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Abstract

Balancing protection and empowerment is a central problem when specifying autho-
rizations. The principle of least privilege, the classical approach to balancing these two
conflicting objectives, says that users shall only be authorized to execute the tasks neces-
sary to complete their job. However, when there are multiple authorization configurations
satisfying least privilege, which one should be chosen?

In this paper, we model the tasks that users must execute as workflows, and the risk and
cost associated with authorization configurations and their administration. We then formu-
late the balancing of empowerment and protection as an optimization problem: finding a
cost-minimizing authorization configuration that enables a successful workflow execution.
We show that finding an optimal solution for a role-based cost function is NP-complete. We
support our results with a series of examples, which we also use to measure the performance
of our prototype implementation.

1 Introduction

Authorizations, which govern users’ access to resources, have a dual nature: they express what
actions may and must not occur. In this way, they empower users to execute job-relevant tasks
while protecting the integrity and confidentiality of resources. The question naturally arises as
to how to best balance protection and empowerment.

The classical answer to this question is the principle of least privilege [18], which says that
users shall only be authorized to execute the tasks necessary to complete their job. However,
business processes that require the execution of multiple tasks by different users can have multi-
ple authorization configurations (representing different authorization policies) that satisfy least
privilege. Furthermore, the choice of an authorization configuration may be influenced by the
cost associated with the respective administrative change. Thus, although least privilege is a
guiding principle, it does not provide the final answer to the question of how to balance protec-
tion and empowerment.

In this paper, we present a new approach to answering this question by mapping autho-
rization administration to an optimization problem. Specifically, we model business activi-
ties as tasks, structured as workflows. Authorizations then specify which users may execute
which tasks. We distinguish between history-dependent and history-independent authorizations.
History-dependent authorizations constrain task executions based on past task executions. Ex-
amples are Separation of Duty (SoD) and Binding of Duty (BoD) constraints. SoD, also known
as Four-Eyes-Principle, aims at preventing fraud and errors by requiring a set of critical tasks to
be executed by multiple users, whereas BoD requires a set of tasks to be executed by the same
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user to limit the exposure of sensitive data and to reuse knowledge. In contrast, the evaluation
of history-independent authorizations is not influenced by an execution history. Examples of
history-independent authorization constraints are access control lists (ACLs), the Bell-LaPadula
Model (BLP) [6], and Role-based Access Control (RBAC) configurations [10] without sessions.

We assume that history-independent authorizations may change during workflow execution.
Reasons for this include organizational changes such employees joining or leaving the company
or being promoted. In contrast, history-dependent authorization constraints do not change during
workflow execution. However, due to their dependence on the expanding execution history, their
evaluation may change during workflow execution.

We model the cost of changing from one history-independent authorization configuration
to another one by a binary function. This function may account for the cost of the adminis-
trative activity associated with the change, the cost of maintaining the new configuration, and
the risk associated with the new configuration. We consider minimizing risk to be equivalent to
maximizing protection.

Let W be a workflow, H an execution history corresponding to an instance of W , φ some
history-dependent authorizations, c a history-independent authorization configuration, and cost
a function as described above. We investigate the problem

min
c′
{cost(c,c′) | c′ allows a successful completionof W after H that satisfies φ} ,

where c′ ranges over all feasible history-independent authorization configurations. The require-
ment of “getting the job done” becomes the feasibility condition and cost serves as the the ob-
jective function of the optimization problem. Hence, we reduce the question of how to balance
empowerment and protection to the problem of finding a feasible configuration that maximizes
protection, minimizes the cost associated with the administrative change, and empowers users
to do their job while satisfying the authorizations.

We proceed by formalizing workflows, their execution history, and authorization constraints.
Workflows, also known as business processes, provide a realistic abstraction for capturing what
authorizations users need to get their work done, i.e. empowerment. As this paper’s focus is
not authorization-constrained workflows per se, we borrow the constraint model from [5]. In
the interest of keeping our formalization concise and not letting the complexity of workflow
constraints overshadow the optimization problem’s complexity, we abstract from [5]’s process
algebraic models and build directly on its graph-based approximations. Based on our formal-
ization and the first generic definition of a cost function, we formally define the optimization
problem sketched above.

To demonstrate the applicability of our general approach to a realistic business scenario, in
a second step we refine the cost function using roles. The additional structure enables us to map
the problem of balancing empowerment and protection to the well-established Integer Linear
Programming Problem (ILP). A proof of our mapping’s soundness and completeness enables
us to use off-the-shelf software for ILP to compute the optimal authorization configuration that
enables a successful execution of a given workflow. We use a running example to illustrate our
results and to measure the performance of our mapping’s implementation.

Our main contribution is to refine the decision problem of whether a given authorization
configuration enables a successful workflow execution to the notion of an optimal authoriza-
tion configuration that satisfies this property. Our approach provides considerable modeling
freedom in terms of the notion of optimality used. For example, we may aim to minimize the
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cost associated with a configuration change or maximize the protection resulting from the new
configuration. We thereby facilitate a fine-grained balancing of empowerment and protection
with respect to various criteria. Moreover, we prove that finding a role-based optimal authoriza-
tion configuration that enables a workflow execution is NP-complete. Finally, our work shows
how well-established results from optimization theory can be applied to information security, in
particular access control.

The remainder of this paper is structured as follows. In Section 2, we provide background
on ILP and graph coloring. In Section 3, we formalize workflows and authorizations that con-
strain their execution. In Section 4, we first present the general problem of finding an optimal
authorization configuration that enables a workflow execution. Afterwards we refine the gen-
eral problem, assuming a role-based cost function. We present related work in Section 5 and
conclude in Section 6. The appendix provides proofs.

2 Background

We denote by N the set of natural numbers, by Z the set of integers, and by R the set of real
numbers. Assume two sets Z1 and Z2 and let z1 ∈ Z1 and z2 ∈ Z2. We will sometimes identify a
function π : Z1→ Z2 with its relation (graph) π ⊆ Z1×Z2. For example if π(z1) = z2 we may
equivalently write (z1,z2)∈ π . Given a relation π we refer to π’s domain as dom(π), to its range
as ran(π), and to its inverse as π−1.

2.1 Integer Linear Programming

Let m,n ∈ N. We specify by A ∈ Rm×n an m by n matrix A of real numbers. Furthermore,
b ∈ Rm is a (column) vector composed of m real numbers. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn and
x ∈Zn. For i ∈ {1, . . . ,m} and j ∈ {1, . . . ,n}, we refer to A’s ith row vector as ai and as ai j is the
jth element in ai, i.e. the element in A’s ith row and jth column. Correspondingly, bi is b’s ith
element. Moreover, Ax denotes the standard matrix-vector multiplication resulting in a vector
d ∈ Rm and c′x denotes the standard vector multiplication ∑

n
j=1 c jx j where c′ is c’s transposed.

For b,d ∈Rm, we write d≤ b if for all i ∈ {1, . . . ,m}, di ≤ bi. This linear algebra review covers
all definitions required for the Integer Linear Programming Problem.

Definition 1 (Integer Linear Programming Problem ILP)

Input: A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, for m,n ∈ N.

Output: min
x∈Zn
{c′x | Ax≤ b} or NO if the above set is empty.

Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn be an ILP-instance, and let i ∈ {1, . . . ,m} and j ∈
{1, . . . ,n}. We may refer to the output corresponding to the input (A,b,c) as ILP(A,b,c).
A variable x j is called a decision variable and c′x is called the objective function. Note that
Ax ≤ b can be decomposed into m inequalities of the form aix = ∑

n
j=1 ai jx j ≤ bi, each called a

constraint. If x satisfies Ax ≤ b, i.e. all m constraints, it is called a feasible solution. If there
exists no feasible solution for a given ILP-instance, then the instance is infeasible. A feasible
solution that minimizes the objective function with respect to all feasible solutions is an optimal
(feasible) solution.
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It is common practice to use shorthand notation for constraints. For example, the equality
aix= bi is equivalent to the two constraints aix≤ bi and−aix≤−bi. If variables are not defined,
they are implicitly assumed to be zero. For example, the constraint ai1x1 +ai2x2 +ai3x3 ≤ bi is
equivalent to aix≤ bi where ai4 = . . .= ain = 0.

Integer linear programming is a specialization of linear programming in that decision vari-
ables assume only values from Z and not from R. This is necessary for modeling situations
where only a discrete set of states is possible. However, it has substantial algorithmic impli-
cations compared to standard linear programming that are outside the scope of this paper. We
simply note that ILP is NP-complete [19].

2.2 Graph Coloring

We use the standard k-COLORING problem later in Section 3.4 and briefly define it here.
A graph G is a tuple (V,E), for a set of vertices V and a set of (undirected) edges E ⊆V ×V .

Definition 2 (k-COLORING Problem)

Input: A graph G = (V,E) and a k ∈ N.

Output: YES if there exists a function col : V →{1, . . . ,k} such that for all (v1,v2)∈ E,
col(v1) 6= col(v2), or NO otherwise.

If an algorithm for this problem returns YES for a graph G and an integer k, then the respec-
tive function col is called a k-coloring of G. The k-COLORING problem is NP-complete [7].

3 Authorization-constrained Workflows

Our workflow terminology and formalization is based on [5] but adapted to suit our transforma-
tion to an optimization problem.

A task is a basic unit of work and may be executed multiple times. A task execution is
performed by a user and we call it a task instance. A workflow models the causal and temporal
dependencies between a set of tasks, whose execution constitutes a business objective. We call
the execution of a workflow a workflow instance.

At design time, a business expert designs a workflow using a modeling language such as
the Business Process Modeling Notation (BPMN) [17] (see Figure 1 for an example). He may
additionally specify history-dependent authorizations, such as SoD and BoD constraints, which
are workflow-specific. Orthogonal to this, a security expert defines a history-independent access
control configuration. At run time, the workflow specification is deployed to a workflow engine,
which schedules and instantiates tasks according to the workflow’s control-flow. For each task
instance, the workflow engine determines the set of users who are authorized to execute it with
respect to both the history-dependent and the history-independent authorizations. We assume
that history-dependent authorizations do not change at run time, whereas history-independent
authorizations may change as motivated in the introduction.

In this paper, we overapproximate a workflow’s control-flow and assume that a workflow
engine may eventually instantiate every task. This approximation imposes no constraints on
the workflow design and is compatible with all standard workflow patterns [21]. We further
comment on this design decision in Section 3.4.
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Figure 1: Payment workflow modeled in BPMN

3.1 Workflows

For the remainder of this paper, let T be a set of tasks and U a set of users. We model a
workflow as a set of tasks T ⊆ T , called a workflow task set. Furthermore, we model the
execution of a task t by a user u, i.e. a task instance involving t and u, as a tuple (t,u) and
call it an execution event. Let X = T ×U be the set of all execution events. Let T be the
workflow task set modeling a workflow W . We model an instance of W as a set of execution
events H ⊆ T ×U , called a workflow (execution) history. Note that a workflow history does not
store how many times a user u has executed a task t but only whether u has executed t. However,
this is sufficient to decide whether the constraints that we introduce below are satisfied.

Example 1 As a running example, consider the BPMN [17] model of a payment workflow
that is shown in Figure 1. This workflow is based on a report by an EU expert group on e-
invoicing [11]. Ignoring the gray modeling elements for the moment, the workflow describes
the tasks that a customer (organization) executes to process an invoice received by a supplier.
Upon receipt of an invoice, a user checks whether the invoice is correct (t1). In parallel, a user
checks whether the goods corresponding to the invoice have arrived (t2). If they have not arrived
yet and their arrival is not overdue, the user waits for three days and checks again. Otherwise,
the workflow proceeds. If inconsistencies have occurred, i.e. if the invoice is incorrect or the
arrival is overdue, a user sends a dispute case (t3) to the supplier and the workflow terminates.
If no inconsistencies have occurred, a user prepares the payment (t4). Afterwards, the payment
is either approved (t5), issued (t6) and the workflow terminates, or the payment is not approved
(t5) and the workflow loops back to the start.

The payment workflow corresponds to the workflow task set {t1, . . . , t6} and we assume
the set of users U = {Alice, Bob,Claire,Dave,Emma,Fritz}. Consider the workflow histories
H1 = {(t1,Alice),(t2,Bob),(t2,Dave),(t4,Claire),(t5,Claire)} and H2 = {(t1,Alice),(t2,Bob),
(t4,Dave),(t5,Claire)}. The workflow history H1 says that Alice executed t1, Bob executed t2,
etc. We return to H1 and H2 below. �
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3.2 History-dependent Authorizations

We consider two kinds of history-dependent authorizations: SoD and BoD constraints. Both
of them are commonplace in regulated environments, such as the financial industry, and also
recommended by best-practice frameworks, e.g. [13], that provide organizations guidance in
complying with regulatory requirements.

Definition 3 An SoD constraint s is a tuple (T1,T2), for two disjoint sets of tasks T1 and T2. A
workflow history H satisfies s, written H |= s, if ¬∃u ∈U , t1 ∈ T1, t2 ∈ T2 .{(t1,u),(t2,u)} ⊆ H.

In other words, H satisfies s if there is no user in H who executes tasks from both T1 and T2.
Thereby, s separates the duties associated with the tasks in T1 from those in T2.

Definition 4 A BoD constraint b is a set of tasks T . A workflow history H satisfies b, written
H |= b, if |{u | ∃t ∈ T . (t,u) ∈ H}| ≤ 1.

Informally, H satisfies b if there is not more than one user in H who executes the tasks
in T . Thereby, b binds the duties associated with the tasks in T . Note that according to Def-
inition 4, H satisfies b even if H contains no instance of a task in T . We aggregate SoD and
BoD constraints in an authorization policy, which we assume to be static, i.e. not changing at
run time.

Definition 5 A (history-dependent) authorization policy φ is a tuple (S,B), for a set of SoD
constraints S and a set of BoD constraints B. A workflow history H satisfies φ , written H |= φ ,
if H satisfies every s ∈ S and every b ∈ B.

Example 2 We return to our running example. Consider again Figure 1, in particular the gray
modeling elements. We visualize an SoD constraint (T1,T2) by identifying T1 and T2 with two
dash-dotted boxes1 and linking them with a dotted line and a node labeled with the symbol “6=”.
Similarly, we visualize a BoD constraint b by identifying the respective set of tasks T with a
dash-dotted box, linked to a node labeled with the “=” symbol. If a set contains only one task,
we omit the dash-dotted box and link the task directly to the respective node.

Figure 1 shows the SoD constraints s1 = ({t2},{t3}) and s2 = ({t1, t2, t4},{t5}) and the BoD
constraint b = {t2}. Our example authorization policy is thus φ = ({s1,s2},{b}). The SoD
constraint s1 ensures that a user cannot embezzle the received goods and later initiate a dispute
case. Similarly, the constraint s2 ensures that any user, who approves a payment, did not execute
one of the preceding tasks. Consequently, the approval of a fraudulent payment requires the
collusion of at least two users. The BoD constraint b requires that only one user checks whether
the goods have arrived. This facilitates a reuse of knowledge and thereby increases efficiency if
multiple checks are required.

Consider again the workflow histories H1 and H2 from Example 1. The history H1 does not
satisfy φ because the execution events (t2,Bob) and (t2,Dave) violate b (t2 is executed by two
different users) and the events (t4,Claire) and (t5,Claire) violate s2 (t4 and t5 are executed by the
same user). However, H2 satisfies φ because it satisfies s1, s2, and b. �

3.3 History-independent Authorizations

In the interest of keeping the forthcoming definitions agnostic with respect to different access
control models, we first describe workflow-independent authorizations abstractly by a relation

1A dash-dotted box is called a group artifact in BPMN [17].
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UT ⊆ U ×T , called a user-task assignment. Then, we refine UT using roles and use this
additional structure when modeling the cost of changing UT . For the remainder of this paper,
let R be a set of roles. We use the core idea of Role-based Access Control (RBAC) [10], namely
the decomposition of UT into two relations.

Definition 6 An RBAC configuration is a tuple (UR,RT ), where UR ⊆ U ×R is a user-role
assignment and RT ⊆R×T a role-task assignment .

Given an RBAC configuration (UR,RT ), we can derive a user-task assignment UT by com-
posing RT and UR with the composition operator “◦”. Formally, UT = RT ◦UR = {(u, t) | ∃r ∈
R.(u,r) ∈UR,(r, t) ∈ RT}.

We use UT not only to define the workflow-independent assignment of users to tasks. Its
domain dom(UT ) also represents the set of available users and, conversely, U \dom(UT ) is the
set of unavailable users, e.g. those users who are not ready to work or not part of the organization.
We leave it up to an implementation to give these terms a concrete meaning.

Figure 2: Role-based Access Control configuration

Example 3 Figure 2 shows an RBAC configuration (UR,RT ) for the payment workflow. We
refer to the role Procurement Clerk as r1, Warehouse Clerk as r2, Procurement Manager as r3, and
Accountant as r4. The set of roles is thus R = {r1,r2,r3,r4}. The user-task assignment UT =
RT ◦UR contains, for example, the tuple (Alice, t1). The set of available users is dom(UT ) =
{Alice,Bob,Claire,Dave}, whereas Emma and Fritz are unavailable. �

3.4 Allocation

Having introduced workflows and authorization constraints, we now formalize the existence of
an allocation of users to tasks that satisfies a given set of constraints and every possible workflow
execution.

7
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Definition 7 Let T be a workflow task set, H a workflow history, φ an authorization policy, and
UT a user-task assignment. An allocation for T , H, φ , and UT is a (total) function alloc : T →U
that satisfies:

(1) alloc−1 ⊆UT and

(2) H ∪alloc |= φ .

We write alloc |= (T,H,φ ,UT ) if alloc is an allocation for T , H, φ , and UT and
|=∃ (T,H,φ ,UT ) if there exists an allocation alloc such that alloc |= (T,H,φ ,UT ).

A workflow history is a record of past task instances and the users who executed them. An
allocation defines for every future task instance the user who will be assigned to execute the
respective task. Condition (1) requires that a user u is only allocated to a task t if u is authorized
to execute t with respect to UT . Condition (2) requires that future task executions satisfy the
history-dependent authorizations in φ , also accounting for past task instances. A consequence
of Condition (2) is that there exists no allocation for T , H, φ , and UT if H 6|= φ . This is consistent
with our notion that it is not possible to find an extension of a workflow history H that satisfies
an authorization policy φ , if H does not satisfy φ .

The two conditions illustrate the fundamental difference between history-dependent and
history-independent authorizations. Deciding whether a task execution is authorized with re-
spect to a history-dependent authorization depends on past task instances. In contrast, deciding
whether a task execution is authorized with respect to a history-independent authorization can
be decided without knowing the workflow, in particular its execution history. Hence, the two
names.

An allocation instructs a workflow engine which users to assign to newly instantiated tasks.
Condition (2) ensures that no matter which tasks are instantiated in the future, there is always a
user who is authorized to execute them. Thereby, the existence of an allocation guarantees that
the workflow engine can execute the respective workflow instance to completion.

Example 4 Consider again our example with the workflow task set T and the workflow history
H2 from Example 1, the authorization policy φ from Example 2, and the user-task assignment
UT from Example 3. The function alloc = {(t1,Alice),(t2,Bob),(t3,Alice),(t4,Dave),(t5,Claire),
(t6,Dave)} is an allocation for T , φ , UT , and H2. �

This example also illustrates that our overapproximation of a workflow’s control-flow is
reasonable, in particular when the workflow contains loops. Even though almost all tasks of the
payment workflow have been executed in the workflow instance corresponding to H2, a workflow
engine may eventually schedule an instance of every task if the payment is not approved.

We now cast the existence of an allocation as a decision problem and analyze its complexity.

Definition 8 (Allocation Existence Problem AEP)

Input: A workflow task set T , a workflow history H, an authorization policy φ , and
a user-task assignment UT .

Output: YES if |=∃ (T,H,φ ,UT ) or NO otherwise.

Lemma 1 AEP is NP-complete.

Proof. Assume an instance of the NP-complete k-COLORING problem, introduced in Sec-
tion 2.2, consisting of a graph (V,E) and an integer k. In the following, we present a polynomial
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reduction to AEP. Let T =V , H =∅, U = {1, . . . ,k}, and UT =U ×T . For every (v1,v2)∈ E
add an SoD constraint ({v1},{v2}) to the set of SoD constraints S and let φ = (S,∅).

Suppose an algorithm for AEP finds an allocation alloc such that alloc |= (T,H,φ ,UT ). We
show that alloc is a k-coloring for (V,E). By our construction and Definition 7, alloc : V →
{1, . . . ,k}, i.e. alloc has the domain and range of a k-coloring for (V,E). Let H ′ = H ∪{(v,n) |
alloc(v) = n}. Consider an edge (v1,v2) ∈ E and let s be the corresponding SoD constraint
({v1},{v2}) in S. By condition (2) of Definition 7, H ′ |= φ and therefore H ′ |= s. It follows
by Definition 3 that {u | ∃v ∈ {v1}.(v,u) ∈ H ′} ∩ {u | ∃v ∈ {v2}.(v,u) ∈ H ′} = ∅. Because
(v1,alloc(v1)) ∈ H ′ and (v2,alloc(v2)) ∈ H ′ by the definition of H ′ it follows that alloc(v1) 6=
alloc(v2). Hence, alloc is a k-coloring for (V,E).

Let col : V →{1, . . . ,k} be a k-coloring for (V,E). Because UT = {1, . . . ,k}×V , col satisfies
Condition (1) of Definition 7. By our construction, col |= s for every s ∈ S. Because B =∅ and
H = ∅ it therefore follows that H ∪ col |= φ by Definition 5, i.e. col satisfies Condition (2) of
Definition 7. Hence, col is an allocation for (T,H,φ ,UT ) and AEP is NP-hard.

Given an instance (T,H,φ ,UT ) of AEP and a function alloc : T → U , one can check in
polynomial time whether alloc |= (T,H,φ ,UT ) by verifying that alloc satisfies the two condi-
tions of Definition 7. Hence, AEP is in NP and thereby NP-complete. �

We do not provide an algorithm for AEP here. Instead, we show in Section 4.2 how to use
algorithms for problems that build on AEP to solve instances of AEP.

4 Optimal Administrative Changes

Our formal model for authorization-constrained workflows, in particular the existence of an allo-
cation, gives us a notion of empowerment, required for achieving a particular business objective.
We now investigate the counterpart of empowerment, namely protection and the question of how
to balance the two. Consider the following motivational example.

Figure 3: Changed RBAC configuration

Example 5 Let UR0 be the user-role assignment and RT the role-task assignment illustrated
in Figure 2. Furthermore, let UT 0 = RT ◦UR0. We concluded in Example 4 that there exists

9
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an allocation for the workflow task set T , the workflow history H2, the authorization policy φ ,
and UT 0. Suppose now that Alice and Dave become unavailable, say they went on holiday. The
new RBAC configuration (UR,RT ) is illustrated in Figure 3, ignoring the dotted arrows for the
moment. Note that RT did not change whereas UR = UR0 \ {(Alice,r1),(Dave,r2),(Dave,r4)}.
As a result, we get the new user-task assignment UT = RT ◦UR.

It is easy to see that there exists no allocation for T , H2, φ , and UT . Only Claire is authorized
to execute t1 and t4 with respect to UT . However, the SoD constraint s2 in φ does not authorize
Claire to execute t1 and t4 because according to H2 she executed t5 already. �

To overcome the situation illustrated in this example, we must change UT by assigning more
roles to available users or making previously unavailable users available. However, this change
should incur minimal cost.

In this section, we introduce a cost function that models the administrative cost of changing
UT to UT ′ and the associated risks. We use this function to evaluate potential new user-task
assignments and ultimately to find the optimal assignment UT ′ such that |=∃ (T,H2,φ ,UT ′).

4.1 The General Problem

In the interest of keeping the general definition of the problem of balancing empowerment and
protection agnostic with respect to access control models, we start with a generic definition of
the cost function.

Definition 9 A cost function is a partial function cost : 2U ×T × 2U ×T →C, for a totally or-
dered set C.

We use a cost function for two purposes. For two user-task assignments UT and UT ′

1. cost(UT ,UT ′) defines the cost of changing UT to UT ′ and

2. dom(cost) defines the feasible changes, i.e. it is possible to change from UT to UT ′ if
(UT ,UT ′) ∈ dom(cost).

In this general setting, the cost of changing from a user-task assignment UT to a user-task
assignment UT ′ can have many meanings and cost may satisfy different properties accordingly.
We give a few examples of potential costs that may be modeled using cost. A concrete example
for a role-based cost function follows in the next section.

Risk: By empowering users to execute tasks, a user-task assignment exposes the underlying
resources to risks, such as fraud, errors, and data leakage. There exist various methodologies
for performing a risk analysis [4,14]. We consider them outside the scope of this paper and
simply point out that the expected value in a quantitative risk analysis corresponds to a cost [14].
If the cost function encodes only risks, the return value of cost(UT ,UT ′) is independent of
UT . Additionally, if the risk quantifies only the misuse of authorizations, it is reasonable to
assume that cost(UT ,∅) ≤ cost(UT ,UT ′) for all user-task assignments UT and UT ′. In other
words, empowering no user to execute a task entails the least risk. We consider minimizing risk
equivalent to maximizing protection.

Administrative cost: The activities associated with changing an access control configuration
are typically not for free. For example, recruiting a new employee, assigning her initial autho-
rizations, and training her to use them appropriately may be costly [15]. Consequently, if cost
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encodes only administrative costs it is reasonable to assume that cost(UT ,UT )≤ cost(UT ,UT ′)
for all user-task assignments UT and UT ′. In other words, it costs the least to make no changes
at all.

Maintenance cost: Maintaining an access control configuration may involve costs such as
salaries and license fees required for the execution of tasks. Abstractly, a cost function only
encoding maintenance costs behaves the same way as a cost function only encoding risk: it is
cheapest to maintain an empty user-task assignment.

Using the existence of an allocation as empowerment condition and a cost function as a measure
of protection, we now reduce the question of how to balance empowerment and protection to an
optimization problem.

Definition 10 (Optimal Workflow-aware Authorization Administration Problem OWA)

Input: A cost function cost, a workflow task set T , a workflow history H, an authorization
policy φ , and a user-task assignment UT .

Output: min
(UT ,UT ′)∈dom(cost)

{cost(UT ,UT ′) | |=∃ (T,H,φ ,UT ′)} or NO if the above set is empty.

The Optimal Workflow-aware Authorization Administration Problem OWA asks for a user-
task assignment that enables the successful completion of the given workflow instance and incurs
minimal cost.

Note that instead of using the domain of the cost function as a predicate for feasible access
control configurations, we could alternatively require cost to be a total function and define the
cost of infeasible configurations to be infinite. However, this would lead to two case distinctions
in OWA: one for the case that there exists no feasible configuration and one for the case that
there exists no allocation.

Without any assumptions about the structure of the cost function it is impossible to make
statements about OWA’s runtime or space complexity.

4.2 A Role-based Cost Function

To demonstrate the applicability of OWA to a realistic example, we refine OWA by decompos-
ing user-task assignments into RBAC configurations and assume the cost function to be role-
based. For simplicity, we also assume that the totally ordered set C is R. More specifically, we
define the cost function in terms of the following auxiliary functions. For a role r ∈R:

• risk(r) ∈ R models the risk associated with the assignment of a user to r,

• add(r) ∈ R models the administrative cost of assigning a user to r,

• rm(r) ∈ R models the administrative cost of removing a user’s assignment from r, and

• ma(r) ∈ R models the maintenance cost of having a user assigned to r.

Using these functions, we define the cost of changing a user-role assignment.

Definition 11 Given the auxiliary functions risk,add, rm,ma : R→ R, a role cost function is a
function costR : 2U ×R×2U ×R → R, such that for two user-role assignments UR and UR′,

costR(UR,UR′) = ∑
(u,r)∈UR′

(risk(r) + ma(r))+ ∑
(u,r)∈UR′\UR

add(r)+ ∑
(u,r)∈UR\UR′

rm(r)

11
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A role cost function defines the cost of changing from UR to UR′ simply as the sum of all
the risk and maintenance costs associated with UR′ and the administrative cost of adding and
removing assignments when changing from UR to UR′. We assume that the auxiliary functions
risk, add, rm, and ma are total and hence costR is total too. Instead of using costR’s domain
to determine feasible user-role assignment changes, we define a maximal user-role assignment
URmax ⊆U ×R and assume that every user-role assignment UR⊆URmax is feasible.

Example 6 Table 1 lists the risk, maintenance, and administrative costs associated with the four
roles of the payment workflow. We adopt the elementary approach that roles assigned to a large
number of tasks represent more responsibility and are therefore more costly [12]. Let costR be
the corresponding role cost function.

risk ma add rm

Procurement Clerk (r1) 5 3 2 1
Warehouse Clerk (r2) 3 3 2 1
Procurement Manager (r3) 12 5 3 2
Accountant (r4) 7 4 2 1

Table 1: Decomposition of role cost function

Recall the RBAC configuration (UR,RT ) shown in Figure 3 and let the solid and dotted
arrows between users and roles in Figure 3 be the maximal user-role assignment URmax for the
payment workflow. For example, Emma is an unavailable user with respect to UT . Because
(Emma,r3) ∈URmax, we may change Emma’s availability by assigning her to r3, resulting in the
user-role assignment UR′ = UR∪{(Emma,r3)}. The administrative activity of assigning Emma
to r3 costs 3 and the overall risk and maintenance cost rises by 12+5. Thus, costR(UR,UR′)−
costR(UR,UR) = 3+12+5 = 20. �

Note that a role cost function costR and a maximal user-role assignment URmax induce a cost
function as follows. Let UT and UT ′ be two user-task assignments where UT is composed from
an RBAC configuration (UR,RT ). The cost of changing from UT to UT ′ is then cost(UT ,UT ′)=
minUR′⊆URmax{costR(UR,UR′) |UT ′ = RT ◦UR′} and is undefined if the set is empty. Hence, we
may use costR, URmax, and (UR,UT ) instead of cost and UT in following refinement of ROWA.

Definition 12 (Role-based Optimal Workflow-aware Authorization Administration
Problem ROWA)

Input: A role cost function costR, a maximal user-role assignment URmax, a workflow task
set T , a workflow history H, an authorization policy φ , and an RBAC configuration
(UR,RT ), such that H |= φ .

Output: min
UR′⊆URmax

{costR(UR,UR′) | |=∃ (T,H,φ ,RT ◦UR′)} or NO if the above set is empty.

We may refer to the output corresponding to the ROWA-instance rowa as ROWA(rowa).
In the following, we define a function ROWAtoILP that transforms a ROWA-instance to an
ILP-instance. We specify the matrix A and the vectors b, c, and x indirectly by defining the
respective (ILP) constraints and the cost function in terms of sums. Furthermore, we index
decision variables with a superscript; they are not to be confused with an exponent. We thereby
simplify the forthcoming proofs. Transforming the constraints and variables to a matrix-vector
form is straightforward and therefore not shown in detail.

12
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Definition 13 Let (costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance, let costR be com-
posed of the auxiliary functions risk, add, rm, and ma, and let U = dom(URmax) and R =
ran(URmax). The function ROWAtoILP transforms (costR,URmax,T,H,φ ,(UR,RT )) to an in-
stance of ILP as follows:

Decision variables:
∀u ∈U,r ∈ R, t ∈ T . xu,r,xu,t ∈ Z

Objective function:

∑
(u,r)∈U×R

xu,r(risk(r)+ma(r)) + ∑
(u,r)∈(U×R)\UR

xu,radd(r) + ∑
(u,r)∈UR

(1− xu,r)rm(r)

Constraints:
(1) ∀ t ∈ T, u ∈U . ∑{r|(r,t)∈RT} xu,r ≥ xu,t

(2) ∀ t ∈ T.∑u∈U xu,t = 1

(3) ∀ t ∈ T.∑{u∈U |H∪{(u,t)}6|=φ} xu,t = 0

(4) ∀ (T1,T2) ∈ S, t1 ∈ T1, t2 ∈ T2,u ∈U . xu,t1 + xu,t2 ≤ 1

(5) ∀T ′ ∈ B, t1, t2 ∈ T ′,u ∈U . xu,t1− xu,t2 = 0

(6) ∑(u,r)∈(U×R)\URmax xu,r = 0

(7) ∀u ∈U, r ∈ R . xu,r ≥ 0 and xu,r ≤ 1

(8) ∀u ∈U, t ∈ T . xu,t ≥ 0 and xu,t ≤ 1

Consider a ROWA-instance composed of costR, URmax, T , H, φ , and (UR,RT ), and let
(A,b,c) be the corresponding ILP-instance returned by ROWAtoILP. We refer to a constraint
or a set of constraints i in Definition 13 as Ci.

Next, we define a relation between feasible solutions of ILP-instances generated by
ROWAtoILP, and user-role assignments and allocations for their corresponding ROWA-in-
stances. Afterwards, we use this relation to explain the constraints C1–C8 and finally to prove
soundness and completeness of ROWAtoILP.

Note the following. A feasible solution x for (A,b,c) is composed of the decision variables
xu,r and xu,t where u ranges over dom(URmax), r over ran(URmax), and t over T . Because x is a
feasible solution, the decision variables satisfy all constraints listed in Definition 13, in particular
C7 and C8. Therefore, the decision variables assume either the value 0 or 1.

Definition 14 Let (costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance and (A,b,c) the cor-
responding ILP-instance returned by ROWAtoILP. Furthermore, let x be a feasible solution for
(A,b,c), U = dom(URmax), and R = ran(URmax). For a user-role assignment UR′ and an allo-
cation alloc, we say that x corresponds to (UR′,alloc), written x∼ (UR′,alloc), if

(1) UR′ = {(u,r) ∈U×R | xu,r = 1} and

(2) alloc= {(t,u) ∈ T ×U | xu,t = 1} .
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costR(UR,UR′)

= ∑(u,r)∈UR′(risk(r) + ma(r)) + ∑(u,r)∈UR′\UR add(r) + ∑(u,r)∈UR\UR′ rm(r)

= ∑(u,r)∈UR′ 1 (risk(r) + ma(r)) + ∑(u,r)∈(U×R)\UR′ 0 (risk(r) + ma(r))

+ ∑(u,r)∈UR′\UR 1add(r) + ∑(u,r)∈((U×R)\UR′)\UR 0add(r)

+ ∑(u,r)∈UR\UR′ 1 rm(r) + ∑(u,r)∈UR∩UR′ 0 rm(r)

= ∑(u,r)∈U×R xu,r(risk(r)+ma(r)) + ∑(u,r)∈(U×R)\UR xu,radd(r) + ∑(u,r)∈UR(1− xu,r)rm(r)

= cx

Figure 4: Equality of role cost function and objective function

In other words, the decision variables of the form xu,r determine UR′ and those of the form
xu,t determine alloc. More specifically, if, for a user u and a role r, xu,r = 1 then u is assigned to
r in UR′. Moreover, for a user u and a task t, xu,t = 1 implies that alloc maps t to u. Note that
the correspondence relation ∼ uniquely determines a tuple (UR′,alloc) given a vector x and vice
versa.

We now give an informal description of the (ILP) constraints created by ROWAtoILP. A
more thorough elaboration follows in the proof of Lemma 2. C1 makes sure that an allocation
assigns a user u only to a task t if u is assigned to a role r that is assigned to t. C2 enforces that
an allocation maps every task to exactly one user. C3 ensures that an allocation’s assignments do
not violate the given execution history. C4 and C5 enforce that an allocation satisfies the given
SoD and BoD constraints, respectively. Finally, C6 restricts user-role assignments to subsets of
the given maximal user-role assignment. The use of C7 and C8 was explained above already.

The following lemma, which we prove in Appendix A, establishes that ROWAtoILP is both
sound and complete.

Lemma 2 Let (costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance and (A,b,c) the corre-
sponding ILP-instance returned by ROWAtoILP. Let x be a vector, UR′ a user-role assignment,
and alloc an allocation, such that x∼ (UR′,alloc).

• Soundness: If x is a feasible solution for (A,b,c) then UR′ ⊆URmax and
alloc |= (T,H,φ ,RT ◦UR′).

• Completeness: If UR′ ⊆URmax and alloc |= (T,H,φ ,RT ◦UR′) then
x is a feasible solution for (A,b,c).

Given the soundness and completeness of ROWAtoILP, we now show with Theorem 1 that
ROWAtoILP and algorithms for ILP can be employed to solve ROWA-instances.

Theorem 1 For every ROWA-instance rowa, ROWA(rowa) = ILP(ROWAtoILP(rowa)).

Proof. Let (costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance and (A,b,c) the correspond-
ing ILP-instance returned by ROWAtoILP. Let U = dom(URmax), R = ran(URmax), φ = (S,B),
and let costR be defined by the auxiliary functions risk, add, rm, and ma. Furthermore, let
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UR′ be a user-role assignment, alloc an allocation, and x a vector such that UR′ ⊆ URmax,
alloc |= (T,H,φ ,RT ◦UR′) and x ∼ (UR′,alloc). From Lemma 2 we have that x is a feasible
solution for (A,b,c).

As derived in Figure 4, it follows from Definitions 11, 13, and 14 that costR(UR,UR′) = cx.
Assume that UR′ minimizes costR with respect to all user-role assignments UR′′ ⊆URmax such
that |=∃ (T,H,φ ,RT ◦UR′′), i.e. costR(UR,UR′) = ROWA(costR,URmax,T,H,φ ,(UR,RT )). To
derive a contradiction, assume that ILP(A,b,c) 6= costR(UR,UR′). Because x is a feasible so-
lution for (A,b,c) and costR(UR,UR′) = cx, there must exist a feasible solution y for (A,b,c)
such that costR(UR,UR′)> cy. Let UR′′ be a user-role assignment and alloc′ an allocation such
that y ∼ (UR′′,alloc′). It follows by Lemma 2 that UR′′ ⊆ URmax and alloc′ |= (T,H,φ ,RT ◦
UR′′). As reasoned before, we have costR(UR,UR′′) = cy and therefore costR(UR,UR′) >
costR(UR,UR′′). However, this violates the minimality assumption we made about
costR(UR,UR′). Hence, x is an optimal solution for (A,b,c) and the two outputs are equal.

�

We now establish the space and runtime complexity of ROWAtoILP. To this end, let again
(costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance and (A,b,c) the corresponding ILP-
instance returned by ROWAtoILP. Furthermore, let U = dom(URmax), R = ran(URmax), φ =
(S,B). The ILP-instance (A,b,c) ranges over |U ||R|+ |U ||T | decision variables, which corre-
sponds to the same number of columns of the matrix A. There are |T ||U | constraints of kind (1),
|T | constraints of kind (2) and (3), O(|S||T |2|U |) constraints of kind (4), O(|B||T |2|U |) con-
straints of kind (5), there is one constraint of kind (6), |U ||R| constraints of kind (7), and |U ||T |
constraints of kind (8). Thus, the total number of constraints is in O(|U |(|T |2(|S|+ |B|)+ |R|+
|T |)), corresponding to the same number of rows of A. For the generation of constraints of
kind (3) H ∪{(u, t)} 6|= φ must be computed for every task t ∈ T and user u ∈U . However, by
Definitions 3, 4, and 5, this computation has a polynomial runtime complexity in the size of the
ROWA-instance. Hence, ROWAtoILP is a polynomial reduction from ROWA to ILP.

Solving ROWA requires solving AEP, which is NP-complete by Lemma 1. Therefore, the
following corollary is a direct consequence of Theorem 1 and the observation that ROWAtoILP
is a polynomial reduction from ROWA to the NP-complete ILP.

Corollary 1 ROWA is NP-complete.

We have thereby shown that finding an optimal RBAC configuration that enables a successful
completion of a given workflow instance is in the same complexity class as deciding whether the
workflow instance can be successfully completed for a given RBAC configuration. Furthermore,
the polynomial reduction from ROWA to ILP enables us to solve ROWA-instances using well-
established algorithms for ILP. An example follows in the next section.

Note that ROWAtoILP and an algorithm for ILP can also be used to solve AEP. Let
(T,H,φ ,UT ) be an AEP-instance. Using a set of roles R, we decompose UT into an RBAC
configuration (UR,RT ) such that RT ◦UR=UT . Furthermore, let URmax =UR, and costR be the
role cost function composed of the auxiliary functions risk(r)=ma(r)= 0 and add(r)= rm(r)=
1, for all r ∈ R. ROWA(costR,URmax,T,H,φ ,(UR,RT )) = 0 if and only if |=∃ (T,H,φ ,UT ).
This follows from the observation that the minimal return value of costR is 0, which is only
possible for costR(UR,UR) = 0, implying that |=∃ (T,H,φ ,RT ◦UR).
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4.3 Experimental Results

We return to our running example and demonstrate how off-the-shelf software can be used to
solve ROWA-instances using our reduction to ILP. We implemented ROWAtoILP using the
numerical computing software MATLAB [20].

Example 7 Recall the RBAC configuration (UR,RT ) shown in Figure 3 and our observation
in Example 5 that there exists no allocation for T , H2, φ , and UT = UR ◦RT . Furthermore,
recall the role cost function costR and the maximal user-role assignment URmax presented in
Example 6.

Using our ROWAtoILP-implementation, we transformed the ROWA-instance (costR,
URmax,T,H,φ ,(UR,RT )) to an ILP-instance (A,b,c) and computed an optimal solution x. Fol-
lowing Definition 14, x corresponds to the user-role assignment UR′ = {(Bob,r2),(Claire,r3),
(Emma,r3)} and the allocation alloc = {(t1,Emma),(t2,Bob),(t3,Claire),(t4,Emma),(t5,Claire),
(t6,Claire)}. The cost of changing from UR to UR′ is costR(UR,UR′) = 43. Hence the optimal
administrative change with respect to costR that empowers the users to complete the payment
workflow, without violating φ and respecting the execution history H2, is to extend UR by as-
signing Emma to the role Procurement Manager (r3).

Suppose now that the risk exposure changes in that the risk associated with an assignment
to role r3 increases by 3 to 15. The other numbers in Table 1 remain unchanged. By running
our program again, we see that this small change of cost results in a different optimal solution.
The optimal user-role assignment is now UR′′ = {(Bob,r2),(Bob,r2),(Claire,r3),(Fritz,r4)}, the
respective allocation is alloc′= {(t1,Bob), (t2,Bob), (t3,Claire), (t4,Fritz), (t5,Claire), (t6,Claire)},
and costR(UR,UR′′) = 46. Because the risk associated with r3 increased, it is now cheaper, i.e.
less risky, to assign Bob additionally to the role Procurement Clerk (r1) and Fritz to Accountant (r4)
instead of assigning Emma to the role Procurement Manager (r3). �

Computing optimal solutions for ILP-instances, such as the ones presented in the example
above, takes about 100 milliseconds on a standard PC configuration2. We also experimented
with larger, randomly generated maximal user-role assignments. On our test system, we could
observe an exponential increase of the running time in the size of the input, which is consistent
with our complexity approximation of ROWAtoILP and Corollary 1. However, we did not
investigate optimizations of our prototypical implementation.

5 Related Work

When users are unavailable, delegation of roles and tasks may enable the continuation of a
workflow’s execution. Atluri et al. provide support for delegation in workflows ensuring that
delegation operations, enabled to grant or to transfer rights to a particular user, still satisfy the
authorization constraints [1]. In later work, users may perform concrete or abstract task delega-
tions, and delegation may be conditioned on time, workload, and task attributes [2,22].

Crampton and Khambhammettu [9] were the first to check if permitting a delegation request
prevents the completion of workflow instances or renders the workflow authorization schema
unsatisfiable. In [23], Wang and Li show that the workflow satisfiability problem is in general
NP-hard. They also introduced the workflow resiliency problem, asking whether a workflow

2Mac OS X on 2.5 GHz Intel Core 2 Duo processor with 2 GB RAM.
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can be completed even if a number of users may be unavailable. They show that the complexity
of deciding whether an authorization configuration is resilient for a workflow with up to t un-
available users at one time is PSPACE-complete. Our constraint model builds on the work of
Basin etal. [5] and AEP is an adaption of their graph-based approximation of the enforcement
process existence problem. However, none of the above works consider optimal authorization
configurations. They simply provide algorithms to determine whether an authorization config-
uration satisfies a workflow and its authorization constraints, that is the question formalized by
AEP in this paper.

The notion of risk has been introduced into access control models to adapt authorizations to
changing conditions. Methods to measure and quantify risks are given in [8,14,16]. Aziz etal.
use a risk semantics to transform policies with respect to operational, combinatorial, and conflict
of interest risks with the goal to minimize the risk associated with a configuration [3]. In contrast
to our work, they reassign permissions to roles leaving the user-role assignment, where changes
occur in practice more frequently, untouched.

To quantify risk in role delegation, Han etal. consider the position of the role within the role
hierarchy, the number of permissions gained, and also associate workflow instances with a risk
based on the data that is processed [12]. For example, the value of a reimbursement workflow
may depend on the amount of money involved. However, risk is not linked with successful
workflow termination. Associating risk and benefit vectors with every read and update transac-
tions, Zhang etal. study the optimization of an allowed transaction graph with respect to a given
accessibility graph that defines the underlying communication system [24].

The work of Casassa Mont etal. [15] provides further metrics that are useful for defining role
cost functions. In their economic interpretation of identity and access management, they identify
potential cost drivers such as the approval of users’ accounts and authorizations by managers and
security teams. Moreover, they observe that privileged users, such as IT administrators with root
access to sensitive systems, information, and shared accounts, expose higher risks.

6 Conclusion and Future Work

We have presented the concept of a cost-minimizing authorization configuration that empowers
users to execute a given workflow. Our approach comes with considerable modeling freedom.
For example, cost can model the risk associated with an authorization configuration and hence
the optimal configuration maximizes protection. By first introducing the generic OWA-problem
and later refining it to ROWA, we showed that our approach is both general and also applicable
to concrete business scenarios. Furthermore, we presented a mapping from ROWA to the well-
established optimization problem ILP. Proving our mapping sound and complete enabled us to
use of off-the-shelf software to solve ROWA.

The generality of our approach gives rise to many design decisions and consequently to
various directions for future work. For example, we based our authorization constraints on the
model proposed in [5]. Other models provide different features, e.g. support for delegation [9].
Similarly, user-task assignments can be refined based on different access control models. In
particular, our role cost function could be further refined by incorporating role hierarchies. Fur-
thermore, the predicate whether an authorization change is feasible could account for additional
properties such as time. With each such modeling change, the computational complexity of
finding an optimal configuration must be reexamined.
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Meaningful risk metrics for authorization configurations are a precondition for the effective
use of our approach. We pointed to various methods for quantifying the risk associated with
authorization configurations. However, finding such metrics is challenging. This does not, of
course, reduce the importance of such metrics and we see our results as providing additional
evidence for their usefulness.
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A Proof of Lemma 2

Proof. Let (costR,URmax,T,H,φ ,(UR,RT )) be a ROWA-instance and (A,b,c) the correspond-
ing ILP-instance returned by ROWAtoILP. Furthermore, let U = dom(URmax), R= ran(URmax),
and φ = (S,B).

Soundness: Let x be a feasible solution for (A,b,c), UR′ a user-role assignment, and alloc an
allocation, such that x∼ (UR′,alloc). We first show that UR′ ⊆URmax. To derive a contradiction,
assume (u,r) ∈UR′ \URmax, for a user u and a role r. By Definition 14, it follows that xu,r =
1. However, this contradicts C6, which forces xu,r to be 0 (Remember, decision variables of
a feasible solution only assume the values 0 and 1). Hence, UR′ \URmax = ∅ and therefore
UR′ ⊆URmax.

By C2, alloc maps every task to exactly one user and is therefore a total function. To show
that alloc |= (T,H,φ ,RT ◦UR′), we first prove that Condition (1) of Definition 7 holds and
afterwards that Condition (2) holds. Let (t,u) ∈ alloc, for a task t and a user u. By Definition 14,
xu,t = 1. It follows by C1 that there exists an r such that xu,r = 1 and (r, t)∈RT . By Definition 14,
(u,r) ∈UR′ and therefore (u, t) ∈ RT ◦UR′. Hence, Condition (1) of Definition 7 holds.

To show that Condition (2) of Definition 7 holds, we make use of the following observa-
tion. Given an SoD constraint s, it follows by Definition 3 that (H ∪ alloc) |= s is equivalent
to {x1,x2} |= s for all x1,x2 ∈ (H ∪ alloc). Similarly, given a BoD constraint b, it follows by
Definition 4 that (H ∪alloc) |= b is equivalent to {x1,x2} |= b for all x1,x2 ∈ (H ∪alloc).

In the following we show that for every two execution events x1,x2 ∈ (H ∪ alloc), every
SoD constraint s ∈ S, and every BoD constraint b ∈ B, {x1,x2} |= s and {x1,x2} |= b. Using the
previous observation and Definition 5 we then have (H ∪alloc) |= φ .

Case {x1,x2} ⊆H: By Definition 12, H |= φ . By Definition 5 and our previous observation,
it follows that, for every s ∈ S and b ∈ B, {x1,x2} |= s and {x1,x2} |= b.

Case x1 ∈H and x2 ∈ alloc: To derive a contradiction, assume {x1,x2} 6|= φ . Let x2 = (t2,u2).
By Definitions 3, 4, and 5 every superset of {x1,x2} does not satisfy φ , in particular H ∪{x2}.
From C3 it follows that xu2,t2 = 0. However, by Definition 14 this contradicts (t2,u2) ∈ alloc.
Hence, {x1,x2} |= φ and by Definition 5 {x1,x2} |= s and {x1,x2} |= b, for every s∈ S and b∈ B.
The case where x1 ∈ alloc and x2 ∈ H is analogous.

Case {x1,x2} ⊆ alloc: Let x1 = (t1,u1) and x2 = (t2,u2). Let s = (T1,T2) ∈ S be an SoD
constraint. By Definition 3, {x1,x2} |= s unless t1 ∈ T1, t2 ∈ T2, and u1 = u2 (or analogously
t1 ∈ T2, t2 ∈ T2, and u1 = u2). To derive a contradiction, assume t1 ∈ T1, t2 ∈ T2, and u1 = u2.
Because {x1,x2} ⊆ alloc it follows by Definition 14 that xu1,t1 = xu2,t1 = 1. However, because
u1 = u2, this contradicts C4. Hence, {x1,x2} |= s. Let b = T ′ ∈ B be a BoD constraint. By
Definition 4, {x1,x2} |= b unless t1, t2 ∈ T ′ and u1 6= u2. To derive a contradiction, assume
t1, t2 ∈ T ′ and t1 6= t2. Because {x1,x2} ⊆ alloc it follows by Definition 14 that xu1,t1 = xu2,t1 = 1.
By C2 it follows that xu2,t1 = 0. This, however, contradicts C5, which requires xu1,t1 = xu2,t1 .
Hence, {x1,x2} |= b.

Completeness: Let UR′ be a user-role assignment, alloc an allocation, and x a vector such that
UR′ ⊆URmax, alloc |= (T,H,φ ,RT ◦UR′), and x ∼ (UR′,alloc). In the following, we show that
x is a feasible solution for (A,b,c) by showing that every constraint of (A,b,c) is satisfied.

C1: Let t be a task, u a user, and consider the constraint ∑{r|(r,t)∈RT} xu,r ≥ xu,t . If alloc(t) 6= u,
then xu,t = 0 by Definition 14 and the constraint is trivially satisfied. If alloc(t) = u, it follows
by Condition (1) of Definition 7 that (u, t) ∈UT ◦UR′. Therefore, there exists an r ∈ R such that
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(u,r) ∈UR′ and (r, t) ∈ RT . By Definition 14, xu,r = 1 and the constraint is therefore satisfied.
C2: Let t be a task. By Definition 7, alloc is a total function and therefore maps t to one user

u ∈U . By Definition 14 we have xu,t = 1. Hence, ∑u∈U xu,t = 1.
C3: Let t be a task. To derive a contradiction, let u be a user and assume that H∪{(u, t)} 6|= φ

and xu,t = 1. By Definition 14 it follows that (t,u) ∈ alloc. Because alloc |= (T,H,φ ,RT ◦UR′)
then by Definition 7 H ∪ alloc |= φ . However, this contradicts the previous assumption that
H ∪{(u, t)} 6|= φ . Hence, ∑{u∈U |H∪{(u,t)}6|=φ xu,t = 0.

C4: Let s = (T1,T2) ∈ S be an SoD constraint, t1 ∈ T1, t2 ∈ T2, and u ∈ U . Consider the
constraint xu,t1 + xu,t2 ≤ 1. If alloc(t1) 6= u, then xu,t1 = 0 by Definition 14 and the constraint
is trivially satisfied. If alloc(t1) = u, then xu,t1 = 1 by Definition 14. To derive a contradic-
tion, assume that xu,t2 = 1. It follows by Definition 14 that (t2,u) ∈ alloc(t2). Because alloc |=
(T,H,φ ,RT ◦UR′), H∪alloc |= φ by Definition 7. Furthermore, {(t1,u),(t2,u)} |= s because of
Definition 5 and our previous observation. However, this contradicts {(t1,u),(t2,u)} 6|= s, which
follows by Definition 3. Hence xu,t2 = 0 and the constraint is satisfied.

C5: Let b = T ′ ∈ B be a BoD constraint, t1, t2 ∈ T ′, and u ∈ U . Consider the constraint
xu,t1 − xu,t2 = 0 and let xu,t1 = 1. It follows from Definition 14 that (t1,u) ∈ alloc. To derive a
contradiction, assume xu,t2 = 0. By C2, there exists an u2 ∈U such that u 6= u2 and xu2,t2 = 1.
By Definition 14, then (t2,u2) ∈ alloc. Because alloc |= (T,H,φ ,RT ◦UR′), H ∪ alloc |= φ by
Definition 7. By Definition 5 and our previous observation we have {(t1,u),(t2,u2)} |= b. How-
ever, this contradicts {(t1,u),(t2,u2)} 6|= s, which follows by Definition 4 because u 6= u2. Hence
xu,t2 = 1 and the constraint is satisfied. The case where xu,t1 = 0 and we derive a contradiction
for xu,t2 = 1 is analogous.

C6: ∑(u,r)∈(U×R)\URmax xu,r = 0 follows directly from UR′ ⊆URmax and Definition 14.
C7 and C8: The satisfaction of these constraints follows directly from Definition 14. �
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