Thereby, regarding autho-
rization, we support heterogeneous organizational struc-
tures.

1Note that although we deal with RESTful services, permissions
are not necessarily limited to CRUD operations.

4

Each service in our system knows to which areas its re-
sources belong. The security service, in turn, maintains
area-specific mappings of roles to user groups. To perform
a given action, a user must be assigned particular roles. For
example, instructing a service to delete data records might
require the role “admin”, whereas merely reading those
same records requires the role “consumer”. The security
service implements the authorization mapping by manag-
ing lists of roles, user groups and areas (see Fig. 3). Areas
are represented by their URL, pointing to the area direc-
tory that holds the area in question. Roles are represented
only by name; they do not carry any further information.
The security service is only responsible for answering the
question whether a user has a certain role in an area; it
does not specify what a user in a certain role is allowed to
do as these permissions are service-specific. The services
requiring authorization are themselves responsible to de-
termine the level of access a role grants. This arrangement
has the advantage that service owners don’t require the
assistance of a security-service administrator to define or
change the mapping of role-area pairs to permissions.

For each level of access we want to distinguish for an
area, we define an appropriate role and establish a re-
lationship to the area reference via a role-area connec-
tion (see Fig. 3). This connection contains the information
which groups of users may act on the area in that role. By
holding the user group information in the role-area connec-
tion objects, we facilitate the definition of generic, reusable
roles.

Without loss of generality we restrict our discussion
to core RBAC while our approach may be extended to
also support hierarchical roles and separation-of-duty con-
straints.

3.3.2 Accessing a Resource

When receiving a request, a service determines the roles re-
quired to perform the requested action. It also determines
the area the accessed resource belongs to. The service then
sends the security token of the user, the URL of the area,
and the role that matches the requested access to the secu-
rity service. The security service checks whether the user
is a member of all the groups that have been specified for
that particular area-role combination. If the user is lack-
ing a group membership or the role or the area cannot be
found in the first place, the security service will respond
with an error code. In this case, the original service will
deny access. If the user is a member of all the necessary
groups, the security service will signal success and access
will be granted.

Fig. 4 gives an example of the complete authorization
process. Fig. 4a shows the three services involved and
some of the data they hold. The area directory reflects
the structure of an organization with two departments.
“Department X” runs two projects named “project foo”
and “project bar”. A service offers a “unit test report” re-
source that belongs to “project foo” and an “integration
test report” resource that belongs to “project bar”. For
each of the four standard REST operations, the service
contains a mapping to the role that is necessary to per-
form that operation on the report. The security service

knows for every area, e.g., “project foo”, which groups a
user has to be member of to act in a certain role on that
area.

Fig. 4b shows how a user request is processed. The user
wants to read the “unit test report”. The client sends this
request and the user’s token to the service. The service
determines that the “unit test report” belongs to the area
“project foo” and that the role “consumer” is necessary to
read that report. It sends a query to the security service
whether the user is a “consumer” of resources associated
with “project foo”. The security service knows that a user
has to be a member of the groups “designer” and “team
alpha” to act in the role “consumer” on “project foo”. If
the user is a member of both groups, the security service
will approve the query, and the service will send the “unit
test report” to the client.

4 Prototype

4.1 Implementation

We have implemented a prototype of the proposed frame-
work in Ruby on Rails 3.0.3. For service deployment, we
use a Phusion Passenger module with enabled TLS/SSL
protection on an Apache web server.

Some of the available single sign-on (SSO) solutions
come with ready-to-use implementations. None of these
solutions meet all of our requirements, but we deploy one
of them internally for the generation and the management
of security tokens as well as the connection to our user
directory. We picked the Central Authentication Service
(CAS) because it uses opaque strings as tokens without
any cryptographic overhead, which we do not need. Fur-
thermore, CAS implementations are available for many
programming languages including Ruby, namely rubyCAS
[14]. RubyCAS directly supports LDAP user directories.
However, any CAS implementation should work.

Note that no service except the security service commu-
nicates directly with the CAS server. The security service
with its lean API wraps the CAS server completely, mak-
ing the latter an internal component of the former.

We use CAS ticket-granting tickets as security tokens
as they do not expire after validations and are not bound
to services. The CAS protocol does not include the direct
validation of ticket-granting tickets and, consequently, this
feature is missing in CAS implementations. Our validation
process uses the ticket-granting ticket to request an auxil-
iary service ticket and validates that in a second internal
call. This mechanism is encapsulated within the security
service, whereas CAS service tickets would require users
to issue two calls.

As discussed in Section 3.3, the security service contains
a mapping of user groups to roles and areas for authoriza-
tion. Infrastructure for managing user groups is typically
already available in an organizations’ intranet, usually as
part of a user directory. It would therefore be redundant
to implement groups as lists of users in the security ser-
vice. It is more convenient to reuse the group infrastruc-
ture or even preexisting groups of the user directory. Our
RoleAreaConnection object (see Fig. 3) is associated with

5

security service

admin

consumer

tester
team alpha

designer
team alpha

area directory

department X

department Y

project foo
project bar

service

unit test report

integration test report

create
read
update
delete

→ admin
→ consumer
→ admin
→ admin

create
read
update
delete

→ admin
→ consumer
→ admin
→ admin

>

>

>

role groups resource operation → role mapping

(a) Example data held by the services involved. Arrows between the services and the directory
represent references.

/client /service /security service

unit test report

ok

token
resource: unit test report
operation: read token

area: project foo
role: consumer

(b) Protocol sequence with example parameters.

Figure 4: Authorization example.

6

a list of LDAP groups from our organization’s user direc-
tory. When an authorization request for a particular user
reaches the security service, the latter connects to the user
directory and retrieves all groups this user is member of.
The security service then compares these user directory
groups with the list of group names associated with the
requested role and area. If the user is a member of all
necessary groups, access is granted. We decided to require
the user to be member of all listed groups to facilitate the
formation of intersections of groups. Thereby, we are able
to bind access rights to user sets below the granularity of
groups. This is not possible if membership in only one of
the listed groups would suffice. For additional flexibility
both schemes could be combined.

4.2 API

Our overall approach results in the following API for the
security service:

issue token This method is called by a client POSTing
the credentials of a user to the security service. Cre-
dentials consist of user name and password and are
sent as POST data. If the user is found in the user
directory and the password matches, the security ser-
vice responds with the HTTP status 200 OK with the
security token contained in the HTTP body. If the
credentials are invalid, the security service responds
with the HTTP code 401 Unauthorized.

check token This method is called by services checking
the identity of a user who provided a security token
along with her request. The method is called by an
HTTP GET, with the security token passed as a pa-
rameter within the query string. If the token is found
in the token table and has not expired, the security
service responds with the HTTP code 200 OK. The
response body contains an XML document with the
corresponding user name and the associated list of
group memberships found in the user directory. If the
token is invalid, the security service responds with the
HTTP code 401 Unauthorized.

check authorization This method is called by services
if a user requests access-controlled resources that
may only be seen by users in a certain role. The
method has three parameters: the security token of
the requesting user, the area the requested resource
belongs to, and the role matching the access. The
method is called by an HTTP GET along with all
three parameters. If the security token is invalid, the
security service responds with the HTTP code 401

Unauthorized. If role or area cannot be found, the
security service responds with the HTTP code 404

Not Found. This indicates that administrative action
is necessary to create a authorization mapping for the
service. If the mapping is found but the user is not
a member of all required groups, the security service
responds with the HTTP code 403 Forbidden. If the
user has all required memberships, the security ser-
vice responds with 200 OK.

Table 1: Protocol comparison of CAS and our framework.
For an explanation of the CAS tickets, see [3].

Step CAS Our Framework

Login 2 calls
(get login ticket, get
ticket-granting ticket)

1 call
(get token)

Service Access 2 calls
(get service ticket, ac-
cess with service ticket)

1 call
(access with token)

Proxy Access 2 calls + 1 passive call
(get proxy ticket,
access with proxy
ticket + receive proxy-
granting ticket)

1 call
(access with token)

The security service also provides an API for creating
all necessary authorization mapping objects (see Fig. 3).
This API follows a RESTful design, i.e., the individual ob-
jects are created, read, updated or deleted by using HTTP
POST, GET, PUT or DELETE, in some cases with an XML rep-
resentation of the resource in the HTTP body. Note that
this API is not used by services or clients, but is accessed
only by administrators. Writing one central, convenient
interface should suffice. We have implemented a web in-
terface for this purpose, using Ruby on Rails.

Table 1 compares the protocol API complexity of CAS
and of our proposed framework in terms of HTTP calls to
the central security service. It lists three use cases: A user
gains access to the service system in the Login case. She
sends a request to a service in the Service Access case, and
a service sends a requests to another service in the Proxy
Access case. Note that this comparison does not consider
the authorization aspect, which is not supported by CAS.
In our framework, a service can verify user authorization
with one call (see check authorization).

Compared with existing systems like CAS, our frame-
work does not require complex request-response interac-
tions. A user can perform any security-related action with
one simple HTTP call. This makes it very easy to access
our framework from any programming language with sup-
port for HTTP and XML.

4.3 Deployment

We used our framework to implement a set of services for
an internationally distributed engineering department de-
veloping high-performance processor chips. The services
are accessed via a web front-end or by command-line
scripts written in Python. The web server redirects an
unauthenticated web client to a log-in page. For shell
scripts, we wrote a tool that asks the user for creden-
tials, trades them for a token with the security service,
and stores the token in a shell environment variable from
where service clients can pick it up. This mechanism pro-
vides single sign-on from a shell and enables automatically
scheduled scripts that cannot ask any user for credentials:
They can run with a token a user fetched beforehand.

We also made available a Ruby library for service devel-
opers who build upon the Ruby on Rails framework. This
library implements the communication with the security
service and supports queries to other services within the

7

framework. It can also help in the creation of Ruby client
scripts. A separate Python library facilitates the creation
of Python client scripts.

5 Conclusion

In this paper we have proposed a security framework for
RESTful services deployed in the protected domain of an
intranet. A central security service handles authentication
and authorization for the services in the system, relieving
services of the burden of managing users, groups and au-
thorization rules. Because the services are trusted and run
within the confines of a secure environment, we have been
able to simplify the API for authentication and authoriza-
tion.

Users authenticate by trading their credentials for a se-
curity token which identifies a user until it expires. The
token is attached to each service call. Upon receiving a
token, a service validates it with the security service. It
can also check whether the user has been granted a par-
ticular role for the requested resource. The security service
contains a mapping of user groups to roles, and dedicated
resources called areas. Services grant access if the user has
been granted the necessary role for the requested area. As
all services are trusted, the framework enables them to
use the user token to access other services on behalf of the
user, greatly simplifying service composition.

We have presented an implementation of our security
service using available software libraries. The prototype
enables engineers to consume and create access-controlled
services for improved collaboration in support of their
work. As the framework is composed of simple HTTP-
based RESTful services and the presented protocols cut
the number of required API calls in half, we have lowered
the barrier for engineers to include security features into
their custom-built scripts and services, requiring only little
training.

6 Acknowledgements

The authors wish to thank Chris Giblin, Olaf Zimmer-
mann and Charlotte Bolliger of IBM Research for their
significant help in improving the original manuscript.

References

[1] MIT. Kerberos: The network authentication protocol.
http://web.mit.edu/kerberos/.

[2] Roland Schemers and Russ Allbery. WebAuth tech-
nical specification. http://webauth.stanford.edu/
protocol.html.

[3] Drew Mazurek. CAS protocol. http://www.jasig.

org/cas/protocol, May 2005.

[4] Vipin Samar. Single sign-on using cookies for web ap-
plications. In Proceedings of the 8th Intl. Workshops
on Enabling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE ’99), pages 158–163,
Stanford, CA, USA, June 1999. IEEE.

[5] OASIS. SAML specifications. http://saml.xml.

org/saml-specifications.

[6] OASIS. OASIS eXtensible Access Control Markup
Language (XACML) TC. http://www.oasis-open.
org/committees/xacml/.

[7] Qublai Khan Ali Mirza. Restful implementation of
authorization mechanisms. In Proceedings of the In-
ternational Conference on Technology and Business
Management (ICTBM-11), pages 1001–1010, Dubai,
UAE, March 2011. INFOMS.

[8] Kurt Gutzmann. Access control and session man-
agement in the HTTP environment. IEEE Internet
Computing, 5:26–35, 2001.

[9] Sebastian Graf, Vyacheslav Zholudev, Lukas
Lewandowski, and Marcel Waldvogel. Hecate,
managing authorization with RESTful XML. In
Proceedings of the 2nd International Workshop on
RESTful Design (WS-REST ’11), pages 51–58,
Hyderabad, India, March 2011. ACM.

[10] David Recordon and Drummond Reed. OpenID 2.0:
A platform for user-centric identity management. In
Proceedings of the 2nd Workshop on Digital Identity
Management (DIM ’06), pages 11–16, Fairfax, Vir-
ginia, USA, November 2006. ACM.

[11] Eran Hammer-Lahav. The OAuth 1.0 protocol. RFC
5849, IETF, April 2010.

[12] Jazz community. Jazz. https://jazz.net/.

[13] American national standard for information technol-
ogy – Role based access control. ANSI INCITS 359-
2004, ANSI, February 2004.

[14] Matt Zukowski. RubyCAS-Server. http://code.

google.com/p/rubycas-server/.

8

