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Access control is fundamental in protecting information systems but it can also pose an obstacle to achiev-
ing business objectives. We analyze this tradeoff and its avoidance in the context of systems modeled as
workflows restricted by authorization constraints, including those specifying Separation of Duty (SoD) and
Binding of Duty (BoD). To begin with, we present a novel approach to scoping authorization constraints within
workflows with loops and conditional execution. We formalize workflows, authorization constraints, and their
enforcement using the process algebra CSP and visualize our constraints by extending the workflow modeling
language BPMN. Afterwards, we consider enforcement’s effects on business objectives. We identify the notion
of obstruction, which generalizes deadlock within a system where access control is enforced, and we formu-
late the existence of an obstruction-free enforcement mechanism as a decision problem. We present complexity
bounds for this problem and give an approximation algorithm that performs well when authorizations are evenly
distributed among users. We provide tool support for our constraints in an extension of the modeling platform
Oryx and report on the performance of our algorithms’ implementation.
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1 Introduction
Security often conflicts with other system-design objectives. Take the case of a business system
where business objectives are modeled by workflows defining the tasks executed by users. Adding
access control to this system prevents unauthorized task executions, but may also have unintended
consequences. For example, the resulting system may deadlock or be obstructed in that fewer options
are available to achieve the workflow’s business objectives than were originally designed. A fun-
damental problem is how this conflict can be resolved. Can authorizations be enforced without
obstructing system objectives?

In this article, we investigate this question by modeling workflow-based systems at two levels
of abstraction. At the control-flow level, a workflow models the temporal ordering and causal de-
pendencies of a set of tasks that together implement a business objective. The task-execution level
refines the control-flow level and also models who executes which task. The above question can be
formalized as whether authorizations are enforceable at the task-execution level without changing
the workflow at the control-flow level.

Consider as an example a simple workflow with three tasks t1, t2, and t3, illustrated as the la-
belled transition system W on the left in Figure 1. At the control-flow level, a successful workflow
execution specifies the business objective of executing t1 and afterwards either t2 or t3. Now con-
sider an authorization policy stating that user u1 may execute all three tasks and u2 may execute
only t1. Furthermore, t1 and t2 must not be executed by the same user. The right half of Figure 1
shows two refinements, W1 and W2, of W that respect this authorization policy, where we write t.u
to indicate that u executes t. In W1, u1 may execute t1 but afterwards only t3 is executable without
violating the authorization policy. This, however, corresponds to a restriction of the workflow at the
control-flow level (indicated by the jagged arrow). We call this situation an obstruction. In contrast,
W2 avoids obstructions by being more restrictive than W1 and not allowing u1 to execute t1.



Basin etal. / Obstruction-free authorization enforcement 2

Figure 1: Enforcement with and without obstruction

This simple example illustrates the tension between security and business objectives and sug-
gests that authorization enforcement should be designed in a way that aligns both objectives. Our
underlying assumption is that for achieving business objectives, it does not matter who is executing
a task as long as every task can be executed by an authorized user. As illustrated by the example, we
thereby give the preservation of a workflow at the control-flow level priority over the choice of who
can execute a task.

We distinguish authorization constraints with respect to two criteria: their dependency on pre-
vious task executions and their modeling scope. In more detail, we call an authorization constraint
whose evaluation depends on who has executed previous tasks history-dependent; otherwise we
call it history-independent. With respect to the modeling scope of authorizations, we distinguish
workflow-specific and workflow-independent constraints. The former are designed in alignment with
a given workflow and may be tailored to a workflow’s specific properties such as its data-flow and
control-flow. In contrast, the latter are specified without knowledge of the workflows on which they
will be enforced. As such, workflow-independent authorization constraints are more generic and
enforceable across different workflows, but they cannot account for workflow-specific properties.

Concretely, we consider three classes of authorization constraints. What we call basic access
control subsumes various access control models for specifying workflow- and history-independent
authorization constraints. Examples are Access Control Lists (ACLs) [28] and Role-based Access
Control (RBAC) [11]. We augment basic access control with workflow-specific and history-dependent
Separation of Duty (SoD) and Binding of Duty (BoD) constraints. SoD, also known as the four-eyes-
principle, aims at reducing fraud and errors by preventing a user from executing tasks that result
in a conflict of interest. BoD is dual to SoD and aims at reusing existing knowledge and prevent-
ing widespread dissemination of sensitive information by restricting the execution of two related
tasks to a single user. These classes of constraints are recommended as best practice by frameworks
like COBIT [15] and required by regulations like SOX [29]. As a result, they are commonplace in
regulated business environments, such as the financial industry.

We proceed as follows. First, we formalize workflows and authorization constraints as CSP pro-
cesses [25] and model authorization enforcement as their parallel, synchronized composition. For
graphically modeling our constraints, we propose an extension of the Business Process Modeling
Notation (BPMN) [18], a well-established workflow modeling language. We illustrate our BPMN
extension focusing on BPMN’s meta-model and report on how we integrated our extension into the
modeling platform Oryx [8]. Thereby, we bridge the gap between our process algebraic formaliza-
tion of authorization constraints and their application to realistic business cases. Second, we for-
mulate the existence of an obstruction-free enforcement mechanism for a given set of authorization
constraints and a workflow as a decision problem, which we call the enforcement process existence
(EPE) problem. Finally, we present algorithms both to solve and approximate EPE and we analyze
their runtime complexity.

Our first contribution is a novel approach to modeling SoD and BoD constraints that are scoped
to subsets of task instances. Our formalism imposes no restrictions on the expressiveness of the
underlying workflow modeling language. In particular, workflows may contain loops and conditional
executions, which are usually omitted in existing formalisms. By providing tool support for our
constraints through the extension of Oryx, we enable business experts to extend workflow models
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with authorization constraints that are enforceable without introducing obstructions.
Our second contribution is the formalization and analysis of obstruction-free authorization en-

forcement in workflow systems. We thereby generalize the notion of deadlock-freedom of a process
to also include cases where progress of the workflow execution is possible although with fewer op-
tions than are specified at the control-flow level. We prove that EPE is decidable, however NP-hard.
Furthermore, we show that our approximation algorithm has a polynomial runtime complexity and
provides good approximation results when the set of users is large and the static authorizations are
equally distributed among them.

The remainder of this article is organized as follows. In Section 2, we provide background on
both CSP and BPMN. In Section 3, we formalize workflows, introduce our CSP-based approach to
formalizing authorization enforcement, and provide a first instance of this approach for basic access
control. In Section 4, we introduce SoD and BoD constraints, describe our extension of BPMN
to model them graphically, and report on their integration into Oryx. We define obstruction-free
authorization enforcement in Section 5. We then introduce EPE, analyze its complexity, and present
algorithms to solve and approximate it. We review related work in Section 6 and draw conclusions
in Section 7. The appendix provides proofs and additional background on CSP and graph coloring,
which we use in our reductions. Overall, this article extends our previous paper [5] on this topic.

2 Background

2.1 CSP
We use a subset of Hoare’s process algebra CSP [25] to model the specification and enforcement
of authorization constraints on workflows. CSP describes a system as a set of communicating pro-
cesses. A process is referred to by a name; let N be the set of all process names. Processes com-
municate with each other by concurrently engaging in events. Σ is the set of all regular events. In
addition, there are two special events: τ , a process-internal, hidden event, andX that communicates
successful termination. Let D ⊆ Σ be a subset of regular events. We write Dτ for D ∪ {τ}, DX for
D ∪ {X}, and Dτ,X for D ∪ {X, τ}. In particular, Στ,X is the set of all events.

A trace is a sequence of regular events, possibly ending with X. 〈〉 is the empty trace and
〈σ1, . . . , σn〉 is the trace containing the events σ1 to σn, for n ≥ 1. For two traces i1 and i2, their
concatenation is denoted i1ˆi2. D∗ is the set of all finite traces over D and its superset D∗X =
D∗ ∪{i 〈̂X〉 | i ∈ D∗} includes all traces ending withX. We abuse the set-membership operator ∈
and write σ ∈ i for an event σ and a trace i, if there exist two traces i1 and i2 such that i = i1 〈̂σ〉̂ i2.

For an regular event σ ∈ Σ and a name n ∈ N , the set of processes P is inductively defined by
the grammar P ::= σ → P | SKIP | STOP | n | P � P | P u P | P ‖ P | P ||| P | P ; P .

There are different approaches to formally describing the behavior of a process. CSP’s deno-
tational semantics describes a process P as a prefix-closed set of traces T(P ) ⊆ Σ∗X, called the
traces model. The operational semantics describes P as a labelled transition system (LTS). We call
a process finite if it corresponds to an LTS with finitely many states and input symbols. The two
semantics are compatible. Because we mainly use the traces model, we describe in the following the
process composition operators, introduced above, in terms of the denotational semantics. We review
the operational semantics, which we use in some proofs, in Appendix A.

Let P, P1, P2 ∈ P be processes. The process σ → P engages in the event σ first and behaves
like P afterward. Formally, T(σ → P ) = {〈σ〉̂ i | i ∈ T(P )}∪ {〈〉} This notation can be extended.
The expression σ : D → P represents a process that engages in a σ ∈ D first and behaves like
P afterward. SKIP engages in X and no further event afterward; T(SKIP ) = {〈〉, 〈X〉}. STOP
represents the process that does not engage in any event; T(STOP ) = {〈〉}. In other words, SKIP
represents successful termination and STOP a deadlock. We write n = P to assign P to the
name n; the process n behaves like P . The process P1 � P2 represents the external choice and
P1 u P2 the internal choice between P1 and P2. With respect to the traces model, P1 � P2
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Figure 2: BPMN modeling elements

and P1 u P2 are indistinguishable, namely T(P1 � P2) = T(P1 u P2) = T(P1) ∪ T(P2).
The failures model explained below distinguishes between the two processes. The process P1 ‖ P2

represents the parallel and (fully-)synchronized composition of P1 and P2. It engages in an event σ
if both P1 and P2 synchronously engage in σ; T(P1 ‖ P2) = T(P1)∩T(P2). Similarly, the process
P1 ||| P2 is the parallel, unsynchronized composition of P1 and P2. It engages in σ if either P1

or P2 engage in σ; T(P1 ||| P2) is the set of all interleavings of i1 and i2 for i1 ∈ T(P1) and
i2 ∈ T(P2). The process P1 ; P2 denotes the sequential composition of P1 and P2. It first behaves
like P1. Upon successful termination of P1, the eventX is hidden, which is denoted by the invisible
event τ . Afterwards, the process behaves like P2. Formally, T(P1 ; P2) = (T(P1) ∩ Σ∗) ∪ {i1ˆi2 |
i1ˆ〈X〉 ∈ T(P1), i2 ∈ T(P2)}. Note that the invisible event τ does not appear in traces, similar to
ε-transitions in nondeterministic automata. If T(P1) ⊆ T(P2), then P1 is a trace refinement of P2,
denoted P2 vT P1. If P2 vT P1 and P1 vT P2, then P1 and P2 are trace equivalent, denoted
P1 =T P2.

The traces model is insensitive to nondeterminism. It describes what a process can do but not
what it may refuse to do. The failures model F is a refinement of the traces model that overcomes
this shortcoming. Let P be a process. P ’s refusal set is a set of events all of which P can refuse
to engage in and rs(P ) ⊆ 2ΣX

is the set of all refusal sets of P . The set of failures of P is then
F(P ) = {(i,D) | i ∈ T(P ), D ∈ rs(P \ i)}, where P \ i represents the process P after engaging
in the events in the trace i. The process P1 is a failure refinement of P2, written P2 vF P1, if
F(P1) ⊆ F(P2). Furthermore, P1 is failure equivalent to P2, written P1 =F P2, if P1 vF P2 and
P2 vF P1. A more detailed definition of refusal sets and failures is given in Appendix A.

For a relation R ⊆ Σ × Σ and a process P , P [R] denotes P renamed by R. For every tuple
(σ1, σ2) ∈ R, P [R] engages in σ2 if P engages in σ1.

2.2 BPMN
We introduce a subset of the Business Process Modeling Notation (BPMN) [18] that we later extend
to model authorization constraints for workflows. BPMN defines graphical elements for visually
modeling workflows at a high level of abstraction. BPMN calls a workflow model a process. In order
to differentiate BPMN processes and CSP processes, we use the term process for CSP processes
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Figure 3: Extract of BPMN meta-model in white and our extensions in gray

and write explicitly BPMN process to refer to the concept of a process in BPMN. In this article
we consider BPMN processes that are composed of the six kinds of modeling elements shown in
Figure 2.

The BPMN standard [18] describes its modeling elements and their relationships in a meta-model
using UML class diagrams [19]. Figure 3 shows an extract of this meta-model with the classes rele-
vant to our BPMN extension. Italic class names denote abstract classes. We only explain the classes
depicted in white for now, and return to the gray classes in Section 4.2 when we describe our BPMN
extension. Based on the meta-model, the BPMN standard also specifies an XML [39] serialization
for BPMN processes, which provides software vendors with a tool-independent interchange format
for BPMN models. In order not to dive too deeply into XML details, we describe our BPMN exten-
sion only in terms of the meta-model. Its mapping to XML Schema [38] is straightforward. In the
following, we introduce the modeling elements shown in Figure 2 and reference the corresponding
meta-model classes given in Figure 3 in sans-serif font, e.g. Event.

BPMN calls a unit of work an activity (Activity). We consider two kinds of activities in this arti-
cle: tasks (Task) and sub-processes (SubProcess). Tasks are visualized by rectangles with rounded
corners, labelled with the name of the task. A small icon in the upper left corner may specify the
task’s type. For example, an icon depicting a script visualizes tasks that model the execution of
some code. In this article, we consider mostly tasks that are executed by humans, called user tasks
(UserTask), visualized by an icon depicting a person. Sub-processes are visualized by rectangles
with rounded corners, a small boxed “+”-symbol at the bottom, and which are labelled by the name
of the sub-process. A sub-process models a BPMN process that constitutes part of the parent BPMN
process. The refinement of a BPMN process into sub-processes is a powerful means to model work-
flows at different levels of abstraction.

An event (Event) models the occurrence of a condition or an interaction with the environment.
Events are circle-shaped. Their exterior boundary indicates whether their occurrence triggers a work-
flow instantiation, called a start event, whether they occur during the workflow’s execution, called an
intermediate event, or whether their occurrence terminates a workflow instance, called an end event.
Furthermore, an event’s interior may contain an icon, which determines the event’s type. Examples
are the arrival of a message or the expiration of a deadline, illustrated by an envelope and a clock,
respectively.

Flows describe the causal and temporal dependencies between modeling elements. A sequence
flow, illustrated by a solid line with an arrow, defines the order in which tasks are executed and
events occur. Message-based communication is modeled by message flows, visualized by a dashed
line with a circle at the sender’s end and an arrow at the recipient’s end. Sequence flows and message
flows together determine a workflow’s control-flow.
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Merging and branching of the control-flow is modeled by gateways. A gateway has n ≥ 1
incoming and m ≥ 1 outgoing sequence flows. Exclusive gateways are depicted by an empty
(or with an x labeled) diamond. Whenever the control-flow reaches an exclusive gateway on an
incoming sequence flow, it passes on the control-flow immediately to exactly one of the m outgoing
sequence flows, based on the evaluation of the condition c associated with the gateway. Parallel
gateways are illustrated by a diamond labeled with the symbol “+”. They synchronize the control-
flow on the n incoming sequence flows and spawn the concurrent execution on the m outgoing
sequence flows.

We distinguish two containers for partitioning BPMN processes. Pools are typically used to
model organizational entities participating in a workflow’s execution or they are simply used to
demarcate a model’s main BPMN process. Pools may be further subdivided into lanes, called swim-
lanes in other workflow modeling languages. Control-flow within pools is typically modeled by
sequence flows and control-flow across pools may only be defined in terms of message flows. A
BPMN process’s environment, in particular the source of input messages and the recipient of its
return values, is often modeled by an empty pool [31].

Modeling elements for annotations are called artifacts (Artifact). Sets of tasks are defined by
placing them in a dot-dashed box, called a group (Group). Textual annotations as visualized by a
dotted line, called an association (Association), and a half-open box containing text.

3 Authorization-constrained Workflows
We start with an informal introduction of the life cycle of authorization-constrained workflows.
Afterwards we use CSP to formalize the underlying concepts. We shall see that CSP’s notion of
renaming facilitates a mapping between the control-flow and the task-execution level. Furthermore,
its notion of parallel, synchronized process execution enables a concise description of workflow
systems that are composed from multiple sub-processes, each modeling a separate system aspect.

We call an atomic unit of work a task. A workflow models the causal and temporal dependencies
between a set of tasks, which together implement a business objective. An alternative name for
workflow is business process. Although we prefer the term workflow as it avoids further overloading
the term process.

We distinguish two phases in a workflow’s life cycle. At design time, a business expert designs a
workflow using a modeling language such as BPMN and afterwards deploys it to a workflow engine.
At run time, the workflow engine executes the workflow. We call a workflow execution a workflow
instance. A workflow engine may execute multiple instances of the same workflow in parallel.
According to the workflow’s control-flow and depending on the evaluation of gateway conditions, a
workflow engine schedules and instantiates tasks, called task instances, during workflow execution.
Standard workflow modeling languages, such as BPMN, allow the specification of loops, parallel,
and conditional execution. Therefore, there may be zero or more instances of the same task in one
workflow instance. Depending on a task’s type, its instances are executed by humans, by a software
program, through the invocation of a web service, etc. In this article, we consider only tasks whose
instances are executed by humans, either directly, e.g. by completing a form, or indirectly, e.g. by
executing a program on their behalf. An authorization (constraint) specifies whether or not a user is
allowed to execute a task instance.

3.1 Workflows
There are numerous translations from BPMN and similar workflow modeling languages to process
calculi such as CSP [37] or the π-calculus [22]. The technical differences are unimportant for our
work here and we use a straightforward translation to CSP, illustrated in our running example.

For the reminder of this article, assume a set of tasks T and a set of points O. Points are used to
model BPMN events. We formalize workflows at the control-flow level using CSP as follows.
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Figure 4: The collateral evaluation workflow modelled in BPMN

Definition 1 (Workflow process) A workflow process is a processW such that T(W ) ⊆ (T ∪O)∗X.

In other words, a workflow process may engage in tasks, points, and finally the event X. We give
below an example workflow, visualized in BPMN, and a corresponding workflow process. This
workflow serves as a running example for the remainder of this article.

Example 1 (Collateral Evaluation Workflow) The financial industry distinguishes between secured
and unsecured loans. In a secured loan, the borrower pledges some asset, such as a house or a car, as
collateral for his debt. If the borrower defaults, the creditor takes possession of the asset to mitigate
his financial loss.

Figure 4 shows a BPMN model of the collateral evaluation workflow, which we adopted from
IBM’s Information FrameWork [14]. Ignore the gray BPMN elements for the moment. This work-
flow is executed by a financial institution to evaluate, accept, and prepare the safeguarding of the
collateral that a borrower pledges in return for a secured loan.

For this example, let T = {t1, . . . , t5} where t1 refers to Compute Market Value, t2 to
Control Computation, etc., and O = {o1, o2, o3}, as shown in Figure 4. The workflow process W
models the collateral evaluation workflow in CSP.

W = (P1 ||| P2) ; (t5 → ((o2 →W ) u SKIP ))
P1 = t1 → t2 → ((o1 → P1) u SKIP )
P2 = o3 → t3 → ((t4 → SKIP ) u SKIP )

We do not model data-flow in our example and therefore overapproximate gateway decisions with
CSP’s internal choice operator u . �

Next, we model the execution of workflows at the task-execution level. For the reminder of this
article, let U be the set of users. For a task t and a user u, the CSP event t.u models the execution
of an instance of t by u. We call t.u a (task) execution event. Let X = {t.u | t ∈ T , u ∈ U} be
the set of all execution events. The auxiliary relation π = {(t.u, t) | t ∈ T , u ∈ U} maps every
execution event t.u to the task t. The process W [π−1] then models the workflow process W at the
task-execution level. It engages in the execution event t.u, for any u ∈ U , if the workflow process
W engages in t. The application of π−1, the inverse of π, to W has no effect on points andX; i.e. if
W engages in a point or X, then so does W [π−1]. We abuse the renaming notation to map a trace
i ∈ T(W [π−1]) to a trace i[π] ∈ T(W ).

Definition 2 (Workflow trace) A workflow trace is a trace i ∈ (X ∪O)∗X.
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A workflow trace models a workflow instance. In particular, if i ∈ T(W [π−1]), then i mod-
els an instance of the workflow modeled by W . We say the workflow instance modeled by i has
successfully terminated if X ∈ i.

Example 2 (Workflow traces) Let U = {Alice, Bob, Claire, Dave} for the collateral evaluation
workflow. Consider the following workflow traces:

i1 = 〈t1.Alice, t2.Bob, t4.Claire〉
i2 = 〈t1.Alice, o3, t3.Bob, t2.Alice, o1, t1.Bob, t2.Claire, t5.Claire, X〉
i3 = 〈t1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Alice, t4.Dave, t2.Claire, t5.Claire, X〉
i4 = 〈t1.Alice, o3, t3.Bob, t2.Bob, o1, t1.Bob, t4.Bob, t2.Claire, t5.Dave, X〉

The traces i2, i3, and i4 model successfully terminated workflow instances of the collateral evalu-
ation workflow, where the inner loop was executed twice, i.e. i2, i3, i4 ∈ T(W [π−1]). We discuss
the differences between these traces in later examples. The trace i1, however, neither models a suc-
cessfully terminated workflow instance nor is it a workflow trace of W [π−1] because t4 can only be
executed after t3 has been executed. �

Example 2 supports our previous observation that successfully terminated workflow instances
may contain multiple instances of a task. For example, t2 and t4 are part of the collateral evaluation
workflow and i2 contains two execution events involving t2 but none involving t4.

3.2 Authorization constraint classes and enforcement approach
We model in this article three classes of authorization constraints:

• Basic access control: This family encompasses all authorizations that restrict the execution
of task instances to users with the necessary qualifications and responsibilities in a history-
independent and workflow-independent manner. Examples are access control lists (ACLs) [28]
and Role-based Access Control (RBAC) [11] configurations without sessions. What is often
called a permission in the context of basic access control corresponds to the right to execute a
task in this article.

• Separation of Duties (SoD): Authorizations to execute task instances are restricted to ensure
that instances, whose execution results in a conflict of interest, are executed by different users.
For example, consider two tasks t1 and t2 and suppose that their execution by the same user
results in a conflict of interest. An SoD constraint is then used to prevent such a conflict of
interest by not authorizing a user from executing an instance of t2 after executing an instance
of t1 and vice versa.

• Binding of Duties (BoD): Authorizations to execute task instances are restricted based on
who has executed previous task instances to limit the exposure of sensitive data and to reuse
knowledge that users have gained from previous task executions. For example, consider two
tasks t1 and t2, both revealing the same sensitive information. A BoD constraint forces a user
to execute all instance of t2 (and further instances of t1) after having executed an instance of
t1 and vice versa.

As defined here, SoD and BoD constraints are history-dependent. We will also model them in a
workflow-specific manner. Note that related work on SoD and BoD often uses the term dynamic for
what we call history-dependent and static for history-independent. We implicitly subsume history-
independent SoD and BoD by basic access control. A detailed comparison of our terminology and
related work follows in Section 6.

We formalize authorized executions of task instances in terms of processes. More specifically,
for each authorization constraint c, we define a process Ac and say that a workflow trace i satisfies c
if i ∈ T(Ac). Given a workflow process W , we then describe the enforcement of c in W by the
parallel, fully-synchronized execution of Ac and W , formally W ‖ Ac.
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3.3 Basic access control
In the interest of ecumenical neutrality and supporting numerous access control languages, we model
basic access control abstractly as a relation UT ⊆ U × T , called the user-task assignment. Given a
user-task assignment UT , a user u is authorized to execute instances of a task t if (u, t) ∈ UT .

Figure 5: Role-based static authorizations

Definition 3 (Basic Authorization Process) For a user-task assignment UT , a basic authorization
process for UT is the process

AUT = (t.u) : {t′.u′ | (u′, t′) ∈ UT} → AUT

� o : O → AUT

� SKIP .

The process AUT engages in every execution event t.u if the user u is authorized to execute the
task t with respect to UT . Furthermore, AUT engages in every point o and can terminate at any time.
The history-independent nature of UT is reflected by the fact that AUT behaves again like AUT after
engaging in every event (except the final event X).

As mentioned in Section 3.2, we assume that basic access control policies are workflow-independent.
A user-task assignment may be specified using a more refined access control model. For example,
Figure 5 shows a role-based model [11] that specifies a basic access control policy for Alice, Bob,
Claire, and Dave with respect to the tasks of the collateral evaluation workflow.

4 Scoping constraints with release points
We now turn to history-dependent authorizations. To separate or bind duties between tasks, we
must keep track of which users executed previous instances of these tasks in order to determine
who is authorized to execute future instances. Thus, for history-dependent authorizations we build
up associations between task instances and users during workflow execution. Future authorization
decisions in turn depend on these associations. In this section we introduce the concept of releasing,
which removes such associations and thereby scopes history-dependent authorizations to subsets of
task instances within workflow instances.
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4.1 Formalization
4.1.1 SoD Constraints

Let T1 and T2 be two non-empty and disjoint sets of tasks , i.e. |T1| ≥ 1, |T2| ≥ 1, and T1∩T2 = ∅,
and let O be a set of points. An SoD constraint is a triple (T1, T2, O).

Definition 4 (SoD Process) For an SoD constraint s = (T1, T2, O), the SoD process for s is the
process As(U ,U) where

As(UT1
, UT2

) = t : T1.u : UT1
→ As(UT1

, UT2
\ {u})

� t : T2.u : UT2
→ As(UT1

\ {u}, UT2
)

� o : O → As(U ,U)

� t : T \ (T1 ∪ T2).u : U → As(UT1
, UT2

)

� o : O \O → As(UT1 , UT2)

� SKIP .

An SoD process As(UT1 , UT2) offers the (external) choice between six kinds of events. (1) For
a task t ∈ T1 and user u ∈ UT1 , As engages in the execution event t.u. Afterward, As associates
u with T1 by removing u from UT2

and thereby blocking u from executing future instances of tasks
in T2. (2) Symmetrically, As associates a user u ∈ UT2

with T2 and blocks u from executing future
instances of tasks in T1 after executing an instance of a task in T2. (3) By engaging in a point o ∈ O,
As releases all users from their associations with T1 and T2. We therefore call a point used in an
SoD (or BoD) constraint a release point. (4) As engages also in every execution event involving
tasks other than T1 and T2 and (5) points other than O without changing its behavior. (6) Finally, As
may behave like SKIP and terminate at any time.

We may use the following shorthand notation to describe SoD constraints and to avoid cluttering
graphical workflow models. Consider the SoD constraint (T1, T2, O). If T1, T2, or O are singleton
sets, we simply use the respective element and omit the set notation. For example, if T1 = {t1},
T2 = {t2}, and O = {o}, we write (t1, t2, o).

To visualize SoD constraints in BPMN, we introduce a new class of internal (BPMN) events,
called release events. This facilitates the description of releasing as part of a workflow’s control-
flow. The release event icon is a user who leaves a door, as shown in Figure 4 with o1, o2, and o3.
We use the dot-dashed BPMN notation for grouping tasks to specify sets of tasks. For example,
Figure 4 contains a group denoting the set of tasks {t1, t2, t3, t4}. An SoD constraint is graphically
described by linking two disjoint, non-empty sets of tasks and a set of release events with a dotted
line, joined by a node labeled with the symbol “ 6=”. This notation is an adaptation of BPMN’s
textual annotation of tasks. If one of the sets of tasks is a singleton set, we may omit the BPMN
grouping and directly link the respective task and the 6=-node. For example, Figure 4 contains the
SoD constraint s2 = ({t1, t2, t3, t4}, t5, o1).

The effect of an SoD constraint is only fully defined with respect to a workflow process. The
workflow process defines the order in which tasks are executed and release points are reached. We
illustrate the effect of different placements of a release point with an example.

Example 3 (Release Point Placement) Figure 6 shows a workflow with two tasks and three SoD
constraints, si = (t1, t2, oi) for i ∈ {1, 2, 3}. Successfully terminated instances of this workflow
correspond to workflow traces of the form

〈 o1, o2, o3, t1.u1,1, . . . , o3, t1.u1,n1
, t2.u1,n1+1,

o2, o3, t1.u2,1, . . . , o3, t1.u2,n2 , t2.u1,n2+1,

. . .

o2, o3, t1.um,1, . . . , o3, t1.um,nm , t2.um,nm+1,X〉
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Figure 6: Location matters: The placement of a release point within a workflow effects the semantics
of the respective SoD constraint

for nm,m ≥ 1. The only difference between s1, s2, and s3 is the position of the respective re-
lease point within the workflow. The SoD constraint s1 is satisfied if {u1,1, u1,2, . . . , u1,n1

, u2,1,
. . . , um,nm}∩{u1,n1+1, u2,n2+1, . . . , um,nm+1} = ∅. In other words, s1 is satisfied if no user who
executes instances of t1 executes instances of t2 and vice versa. Because o1 is reached only once
and before any constrained task is executed, effectively no releasing takes place. Reaching a release
point that is placed at the very start or end of a workflow has no effect and, hence, the constraint
separates duties over all instances of the respective tasks. This illustrates that our policies are more
expressive than existing SoD formalisms that do not distinguish between different instances of the
same task.

Let k ∈ {1, 2, . . . ,m}. The SoD constraint s2 is satisfied if uk,n1+1 6∈ {uk,1, uk,2, . . . , uk,n1}.
That is, for every execution of the workflow’s outer loop, s2 separates the duties between users who
execute instances of t1 and those who execute instances of t2. Finally, s3 is satisfied if uk,n1

6=
uk,n1+1. Thus, in every execution of the workflow’s outer loop, only the user who executes the
last instance of t1 must differ from the user who executes t2’s instance. It follows that a workflow
instance that satisfies s1 also satisfies s2 and s3. Moreover, an instance satisfying s2 also satisfies s3.

�

Because the semantics of an SoD constraint is only fully defined with respect to a workflow
process we classify these constraints as workflow-specific. This classification is further supported
by the fact that we visualize them as extensions to existing workflow models.

4.1.2 BoD Constraints

Assume we want to bind duties between a set of tasks T . At first, every user is authorized to execute
an instance of a task in T . Once a user has executed an instance of a task in T , no other user is
authorized to execute future instances of tasks in T anymore. Again we use release points to scope
BoD constraints to subsets of task instances.

Let T be a non-empty set of tasks, i.e. |T | ≥ 1, and let O be a set of points. A BoD constraint is
a tuple (T,O).

Definition 5 (BoD Process) For a BoD constraint b = (T,O), the BoD process for b is the process
Ab(U) where

Ab(U) = t : T.u : U → Ab({u})

� o : O → Ab(U)

� t : T \ T.u : U → Ab(U)

� o : O \O → Ab(U)

� SKIP .

The BoD process Ab(U) offers the external choice between five kinds of events. (1) It engages
in every execution event t.u for t ∈ T and u ∈ U . Initially U = U . Once a user u executes an
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instance of a task in T , U is updated to {u}. Only after engaging in one of the release points in O
are users other than u authorized to execute instances of tasks in T again. Thus, for t ∈ T , executing
t.u “binds” u to T until (2) an o ∈ O is reached and u is released. In particular, for |T | = 1 the
respective BoD constraint binds the duties of all instances of a single task. Similar to SoD processes,
Ab(U) engages (3) in every execution event involving tasks other than those in T , (4) points other
than the ones in O, and (5) may behave like SKIP and terminate at any time.

As with SoD constraints, we visualize BoD constraints in BPMN by linking a non-empty set of
tasks and a set of release events with a dotted line, joined by a node labeled with the symbol “=”. We
may also use the shorthand notation introduced for SoD constraints. For example, Figure 4 contains
the BoD constraint b = ({t3, t4}, o3). Similar to SoD processes, the placement of release points
with respect to a workflow process effects the semantics of a BoD constraint. For the same reasons
as with SoD constraints, we therefore classify BoD constraints as workflow-specific.

4.1.3 Composition

Let UT be a user-task assignment, S be a set of SoD constraints, and B be a set of BoD con-
straints. The triple (UT , S,B), called an authorization policy, combines workflow-independent and
history-independent authorizations in the form of UT and workflow-specific, history-dependent au-
thorizations in the form of S andB. We define the semantics of authorization policies by composing
the respective processes.

Definition 6 (Authorization Process) For an authorization policy φ = (UT , S,B), the authorization
process for φ is the process

Aφ = AUT ‖ ( ‖
s∈S

As) ‖ ( ‖
b∈B

Ab) .

Given a workflow trace i and an authorization policy φ = (UT , S,B), we say i satisfies φ if
i ∈ T(Aφ). By the trace semantics of CSP, i satisfies φ if and only if i satisfies UT , all SoD
constraints in S, and all BoD constraints in B. Given a workflow process W , we say φ is an
authorization policy for W if all tasks and points in φ appear in W . In the following example, we
provide an authorization policy for the collateral evaluation workflow.

Example 4 (Authorization Policy) Consider the authorization policy φ = (UT , S,B), where UT
is illustrated in Figure 5 and S = {s1, s2} and B = {b} are illustrated in Figure 4. Furthermore,
consider the traces i2, i3, and i4 of Example 2, which model successfully terminated instances of
the collateral evaluation workflow. Trace i2 does not satisfy φ because Alice executed instances of
t1 and t2 before reaching o1, thereby violating s1. Trace i3 does not satisfy φ for several reasons:
s2 is violated because Claire executed an instance of t2 and an instance of t5, b is violated because
the instances of t3 and t4 are not executed by the same user, and Claire is not authorized to execute
instances of t5 with respect to UT . However, i4 satisfies φ. �

4.2 BPMN extension and serialization
We return to BPMN’s meta-model introduced in Section 2.2. Figure 3 shows BPMN’s meta-model
classes in white and the new classes that we defined for our extension in gray. Furthermore, Figure 7
shows the concrete notation used to visualize the respective new modeling elements. New modeling
elements are shown in black. How they are connected to existing or other new elements is illustrated
in gray.

Let s = (T1, T2, O) be an SoD constraint. Using our BPMN extension, s is modeled by a
combination of new and existing modeling elements. The class SoDConstraintNode connects all
relevant elements. Each set of tasks is either modeled by an instance of Activity or they are iden-
tified by an instance of Group. The respective classes are connected to the SoDConstraintNode by
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Figure 7: BPMN extension for modeling authorization constraints

instances of ConstrainedTaskAssociation. Each release point in O is modeled by an instance of class
ReleaseEvent and all of them are connected to the SoDConstraintNode by instances of ReleaseAsso-
ciation. A BoD constraint b = (T,O) is modeled analogously. Instead of SoDConstraintNode, the
central class is BoDConstraintNode and instead of two sets of tasks only one set of tasks is connected
to it.

The BPMN standard provides an extension mechanism [18]. Using the extended meta-model
as a blueprint, we specified an XML schema for our BPMN extension. As Figure 3 shows, new
modeling elements can be easily defined by connecting to, and inheriting from, existing elements.
Correspondingly, our new schema file is only a few dozen lines long. We modeled the collateral
evaluation workflow in BPMN including our extensions and serialized the model in XML. After-
ward, we successfully validated the XML file against the official BPMN XML schema and the XML
schema specifying our extension.

4.3 Tool support
We implemented tool support for our BPMN extension by extending the modeling platform Oryx [8].
Our objective was to gain modeling experience with our BPMN extension, demonstrate its expres-
sivity in a hands-on fashion, and validate its ease of use.

Oryx is a good choice for our purpose. First, Oryx is designed to be extensible. As a result, our
implementation required little programming effort. Second, Oryx’s architecture and code is well-
documented and mature. In particular, it is the basis for commercial tools such as Signavio’s Process
Editor [2] and the Activiti BPM Platform [1]. Third, Oryx’s source code is freely available under
the MIT license [20], which gives us full access to all implementation details and does not impede a
potential commercial exploitation. Finally, Oryx’s web-based architecture is ideal for demonstration
purposes because BPMN processes are modeled directly in a web browser and no extra software
need be installed.

Oryx adopts a standard three-tier architecture, with a web browser acting as the presentation tier,
a J2EE server as the application tier, and a database as the data tier. The implementation provides
extension mechanisms in the presentation and application tier. We report on the performance of
an extension we made to the application layer in Section 5.4.3. In the following we describe our
extension of the presentation layer to support our BPMN extension.

Oryx groups modeling elements and defines their visualization in so-called stencil sets [21]. A
stencil set may extend existing stencil sets, thereby extending an existing modeling language. We
defined a stencil set that specifies the modeling elements of our BPMN extension, as introduced
in Section 4.2, extending Oryx’s existing BPMN stencil sets. Figure 8 shows the user interface of
Oryx’s BPMN editor. Each palette on the left corresponds to a stencil set; BPMN’s standard stencil
sets are located on the top and our additional stencil set is at the bottom. A BPMN model of the
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Figure 8: Screenshot of Oryx BPMN editor including authorization extension

collateral evaluation workflow is shown on the right, combining modeling elements from various
stencil sets including our new one.

5 Aligning security and business objectives
In this section, we investigate the question of how to enforce an authorization policy on a workflow
without obstructing the workflow’s underlying business objective. To this end, we introduce the
notion of an obstruction, formalizing the misalignment of security and business objectives. We
proceed by formulating the existence of an obstruction-free authorization enforcement as a decision
problem and analyzing its complexity.

5.1 Obstructions
We link the control-flow and task-execution level by the notion of an obstruction.

Definition 7 (Obstruction) Let W be a workflow process, φ an authorization policy, and i ∈
T(W [π−1]) a workflow trace of W . We say that i is obstructed if there exists a task t such that
i[π]̂ t ∈ T(W ) but there does not exist a user u such that î 〈t.u〉 satisfies φ.

An obstruction describes a state of a workflow instance where the enforcement of the authoriza-
tion policy conflicts with the business objectives. At the control-flow level, the business objectives
can be achieved by executing a task t but at the task-execution level there is no user who is authorized
to execute t without violating the authorization policy φ.

Example 5 (Obstructed Workflow Trace) Consider the workflow process W and the authorization
policy φ introduced in Examples 1 and 4, respectively. Furthermore, consider the workflow trace i =
〈t1.Alice, t2.Claire, t3.Dave, t4.Dave〉, modeling an instance of the collateral evaluation workflow,
i.e. i ∈ T(W [π−1]). After executing the workflow instance corresponding to i, task t5 can be
executed according to the collateral evaluation workflow, i.e. i[π]̂ t5 ∈ T(W ). However, the only
users who are authorized to execute t5 with respect to UT are Alice and Dave, but neither î 〈t5.Alice〉
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nor î 〈t5.Dave〉 satisfy φ. Hence, i is obstructed. In this example, the workflow instance cannot even
successfully terminate without violating φ. �

5.2 Enforcement processes
We describe the enforcement of an authorization policy on a workflow process W in terms of a
process E that executes in parallel with W [π−1], formally W [π−1] ‖ E.

Definition 8 (Enforcement Process) Let a workflow process W and an authorization policy φ for
W be given. An enforcement process for φ on W , written Eφ,W , is a process that satisfies the
conditions

(1) Aφ vT Eφ,W and

(2) (W [π−1] ‖ Eφ,W )[π] =F W .

Unlike the authorization process, the enforcement process not only implements the authorization
policy φ but also takesW into account. Condition (1) states thatEφ,W is at least as restrictive asAφ.
The failure equivalence used in Condition (2) states that at the control-flow level the processes W is
indistinguishable from the process W constrained by Eφ,W .

Suppose Eφ,W is an enforcement process for φ on W . By CSP’s traces model, if i ∈
T(W [π−1] ‖ Eφ,W ) then i ∈ T(W [π−1]) and i ∈ T(Eφ,W ). For a task t, it follows by the failure
equivalence of (W [π−1] ‖ Eφ,W )[π] and W , i.e. Condition (2), that if i[π]̂ t ∈ T(W ) then there
exists a user u such that î 〈t.u〉 ∈ T(Eφ,W ). Therefore, î 〈t.u〉 satisfies φ because of Condition (1).
Hence, i is not obstructed and Eφ,W is an obstruction-free enforcement of φ on W .

We now give an example of an enforcement process for the authorization-constrained collateral
evaluation workflow.

Example 6 (Enforcement Process) ConsiderW and φ from the previous examples and the following
processes.

E = (E1 ||| E2) ; (t5.Dave→ ((o2 → E) u SKIP ))
E1 = t1.Alice→ t2.Claire→ ((o1 → E1) u SKIP )
E2 = o3 → t3.Bob→ ((t4.Bob→ SKIP ) u SKIP )

All traces of E satisfy φ and therefore Condition (1) of Definition 8 holds. By the laws of CSP
and the structure of E, (W [π−1] ‖ E)[π] = W [π−1][π] ‖ E[π] = W ‖ W = W and therefore
Condition (2) holds too. Thus, E is an enforcement process for φ on W . �

For illustration purposes, this example is rather simple in that all instances of the same task must
be executed by the same user. For example, Alice is the only user who executes instances of t1.
Enforcement processes can, of course, be much more complex and also authorize multiple users to
execute instances of the same task.

According to Definition 8, an authorization policy is only enforceable if a workflow remains
unchanged at the control-flow level. This is a design decision and other options are possible. For
example, one could choose to give authorizations precedence over an obstruction-free enforcement.
However, even if the policy must be enforced and obstructed workflow instances are tolerated, our
approach is helpful because it reveals tasks that may not be executed. The workflow can conse-
quently be simplified without reducing the set of possible workflow instances.

5.3 The enforcement process existence problem
We now formulate the existence of an enforcement process as a decision problem and present com-
plexity bounds.
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Definition 9 (The Enforcement Process Existence Problem EPE)

Input: A workflow process W and an authorization policy φ.

Output: YES if there exists an enforcement process for φ on W or NO otherwise.

We first show that EPE is NP-hard by reducing the NP-hard graph-coloring problem k-CO-
LORING, summarized in Appendix B, to EPE.

Lemma 1 EPE is NP-hard.

Proof. Given a k-COLORING instance consisting of a graph G = (V,E) and an integer k, we
describe a polynomial reduction to EPE. We construct a workflow process W and an authorization
policy φ = (UT , S,B) and show that there exists a k-coloring for G if and only if there exists an
enforcement process for φ on W . Let T = V , for V = {v1, v2, . . . , vn}, and U = {1, 2, . . . , k}.
Now consider W = v1 → v2 → . . . → vn → SKIP , UT = U × T , B = ∅, and for every edge
(vl, vm) ∈ E we construct an SoD constraint (vl, vm,∅). Figure 9 illustrates this construction for a
graph with n = 5 and k = 4.

Figure 9: Illustration of polynomial reduction from k-COLORING to EPE

Let h = 〈v1, v2, . . . , vn,X〉. Note that by the construction of W , h ∈ T(W ). If an algo-
rithm for EPE returns YES, then an enforcement process Eφ,W exists by Definition 9 and h ∈
T((W [π−1] ‖ Eφ,W )[π]) by Definition 8. It follows that there exists a workflow trace i =
〈v1.u1, v2.u2, . . . , vn.un,X〉 ∈ T(W [π−1] ‖ Eφ,W ). By our construction, uj ∈ {1, . . . , k}, for
j ∈ {1, . . . , n}. Therefore, every task (i.e. node) is executed exactly once and thus associated with
one of k users (i.e. colors). By Definition 8, i ∈ T(Aφ) and i satisfies every constraint in φ. There-
fore, for every SoD constraint (vl, vm,∅) in S, the user ul who executes vl is different from the user
um who executes vm. Hence, i describes a k-coloring for G.

Conversely, let col : V → {1, . . . , k} be a k-coloring for G and consider the process P =
v1.col(v1) → v2.col(v2) → . . . → vn.col(vn) → SKIP . Let i = 〈v1.col(v1), v2.col(v2), . . . ,
vn.col(vn),X〉. By our construction and because col is a k coloring of G, i ∈ T(As) for every
s ∈ S. Furthermore, by our definition of UT , i ∈ T(AUT ). It follows by Definition 6 and B = ∅
that i ∈ T(Aφ). Because every trace in T(P ) is a prefix of i, Aφ vT P . Furthermore, P [π] =F W
and therefore (W [π−1] ‖ P )[π] =F W . Hence, P is an enforcement process for φ on W by
Definition 8.

Because this reduction is in polynomial time, it follows that EPE is NP-hard. �

We do not know whether EPE is in NP. However, it is decidable when U and W are finite.

Theorem 1 EPE is decidable if U and W are finite.
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We sketch a proof here and give full details in Appendix C.

Proof Sketch. If U and W are finite, it follows by Definitions 3–5 and the operational semantics of
CSP that Aφ is finite too. If there is an enforcement process Eφ,W , it must satisfy the two conditions
of Definition 8. Because Aφ is finite, for every process C, such that Aφ vT C, there is a finite
labelled transition system that corresponds to C. We can therefore construct all processes C that are
candidates to be Eφ,W with respect to Condition (1). Let C be one of them. Because W and U are
finite, so is W [π−1]. Furthermore, (W [π−1] ‖ C)[π] is finite because π and C are finite. Because
failure-refinement is decidable for finite processes [24], we can check if C satisfies Condition (2),
i.e. if (W [π−1] ‖ C)[π] =F W . If C satisfies Condition (2), then C is an enforcement process for φ
on W . If none of the finitely many candidate processes C satisfies Condition (2), then there exists
no enforcement process for φ on W . �

The runtime complexity of solving EPE as sketched above is as follows. For an SoD constraint s,
consider the SoD processAs. The number of states of a transition system that corresponds toAs is in
O(2|U|) becauseAs is parametrized by two subsets of U and there is a state for every possible subset.
The number of states of a transition system corresponding to Ab, for a BoD constraint b, is linear in
the size of U . The number of states of a transition system corresponding to AUT , for an user-task
assignment UT , is constant. Let φ = (UT , S,B). By Definition 6 and CSP’s operational semantics
for the parallel, synchronized composition of two processes (see Definition 12 in Appendix A), it
follows that the number of states of a transition system corresponding to Aφ is in O(|U||B|2|S||U|).
The set of input symbols of a transition system corresponding to Aφ is (X ∪ O)X. Therefore, the
number of transitions is in O((|O|+ |T ||U|)|U|2|B|22|S||U|).

The above decision procedure checks for each transition system that has a subset of Aφ’s tran-
sitions whether it satisfies Condition (2) of Definition 8. This requires deciding failure equivalence
which is PSPACE-complete [24]. Thus, this approach has a runtime complexity that is double ex-
ponential in the number of users and constraints. Hence, it is not applicable to workflows with large
sets of users. We therefore propose approximation algorithms for EPE in the following section.

5.4 Approximations
We now present an approximation algorithm EPEA for EPE. EPEA is an approximation in that
it may return NO even when an enforcement process for the given input exists. However, EPEA
makes no approximation error in the opposite case: if there does not exist an enforcement process
for φ on W , then EPEA’s output is always NO. EPEA has an exponential runtime complexity. We
show in a second step how to change EPEA to approximate EPE in polynomial time using bounds
from graph-coloring.

5.4.1 Exponential approximation

EPEA, defined in Algorithm 1, takes an instance of EPE as input and returns NO or a relation that
can be transformed to an enforcement process for the given EPE instance. In detail, EPEA is de-
fined as the composition of CGRAPH and LCOL. CGRAPH, defined in Algorithm 2, transforms the
tasks of a workflow process W , i.e. T = {t ∈ T | ∃i ∈ T(W ), t ∈ i}, and an authorization policy
φ = (UT , S,B) to an instance of the LISTCOLORING problem. LISTCOLORING is a general-
ization of the well-known k-COLORING problem. These problems and graph-coloring terminology
are reviewed in Appendix B. CGRAPH returns either V , E, and L, where (V,E) is a graph and
L : V → 2U is a list-coloring function for (V,E), or NO. The vertices in V are sets of tasks of W .
Every task of W is contained in one vertex. The BoD constraints B define which sets of tasks form
vertices, UT defines L, and the edges correspond to the SoD constraints in S.

CGRAPH returns NO if W contains two tasks t1 and t2 whose execution is constrained by an
SoD constraint in S and if there is a subset of BoD constraints in B that bind the duties between t1
and t2.
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Algorithm 1: EPEA(T, φ)

Input: T and φ = (UT, S,B)
Output: returns a relation R ⊆ π−1 or NO

1 if T = ∅ then
2 return ∅
3 else
4 colL ← LCOL(CGRAPH(T, φ))
5 if CGRAPH or LCOL return NO then
6 return NO

7 else
8 return {(t, t.u) | (T 7→ u) ∈ colL, t ∈ T}

Example 7 (Graph Returned by CGRAPH) Figure 10 depicts the graph and the list coloring func-
tion L returned by CGRAPH for the tasks of the collateral evaluation workflow and our example
authorization policy φ. �

Figure 10: Constraint graph of the collateral evaluation workflow

LCOL is a standard algorithm for solving LISTCOLORING. In Appendix B, we described LCOL
and prove its correctness and completeness. EPEA first transforms its input to a LISTCOLORING
instance using CGRAPH. Afterwards, it solves the instance using LCOL. Finally, it transforms the
coloring returned by LCOL to a relation between tasks and execution events and returns this relation.
If CGRAPH fails to build a graph or LCOL does not find a coloring, then EPEA returns NO.

Lemma 2 Let W be a workflow process, T = {t ∈ T | ∃i ∈ T(W ), t ∈ i}, and φ an authorization
policy. If EPEA(T, φ) returns a relation R, then W [R] is an enforcement process for φ on W .

Proof. Assume a workflow processW , let T = {t ∈ T | ∃i ∈ T(W ), t ∈ i}, and φ = (UT , S,B) be
an authorization policy. Assume EPEA(T, φ) returns a relation R. We refer to a line i of CGRAPH
as CGi and to line j of EPEA as EAj.

If T = ∅, thenW does not engage in any task andR = ∅ by EA2. Because φ is an authorization
policy for W and W contains no tasks, UT = ∅, S = ∅, and B = ∅. It follows that Aφ = AUT .
Therefore, Aφ engages in every point and X, by Definition 3. It follows that AUT vT W , i.e.
Condition (1) of Definition 8 holds. By the trace semantics of CSP and because W does not engage
in tasks, (W [π−1] ‖ W [∅])[π] =F (W ‖ W )[π] =F W [π] =F W , i.e. Condition (2) of Definition 8
holds.

Assume T 6= ∅. Because EPEA returns a relation and T 6= ∅, CGRAPH(T, φ) returns a graph
(V,E) and a function L by EA1, EA4, and EA5. Furthermore, LCOL(V,E, L) returns a coloring
colL by EA4 and EA5. Because T 6= ∅ and by CG2, CG3, and CG10, V ≥ 1. It follows from
Lemma 4 in Appendix 4 that colL is an L-coloring for (V,E). Let t ∈ T . By CG2, CG3, and CG10,
there is exactly one vertex v ∈ V such that t ∈ v. Therefore, there is exactly one tuple (t, t.u) ∈ R
by EA8, for a user u.
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Algorithm 2: CGRAPH(T, φ)

Input: T and φ = (UT, S,B)
Output: returns a graph (V,E) and a list coloring function L : V → 2U or NO

1 V,E, L← ∅
2 foreach t ∈ T do
3 V ← V ∪ {{t}}
4 L← L ∪ {({t} 7→ {u | (u, t) ∈ UT})}
5 foreach (T1, O) ∈ B do
6 pick a t1 ∈ T1

7 let v1 ∈ V s.t. t1 ∈ v1

8 foreach t2 ∈ T1 \ {t} do
9 let v2 ∈ V s.t. t2 ∈ v2

10 V ← (V \ {v1, v2}) ∪ {v1 ∪ v2}
11 L← (L \ {(v1 7→ L(v1)), (v2 7→ L(v2))}) ∪ {(v1 ∪ v2 7→ L(v1) ∩ L(v2))}

12 foreach (T1, T2, O) ∈ S do
13 foreach t1 ∈ T1 do
14 let v1 ∈ V s.t. t1 ∈ v1

15 foreach t2 ∈ T2 do
16 let v2 ∈ V s.t. t2 ∈ v2

17 if v1 6= v2 then
18 E ← E ∪ {(v1, v2)}
19 else
20 return NO

21 return V , E, L

Let i ∈ T(W [R]). In the following, we show for every constraint c ∈ ({UT} ∪ S ∪ B) that
i ˆ〈t.u〉 ∈ T(Ac). By Definitions 3–5, also i ˆ〈o〉 ∈ T(Ac), for o ∈ O, and i ˆ〈X〉 ∈ T(Ac). It
follows that Aφ vT W [R], i.e. Condition (1) of Definition 8 holds.

Case UT : Let v ∈ V such that t ∈ v. By EA8, u = colL(v). By the definition of L-coloring,
colL(v) ∈ L(v). By CG4 and CG11, L(v) ⊆ {u′ | (u′, t) ∈ UT}. Hence, (u, t) ∈ UT and
iˆ〈t.u〉 ∈ T(AUT ) by Definition 3.

Case s ∈ S: Let s = (T1, T2, O). If t 6∈ (T1 ∪ T2) then i ˆ〈t.u〉 ∈ T(As) by Definition 4.
Consider the case t ∈ (T1 ∪ T2). Because (T1 ∩ T2) = ∅ by the definition of SoD constraints,
assume without loss of generality that t ∈ T1. Let t2 ∈ T2 and (t2, t2.u2) ∈ R, for a user u2.
Furthermore, let v1, v2 ∈ V such that t ∈ v1 and t2 ∈ v2. By CG12–CG18, (v1, v2) ∈ E. By the
definition of L-coloring, colL(v1) 6= colL(v2) and therefore u 6= u2 by EA8. Because there is only
one execution event in R for every task, t2.u 6∈ i and therefore iˆ〈t.u〉 ∈ T(As) by Definition 4.

Case b ∈ B: Let b = (T1, O). If t 6∈ T1 then i 〈̂t.u〉 ∈ T(Ab) by Definition 5. Consider the case
t ∈ T1. Let t2 ∈ T1 and (t2, t2.u2) ∈ R for a user u2. Let v ∈ V such that t ∈ v. By CG5–CG11
it holds that t2 ∈ v. By EA8 it follows that u = u2. Therefore, no matter whether t2.u2 ∈ i or
t2.u2 6∈ i, iˆ〈t.u〉 ∈ T(Ab) by Definition 5.

It remains to be shown that W [R] satisfies Condition (2) of Definition 8. By CSP’s traces model
and because R ⊆ π−1, (W [π−1] ‖W [R])[π] =F W [R][π] =F W . �

5.4.2 Polynomial approximation

By applying graph-coloring bounds to the graph returned by CGRAPH, we can approximate EPE in
polynomial time.



Basin etal. / Obstruction-free authorization enforcement 20

Corollary 1 For a workflow process W and an authorization policy φ, let T = {t ∈ T | ∃i ∈
T(W ), t ∈ i} and (V,E, L) = CGRAPH(T, φ). If

max
v∈V
|{v′ | (v, v′) ∈ E}| < min

v∈V
|L(v)|

then there exists an enforcement process for φ on W .

Proof. Let W be a workflow process, φ an authorization policy, T = {t ∈ T | ∃i ∈ T(W ), t ∈ i},
and (V,E,L) = CGRAPH(T, φ). Then maxv∈V |{v′ | (v, v′) ∈ E}| is the maximal degree ∆(V,E)
of (V,E). Furthermore, let k = minv∈V |L(v)|, i.e. L is a k-color-list function for (V,E). Assume
that ∆(V,E) < k. By Lemma 3 in Appendix B it follows that χl(V,E) ≤ k. Therefore, there exists
an L-coloring for (V,E). Hence, EPEA(T, φ) returns a relation R and, by Lemma 2, W [R] is an
enforcement process for φ on W . �

Informally, Corollary 1 tells us the following. If the maximal number of SoD constraints under
which a task is constrained is less than the minimal number of users who are authorized to execute a
task with respect to the user-task assignment and the BoD constraints, then there exists an enforce-
ment process. Simplified, there exists an enforcement process if the set of users is large and their
static authorizations are evenly distributed.

Assume a workflow processW and an authorization policy φ. The algorithm CGRAPH computes
(V,E, L) in polynomial time or returns NO. We can then check if the condition of Corollary 1 holds
for V , E, and L. If it holds, we only know that an enforcement process for φ on W exists but
Eφ,W is not constructed yet. However, by Lemma 3 and because the condition of Corollary 1 holds,
a greedy algorithm with polynomial runtime complexity finds an L-coloring for (V,E). We can
therefore replace the call to LCOL in EPEA by a call to the greedy algorithm. It follows that we can
approximate EPE in polynomial time.

5.4.3 Experimental results and evaluation

As presented in Section 4.3, how our extension of Oryx’s presentation tier enables us to graphically
model workflows including SoD and BoD constraints. Additionally, we extended Oryx by a window
for specifying user-task assignments. We now describe how we analyze EPE-instances, which
are specified using these extensions in Oryx’s presentation tier, with our EPEA implementation in
Oryx’s application tier.

For performance reasons, we do not use LCOL to solve LISTCOLORING-instances returned by
CGRAPH. Instead, we transform them into Boolean formulae with a variable for each vertex-color
combination and clauses encoding the coloring constraints imposed by edges and the requirement
that a color must be chosen for every vertex. Such a reduction is standard and we therefore omit a
correctness proof. We then use the SAT-solver sat4j [6] to compute satisfying assignments for these
formulae. Transforming assignments back into colorings for the initial LISTCOLORING-instances
is straightforward and if a formula is unsatisfiable then no coloring exists.

We decompose the total running time required for solving an EPE-instance into three parts. The
communication time is the time required to send the EPE-instance from Oryx’s presentation tier to
its application tier and finally to return the result back to the presentation tier. The transformation
time is the time it takes to transform the EPE-instance to a Boolean formula and the solving time is
the time it takes to compute a satisfying assignment for the formula with sat4j.

The communication time depends on various factors such as the network throughput, latency,
and the payload size. We run the presentation tier and the application tier on two different comput-
ers, which are connected by a standard enterprise network with an average latency of 1 millisecond.
Computing an enforcement process for our running example has on the average a communication
time of 100 milliseconds, a transformation time of 80 milliseconds, and a solving time of 15 millisec-
onds, summing up to a total running time of 200 milliseconds. We also tested our implementation
with random user-task assignments with up to 50 users and could observe a minor increase in the
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(a) EPE-instance that is not reducible
to LISTCOLORING

(b) Workflow equivalent to (a) but with
inverted control-flow

Figure 11: Limitations of abstractions made by EPEA

solving time while the communication and transformation time remained relatively stable. However,
with these numbers of users, the communication time still overshadows the solving time.

By means of examples, we now illustrate the limitations of our graph-based EPE-approximation.
These examples also illustrate the expressivity of enforcement processes and properties of the EPE
problem in general. Example 8 shows a case where EPEA returns NO even though there exists an
enforcement process for the given EPE-instance.

Example 8 (Release points matter) Consider the workflow shown in Figure 11 (a), which we
formalize by the workflow process Wa = t1 → ((o1 → t2 → SKIP ) u (o2 → t2 →
SKIP )). Furthermore, let b = ({t1, t2}, o1) and s = (t1, t2, o2) be the BoD and SoD con-
straints shown in Figure 11 (a) and assume the user-task assignment UT = {(Alice, t1), (Alice, t2),
(Bob, t2)}. Given T = (t1, t2) and φ = (UT , {s}, {b}), CGRAPH fails to produce an instance
of LISTCOLORING because t1 and t2 are both bound and separated by b and s, respectively.
However, no matter how the workflow is executed, when t2 is instantiated either b’s or s’s his-
tory has been released and the respective constraint is irrelevant at this point. Correspondingly,
E = t1.Alice → ((o1 → t2.Bob → SKIP ) u (o2 → t2.Alice → SKIP )) is an enforcement
process for φ on Wa. �

This example shows that by abstracting away from release points, our approximation misses in-
formation needed to determine whether an enforcement process exists. Moreover, our approximation
not only abstracts away release points but also control-flow. Example 9 illustrates how the existence
of an enforcement process may only depend on control-flow.

Example 9 (Control-flow matters) Consider the EPE-instance shown in Figure 11 (b), which is
equivalent to the EPE-instance examined in Example 8 except that the workflow’s control-flow is
inverted. Let Wb = t2 → ((o1 → t1 → SKIP ) u (o2 → t1 → SKIP )) be the corresponding
workflow process. There exists no enforcement process for φ on Wb because when t2 is instantiated
one cannot know whether the execution will later pass through o1 or o2 and whether Alice or Bob
should therefore execute t2’s instance. �

6 Related work
Schneider formalized the concept of a security automaton, which is an enforcement monitor that
is composed with an insecure system and checks whether commands are authorized prior to their
execution [30]. Security automata, however, are limited in that preventing unauthorized commands
either causes the target system to terminate or requires exception handling to be part of the security
automaton as well as the target system. To overcome this limitation, several extensions to security
automata, such as edit automata [17], have been proposed. We follow another direction by incor-
porating knowledge about the system’s control-flow, modeled by a workflow, into the enforcement
monitor. Our approach uses this additional information to enforce authorization policies while pre-
serving all of the target system’s options as defined by the workflow.
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Figure 12: Classification

Expressivity of enforcement processes. An authorization policy is sometimes called satisfiable
with respect to a workflow if there exists an assignment of users to tasks that does not violate the
policy, see e.g. [7,33]. Our approximation algorithm determines such an assignment for the en-
forcement process. In general, however, enforcement processes are more expressive in terms of the
authorization policies they support than a static assignment of users to tasks. This is also reflected
in Solworth’s notion of unscheduled approvability requiring that every workflow instance can be
extended to a final state no matter which path is taken [32].

The question of what constitutes a well-formed workflow model has been extensively investi-
gated in the business process community. For example, van der Aalst calls a workflow sound if it
has no dead transitions and it does not deadlock before completing its final task [34]. Obstruction-
freedom is a complementary property; combined with soundness it guarantees that the workflow will
always successfully terminate and thus will achieve its business objectives.

Workflow abstraction and constraint models. Early work on authorization constraints, such as
the Transaction Control Expressions proposed by Sandhu [27], model workflows only as part of
the constraints, for example by stating how often a task must be executed. Bertino, Ferrari and
Atluri were the first to model workflows explicitly, defining workflows as sequences of tasks. In
their model, constraints on task executions are given by clauses in a logic program [7]. Later, Tan,
Crampton, and Gunter refine a workflow to be a partially ordered set of tasks and thereby explicitly
model workflows and task instances [33]. Authorization constraints are given for pairs of tasks in
terms of relations over users that must be satisfied when executed.

The above and most other work on the enforcement of constraints ignore conditions, loops and
parallelism in workflows. A notable exception is Solworth [32], who models a workflow as a directed
graph. However, constraints in the presence of loops are restricted such that the first task must always
be executed by the same person. Given a sufficient number of users per task, this restriction ensures
that a workflow instance can always successfully terminate if there are no conflicts between SoD
and BoD constraints. The graph transformation used in CGRAPH is inspired by Solworth’s conflict
graph [32].

We impose restrictions neither on workflows nor on constraints. Furthermore, to our knowledge,
there is no other work related to our concept of release. By introducing release points into work-
flows, we support a fine-grained control of constraints in the presence of loops, scoping authorization
constraints to subsets of task instances.

Classification of authorization constraints for workflows. Figure 12 shows the classification of
our authorization constraints with respect to the criteria introduced in Section 1. We added in gray a
third criteria distinguishing between constraints that may be administrated at run time, i.e. changed
during workflow execution, and constraints that are not administrable at run time. In this article we
implicitly assumed that constraints are non-administrable and classified basic access control con-
straints as both workflow-independent and history-independent, and our SoD and BoD constraints
as workflow-specific and history-dependent.
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Most of the authorization models mentioned above, e.g. [7,27,32,33], are also workflow-specific
and history-dependent. However, there are exceptions, such as Li and Wang’s Separation of Duty
Algebra (SoDA) [16], that are history-dependent but workflow-independent. Li and Wang reason
that SoDA is well suited to formalize abstract SoD requirements and thereby bridges the gap be-
tween high-level, i.e. workflow-independent, requirements and their implementation in a workflow
environment.

Lanes are often used to group tasks with respect to the organizational unit that is responsible for
their execution [31]; sometimes lanes are directly interpreted as workflow-specific roles. As such,
they represent workflow-specific, history-independent authorization constraints. However, if tasks
can be executed by multiple roles, a workflow may have exponentially many lanes in the number of
roles, which complicates its graphical representation.

We are only aware of a few publications that analyze the administration of authorization con-
straints during workflow execution. Crampton and Khambhammettu [10] investigate how to delegate
rights to execute tasks at run time without obstructing the underlying workflow and delegation can be
interpreted as temporary administrative changes. In [4] we propose an enforcement mechanism for
SoDA constraints, which also accounts for changing user-task assignments, reflecting administrative
activities. Related work, e.g. [13], uses often the term dynamic for what we call history-dependent
and static for history-independent. However, if you distinguish authorization constraints both with
respect to their dependency on a workflows execution history and with respect to whether they are
administrable at run time, the term dynamic is not sufficiently refined. Hence, we avoid the term
dynamic in this article.

BPMN extension and tool support. Different authors use BPMN’s extension mechanism to aug-
ment workflow models with security requirements [23,35]. We see this approach as an instance of
Model Driven Security (MDS) [3], which aims at synthesizing a system’s implementation from the
composition of models specifying its business and security requirements. Our BPMN and Oryx ex-
tension builds on Rüegger’s master thesis [26]. Wolter, Miseldine, and Meinel also extend Oryx to
provide tool support for their workflow authorization language [36]. In particular, they invoked the
model checker SPIN in Oryx’s application tier to reason about their constraint models.

7 Conclusions
We have presented a new approach to aligning security and business objectives for information sys-
tems. Using CSP, we modeled a system at two levels of abstraction: the control-flow level, modeling
a system’s business objectives, and the task-execution level, modeling who executes which tasks. We
bridged these levels by the notion of obstruction which generalizes deadlocks. Furthermore, we pre-
sented a novel approach to scope SoD and BoD constraints to subsets of task instances using release
points. Our formalism thereby generalizes existing SoD and BoD specification languages that sep-
arate and bind duties between all instances of constrained tasks. We extended the well-established
workflow modeling language BPMN to visualize our constraints. Furthermore, we extended the
modeling platform Oryx to provide tool support for them. We thus maintain the intuition and vi-
sual appeal of graphical modeling languages, making it easier for workflow designers and security
administrators to cooperate in specifying and aligning security and business objectives.

Our work gives rise to many interesting follow-up questions. For example, given a workflow
processW and an authorization policy φ, many processes may meet the conditions of an enforcement
process for φ on W as required by Definition 8. This raises the question of what constitutes a
“good” enforcement process. One possibility is to search for an enforcement process Eφ,W such
that T(Aφ) \ T(Eφ,W ) is minimal. In other words, one that maximizes the number of authorized
execution events and thereby minimizes the restrictions enforced at the task-execution level.

With our enforcement process definition, we require obstruction-freedom and allow the enforce-
ment to be more restrictive than specified by the respective authorization process. The preservation
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of a workflow at the control-flow level is therefore given priority over allowing every authorized task
execution. Other designs are possible and remain to be investigated.

We would like to sharpen our complexity analysis for EPE, ideally finding upper-bounds that
match the lower-bounds we have given.
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A CSP
A labelled transition system (LTS) is a quadruple (Q,D, δ, q0), where Q is a set of states, D is a set
of input symbols, δ ⊆ Q×D×Q is a state transition relation, and q0 ∈ Q is a start state. For n ≥ 1,

q0, qn ∈ Q, and a sequence of events 〈σ1, . . . , σn〉 ∈ D∗, we write q0
〈σ1,...,σn〉−→ qn if there exists a

sequence of states 〈q1, . . . , qn−1〉 such that (qk−1, σk, qk) ∈ δ for all k ∈ {1, . . . , n}.
CSP’s operational semantics interprets a process as an LTS where the input symbols correspond

to the events that the process engages in, i.e. D ⊆ Στ,X. Let L be an LTS (Q,Στ,X, δ, q0). For
q1, q2 ∈ Q and a trace i ∈ Σ∗X, we write q1

i
=⇒ q2 if there exists a sequence of events h ∈ (Στ )∗X

such that q1
h−→ q2 and i is equal to h without τ events.

Let q ∈ Q be a state and D ⊆ ΣX be a set of events. The set D is a refusal set of q, written
q ref D, if D ⊆ {σ ∈ ΣX | ¬∃q′ ∈ Q, (q, σ, q′) ∈ δ}. We say an LTS L = (Q,Στ,X, δ, q0)
corresponds1 to a process P , denoted LP , if

F(P ) = {(i,D) | ∃q ∈ Q, q0
i

=⇒ q, q ref D} ∪ {(i,D) | ∃q ∈ Q, q0
iˆ〈X〉
=⇒ q,D ⊆ ΣX} .

Note that there may be multiple LTSs that correspond to the same process.

B Graph Coloring
A graph G is a tuple (V,E) where V is a set of vertices and E ⊆ V × V is a set of (undirected)
edges. The maximal degree of a graph G, denoted ∆(G), is maxv∈V |{v′ ∈ V | (v, v′) ∈ E}|,
i.e. the maximal number edges linking a vertex to other vertices.

Definition 10 (The k-COLORING problem)

Input: A graph G = (V,E) and an integer k ∈ N.

Output: YES if there exists a function col : V → {1, . . . , k} such that for
every edge (v1, v2) ∈ E, col(v1) 6= col(v2) or NO otherwise.

Let a graph G and an integer k be given. We call a function col a k-coloring for G if col satisfies
the condition described in the k-COLORING problem for G and k. The k-COLORING problem is
NP-complete [9]. The following problem generalizes k-COLORING.

Definition 11 (The LISTCOLORING problem)

Input: A graph G = (V,E) and a function L : V → 2Z , for a set Z.

Output: YES if there exists a function colL : V → Z such that for every vertex v ∈ V ,
colL(v) ∈ L(v) and for every edge (v1, v2) ∈ E, colL(v1) 6= colL(v2) or
NO otherwise.

Unlike k-COLORING, LISTCOLORING does not offer the same set of colors for every vertex;
for each vertex v, the colors must be chosen from a “list” of colors L(v) ⊆ Z. Note, for historical
reasons, what is called a list is actually a set. For consistency with the literature, we stick to the term
list. Given a graph G and a color-list function L, we call a function colL an L-coloring for G if colL
satisfies the condition described in Definition 11. We call L a k-color-list function if |L(v)| ≥ k, for
all v ∈ V . Given a graph G, the smallest integer k, such that G is L-colorable for all k-color-list
functions L, is called G’s list-chromatic number and is denoted χl(G). The maximal degree of a
graph gives us an upper bound for the list-chromatic number.

1The CSP-versed reader may have realized that we omit a discussion of divergence. We implicitly assume that the
processes that model workflows in the following chapters are divergence free. Our renaming relations and authorization
processes do not introduce divergence.
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Lemma 3 For every graph G,
χl(G) ≤ 1 + ∆(G)

and a greedy algorithm for graph coloring with polynomial runtime finds an L-coloring for G for
every (1 + ∆(G))-color-list function L.

The definition of greedy algorithms for graph coloring is standard, e.g. see [9]. See also [9] for a
proof of Lemma 3.

LISTCOLORING generalizes k-COLORING because a k-COLORING instance can be translated
to a LISTCOLORING instance by setting Z = {1, . . . , k}, and L(v) = Z, for every v ∈ V . Since a
solution to the LISTCOLORING problem can be checked in polynomial time, LISTCOLORING is
also NP-complete. Algorithm 3, called LCOL, solves LISTCOLORING in exponential time.

Algorithm 3: LCOL(V,E, L)

Input: |V | ≥ 1, E ⊆ V × V , and L : V → 2Z , for a set Z
Output: returns an L-coloring for (V,E) if it exists and NO otherwise

1 if V = {v} then
2 if |L(v)| ≥ 1 and (v, v) 6∈ E then
3 let c ∈ L(v)
4 return {v 7→ c}
5 else
6 return NO

7 else
8 let v ∈ V
9 if (v, v) ∈ E then

10 return NO

11 foreach c ∈ L(v) do
12 V ′ ← V \ {v}
13 E′ ← {(v1, v2) ∈ E | v1 6= v, v2 6= v}
14 L′ ← ∅
15 foreach v′ ∈ V ′ do
16 if (v, v′) ∈ E then
17 L′ ← L′ ∪ {(v′ 7→ L(v′) \ {c})}
18 else
19 L′ ← L′ ∪ {(v′ 7→ L(v′))}

20 r ← LCOL(V ′, E′, L′)
21 if r 6= NO then
22 return r ∪ {(v 7→ c)}

23 return NO

Lemma 4 Let a graph G = (V,E), with |V | ≥ 1, and a color-list function L : V → 2Z , for a set
Z be given.

• Correctness: If LCOL(V,E,L) returns a coloring colL, then colL is an L-coloring for G.

• Completeness: If there exists an L-coloring for G, then LCOL(V,E, L) returns a coloring.

Proof. Let G = (V,E), with |V | ≥ 1, and a color-list function L : V → 2Z , for a set Z, be given.
We refer to a line i of Algorithm 3 as LCi. We first prove the correctness property and afterwards
the completeness property. We prove both cases by induction over V .
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Correctness: Base case: Assume V = {v} and let colL = {v 7→ z} = LCOL({v}, E, L), for z ∈ Z.
Therefore, |L(v)| ≥ 1 and (v, v) 6∈ E by LC1 and LC2. It follows that E = ∅ and colL(v) ∈ L(v)
because of LC3. Hence, colL is an L-coloring of G.

Step case: Assume |V | ≥ 2 and let v ∈ V . Let G′ = (V ′, E′), for V ′ = V \{v}, E′ ⊆ V ′×V ′,
and L′ : V ′ → 2Z . Induction hypothesis: if LCOL(V ′, E′, L′) returns a coloring colL′ , then colL′
is an L′-coloring for G′. Assume colL = LCOL(V,E, L). Because |V | ≥ 2, Algorithm 3 returns at
LC22. Let colL = r∪{(v 7→ z)}. By LC20, LC21, and the induction hypothesis, r is an L′-coloring
for G′ = (V ′, E′), for V ′, E′, and L′ as defined in LC12–LC19. Therefore, colL(v′) ∈ L′(v′) for
all v′ ∈ V ′ and colL(v1) 6= colL(v2) for all (v1, v2) ∈ E′. Let E′′ = E \ E′. Because of LC9,
(v, v) 6∈ E′′. It follows by LC13 that for every (v1, v2) ∈ E′′ either v1 = v or v2 = v. Without
loss of generality assume that v1 = v. It follows that v2 ∈ V ′. By LC17, colL(v2) 6= z. Therefore,
colL(v1) 6= colL(v2). Furthermore, colL(v) ∈ L(v) by LC11. Hence, colL is an L-coloring of G
and the correctness property of Lemma 4 follows.

Completeness: Assume there exists an L-coloring colL for G. Base case: Assume V = {v}.
Because colL is anL-coloring, colL(v) ∈ L(v). Furthermore, colL(v1) 6= colL(v2) for all (v1, v2) ∈
E. Therefore, |L(v)| ≥ 1 and (v, v) 6∈ E. It follows from LC1 and LC2 that LCOL({v}, E, L)
returns at LC4 with a coloring.

Step case: Assume |V | ≥ 2 and let v ∈ V . Let G′ = (V ′, E′), for V ′ = V \ {v}, E′ ⊆
V ′ × V ′, and L′ : V ′ → 2Z . Induction hypothesis: if there exists an L′-coloring for G′, then
LCOL(V ′, E′, L′) returns a coloring. Because |V | ≥ 2, LCOL(V,E,L) passes through LC8. Let
v be the vertex chosen in LC8 and z = colL(v). Because colL is an L-coloring for G, for all
(v1, v2) ∈ E, colL(v1) 6= colL(v2) and therefore (v, v) 6∈ E. Hence, LCOL(V,E,L) executes
the for-loop LC11–LC22. Algorithm 3 cannot return NO before z is chosen in LC11. Let V ′,
E′, and L′ as defined in LC12–LC19. The coloring colL′ = colL \ {(v 7→ z)} is an L′-coloring
for (V ′, E′). Therefore, LCOL(V ′, E′, L′) returns a coloring at LC20 by the induction hypothe-
sis. Hence, LCOL(V,E, L) returns a coloring at LC22 and the completeness property of Lemma 4
follows. �

C Proof of Theorem 1
The proof of Theorem 1 requires a formal definition of the parallel, (fully-)synchronized compo-
sition of two processes in terms of the operational semantics of CSP, which is a standard parallel
composition of two LTSs. Without loss of generality, we assume now that the set of input symbols
to an LTS that correspond to a process is the set of all events Στ,X.

Definition 12 (Operational Semantics of Parallel, Synchronized Composition) Let P1 and P2 be
two processes and let LP1

= (QP1 ,Στ,X, δP1 , qP1
0 ) and LP2

= (QP2 ,Στ,X, δP2 , qP2
0 ). An LTS

LP1 ‖ P2
= (QP12 ,Στ,X, δP12 , qP12

0 ) corresponding to the process P1 ‖ P2 can be constructed as
follows:

• QP12 = QP1 ×QP2

• δP12 = {((qP1
1 , qP2

1 ), σ, (qP1
2 , qP2

2 )) | (qP1
1 , σ, qP1

2 ) ∈ δP1 , (qP2
1 , σ, qP2

2 ) ∈ δP2 , σ ∈ ΣX}
∪ {((qP1

1 , qP2), τ, (qP1
2 , qP2)) | (qP1

1 , τ, qP1
2 ) ∈ δP1 , qP2 ∈ QP2}

∪ {((qP1 , qP2
1 ), τ, (qP1 , qP2

2 )) | (qP2
1 , τ, qP2

2 ) ∈ δP2 , qP1 ∈ QP1}

• qP12
0 = (qP1

0 , qP2
0 )

Proof of Theorem 1. Assume U is finite. Let φ = (UT , S,B) be an authorization policy and W
a finite workflow process. Let LW = (QW ,Στ,X, δW , qW0 ). Because U is finite, π−1 maps
the finite number of tasks T of W to a finite number of execution events. We construct a finite
LTS LW [π−1] = (QW [π−1],Στ,X, δW [π−1], q

W [π−1]
0 ) as follows: QW [π−1] = QW , δW [π−1] =
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{(q1, t.u, q2) | (q1, t, q2) ∈ δW , t ∈ T , u ∈ U} ∪ {(q1, σ, q2) | (q1, σ, q2) ∈ δW , σ ∈ (Στ,X \ T )},
and qW [π−1]

0 = qW0 . In other words, LW [π−1] is the same LTS as LW except for every transition

q1
〈t〉−→ q2 in LW , for a task t, there is a set of transitions q1

〈t.u〉−→ q2 in LW [π−1], for every user u ∈ U .
Because T and U are finite, the static authorization process AUT is finite by Definition 3, every

SoD process As, for s ∈ S, is finite by Definition 4, and every BoD process Ab, for b ∈ B, is
finite by Definition 5. By Definition 6, Aφ is the parallel, synchronized composition of AUT , every
As, for s ∈ S, and every Ab, for b ∈ B. From Definition 12, it follows that Aφ is finite too. Let
LAφ = (QAφ ,Στ,X, δAφ , q

Aφ
0 ).

By Condition (1) of Definition 8, an enforcement processEφ,W for φ onW must trace refineAφ,
i.e. Aφ vT Eφ,W . Therefore, if Eφ,W exists, there exists an LTS LEφ,W = (QEφ,W ,Στ,X, δEφ,W ,

q
Eφ,W
0 ) for QEφ,W = QAφ , δEφ,W ⊆ δAφ , and qEφ,W0 = q

Aφ
0 . Because Aφ is finite, so is δAφ and

there are finitely many LTSs that are candidates to be LEφ,W . It is straightforward to construct a pro-
cess from an LTS. Because there are finitely many LTSs, there are also finitely many corresponding
processes. For each such process P , we can check if (W [π−1] ‖ P )[π] =F W . Failure equivalence
of finite processes is decidable [24], for example using the CSP model-checker FDR [12]. If none of
the candidate processes P satisfies the above check, i.e. satisfies Condition (2) of Definition 8, there
exists no enforcement process for φ on W . �


